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Abstract

Adpversarial attacks on face recognition systems (FRSs) pose serious security and
privacy threats, especially when these systems are used for identity verification. In
this paper, we propose a novel method for generating adversarial faces—synthetic
facial images that are visually distinct yet recognized as a target identity by the
FRS. Unlike iterative optimization-based approaches (e.g., gradient descent or other
iterative solvers), our method leverages the structural characteristics of the FRS
feature space. We figure out that individuals sharing the same attribute (e.g., gender
or race) form an attributed subsphere. By utilizing such subspheres, our method
achieves both non-adaptiveness and a remarkably small number of queries. This
eliminates the need for relying on transferability and open-source surrogate models,
which have been a typical strategy when repeated adaptive queries to commercial
FRSs are impossible. Despite requiring only a single non-adaptive query consisting
of 100 face images, our method achieves a high success rate of over 93% against
AWS’s CompareFaces API at its default threshold. Furthermore, unlike many
existing attacks that perturb a given image, our method can deliberately produce
adversarial faces that impersonate the target identity while exhibiting high-level
attributes chosen by the adversary.

1 Introduction

Computer vision has advanced significantly with the development of Deep Learning (DL) technolo-
gies, which enable the extraction of discriminative features from images and have proven useful in
various tasks such as classification and recognition. For example, with sufficient data, DL models
demonstrate remarkable accuracy in image classification [83] 26} [85]] and face recognition [16} 3} 40].

However, the high accuracy of DL models has typically been evaluated using naturally generated (i.e.,
unaltered) images, and studies have shown that adversarially generated images, called adversarial
examples, can fool DL models with high probability [23}53}[76]. Adversarial examples are artificially
generated images that are perceived differently by humans and DL models. Both the generation
of adversarial examples and the development of defense and detection methods are active areas
of research, as adversarial examples present significant security and privacy risks in the practical
deployment of DL [53] 23] 31]]. For example, DL-based Face Recognition Systems (FRSs) are widely
used for mobiles and website logins, as well as for access control of buildings and airports [38 144} [14]].
In such systems, adversarial examples pose significant security and privacy risks [82, [79]. In this
paper, we focus on FRS, but we believe that the techniques we developed can be spread to other
biometric fields such as voice [46} 12,47, [25]). This is a natural extension, as FRS is a representative
biometric authentication method, and the core objective of biometric systems is to achieve strong
intra-class compactness and inter-class separability—principles that apply across various modalities.

Several methods have been proposed to generate adversarial examples that can fool FRSs, and these
are typically categorized based on the adversary’s capabilities. If the adversary has full access to the
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target DL model’s parameters, the attack is categorized as a “white-box attack™ [153, 23| (18} 49, [76].
If the adversary cannot access the model’s parameters but can query, it is considered a “black-box
attack” [31} [7, 4]]. Black-box attacks can further be categorized based on the type of query result.
For example, if the result is a final prediction, such as an identity label or a true/false verification
outcome, it is a “hard-label/decision-based attack” [4, (19} 8] If the result includes logits or similarity
scores, it is a “soft-label/score-based attack” (1, 31} 24, [71, 150]. Regardless of these categories,
“GAN-based” approaches have been proposed to improve the imperceptibility [82) 28, 168, 45] of
adversarial examples. Ordinary adversarial examples are generated by directly modifying pixel values,
which can occasionally introduce unnatural artifacts that are noticeable to humans. To address this
limitation, GAN-based methods instead search the latent space of a GAN to synthesize natural-
looking images. Other classifications include “optimization-based” approaches, which solve discrete
and non-continuous problems in the hard-label black-box setting [10]], and “transferable attacks”,
which exploit the transferability of adversarial examples across DL models to bypass limited access
in the black-box setting [52, 62]].

Although the above adversarial attacks fall into different categories, they all iteratively solve optimiza-
tion problems under constraints that ensure the generated examples remain imperceptible to humans.
For example, the PGD attack [53] is an iterative process that consists of two steps: (1) finding a
perturbed image whose feature vector is far from that of the original, and (2) projecting it onto a
set of small perturbations to ensure imperceptibility to humans. GAN-based attacks [82| 28l 68|, 45]]
also involve an iterative optimization process subject to two objectives: maximizing the distance
from the original image and minimizing perceptibility by humans. This is because these attacks
rely on iterative solvers such as gradient descent [53} 23| |18, 49| [76] and randomized gradient-free
methods [7,[71110]. However, these iterative solvers are cumbersome, especially in black-box settings,
because they require a large number of adaptive queries to the target DL model.

1.1 Our Contribution

The general idea of iterative solvers is to approximate a (local) solution step-by-step when the global
landscape of the objective function is unknown. The objective function in DL contexts is often highly
complex, as it involves numerous factors, including the parameters of the neural network. Although
there are attempts to analyze partial landscapes [L1 184} 57], understanding its entire landscape is
nearly infeasible, and thus such iterative solvers may be the best approach until now. To overcome
this fundamental limitation, we propose a novel method for non-adaptive adversarial face generation.
Rather than embedding all aspects into the objective function and solving it iteratively, our approach
interprets the feature space as much as possible and exploits its structural characteristics to refine
the optimization problem. By leveraging this idea, we also show that our attack can be applied to
a black-box setting where the adversary can obtain confidence scores from queries. Note that this
scenario corresponds to attacking several real-world commercial face matching APIs, e.g., provided
by AWS [65] or Tencent [13]]. With additional techniques tailored for this setting, we successfully
generate adversarial faces for these APIs using scores from a single non-adaptive query composed of
100 faces. The adversarial faces generated from our attack on AWS CompareFace, along with the
corresponding confidence scores from the API, are presented in Fig.[2] All these pairs surpass the
API’s default threshold of 0.8. More importantly, we emphasize that up to 13.7% of face pairs, consist
of target face and adversarial face generated by our attack, surpasses the 0.99 confidence score—well



above the threshold suggested for law-enforcement according to Amazon’s use-case |guideline. These
results demonstrate that our score-based non-adaptive approach can reliably generate adversarial
faces even under realistic black-box constraints, highlighting the structural weaknesses of existing
face recognition systems. For discussions on defensive strategies and responsible disclosure practices,
please refer to Section [5.3]and the Ethics Statement 6]

2 Related Works

We briefly survey adversarial attack methods against FRSs. Similar to attacks on image classifi-
cation [69, 153 |6], it is known that FRSs are vulnerable to adversarial attacks based on perturba-
tions [19} [80} 48, 27]. In particular, recent studies have proposed attacks for black-box settings,
successfully attacking real-world commercial FRSs, e.g., Tencent API [[19] or Face++ [48| 27].
Along with these attacks, there is another branch of exploiting generative models for faces, e.g.,
StyleGAN [37]], to craft adversarial examples [78 [82] 28] 68}, 45} |63]]. Most of these studies con-
ducted transfer attacks via ensembles of the adversary’s FRSs while employing the naturalness loss
to ensure that the resulting adversarial faces are perceived as natural in humans’ eyes. A series of
works [82] 128l 168, 145] attempted to craft adversarial faces via makeups that were guided by the
GAN:-based image editing techniques or the aid of a vision-language model. Recently, [63] utilized a
diffusion model and presented a method to weaken the diffusion purification effect. Nevertheless, we
point out that all these attacks either require a huge number of adaptive queries [[19] or heavily rely
on the transferability. The former can be defended by detection methods for adaptive queries [9} [75],
whereas the latter tends to exhibit a lower attack success rate.

3 Attributed Subsphere S’} and Non-Adaptive Adversarial Face Generation

3.1 Our Approach to Avoid Iterative Solvers using Attributed Subsphere Projection

The most DL-based FR modeﬂ are trained by so-called “metric learning” to make the feature space
be like a metric space [51} 74,16} 130,155, 13} 139} [77L 133]. In particular, the above recent FR models
utilize (d — 1)-sphere S9~! with angular distance metric d as a feature space. Assume that the
target FR model is well trained by metric learning. Then, for any attribute f (e.g., gender), we could
naturally expect that the feature vector set S of all images having f lie close together in the feature
space. Define the metric projection to Sy as ps, (7) := argmingc g d(, ). For any @ € S4-1if we
efficiently compute ps, (i), then we may use it for adversarial face generation; for example, if u
is a feature vector without f and d(ps, (%), @) is sufficiently small, then pgs, () is a feature vector
of an adversarial example since it has attribute f but f is not present in the original image. Using
well-known inversion methods that reconstruct faces from the corresponding templates extracted from
the given FRS [54! 166, 167,134, |59]], we can recover the adversarial face image of pg ' (). However,
without assumptions on the structure of Sy, a naive computation of ps, becomes equivalent to
exhaustive search, or it may require the use of generic iterative algorithms, e.g., gradient descent. To
avoid such iterative methods, we establish a useful conjecture: the feature metric spaces (S¢~!,d) of
all the metric-learning-based FR models share the following property.

Conjecture 1. We call the attribute that most humans possess dominant attributes. (e.g., number of
eyes, nose, and mouth.) There exist non-dominant attributes f such that the feature vector set Sy of
all images having f includes a k-sphere S’Ji with high probability Pries? [ € S¢). In addition, there

exists an efficient algorithm to find a set of orthogonal unit vectors defining S%, called a basis.

If the above conjecture is valid, we can use the projection to the k-sphere pgx instead of ps, to
efficiently compute without iterations. This is because a naive projection to d k-sphere is rather
straightforward by basic linear algebra; if we have a basis of S’}, we can first project to R¥ including
the S¥ and then normalize to be a unit vector. However, the remaining issue is whether d(ps;, (@), @)
is suf%ciently small. To address this, we present a proposition concerning the expected distance
between a uniformly selected unit vector and its projection onto a subsphere.

Proposition 1. Consider the metric space (S*~',d) and the metric projection to an arbitrary k-
subsphere SF C ST, pei (T) := argmingcsrd(7, y). Let U be a uniformly chosen random variable

*In this paper, FRS refers to the overall FR system whose final output is a score. We use the term “FR model”
for “feature vector extractor”, which does not contain the score computation process to avoid confusion.
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(a) Bilinear Interpolation on the Principal Components (PCs)
Figure 3: The visualization of attributed subspheres S’} (left) from principal components (right).

over St and V := pgk (U). Then, we have that the random variable cos® (d(U,V)) follows the
beta distribution Beta(%, 5%). That is, E[cos? (d(U, V))] = .

Note that Prop. [T|provides the expectation of the squared cosine similarity, which may differ from
the actual cosine similarity depending on the variances of U and V. Although we experimentally
verify that the expectation provides a sufficiently accurate approximation for our purposes, we defer
both the proof and experimental validation to Appendix [B]due to space constraints. Importantly, the
subsphere S* is independent of the distribution of U. In our setting, if an attributed subsphere S’} is
fixed and the adversary arbitrarily selects a target face image—regardless of SX—then there exists a
feature vector in S% whose average cosine similarity with the target is y/k/d. To show its concrete
implication, we note that the decision threshold of many FRS [16] [55] is typically set at most
to 70°, which corresponds to a cosine similarity of approximately 0.3420. On the other hand, for
k=128 and d = 512, Prop.gives v/ k/d = 0.5, 1i.e., 60° in angular terms. This means that for any
129-dimensional hyperplane, if we randomly select a face feature vector u € S~! and compute its
projection & € S, then the reconstructed facial image corresponding to ¥’ would be recognized as the
same identity as @ by the aforementioned FRS, thus achieving our main objective.

3.2 Validation of the Existence of the Attributed Subsphere Sfc and Conjecture [T}

Although the Proposition[TJand experimental results in Appendix [B]show the feasibility of our strategy
to craft adversarial faces without iterative algorithms, it remains unclear whether Conj. [T)is indeed
true, i.e., the existence of attribute-specific subspheres. Therefore, we now turn our attention to the S’}
corresponding to attributes, e.g., race, or skin color, thus validating Conj. [T} To this end, we applied
Principal Component Analysis (PCA), a classical algorithm for extracting representative bases (i.e.,
principal components) from a given distribution, to the set of feature vectors from faces sharing a
specific attributes. Note that PCA is applied in the deep feature space (not in the pixel domain). We
use PCA solely as an approximation to the basis of the attributed subsphere, not as a classical image-
space preprocessor. We used the FairFace dataset [35]], which provides nearly 110k annotated facial
images, to collect samples labeled with selected attributes. Specifically, we selected four attributes:
male, female, White, and Black. For each attribute, we ran PCA to obtain principal components and
reconstructed facial images from the components using a pre-trained inverse model, Arc2Face [59].
These reconstructions are visualized and used in the subsequent analysis to evaluate whether the
components span valid subspheres. In particular, by checking whether a linear combination (followed
by normalization) of the principal components results in a facial image that still exhibits the same
attribute as the original dataset used in PCA, we can empirically verify the existence of attributed
subspheres. Fortunately, there is supporting evidence for this property: the semantic interpolation
between facial images is known to be possible using inverse models by interpolating in the feature
space [34}, 166 [59]. Since a linear combination can be viewed as a sequence of linear interpolations,
the subsphere spanned by principal components can be interpreted as a valid attributed subsphere. As
shown in Fig.[3] although the pose may slightly vary, the interpolated facial images maintain identity
coherence and preserve the intended shared attribute. To sum up, we conclude that Conj.[T]is indeed
true, therefore the adversary can conduct an adversarial attack by exploiting attribute-specific spheres.

We remark that our argument is not about a specific choice of Arc2Face [59] we used, but about the
inverse model itself of the metric learning-based FR model. Our argument still holds for other inverse
models, such as NbNet [54]]. Due to space constraints, we provide experimental results related to this
aspect in Appendix[D] as well as PCA results on other attributes or datasets and their interpolations.
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Figure 4: An overview of our adversarial face generation. In Figure, an attribute f indicates male.
Fr, : T — S%!and F ! are adversary’s own FR model and corresponding inverse model. F :
T x T — [0, 1] is target FRS whose output is confidence score and ¢ is a sigmoid function.

Additional Note on Inverse Model Bias. While our main results in Fig. [3|and Appendix [D]show
that both Arc2Face [59] and NbNet [54] reconstruct faces consistent with the intended attributes,
we observed that certain inverse models (e.g., [66]) exhibit systematic demographic bias, often
reconstructing young white male faces regardless of the input feature vector. We emphasize that
such bias originates from the inverse model architecture and training data rather than our projection
mechanism. Consequently, although the projection step faithfully preserves the target attribute within
the feature space, the perceptual quality of the reconstructed adversarial face may vary depending
on the generative capability and bias of the chosen inverse model. We have explicitly noted this
limitation in our final analysis and Appendix [D]

3.3 Non-Adaptive Adversarial Face Generation

An intriguing property of adversarial examples is the transferability, where adversarial examples
generated for one local FRS can deceive another target FRS. This property can convert “white-box
attacks” to “black-box attacks”. Therefore, we first present our adversarial face generation algorithm
in a white-box setting, leveraging the insights discussed above. Let Z be the ideal collection of all
facial images, and let Zy C Z be the subset consisting of images with a specific attribute f. Given a
facial image img € Z \ Zy, the goal of the adversary is to find another image img € Z such that it is
recognized as the same identity as img by a target FRS T'. To achieve this, the adversary first runs PCA
on F'(Dy)—where Dy is an f-attributed dataset and F' is the adversary’s own FR model—to obtain
a PCA matrix M whose i-th row is i-th principal components denoted by 771 ;. Using the inverse

model F~!, the adversary then reconstructs the corresponding facial images O; = F~* (1 ;). Next,
the adversary defines a metric projection psk( 7): S — Sk as Hzﬁﬁ’
whose i-th row is F(O;) and A is a pseudo-inverse of A. Then, the adversarial face img is generated

as F~1 (psxjg (F(img))). Regardless of whether the adversary generates img, such a sample always

where A is the matrix

exists in the attributed subsphere and is close enough to img to be recognized as the same identity.

While the above (white-box) approach generates adversarial faces using I’ and F'~! alone, directly
utilizing it for the transfer attack is insufficient for achieving a high attack success rate. Notably,
we observe that some facial images consistently fail in transfer attacks, and this phenomenon of
lower success rates is not limited to our attack but can also be observed with the classical adversarial
attack method based on iterative solver. Due to space constraints, detailed analysis of such cases is
provided in Appendix[E} To overcome this, we extend our attack strategy by permitting the adversary
to query the target FRS and exploit the obtained cosine similarity scores 5. To this end, we establish
the following conjecture: there exists a universal basis O over facial images whose interpolations via
a FR model and its inverse always produce similar images under the same coefficients, regardless of
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the choice of them. Our motivation is to view the metric projection function x > ﬁ as a linear
combination of rows of A; note that, by the definition of pseudo-inverse, ATAZ = AT(AAT)~1 Az,
and § = A%. Hence, if we appropriately treat the (AAT)~! term and the conjecture holds, then the

adversary can produce the adversarial face by interpolating images in O through its FR model and its
inverse with scores s, which are obtained from querying img and images O; € O.



Conjecture 2. Fori € {1,2}, let F; be well-trained FR model and Ff1 be its inverse. Then for any
well-trained FRS T with threshold T, there exists a set O of facial images s.t. for all § € [—1,1]F,
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where A; € R¥*4 is a feature vector matrix whose j-th row is F;(O;) for O; € O and j € [k].

Interestingly, we found that the O constructed 400
from an f-attributed subsphere-as realized by 350 |
PCA and the inverse model-does satisfy the re-
quired property in Conj.[2} To demonstrate this,
for FR models F}, F», and corresponding in-
verse models Ffl = FfA 1, Fy 1, respectively,
we measured the distance of the feature vector
of two images in Eq. (T extracted from another
FRS T' = F3. We sampled 10,000 score vectors
& from the uniform distribution over [—1, 1]*.
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specific subsphere, (2) randomly sampled faces
from the FairFace dataset, and (3) images con- ) . .
sisting of uniformly sampled random pixels. The Figure 5: Angle histogram for Conj.
results are given in Fig.[5] We can observe that

the measured distances from the random pixel images are hardly within the threshold (red line),
whereas a non-trivial number of those from faces lie within the threshold. This necessitates the
condition in Conj. 2|that O should consist of faces. More importantly, we can figure out that almost
all measured distances from the attribute-specific subsphere are within the threshold, whereas less
than half of the randomly sampled faces lie outside the threshold. This indicates that our face image
set O behaves well as the role of universal basis, therefore showing the validity of Conj. 2]

Building on Conj. [2] we can derive a formal relationship—particulary in the black-box set-
ting—Dbetween the original image (without attribute f) and the crafted adversarial face image (with
attribute f), by leveraging the projection pgr onto the f-attributed subsphere. In particular, to handle
the (AAT)~! term to connect the linear corhbination of rows of A to the metric projection mapping,
we introduce the correction matrix R. The equation is given as follows:

__Ataz
T lataz|, Conj.P]and R’lz(AlAI)71

T A7 T T\-1g Tp-1z
me (A YL (AT (AR Y,
I|A] A1 7|2 ||A1(A1A1) 512 ) Ay R=15]|2 ,

adversarial face with f

Subsphere projection: pgy, (Z) and Z=F1 (img)
f

| M—
face without attribute f AI =AT(A1AT)~1 and 5:=A1 T (Query)

From the above equations, F7 is the target FR model that the adversary can query in a black-box,
and F3 is the FR model owned by the adversary. If we denote 5§ := A; ¥, then each component of §
corresponds to the cosine similarity between the target facial image img and the images in O. The
left-hand side of the equation approximates a facial image that lies on the attributed subsphere and
is close enough to img to be recognized as the same identity, regardless of whether it is explicitly
generated by the adversary. Note that if the adversary had access to the full /; model, she could
directly generate img using the white-box approach described earlier. However, since we can not
access to the F7, we proceed to reformulate the expression into a fully black-box compatible form.
The second equality comes from the definition of the pseudo-inverse, namely, AI = AT (A AT~ L
Here, if we denote R = A; AI and 5 := R~13, then we can observe that the numerator inside the
Ffl can be viewed as the linear combination of rows of A; with weights 5. Hence, we can obtain
the third equality by utilizing the Conj.[2] We can observe that all the involved values in the rightmost
term in the equation are available to the adversary. A, can be locally calculated by the adversary
and 5 can be obtained through queries. In addition, R can also be obtained from k? cosine similarity
scores by querying all the image pairs in O. Note that R is independent of the target image; the
adversary can construct R in advance before conducting the attack. Therefore, the adversary can craft
the adversarial image by the formula in the rightmost term.



Ffl : NbNet [54] nyl : Arc2Face [59]
[351/Male [[35]/Female] [51/White | [5]/Black | [5]/Asian [35]/Female| [5]/White | [51/Black | [5]/Asian

Target Image

RERERERRA

Scores 0.5782 0.6747 0.5278 0.6773 0.6295 0.5176 0.6367 0.4518 0.5533 0.6588

BEER 22388 E

Scores 0.6154 0.4595 0.6791 0.5829 0.5248 0.5918 0.4522 0.6664 0.5020 0.4636

Table 1: Adversarial face examples using images from [29] (white-box setting; 7 of Fy: 0.2432).

One caveat is that commercial FRSs typically do not return cosine similarity values, but rather
confidence scores. Thus, we need an additional technique to convert the confidence scores into the
cosine similarities. Fortunately, several methods have been proposed [43], 41]], and we can directly
adopt them for conducting our attack against commercial FRSs. Due to space constraints, we defer
the detailed analysis of the correction matrix R and the score transformation technique to Appendix[F
Finally, we provide the full description of our black-box attack in Alg.[T}

Algorithm 1 Projection (line 1-6) and Adversarial Face Generation (line 7-8)

Require: f-attributed dataset Dy, a target face image img € 7 \Z t,alocal FR model ' : 7 — Sd-1
its inverse model F~1 : S¢~1 — T atarget FRST : Z x Z — [0, 1], and hyperparameter k € [d]
Run PCA on F(Dy) to obtain My € R**? whose row vectors are top-k principal components
Set O; « F~1(miy ;) for Vi € [k], where 17 ¢ ; is i-th row vector of M

Set feature vector matrix A € R¥*4, whose i-th row vector is F(O;) for Vi € [k]

Query and set s} ; < g~ ' (T(0;, 0;)) for Vi, j € [k], where g(-) is logistic sigmoid function
Set cosine similarity matrix R € [—1,1]¥** whose ij-th component is 527 ; for Vi, j

Ts

Define the projection to the f-attributed k-sphere by Psk (8) = ”‘:‘41—7”2
Query and set 5'€ 1, 1]* whose i-th element is g~ (T'(O;, img)) for Vi € [k]
return img < Ffl(pS;;(R*(?))

A A RO T

4 Experimental Results

4.1 Experimental Setting

We conducted evaluations on four face datasets: LFW [29], CFP-FP[64], and Age-DB[56]], and
the FairFace[35]], which offers demographically balanced data to assess attack generalizability. We
tested our attack using three open-source FRSs (resp. two commercial FRSs) with three inverse
models. For obtaining an appropriate set O for Conj.[I} we extract attributed-specific PCA matrices
(k = 100) using VGGFace2 [3]] with annotations from [[70]] and annotated FairFace data. Thresholds
T were selected per dataset: accuracy-optimal values for Verification 3-sets and fixed thresholds for
FairFace. Additional details and results for open-source FRSs and Tencent API are in Appendix [A]
For commercial FRSs, we used two thresholds provided by the corresponding service provider.
Additional details for each model and results for open-source FRSs [16] and Tencent API is
given in appendix, due to space constraints. For evaluating our adversarial face generation, we use
the attack success rate (ASR). The ASR is the ratio of generated images that are both classified as the
target identity and possess the target attribute and can be formulated as follows:

ASR = [ 1(T (img;,img,) > 1) * 1(img; € Zp)}I/IT\ I/,

where 7 represents the set of total images, img; € Z \ Z refers to each individual target image, and
1(-) is a function mapping 1 if the input statement is true and 0 otherwise. To determine whether

img; € Z; in open-source and commercial target FRSs, we use an attribute classification model
provided by FairFace [33] and corresponding APIs [65] 13]], respectively.



4.2 Black-Box Attack

We first compare the ASR of the transfer attackE] and the black-box attack with score queries in
Tab. E]using underline. To save space, we use M, F, W, B, and A to denote Male, Female, White,
Black, and Asian, respectively. If the black-box attack performs better, it is underlined; otherwise, it
is not. In most cases, the black-box attack with score queries outperforms the transfer attack without
score queries in terms of ASR. We also present the effect of 12 using colored text. The blue-colored
text indicates the ASR with correction matrix R is smaller than ASR without R. Since most of the
ASRs are black-colored text, R is effective. We now turn to a real-world black-box setting where an
adversary can only obtain unknown metric scores. In Tab. [3] we present our ASR against the AWS
CompareFace API [65] using gender-attributed D . Our attack achieves significantly high ASR with
a default threshold of 0.8. Even if we set the strict threshold of 0.99 recommended by Amazon for
use cases involving law-enforcement, our attack achieves ASRs up to 13.70%. It is noteworthy that
without matrix R, the ASR is only less than 1.5%. We also note that in the FairFace dataset, transfer
attacks were not performed at all except for one case. Due to space constraints, we provide all ASR
against Tencent CompareFace API [[13]] Fr using race-attributed Dy in Appendix @

Target Dataset 1 ‘ Target | f | with R [ without /7

F-1| f [LFW | CFP | AGE FairFace [35] [7=08[7=099[r=08]7=099
[29] [64] [56 ] TLEW ‘ TCrP ‘ TAGE "l;[ansfer Allai\l;/thoul Querl:; - 06
M | 97.29 [ 99.41 | 99.18 | 98.28 | 99.28 | 99.42 54 | 2 N/A 2380 | 233
[54) | F | 9333 96.00 | 97.44 | 94.84 | 96.63 | 9675  Fi\' [ 35 | M N/A 001 0
ot [ W [99.94(799.95 | 100 | 98.90 | 99.68 | 99.75 F N/A 0 0
1a [ B [ 87.98 | 90.61 | 88.66 | 92.12 | 92.63 | 92.68 Direct ’;‘ltjcsk with S;;ge Q“e“;f75 .
A [ 73.82 | 73.00 | 72.27 | 7891 | 7953 | 1963 5@ | 2 | w i geam a5 601008
M [ 70.82 | 86.66 | OL16 | 8131 [OL94 [ 9363 fy |z [ M| 9387 | 1370 | 933 | 04l
[59] | F_| 5848 | 80.25 | 86.20 | 75.21 | 88.31 | 91.02 FIOL00 [ 1235 5795 | 078
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Table 2: Black-box ASR on ViT-KPRPE [40] (F3) Table 3: Black-box ASR on AWS [65] (Fa)

5 Ablation Studies and Discussion

5.1 Comparison with Prior Work

Most prior works [[78 182} 1281168} 145] 163]] aim to protect a given face image—typically the adversary’s
own—by manipulating it so that the FRS classifies it as a different identity. In contrast, our work
pursues the opposite objective: to generate synthetic facial images that are visually different from
the adversary but are still recognized as the adversary by the FRS. This represents a fundamental
difference: prior methods aim for visual similarity with semantic difference, while our method seeks
semantic similarity with visual difference. Nevertheless, it is possible to adapt previous approaches to
simulate our setting by reversing their direction: that is, by simply swapping the source image and the
target image. It is worth noting that our method operates without source image. For comparison, we
selected the most recent method [63]], which follows a diffusion-based iterative attack paradigm, and
re-purposed it in our setting.Since they use random face images from [61]] as inputs without attribute
constraints, we also generated adversarial faces targeting all attributes categories in our setting to
ensure a fair comparison. In Tab. 4] we first provide the transfer ASR of both methods, the adversary
has white-box surrogate models and attacks against AWS CompareFace. Then, we further evaluated
our method by issuing queries to the actual API. Diffusion-based iterative methods typically operate
in a white-box setting, requiring hundreds to thousands of adaptive queries and explicit gradient
computations on the target FRS. In contrast, our non-adaptive approach relies solely on the reported
similarity score and succeeds with a single query per target, demonstrating comparable effectiveness
with far greater efficiency. We also present a visual comparison in Tab. [5] showing that our method
generates facial images that are much more diverse and visually unrelated to the adversary, while
still being classified as the same identity. On the other hand, the previous method tends to depend on
the attribute of source image. Due to space constraints, additional details for Tab. ] are provided in

Appendix [G|

3Transfer attacks are performed using white-box surrogate models and therefore incur no queries to the target
FRS (query count = 0); the black-box results report attacks that query the target for similarity scores.



Method [63] Ours (Transfer attack without queries) Ours (Attack with 100 queries against AWS)
f [61] Male | Female | White | Black | Asian | Male | Female | White | Black | Asian
7=0.8 | 29.86 | 23.80 | 33.20 | 62.80 | 22.20 | 35.60 | 94.20 | 92.00 | 98.20 | 99.20 | 98.80
7=0.99 | 3.41 1.20 1.60 6.60 1.40 1.80 | 14.60 8.60 41.00 | 40.80 | 24.60
Table 4: ASR of [63] and ours evaluated on CelebA-HQ dataset [36]] with different thresholds
Tarcet 163] Ours
arge Source Result Source Result Transfer Direct Transfer Direct
= (’;, N
‘ f { ‘ i
Scores 0.0101 0.3557 0.0170 0.9964 0.6876 0.9792 0.9921 0.9936

Table 5: Visual comparison with [63]]. The target image is shown on the left; ours used female and
white attributed subspheres, respectively. To ensure a fair comparison, [63] used female and white
source images. Additional results for male, black, and asian attributes are provided in Appendix

5.2 Black-box Attack on Non-facial Target

In Conj. |2} we did not impose any specific assumptions on the score vector §, which indicates that
the extraction of scores does not necessitate the input being facial images. In Tab. 23] we illustrated
intriguing examples whose targets are non-facial images that provide some evidence that the proposed
attack can be successfully performed not only on facial images but also on non-facial images, which
are unrelated to the target model’s task. For more details, please refer to Appendix [G]

5.3 Possible Mitigation of Our Black-box Attack

We discuss possible mitigations against the proposed attack, focusing on the black-box setting, since
in white-box or transfer scenarios, the adversary is assumed to have control over the FRS model.
A straightforward defense would be to return only decisions (e.g., "accept"/"reject") instead of
confidence scores. However, such an approach may violate regulations such as the EU AI Act [1]] and
GDPR [73], which mandate a right to explanation—usually realized via confidence scores. Therefore,
we investigate defenses under the current threat model where confidence scores remain accessible.
From a theoretical perspective, our attack is grounded in Prop. [I|and Conj. 2] The former enables
exploiting feature subsphere to approximate target vectors; the latter enables improved ASRs using
queried confidence scores. To mitigate Conj. [2] one option is to add noise to the returned score.
While this may reduce FRS accuracy, it also lowers the ASR, thereby neutralizing the advantage
over transfer-based attacks. To address Prop[I} we recall that the average cosine similarity between
the original feature vector and its projection onto a k-dimensional subspace is \/k/d. If T is the
threshold for a successful match, impersonation requires at least & > dr2. Thus, increasing either
7 or the dimension d would raise the required number of queries. However, both trade-offs are not
explored. Increasing d imposes heavier computational and storage costs, especially for training. In fact,
enlarging the dimension d has not been actively studied and, as shown in the MFR benchmark[32]],
current models use only 128—1024 dimensions. Raising 7, on the other hand, significantly lowers
the TAR by increasing false rejections. Simply increasing 7 on pre-trained models leads to severe
performance degradation, making it unsuitable for practical deployment. To explore this direction
more effectively, we implemented a prototype FRS trained from scratch with a higher 7 as a proof-of-
concept. As shown in Table[f] this configuration led to a significant reduction in ASR—by more than

Dy
Target | Fair/Male | Fair/Female | VGG/White | VGG/Black | VGG/Asian
I 98.53 96.69 99.94 99.49 98.3
F3 99.62 98.55 100 99.68 99.29
Fp 6.02 3.07 15.52 4.55 2.50

Table 6: To isolate the effect of varying acceptance thresholds independent of attributes, we report
identity matching rates (IMR; see Supplementary Appendix (G| for definition). Reconstructions are
obtained using Fl_A1 as the inverse model. F'p denotes the prototype FRS, which shares the Inception
ResNet-101 architecture with F3 and is trained on the MS1MV3 [17]] dataset.



80% compared to the ASRs against I and F3—while keeping the number of queries fixed. Further
details are provided in Appendix [G|

6 Ethics Statement

While our study introduces an effective attack method, its primary purpose is to provide a rigorous
analysis that reveals structural weaknesses in FRSs and to promote the development of more robust
and trustworthy recognition standards. Our work addresses a critical gap in FRS security by showing
that non-matching attributes (e.g., gender or race) can still yield high cosine-similarity scores due
to suboptimal threshold tuning (typically 0.2—0.3). This vulnerability can affect real-world identity-
verification platforms, potentially enabling unauthorized access or impersonation. By exposing these
flaws, our study informs service providers, regulators, and researchers of the need for stronger,
attribute-aware defense mechanisms. For instance, our findings can help platforms adopt stricter
verification thresholds or additional semantic consistency checks, thereby enhancing user safety and
trust. Section [5.3outlines practical defense strategies toward more secure systems.

To prevent misuse, we will not release the adversarial generation pipeline or related APIs. Bench-
marking code for FRS evaluation will be shared under controlled access (e.g., to verified academic
researchers via a private repository) to ensure responsible dissemination. Details specific to platform-
level experiments are omitted in this paper to avoid potential misuse. These implementation details
will be disclosed only to the affected service providers upon request, balancing transparency with risk
mitigation. The core algorithm and non-sensitive experimental setup are fully described in the paper
to ensure reproducibility for academic research.

Although our method can be conditioned on demographic attributes such as gender or race, this was
not intended for discriminatory targeting. Instead, we demonstrate that even with distinct attribute
values, adversarial faces can achieve high matching scores—highlighting structural vulnerabilities of
existing FRSs rather than exploiting demographic bias. This motivates future work toward attribute-
aware robustness and more secure, trustworthy face-recognition standards.

7 Conclusion

In this paper, we have investigated how close feature vectors with different attributes are in the
feature metric space of FRS. To this end, we develop a process of exploring the feature space using
universal basis based on Conj [2] which can serve as a compass to navigate in the dark, so that
we could successfully extend this idea to non-adaptive adversarial attack in the black-box setting.
This shows that although the metric learning, the dominant training method for FRS, provides a
huge benefit for high accuracy, it is also useful for the adversary to design attacks with a high
attack success rate. To the best of our knowledge, our attack is the first adversarial attack that is
non-iterative, non-adaptive, and specialized to the metric learning-based DL technology. Rather
than relying on gradients or perturbation constraints, our method leverages the intrinsic structure of
the representation space to construct adversarial examples—challenging conventional assumptions
about what is necessary for attack success. We leave some open questions, such as attacks specific
to other DL-based systems trained in different ways than FRS. Another promising direction is to
discover attribute-informed subspaces in a data-driven manner, for instance by using unsupervised or
weakly supervised techniques such as clustering or latent-direction discovery. Such approaches could
reveal more intrinsic structures of the feature space beyond manually defined attributes and further
enhance both the theoretical and practical understanding of adversarial generation. In the opposite
direction, it would also be interesting to investigate training paradigms that inherently reduce or
restrict the exploitable structure for adversarial uses. Finally, we hope this study raises awareness of
the vulnerability of commercial face APIs and encourages the development of secure and trustworthy
face-recognition standards (e.g., ISO/IEC 24745).
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The Abstract and Introduction state our contributions: a score-based non-
adaptive adversarial face generation framework and its evaluation on commercial FRS APIs.
Discussions on possible mitigations and responsible disclosure practices can be found in
Section[3.3land the Ethics Statement

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: As discussed in the main text, our attack relies on access to final similarity
scores; if an API returns only binary accept/reject decisions (or completely hides scores), the
score-based attack becomes infeasible. Results were evaluated on a subset of commercial
APIs and coarse attributes (gender, race); generalization to other platforms and finer attributes
remains future work.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: We provided a full proof of Proposition [I|in Appendix.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: While we do not release the full attack pipeline to mitigate dual-use risks, we
provide all datasets, hyperparameters, and evaluation settings. Evaluation scripts will be
shared under controlled access with verified researchers to enable reproduction.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: To reduce misuse, we do not publicly release the attack pipeline or platform-
specific scripts. Public datasets and libraries are cited, and benchmarking/evaluation scripts
may be shared under controlled access with verified academic researchers.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: For training the recognition models and the corresponding inverse models, we
followed the parameter setting provided in the original papers. Details are in Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We report aggregate ASR/IMR without formal significance tests because
attacks are largely deterministic under fixed seeds and API responses; variance across runs
was negligible in our setting.

Guidelines:
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10.

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]
Justification: We provided our hardware settings in Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Our method has the potential to be abused but we provided a mitigation method
in Section 5.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: Our method could generate adversarial faces with different attributes, which
could be abused to generate a fake profile.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We implement safeguards by withholding platform-specific details and limiting
release of evaluation scripts to verified researchers; the core algorithm is documented for
academic reproducibility (Ethics Statement [6)).

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cited all datasets, face recognition models, and APIs.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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14.

15.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We did not provide any new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA|

Justification: No third-party human subjects were involved; images used for real-world
validation were self-captured by the authors only (Ethics Statement [6)).

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA|

Justification: No third-party human subjects were involved; images used for real-world
validation were self-captured by the authors only (Ethics Statement [)).
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Guidelines:

» The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Our method is not related to LLMs.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

A Additional Implementation Details

All experiments were conducted on a single NVIDIA A100 GPU using PyTorch [60]]. In addition,
when open-source face recognition models and their inverse models were utilized, the official
inference codes provided by each model were used.

A.1 Details of the Models Employed

In this section, we provide detailed descriptions of all the models used in our work. Specifically, we
discuss the face recognition models, their inverse models, and the attribution classification models
employed in our experiments.

FRSs and their inverse models The specifications of the face recognition models for our attacks
were briefly introduced in the main text. However, due to space limitations, we were unable to
provide detailed information, including the model architectures, loss functions, and training datasets.
Therefore, we present Tab. /| which includes these details. For our experiments, F was sourced from
InsightFace [32], while the parameters for F; and F3 were provided by CVLFace[’| We trained FfAl
and Iy ! using the loss functions and training dataset detailed in Tab. 7| For Fy, . we utilized the
parameters provided by Arc2Face El Additionally, for the face recognition models, we show the

thresholds at which the highest accuracies were achieved in evaluations on not only LFW but also
CFP-FP and AgeDB, all within Tab.[§]

Face Attribute Classification model We mentioned that to verify whether the results of our attack

reflect the intended attributes, i.e., to check whether Img; € Iy, we utilized an attribute model.
Specifically, we used a publicly available model from FairFace, which is known to distinguish gender
and four racial groups (White, Black, Asian, and Indian). To evaluate the performance of this model,
we compared the original labels from the FairFace Validation set with the outputs of the model in our
experimental setup. The ACCs in Tab. Q]represent the percentage of images, for which the original

*https://github.com/mk-minchul/CVLface
>https://github.com/foivospar/Arc2Face
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Open-source FRS / Inverse Model Train Dataset \ TAR@FAR(%)
Notation | Architecture [ Loss Name | LFW [ CFP-FP | AgeDB

Iy ResNet-100 ArcFace Glint360k [2] 99.70@0.00 | 98.71@0.06 | 97.47@0.87
FfAl NbNet-B Perceptual MSIMV3 [17] N/A N/A N/A
Fl;l Arc2Face ID-conditioning | WebFace42m [88], FFHQ [37] N/A N/A N/A

12 Vit-KPRPE AdaFace WebFacel2m [88] 99.67@0.00 | 98.71@0.09 | 97.07@0.83
Fy T NbNet-B Perceptual MSIMV3 [17] N/A N/A N/A

Fs Inception ResNet-101 ArcFace WebFace4m [88] 99.73@0.07 | 98.74@0.20 | 97.33@1.17

Fa AWS CompareFaces API

Fr Tencent CompareFace API

Table 7: Description of Open-Source Face Recognition Systems (FRSs) and Their Inverse Models.

Note on Inverse Model Families. Among the inverse models used in our experiments, Arc2Face [59]
is a diffusion-based model that reconstructs high-fidelity faces from feature vectors, while NbNet [54]]
represents a GAN-based deconvolutional inverse network. Although our main results focus on
Arc2Face and NbNet for consistency, the proposed framework is fully compatible with other inverse
architectures such as GAN-based models (e.g., Vec2Face [20]]). This underscores the generality of
our approach across different inverse model families, as long as the model can reliably map feature
vectors back to the pixel domain.

Dataset | LFW [ CFP-FP | AgeDB

Fi 0.2432 | 0.2092 | 0.1832
Fy 0.2272 | 0.1892 | 0.1772
F; 0.2212 | 0.1832 | 0.1652
Fa 0.8 (Default Threshold)
Fr 0.6 (Default Threshold)

Table 8: Thresholds for FRSs Across Face Verification Datasets (LFW, CFP-FP, AgeDB).

label matches the attribute, that were correctly classified by the model. More specifically, in the case
of FairFace, East Asians and South Asians were both considered as Asians.

f [ Male | Female | White [ Black | Asian
|If| 5792 5162 2085 1556 | 2965
ACC | 95.7 96.07 93.72 | 94.6 | 96.93

Table 9: Performance of attribute classification models: The first row represents the attributes f, the
second row shows the number of images in the FairFace validation set that the original label equals
with f, and the last row shows the accuracy.

A.2 Statistics of the Datasets

This subsection presents the statistics of the image datasets targeted in the experimental attacks
conducted in this study.

Target Image Datasets. We utilized both facial images and non-facial images as targets, with their
respective statistics summarized in Tab. [T0}

Facial Non-Facial
Dataset LFW CFP-FP AgeDB FairFace CIFAR-10 | Flower-102 | Random
Imgs/(IDs) | 13,233/5749 | 7,000/500 | 16,488/568 | 10,954/ N/A 10,000 6,149 10,000

Table 10: Statistics of the attack target datasets (both of facial and non-facial).

Also, when we perform our proposed attack, target images have to be chosen as images that don’t
possess the target attribute. So we provide Tab. |1 1| which presents the number of images that possess
attributes f. The attribute judgment for constructing this table was also carried out using the attribute
classification model mentioned earlier. Of course, when original labels are available, such as in the
case of FairFace, the original labels were used for classification. Specifically, original labels with
East Asians and South Asians were both considered as Asians in the FairFace case.
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Dataset for D;. To perform our attack, it is necessary to extract the PCA matrix from the dataset
D with f-attribute. Therefore, we created D¢ using the attribution labels provided by FairFace and
MAADPFace about the VGGFace?2 dataset. We selected five attributions: two for gender from FairFace
and three for race from VGGFace2. The number of images per attribute is provided in Tab. |12}

f
Dataset Male | Female | White | Black | Asian

LFW 9,341 2,659 | 4,286 | 3,322 | 1,755
CFP-FP 10,433 | 3,567 | 7,604 | 3,442 | 1,546
AgeDB 7,259 4,741 | 5,568 | 3,559 | 733
FairFace 5,792 5,162 | 2,085 | 1,556 | 2,965

CIFAR-10 - - - 1,264 -
Flower-102 - - - 445 -
Random - - - 3,324 -

Table 11: Statistics of target datasets for I.

D | f [ Imgs
Male 45,986
Female 40,758
White | 2,136,057
VGGFace2 | Black 157,109
Asian 115,021

FairFace

Table 12: Statistics of datasets for Dy.

B Validation of Proposition 3.1.

In this section, we provide an omitted proof for Proposition [T} We also experimentally verify Proposi-
tion[I]by measuring distances between feature vectors and random k-hyperplane or k-hyperplanes
derived from faces whose feature vectors are almost orthogonal to each other.

Proof of Proposition 3.1.. Let us denote Py, as the k-hyperplane containing S* and define a random
variable V as a projection of U onto Pj. Then we have that cos? (d(U,V)) = ||V||3. Hence, we
focus on analyzing ||V ||3 instead of cos? (d(U, V)).

Because of the radial symmetry of the hypersphere, the distribution of V is identical to the following
random variable W = (W7, ..., W,) defined over R%:

U, ifi<k
Wi = ‘ . )
{O otherwise.
where U is the i’th component of U for i € [d].

To analyze W, we first note that for a random variable X = (X1,..., Xy) ~ N(0, I4), the random
variable Z := ﬁ follows the uniform distribution over S¢~!. That is, analyzing the distribution of

Hf/H% is equivalent to
k
i X7
k d
S XY X

[l s
[l s

VI3 = W3 @)

d
where = means that two random variables are equivalent in terms of distribution.

Here, we can observe that each X;, X; for ¢ # j are pairwise disjoint. In addition, Zf;l X2 and
Zj: o1 X j2 follow chi-squared distribution with degree of freedom k and d — k, respectively. That
is, the RHS of Eq. follows Beta(g, %) by definition. By using the fact that the mean of the
Beta(a, 8) is 555, we finally obtain E[IV]3] = % This completes the proof. O
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Figure 6: Measured distance d(U, V') of the projected face feature vector onto the subsphere. Red

dots indicate the theoretically predicted value according to Prop.

With an inverse model, we can find a set of facial images corresponding to the basis of the given
subsphere. Using them, we attempted to simulate the settings and result of Prop. [I] First, for a
randomly selected k-subsphere S*, we measured d(z, psx ()) for the given feature vector z € S41.
All feature vectors are extracted from the merge of the LFW, CFP-FP, and AgeDB datasets, excluding
overlapping images. In addition, we also measure the same quantity under the same setting as above,
except we to sample a k-subsphere from faces whose feature vectors are almost orthogonal to each
other. We can view this as sampling a feature subsphere with considering the distribution of facial
images, rather than independently from it. Such a set of faces is called an orthogonal face set (OFS),
which was first proposed by [41]]. To generate them, we devised and exploited an efficient algorithm
by utilizing the input space of the inverse model, whose description is given in Appendix A. We used
the pre-trained ArcFace [16] as the FR model to obtain feature vectors. For the inverse model, we
used the pre-trained NbNet [54] of the aforementioned FR model. The detailed description of each
model is given in Tab.[7|as F}; and Fl_Al, respectively.

The results are illustrated in Fig. [} From this figure, we can observe that the simulated result
(blue line) well coincides with the theoretically predicted value via approximation (red dots). More
importantly, we can observe that both the distance calculated from the OFS (orange line) and the blue
line lie below the red line corresponding to 70° when k£ > 100, i.e., such a choice is sufficient for
generating a face that is identified as the same person with the target identity. One can figure out
that the simulation result from faces is strictly less than that from Prop. [I|for all dimensions of the
subsphere. This result indicates that there exist good feature subspheres to obtain a more accurate
feature vector than a uniformly selected one, and more importantly, one way to obtain them is to
select a feature subsphere derived from actual facial images.

C Efficient OFS Generator

For generating OFSs, Kim et al. [41] utilized a rather naive approach by collecting lots of facial
images and finding a subset being an OFS. However, their method is not scalable because the possible
number of subsets is exponentially many with respect to the size of the desirable OFS set, and more
importantly, there is no guarantee whether such an OFS exists in a pre-selected set of facial images.

To mitigate these issues, we propose an alternative approach by optimizing on the latent space of
the inverse model. More precisely, instead of searching an OFS over the facial images, we focus on
finding the set of latent vectors {21, ...,2;} C S¢~1 of the inverse model F~! : S¢=1 — T of a
FRS F : T — S Note that the inverse model does not give an exact inverse, so we need to ensure
that the feature vectors corresponding to facial images { F~%(z1),..., F~1(2x)} are orthogonal to
each other. Thus, if we denote Z € R¥*< as a matrix whose row vectors consist of {21, ..., z;} and
W = FoF~1:89"1 5 S9-1 45 a sequential composition of F~! and F', then we can formulate
the optimization problem for finding an OFS as follows.

7" = argmin [W(Z){W(2)}" — Ixllr
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Algorithm 2 Efficient OFS Generator

Require: A FRS model F : Z — S9! and its inverse F~! : S?~! — 7, the size of OFS k € [d],
and a learning rate @ € R .
Ensure: A set of facial images O C Z being an OFS and |O| = k.
1: Initialize {21, ..., 2} + U(S?!) and set a matrix Z € R**¢ whose i’th row is z; for i € [k].
2: while Not Converged do
3 Compute O + F~1(Z)and Z «+ F(O).
4:  Compute L + ||ZZ7 — I r
5
6

Update Z + Normalize(Z — « - %)

: return F~1(2).

where I, denotes the k x k identity matrix and || - || 7 denotes the Frobenius norm for matrices. We
can solve this problem via projected gradient descent with a constraint that each row vector belongs to
S9-1. We select the initial {21, ..., 2} as a random sample from the uniform distribution /(S4~1)
over the S9~1, which can be implemented by normalizing vectors sampled from the Gaussian
distribution N (0, I},). For simplicity, we denote Normalize as an operator that normalizes the row
vectors of the given matrix to be unit vectors. We summarize the above idea as Algorithm 2]

In our experiment for producing Fig.[] we used the Adam optimizer [42] to solve the optimization
problem, selecting o = 0.1. In addition, we terminate the algorithm when it has not converged
after 100 updates. We also remark that for a large k, e.g., k > 256, the algorithm may not converge
within 100 iterations. We suspect that this is because the face feature vectors would not occupy
the whole hypersphere; only a subsphere would correspond to actual faces. There has been some
evidence for this phenomenon, such as studies on the dimensionality reduction techniques for face
templates [22, 21]]. Nevertheless, our algorithm is sufficient for our purpose, and we leave more
analysis on this aspect as future work.

D Additional Examples of Attribute-Specific Subspheres

We provide more examples of attribute-specific feature subspaces for analyzing the validity of Conj. [T]

D.1 More Finer Interpolation Results

Although the example in Fig. 33 is sufficient for our purpose, because of the space limit, the
interpolations were done rather coarsely. To complement this, we also provide the 10 x 10-sized
attribute-specific subspheres generated from the same algorithm as Sec. [3.3] The visualization result
is given in Fig.[7] Similar to Fig.[3al we can observe that each image contained in the subsphere still
shares the common attribute, while the deviation between adjacent images is reduced because of the
finer interpolation.

D.2 Interpolation from Other Attributes

We note that the FairFace dataset or VGGFace datasets provide more attributes than we experimented
with, e.g., more races such as Asian or Middle Eastern, attributes about age, or accessories such as
glasses or baldness. In this section, we provide more interpolation results about them to investigate
the non-dominant features satisfying the Conj. [T}

We selected the following attributes from each dataset: In FairFace, we selected Asian, Indian, and
Latino-Hispanic for races, and ages range from 0-9, 20-39, and 50 or older. On the other hand, in
VGGFace, we selected accessories having a hat, glasses, or baldness. We note that the size of all
collected images across attributes is more than 9,000. We used the same FR model and its inverse
model as the previous experiment.

We provide the facial images corresponding to each subsphere in Fig. [8] Fig.[9] and Fig.[T0} respec-
tively. From these figures, we can observe that each subsphere largely catches the desired attributes,
and interpolations between adjacent images seem to be done smoothly. However, for subspheres
regarding ages in Fig.[9] we can observe that some images in the range 0-9 would not fit with their
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(a) 0-9 (b) 20-39 (c) 50+
Figure 9: Attribute-specific subspheres from various range of ages.
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(a) Glasses (b) Hat (c) Bald
Figure 10: Attribute-specific subspheres from various accessories.

attribute, though we can observe that the faces seem to get older as being placed in right. We guess
the reason for this phenomenon is two-fold: first, the FR model and its inverse would not learn much
about faces in the 0-9 age range. In fact, as provided in the original paper of WebFace42M [88]],
which is the training dataset of the Arc2Face model we used, the age distribution of the training
dataset is concentrated on ages more than 20. Hence, we suspect that the FR model and its inverse
model would not be familiar with handling faces within this 0-9 regime.

On the other hand, we also provide another interpretation by considering how much the attribute age
contributes to extract a discriminative feature in terms of identities. As we can see in the benchmark
results of datasets testing the ability of the FR model to handle the variation in age, including
AgeDB [56] or CALFW [87]], recent FR models, including the model in our experiment, achieve
a good accuracy on these benchmark datasets. That is, we can expect that varying the age would
not lead to a huge derivation on the feature vector, and thus failing to form a subsphere because
of the collapsing effect of the FR model on faces with the same identity but different ages. From
this argument, we further infer that such a phenomenon would occur for other attributes that would
not play an important role in extracting identity-specific features. As evidence for this, note that a
similar phenomenon occurs at the subsphere corresponding to hats, while this does not occur for
other accessories, e.g., glasses or bald. We think that these factors complexly affected the production
of these non-trivial results, and we leave further analyses about them and the effect of these attributes
on our attack as interesting future work.

D.3 Subspaces from Other Inverse Models

To show that our results in Sec. [3.3]are regardless of the choice of the inverse models, we also provide
the results of subspaces from other inverse models, including NbNet [54] and the StyleGAN-based
inverse model proposed by Shahreza and Marcel [66]. For NbNet, we used the same model as
Fl_A1 in our experiments. On the other hand, for the inverse model by [66]], we utilized their official
implementation with a public pre-trained model. The details about the latter model will be found in
their original paper. We conducted the same experiments as in Sec. 3.3}
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The results are given in Fig. [T1] and Fig. [I2] for each model, respectively. From this figure, we
can observe that the subspheres made from NbNet showed the desired result, while almost all
faces from [66] were alike to white males. We guess that this is because their inverse model uses
unnormalized features as an input, so their inverse model is not compatible with metric learning-based
FR models using cosine similarity. In fact, we observed that the output image varies as we change the
norm of the feature vector, so we multiplied the mean norm of the feature vector for each principal
component. In addition, the authors of this inverse model reported that their inverse model struggled
to invert facial images from some attributes, e.g., Asian, Black, or oldness. This result also indicates
that the capability of the inverse model with respect to the diversity of the generated faces is also
crucial for conducting our attack, especially for realizing the selected attribute of the adversarial face.

(a) Male (b) Female (c) White (d) Black
Figure 11: Attribute-specific subspaces from NbNet.
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Figure 12: Attribute-specific subspaces from [66]].

E Transfer Attack (Naive Approach)

An intriguing property of adversarial examples is the transferability, where adversarial examples
generated for one local FRS can deceive another target FRS, often with a different architecture. This
intriguing property can convert "white-box attacks" to "black-box attacks" that can circumvent the
need for detailed knowledge of the target FRS. Similarly, we can expect that the adversarial faces
generated by our attack in the white-box setting may deceive another target FRS. The corresponding
experimental result on the LFW dataset is illustrated in Fig. [13] Although these transfer attacks
show some success rates, they have fundamental limitations unless they do not use information
from the target FRS. For example, the FR model trained from a strongly biased dataset suffers from
inconsistent accuracy, and we cannot expect the transfer attack to work well if the target image of the
adversarial example we generated is from a long-tailed distribution, as the similarity in the image pair
is low. To support this argument, we illustrated a histogram of angular distances between original
target images and corresponding adversarial images from FfAl in another target FRS F5 using the
FairFace [33] dataset in Fig.[I3] which is significantly lower than that using the LFW dataset. Note
that while more than 75% of MS1MV3, which is a representative public training dataset, or LFW
datasets, are comprised of Caucasian face images, FairFace is a dataset comprised of more than 75%
non-Caucasian face images.

Notably, this phenomenon of lower transfer attack rates is not limited to our attack but can also be
observed in adversarial examples generated by the classical white-box adversarial attack method
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White-box setting (F1) Black-box setting (F2, Transfer Attack)
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Figure 13: Angular distance histograms. An adversarial face is accepted if its angular distance is
below the threshold.

Noise Bound e =0.25 e =0.75
Dataset LFW | FairFace LFW | FairFace
White-box 26.4% 89.9% 99.8% 99.8%
Transfer 6.3% 1.0% (-88.9%) | 87.6% | 5.3% (-94.5%)

Table 13: Comparison of attack success rates in different settings. Note that we only performed the
untargeted attack to ensure a fair comparison, since the attack success rate is affected by the starting
image in targeted attack. Note that we use € as the 2 norm bound for PGD attack with 20 iterations.

based on iterative solver. In Tab. we record the white-box and black-box (transfer) attack success
rates from the PGD algorithm using the same two datasets. As with our attack, there are still large
gaps regardless of noise bound. That is, it occurs because two FR models do not share similar metric
spaces around these difficult samples, and we intend to propose an attack that covers even these
difficult samples. Note that there are other ways to improve transferability, such as using surrogate
models that mimic the behavior of the target system. However, we do not consider such methods
because training a surrogate model requires a huge number of queries and is impractical when the
target FRS is a real-world application face API.

F Additional Techniques
In this section, we introduce some techniques to proceed with our attack.

Confidence to Cosine Similarity. Our first technique is a method to transform confidence scores
into cosine similarity scores, which can then be applied to our attack when the target FRS is API. A
recent study by [43]] proposed a method for calculating confidence scores in FRS by assessing the
cosine similarity between two input images. Their method deploys the DOGBOX algorithm [72] to
determine the coefficients of a logistic sigmoid function g(s) = He_,‘%@ + b, where L, dy, k, and
b are coefficients that need to be fitted. In [41]], which proposed a reconstruction attack on commercial
FRS, they followed the method of [43]. We note that they used only true-false image pairs that are
different from the images used in actual queries when generating adversarial face images. Instead, we
determined the coefficients using the images used in queries. Precisely, we fitted each coefficient by
the following objective function:

where F': T — S%1 is the local FR model and O is a set of facial images defined in Conj.

Additional Technique: Correction Matrix. We now present our second technique, called correc-
tion matrix, which converts scores to an appropriate form based on Conj. 2] We provide our analysis
about why such a transformation is indeed effective. By the definition of a pseudo-inverse matrix,

we easily obtain the equality AIAlx = A (A AT)"1 Ayz. If our inverse model F~! is the exact
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inverse function of F, we obtain (A; A]) = I} where I}, is the k-dimensional identity matrix. This is
because M ; are top-k principal components of the PCA matrix and then orthogonal to each other
for all Vi € [k]. However, since our inverse model F'~! is an approximated version, we multiply the
correction matrix R = (A; AT)™! by 5to obtain a more accurate approximation for Conj. 2 Note
that Conj. 2| applies to the same § and transpose matrix A] of A, not its pseudo-inverse A!. Thus,

here the correction matrix R transforms to the same §'in terms of Conj. [2| providing a bridge between
T T
the F; ! (Hz‘ﬁil;\\z) ~p Byt (H}%Hz) and the final generating term of the white-box attack defined
1 2
. . — - AlArz
using the pseudo-inverse, img = F;! <171)
gHep &= \ialavel

G Addditional Experiments

G.1 White-box Attack Setting

To evaluate the effectiveness of the white-box setting, we first report the attack success rates against
the FR model F}. These results are summarized in Tab. [I4] As expected, since the adversary has full
access to the model architecture and parameters, the attack achieves consistently high success rates,
mostly above 90%, with a minimum above 80%, across all attributes and inverse models.

Target Dataset

LEW | CFP | AGE FairFace (FF)
TLFW [ TCFP [ TAGE
FF/Male 95.83 | 94.31 | 96.79 | 93.14 | 93.37 | 93.47
FF/Female | 91.29 | 89.02 | 92.41 | 89.92 | 90.14 | 90.14
Fr, ! ["VGG/White | 99.74 | 99.34 | 99.94 | 94.07 | 94.08 | 94.08
VGG/Black | 96.35 | 95.15 | 97.03 | 90.76 | 90.81 | 90.83
VGG/Asian | 83.45 | 83.41 | 80.24 | 90.22 | 90.3 90.3
FF/Male 92.25 [ 93.92 | 94.07 | 87.83 | 88.28 | 88.45
FF/Female | 90.44 | 91.73 | 93.37 | 80.85 | 81.32 | 81.56
FfBl VGG/White | 92.68 | 91.15 | 90.39 | 80.28 | 80.72 | 80.8
VGG/Black | 97.9 | 97.74 | 98.74 | 87.74 | 88.94 | 89.25
VGG/Asian | 94.83 | 9542 | 97.1 | 93.49 | 9443 | 94.72

Table 14: White-box ASR(%) on F, "FF" indicates FairFace.

! Df

Target Dataset

-1 ) .
Fiest | F Dy LFW | CEP | AGE FairFace
TLFW | TCRP | TAGE

Fair/Male 82.44 | 87.89 | 92.68 | 66.93 76 78.73
Fair/Female | 77.14 | 83.96 | 90.95 | 64.66 | 73.43 | 75.47
FfAl VGG/White | 98.59 | 98.67 | 99.92 | 47.14 | 63.25 | 67.83
VGG/Black | 77.48 | 90.38 | 93.59 | 38.33 | 52.11 | 57.02
VGG/Asian | 68.03 | 78.67 | 7843 | 4698 | 59.94 | 64.2
Fair/Male | 60.74 | 74.49 | 71.93 | 59.94 | 69.26 | 72.22
Fair/Female | 53.76 | 70.83 | 77.86 | 52.75 | 61.96 | 64.73
F~! [ VGG/White | 87.68 | 8829 | 90.14 | 32.73 48 52.62
VGG/Black | 60.57 | 79.14 | 84.44 | 28.07 | 40.67 | 45.52
VGG/Asian | 56.35 | 76.55 | 86.19 | 39.69 | 54.51 | 59.52
Fair/Male | 94.25 | 93.78 | 96.41 | 84.31 | 88.22 | 89.6
Fair/Female | 89.21 | 88.45 | 92.31 | 78.28 | 83.67 | 85.43
FfAl VGG/White | 99.68 | 99.34 | 99.94 | 80.69 | 87.9 | 90.01

VGG/Black | 95.16 | 95.04 | 96.8 | 67.28 | 78.834 | 82.54
VGG/Asian | 81.78 | 82.76 | 80.13 | 67.83 | 78.12 | 81.76
Fair/Male 82.17 | 88.7 | 89.26 | 72.26 | 79.62 | 82.39
Fair/Female | 75.92 | 85.06 | 90.51 | 62.15 | 70.17 | 73.12
FfBl VGG/White | 91.68 | 90.57 | 90.36 | 57.2 | 69.16 | 73.15
VGG/Black | 88.36 | 93.63 | 96.85 | 44.85 | 62.32 | 68.75
VGG/Asian | 82.01 | 90.57 | 95.49 | 52.68 | 69.26 | 76.13

Table 15: White-Box Transfer Attack Success Rate(%), where Fj : F}.
To further evaluate the transferability of the white-box attack, we performed a transfer attack; however,

due to space limitations, the results are included in this section. The test models F}.; for the transfer

F,

Fs
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attack are F, and Fj, and the detailed settings for the attack are identical to those described in
the main text. The results of the attack success rates are presented in Tab. The results generally
demonstrate high success rates. While the success rates are relatively lower compared to the black-box
direct attack, which has more information about the test model, they still confirm that the attack
retains sufficient transferability to the test models even in scenarios where no prior information is
available.

G.2 Effect of Correction Matrix R in Black-box

As mentioned in the main text, we propose an additional technique, the correction matrix, to better
refine the scores obtained in the black-box setting at the local level. The correction matrix essentially
means adjusting the scores obtained from the target model to make them more suitable for local use,
which can be thought of as helping the adversarial face to align with the same identity as the target
image. However, since the ASR used in the main text excludes images with the intended attribute
from the selection of target images and also considers whether the attack results reflect the intended
attribute when determining the success of the attack, it may not be the most suitable metric for
analyzing the effect of R. Therefore, to analyze the effect of R, we define the Identity Matching Rate
(IMR) as follows:

Lil 1(Stest(imgi7 |mgz) Z Ttest)

2
IMR =
1]

, where T represents the set of total images, img, € 7 refers to each individual target image, and

1(-) is a function mapping 1 if the input statement is a true 1, and 0 otherwise. Img; is an adversarial
face generated by an attack algorithm. St4,ge (IMmg, Img,) gives a cosine similarity score (resp.
confidence score) between Img; and Img, from the open-source (resp. commercial) FRS. If the score
exceeds the predefined threshold 7y, get Of the test FRS, Img; and Img, are considered as the same
identity in the target FRS.

We performed the black-box attack with the same setup mentioned in the main text. We then compared
the IMR before and after applying R and marked the results in Tab. if the IMR increased after
applying R, it is highlighted in blue, and if it decreased, it is marked in red. As shown in the table, R
had a positive impact on identity matching in most cases. The results in this table are also reflected
in the black-box direct attack success rate presented in Tab. [2]of the main text, with only the areas
where the effect of R has a negative impact highlighted in blue.

Target Dataset

—1 5
T | F Dy LEW | CEP | AGE FairFace
TLFW | TCFP | TAGE

Fair/Male | +1.20 | 40.17 | +0.11 | #1.25 | +0.32 | +0.12
Fair/Female | +1.96 | +0.36 | +0.04 | +0.75 | +0.36 | +0.23
F~!' [ VGG/White | +0.53 | +0.07 | +0.02 | +1.57 | +0.41 | +0.22

1
* ["VGG/Black | +0.09 0 +0.01 | -0.06 | -0.07 | -0.06
VGG/Asian | +0.75 | +0.20 | +0.04 | +0.54 | +0.14 | +0.17

P Fair/Male +0.88 | +0.67 | +0.67 | +2.40 | +1.39 | +1.02
Fair/Female | +2.12 | +1.94 | +1.76 | +3.47 | +1.64 | +1.40
Fl‘B1 VGG/White | +0.97 | +0.55 | +0.13 | +1.94 | +0.61 | +0.37
VGG/Black | +0.77 | 40.46 | +0.26 | +1.64 | +1.00 | +0.74
VGG/Asian | +3.60 | +2.07 | +1.73 | +2.81 | +1.78 | +1.22
Fair/Male 0 +0.03 0 +0.03 | -0.02 | -0.02
Fair/Female | +0.19 | -0.04 | +0.10 | -0.30 | +0.02 [ +0.01
Fr I "VGG/White | +0.02 0 0 +0.01 | +0.02 [ +0.01
VGG/Black | -0.06 0 0 -0.05 | -0.02 | -0.01

jol VGG/Asian | +0.01 | -0.14 0 -0.15 | +0.01 0

Fair/Male | +1.46 | +0.73 | +0.49 | -0.41 | -0.44 | -0.34
Fair/Female | +0.30 | +1.42 | +0.82 | +0.77 | +0.49 | +0.59
Fl_B1 VGG/White 0 +0.41 | +0.16 | +1.10 | +0.37 | +0.28
VGG/Black | +1.80 | +0.28 | +0.50 | +0.73 | +0.73 | +0.57
VGG/Asian | +2.79 | 42.06 | +1.31 | +3.55 | +1.66 | +0.81
Table 16: Change in IMR after applying correction matrix R: blue for increase, red for decrease.
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In addition to the analysis of R, we provide a table to illustrate how well our proposed attack performs
in terms of identity matching alone. The shared attack settings include the identity matching rates
for the white-box direct attack and the black-box direct attack, with the detailed settings identical to
those mentioned in the main text. The results are presented in Tab. [I7]and Tab.[I8] respectively, in
sequential order. As shown in the numbers within the tables, our method achieves excellent IMRs.

Target Dataset

—1 =
F Dy LEW | CEP | AGE FairFace
TLFW { TCFP { TAGE

Fair/male | 99.95 | 100 100 | 99.71 | 99.93 | 99.98
Fair/female | 99.87 100 100 | 99.61 | 99.94 | 99.99
Fr ! "VGG/White | 99.99 | 99.98 | 100 | 99.62 | 99.87 | 99.97

VGG/Black | 99.97 | 100 100 | 99.55 | 99.86 | 99.95
VGG/Asian | 100 100 100 | 99.87 | 99.98 | 99.98

Fair/male | 98.58 | 99.52 | 99.84 | 99.09 | 99.65 | 99.88
Fair/female | 96.08 | 99.03 | 99.88 | 98.96 | 99.63 | 99.86
F1_Bl VGG/White | 99.87 | 99.85 | 99.98 | 98.79 | 99.58 | 99.78

VGG/Black | 99.1 | 99.66 | 99.99 | 96.94 | 98.79 | 99.37
VGG/Asian | 9891 | 99.6 | 99.99 | 98.6 | 99.57 | 99.86
Table 17: White-Box Direct Attack IMR(%).

Target Dataset

— 1 -
T | F Dy LEW | CEP | AGE FairFace
TLFW | TCFP | TAGE

Fair/Male | 98.53 | 99.71 | 99.96 | 98.52 | 99.7 99.7
Fair/Female | 96.69 | 99.59 | 99.82 | 97.64 | 99.42 | 99.64
Fl_A1 VGG/White | 99.94 | 99.96 | 100 | 98.94 | 99.68 | 99.75
VGG/Black | 99.49 | 99.94 100 | 99.19 | 99.84 | 99.89
VGG/Asian | 98.3 | 99.94 | 99.99 | 985 | 99.54 | 99.78
Fair/Male | 79.02 | 92.89 | 95.37 | 82.79 | 9431 | 96.1
Fair/Female | 63.67 | 84.8 | 90.69 | 77.01 | 90.6 93.6
F7! [ VGG/White | 87.39 | 94.74 | 9854 | 76.1 91.6 | 94.23
VGG/Black | 87.88 | 96.23 | 97.78 | 88.38 | 96.92 | 98.17
VGG/Asian | 80.13 | 94.11 | 97.33 | 88.67 | 96.78 | 97.96

Fair/Male 99.62 | 99.99 | 99.98 | 99.85 | 99.97 | 99.97
Fair/Female | 98.55 | 99.75 100 99.4 | 99.97 100
F!' [ VGG/White 100 100 100 | 99.92 100 100
VGG/Black | 99.68 | 99.99 100 | 99.79 | 99.97 | 99.99
VGG/Asian | 99.29 | 99.84 100 99.7 | 99.99 100

Fair/Male 84.91 | 94.84 | 96.24 | 89.64 | 96.67 | 98.26
Fair/Female | 65.93 | 83.33 | 93.4 | 81.22 | 93.16 | 96.34
F! [VGG/White | 9424 | 97.7 | 99.51 | 91.77 | 97.75 | 99.01
VGG/Black | 88.02 96 98 89.05 | 97.38 | 98.79
VGG/Asian | 78.64 | 92.78 | 97.75 | 87.61 | 96.58 | 98.35
Table 18: Black-Box Direct Attack IMR(%).

F,

F3

G.3 Black-box Attack against target FRS F

In Tab. we provide the ASR on commercial FRS I using gender-attributed D . Similar to ASR
on Fp in Tab. 3] we note that the ASR related to the FairFace dataset is significantly larger than
the transfer attack. However, since the decrease in ASR is obvious for the LFW dataset, we leave
analyzing and improving this phenomenon as a future topic.

G.4 Experimental Setup for Table[d and Table

We base our comparison on [63]], which follows the experimental protocol of CLIP2Protect [68]].
Specifically, 500 subjects are selected from the CelebA-HQ dataset [|36]], each with a pair of facial
images. In their setup, one image from each pair is used to generate adversarial examples (training set),
and the other is used to evaluate the attack success rate (test set). In our comparison, we used the same
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with R without R

-1
T | Target Dy T=08[7=099 | 7=08 | 7 =099
Transfer Attack without Queries (The images from Table were used.)

VGG/White N/A 91.56 61.78
LFW VGG/Black N/A 49.79 10.00
| gt VGG/Asian N/A 4571 9.98
T 514 VGG/White N/A 0 0
FairFace | VGG/Black N/A 0.02 0
VGG/Asian N/A 0 0
Direct Attack with Score Queries
VGG/White | 81.78 25.33 27.11 222
LFW VGG/Black | 75.26 10.74 20.84 2.84
| g VGG/Asian | 56.26 4.41 13.23 0
T La VGG/White | 72.87 12.90 17.55 0.66
FairFace | VGG/Black | 58.97 13.24 7.55 0.44
VGG/Asian | 62.90 7.37 12.78 0.49

Table 19: Black-box ASR on Fy using local FR model F}

500 subjects and adopted the same data split. For the method of [63]], we used our three open-source
face recognition models (Fy, Fs, F3) as surrogate models to generate adversarial examples, consistent
with the original protocol which involves multiple surrogate networks. However, our method differs
fundamentally in that it does not require a source image. Instead, we project feature vectors into
attribute-specific subspheres (e.g., gender, race) to generate adversarial faces. Therefore, for each
training image, we created one adversarial face per attribute category and reported the attribute-wise
transfer attack success rates against AWS CompareFace, as shown in Tab. ]

To ensure a fair comparison, we also adapted the method of [63] to our scenario by randomly sampling
500 images from the “100k Faces Generated by AI” dataset [61] as source images. Each source image
was targeted toward a corresponding identity from the training set, and the adversarial faces were
evaluated by querying AWS CompareFace. Importantly, unlike [63]], our method supports attacks
directly through actual API queries. We thus separately report our query-based black-box attack

63] Ours
Source [ Result Transfer [ Direct

Target Image

_J
0.5410

e
o

scores 0.0052 0.0267 0.1366 0.9834
Table 20: Additional examples for Tab. [S|using male, black, asian attributed subspheres, respectively.
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success rates in Tab. EI], in addition to the transfer-based results. Furthermore, the evaluation against
the test set, following the full protocol of [63], is included in Tab.[21|for completeness.

Method [63] Ours (Transfer attack without queries) Ours (Attack with 100 queries against AWS)

f [61] Male | Female | White | Black | Asian | Male | Female | White | Black | Asian
7=0.8 | 29.86 | 23.80 | 33.20 62.80 | 22.20 | 35.60 | 94.20 | 92.00 | 98.20 | 99.20 | 98.80
7=0.99 | 341 1.20 1.60 6.60 1.40 1.80 | 14.60 | 8.60 41.00 | 40.80 | 24.60

Table 21: ASR of [63] and ours evaluated on CelebA-HQ dataset [36], evaluated against test set
images under different thresholds

G.5 Black-box Attack on Non-facial Target

We conducted our proposed attack in a black-box setting on non-facial images. Specifically, we
used the CIFAR-10 and Flower-102 test datasets and 10,000 randomly generated pixel images as
the attack targets. CIFAR-10 is a widely used benchmark dataset for image classification, consisting
of 10 categories, such as airplanes, cars, and animals. On the other hand, Flower-102 contains 102
categories of flowers with varying levels of visual complexity. In our black-box attack framework, F;
was employed as the local model,

F; and F3 served as the target models. The inverse models used were both of FfAl and FfB ! The ASR
of the attack under the aforementioned settings was presented in Tab. Since the target datasets
we selected are not verification datasets, the data is analyzed based on the threshold values derived
from the best accuracy of the F> model on LFW, CFP-FP, and AgeDB. As evidenced by the attack
success rates in the table, it was confirmed that the attack remains effective even when the target
images are non-facial, but ASR is relatively lower compared to when the target image is facial images.
Therefore, there is room for improvement in terms of extension to a broader target model, such as
image classification models, of attack or non-facial adversarial examples on commercial systems.

G.6 Ablation Study about F~! in Black-box

In our black-box algorithm, the inverse model for the local face recognition system is used in two
distinct stages: once during preprocessing and the other once during the execution of the algorithm.
Therefore, we conducted an ablation study using F7, a face recognition model with two inverse
models, F~11 4 and F~'1p. The results of this study are shared in Tab.

G.7 Transfer Attack in Black-box

We confirmed that even in our black-box setting, the attack retains sufficient transferability to other
test models that are not the target model. When the target model was Fy, I3 was selected as the
test model, and conversely, when the target model was F3, F> was used as the test model for the

Threshold : 7
TLFW | TcFP | TAGE
CIFAR-10 20.1 | 39.84 | 45.78
FfAl Flower-102 15.8 | 31.87 | 37.9

Random 7491 | 79.97 | 80.2

T | F~! | Target Dataset

F CIFAR-10 | 164 | 39.55 | 49.76
FfBl Flower-102 11.57 | 32.42 | 40.67
Random 61.22 | 91.16 | 94.82

CIFAR-10 51.73 | 66.77 70.8

Fl_Al Flower-102 58.35 | 63.83 | 64.62

Py Random 76.9 76.9 76.9

CIFAR-10 32.92 | 63.85 | 76.33

Fy! | Flower-102 | 51.14 [ 77.89 | 86.01

Random 92.47 1 99.19 | 99.7

Table 22: Attack Success Rate(%) of Black-box Direct Attack on Non-facial Target Images D uses
VGG/Black, and the ASR is calculated based on the 7 values of F5 corresponding to each column.
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Target Image
CIFAR-10
Scores
Flower-102 Scores 03361 03140 03452 02742
Random
Scores 03649 03535 03698 03090

Table 23: Black-box attack on non-facial images

attack. All other settings for the black-box attack are identical to those described in the main text.
Additionally, since an ablation study on the use of inverse models, as discussed in Sec. @ is also
feasible in this setting, we extracted the ASR results and included them in Tab.

G.8 Prototype of FRS for Strict Threshold

To construct a prototype FRS with a tight acceptance threshold, we designed a loss function with two
key modifications to the original ArcFace [[16] loss L. The loss function L, is defined as follows:

e’ cos(Og¢+m)

g N )
scos(0,:+m id scos 6
e2 e 0ottt 4 552 gr €

where gt is the index of the ground-truth, m is the angular margin term, and s is the scaling factor.

LA(X, W) =—1o

First, instead of applying the angular margin only to the target class as in the original ArcFace,
we apply an inverted margin to non-target classes as well. Specifically, for the target class, we use
the standard cos (6 + m), while for all other classes, we use cos (§ — m). This contrastive strategy
enhances intra-class compactness by pulling feature vectors of the same identity closer together,
while still maintaining sufficient inter-class separation.

Second, rather than computing cosine similarity over the entire 512-dimensional feature vector,
we randomly split it into two 256-dimensional subspaces in each batch and calculate the cosine
similarity separately in each subspace. This regularization strategy prevents the dominance of specific
dimensions and promotes a more uniform distribution of information across all feature dimensions.
As aresult, the model learns to generate feature vectors that yield higher overall similarity between
samples of the same identity. To formalize this idea, we define cosine similarity over each randomly
selected subspace as follows. Let x,y € R% Let I, I, C {1,...,d} be two randomly sampled,

disjoint subsets of indices such that |I1| = |Iz| = d/2. Then, the partial cosine similarities is defined
as follows:
<$[1,y[1> <x127y12>
cos1(z,y) = ————, cosa(x,y) = —— 2
’ e (- llyr [z, - llyr, |

where z;, and y;, denote the subvectors of x and y corresponding to the index set Iy, respectively.
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Then, for 1st (resp. 2nd) partial cosine similarities of j’th identity 9;1) (resp. 9§2)), final loss function
Lp for our prototype FRS is defined as follows:

es cos(@él:)ij)

k) 9

2
LP (X, W) = — log |
kz—:l e’ Cos(e.‘(ﬂ +m) + Z;V;Lj;ﬁgt e’ °°S(9§k)fm)

where gt is the index of the ground-truth, m is the angular margin term, and s is the scaling factor.

These two modifications lead to significantly improved intra-class compactness, as shown in Fig.
where the decision threshold of the prototype FRS is formed around 0.3, which is higher than that
of standard open-source models (typically around 0.2). This higher threshold increases the overall
system’s strictness against false accept. In Table[6] we report the ASR against the prototype FRS on
the LFW dataset, alongside the results for other target models, F» and Fj.

150 150 .
True Pair True Pair 120 True Pair B True Pair
125 False Pair | 12° False Pair | ;00 False Pair | 200 False Pair
® —— Threshold 100 —— Threshold —— Threshold —— Threshold
a 100
5 —— Threshold —— Threshold 80 —— Threshold | 150 —— Threshold
75 75 Jr— L
3 r:0.24%2 1=0227 [ 60 7=02212 100] T=0.2993 ‘ ‘
g 501t =0.1888 5017=0.1835 40{T=0.2016 J" 7=0.3986
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Figure 14: Cosine similarity histograms. The first three plots correspond to the open-source FRSs
used in our experiments, whose thresholds are typically formed around 0.2. In contrast, our prototype
FRS exhibits a significantly higher threshold, forming around 0.3 to 0.4. The blue line indicates the
threshold at FAR = 0.1%, while the red line marks the threshold corresponding to the best accuracy.

G.9 Adversarial Training and Certifiably Robust Face Recognition Models

In the literature of FR, several efforts have been made to achieve robustness against adversarial
examples. Likewise to image classification, adversarial training [53]] has been shown to be effective
in defending against adversarial examples based on perturbations [[80]]. In addition, recently, Paik et
al. [58]] proposed a certifiably robust FR model against perturbation-based adversarial attacks. More
precisely, they derived an upper bound of the magnitude of the adversarial perturbation that does not
change the decision of the FR model. Since the proposed adversarial face generation method can be
considered as adversarial examples, we conduct additional experiments to assess the robustness of
the aforementioned (certifiably) robust FR models against our attack.

For adversarially trained FR models, we utilize the RobFR library that provides various pre-trained
FR models with adversarial training, e.g., PGD-AT [53] and TRADES [86]. Among these models, we
use two FR models using IResNet50 as the backbone and trained with CASIA-Webface [81] dataset,
using ArcFace [[16] and CosFace [[74] loss functions, respectively. For the certifiably robust FR model,
we used the pre-trained FR model provided by Paik et al. in their official implementation, which uses
a custom 22-layer convolution neural network as a backbone, ElasticFace-Cos+ [3l] as a loss function,
and trained with the MS1MV3 [[15] dataset. Detailed settings can be found in their original papers or
their source codes.

We evaluate the ASRs of our attack against the above FR models under the same setting as in Sec. 4}
In particular, for the comparison with the zeroth-order optimization (ZOO) based attack, we also
provide the ASRs in the context of impersonation. More precisely, our implementation is based on
Carlini & Wagner’s white-box attack framework [6] with ADAM zeroth-order optimizer using a
batch size of 128 with 20,000 iterations on one of the facial images. The goal is to make the image
recognized as the same identity as a different person. We consider the attack successful if at least one
perturbed image causes a successful impersonation.

The results are provided in Tab. From this table, we can observe that, for the ZOO, all the
adversarially trained FR models show low ASRs less than 4%, whereas the model from Paik et al.
shows the ASR of at most 25%. On the other hand, for the proposed attack, we observe that the model
by Paik et al. is vulnerable to our attack, whereas other adversarially trained models successfully
defend against it. We hypothesize that such a dramatic difference is derived from two aspects: first, as
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observed in the decision thresholds (7) of each target model, the threshold for adversarially trained
models is substantially higher than those of Paik et al.’s FR model. In particular, the threshold for
the latter is almost the same as that of non-robust FR models in the main text. From this, we can
infer that the distribution of similarity scores from adversarially trained FR models is significantly
far from that from the adversary’s local model. Hence, the scores from queries would interrupt the
interpolation over the attribute subsphere. On the other hand, when attacking Paik et al.’s FR model,
Conj. 2] would be valid because of its similar decision threshold to that of the adversary’s local model,
thus succeeding the attack. However, it is important to note that, despite the success of the ZOO-based
attack, the average of Ly norm of these examples ranges up to 9, which is significantly exceeds the
typical bounds of adversarial examples.

To further analyze our hypothesis, we also evaluated the ASRs from the transfer attack based on
our attack, whose results are provided in Table[25] In particular, we considered two settings of the
thresholds at FAR=0.1% and the best accuracy. From this table, we can observe that the transfer
attack shows higher ASR than the black box setting for adversarially trained FR models, whereas
the opposite tendency appears for Paik et al.’s model. This result supports our hypothesis discussed
above; such a difference in ASRs indicates whether the adversary can make use of the queried scores
for crafting an adversarial face or not.

Note that a direct comparison between ZOO and the our attack may be unfair because of the difference
in the setting; for the former, the adversary adds a perturbation to one of the given pairs of images,
i.e., the source image, whereas there is no such source image in the latter. Nevertheless, our attack
reveals the potential vulnerability of these FR models, even in certifiably robust ones, in a practical
setting. We leave the mitigation of our attack, along with an in-depth analysis on the relationship
between our attack and prior perturbation-based attacks, as interesting yet important future work.

ZOO 7] Ours

Target Model | TAR(%) | 7 xer @) | Avg. T, | Male Female White Black Asian
PGD-Arc 3888 | 0590 | 227 8.96 0 0 0 0 0
PGD-Cos 2847 | 0484 | 1.60 8.69 0 0 0 0 0
Trades-Arc | 12.84 | 0918 | 1.67 579 0 0 0 0 0
Trades-Cos | 51.90 | 0.768 | 3.73 5.77 0 0 0 0 0

Paik etal[58] | 83.97 | 0.231 | 25.53 671 | 79.62 7692 OLI8 7565 78.82

Table 24: ASR(%) against adversarially trained models [80]] and certifiably robust model [58]] on the
LFW dataset. The FAR is set to le-3. Reconstructions are obtained using FfAl as the inverse model.

Ours
Target Model | TAR(%) | FAR(%) T Male Female White Black Asian
PGD-Arc 38.88 0.590 | 0.46 0.88 3.95 0.62 1.19
PGD-Cos 28.47 0.484 | 0.15 0.47 1.19 0.55 0.57
Trades-Arc 12.84 0.1 0918 | 2.58 2.09 1220 0.88 1.54
Trades-Cos 51.90 0.768 | 0.76 0.43 2.18 1.13 0.62
Paik et al.[58] 83.97 0.231 | 1496 1531 3934 11.60 15.11
PGD-Arc 84.23 7.23 0.357 | 9.26 1394 39.65 17.06 19.99
PGD-Cos 84.03 9.67 0.260 | 691 7.20 2236  10.54 1048
Trades-Arc 59.53 16.63 0.785 | 63.02  58.55 82.55 47.10 50.85
Trades-Cos 88.46 8.67 0.678 | 6.61 5.32 19.66 1123 4.14
Paik et al.[58] 94.80 3.2 0.165 | 3531 3950 67.31 31.71 37.20

Table 25: Transfer ASR(%) against adversarially trained models [80] and certifiably robust model [S8]]
on the LFW dataset. The FARs are set by both its value at FAR = le-3, and by its value at the point of
best accuracy, which is determined according to the LFW dataset evaluation protocol. Reconstructions
are obtained using F' 1;1 as the inverse model.
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FT Target Dataset

T pre | Alg Dy LEW | CFP | AGE FairFace
TLFW | TCFP | TAGE

Fair/Male | 97.29 | 99.41 | 99.18 | 97.25 | 96.5 | 97.93
Fair/Female | 93.33 | 96.02 | 97.44 | 93.26 | 94.16 | 93.75
F7' [ VGG/White | 99.94 [ 99.95 | 100 | 99.92 | 99.78 | 99.98
VGG/Black | 87.98 | 90.61 | 88.66 | 84.82 | 86.23 | 86.42
VGG/Asian | 73.82 | 73.09 | 72.27 | 68.48 | 68.07 | 67.45
La Fair/Male | 79.28 | 91.17 | 94.24 | 85.67 | 90.8 | 93.93
Fair/Female | 73.38 | 88.31 | 91.36 | 7591 | 86.93 | 92.88
F! ["VGG/White | 95.31 | 96.59 | 97.06 | 95.89 | 95.48 | 96.55
VGG/Black | 91.16 | 96.16 | 96.94 | 91.52 | 96.07 | 97.03
VGG/Asian | 82.77 | 90.4 | 91.93 | 81.23 | 89.08 | 90.17
Fair/Male | 90.45 | 97.87 | 99.07 | 93.19 | 96.61 | 97.91
Fair/Female | 77.88 | 93.38 | 96.46 | 85.88 | 93.65 | 96.5
F7' [ VGG/White | 95.98 | 98.92 | 99.88 | 99.46 | 99.69 | 99.91
VGG/Black | 8542 | 89.9 | 87.96 | 85.25 | 86.38 | 85.17
VGG/Asian | 61.76 | 66.27 | 71.31 | 58.62 | 63.92 | 64.6
1s Fair/Male | 70.82 | 86.66 | 91.16 | 75.59 | 88.14 | 90.53
Fair/Female | 58.48 | 80.25 | 86.2 | 60.09 | 785 | 88.32
Fl_B1 VGG/White | 84.42 | 90.43 | 94.84 | 90.16 | 92.93 | 95.09

VGG/Black | 85.1 | 93.68 | 94.97 | 83.45 | 92.53 | 94.38
VGG/Asian | 73.97 | 849 | 89.81 | 70.66 | 81.57 | 86.4

Fair/Male | 98.28 | 99.28 | 99.42 | 97.29 | 97.44 | 97.44
Fair/Female | 94.84 [ 96.63 | 96.75 | 95.65 | 96.24 | 96.27
FI_A1 VGG/White | 989 | 99.68 | 99.75 | 99.61 | 99.7 99.7

VGG/Black | 92.12 | 92.63 | 92.68 | 79.47 | 79.61 | 79.63
-1 VGG/Asian | 7891 | 79.53 | 79.63 | 76.99 | 77.22 | 77.22

la Fair/Male | 91.79 | 97.97 | 98.84 | 91.53 | 94.17 | 94.54
Fair/Female | 86.07 | 94.39 | 95.79 | 86.69 | 91.06 | 92.14
F7' [ VGG/White | 89.58 | 97.25 | 98.16 | 89.27 | 90.71 | 90.97
VGG/Black | 87.99 | 91.51 | 91.87 | 90.65 | 93.73 | 94.14
VGG/Asian | 73.86 | 77.57 | 77.97 | 86.42 | 89.96 | 90.6

Fair/Male | 87.58 | 94.46 | 95.31 | 96.98 | 98.37 | 98.51
Fair/Female | 84.43 | 91.56 | 93.06 | 93.47 | 97.27 | 98.07
F~! [VGG/White | 90.28 | 95.92 | 96.63 | 97.94 | 99.24 | 99.32
VGG/Black | 91.75 | 96.34 | 96.78 | 82.38 | 83.98 | 84.13
VGG/Asian | 89.19 | 93.44 | 94.02 | 74.83 | 77.22 | 77.64
1p Fair/Male | 81.31 | 91.94 | 93.63 | 85.76 | 93.1 | 94.65
Fair/Female | 75.21 | 88.31 | 91.02 | 77.09 88 90.81
F7 ' [ VGG/White | 73.32 | 87.96 | 90.49 | 84.23 | 89.77 | 90.93
VGG/Black | 86.95 | 95.23 | 96.38 | 86.77 | 93.74 | 95.16
VGG/Asian | 83.69 | 90.95 | 91.98 | 82.61 | 90.01 | 91.56
Table 26: Ablation study ASR(%) for the use of inverse models during preprocessing and algorithm
execution in the black-box setting.

F
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T Target Dataset

Tl Frest | pre | Alg Dy LEW | CFP | AGE FairFace
TLFW [ TCFP [ TAGE
Fair/Male | 64.57 | 7892 | 81.48 | 28.03 | 42.02 | 495
Fair/Female | 56.73 | 7493 | 89.59 | 24.69 | 38.5 | 46.13
F;! [ VGG/White | 95.54 | 96.58 | 99.7 | 17.88 | 32.24 | 40.67
VGG/Black | 59.74 | 77.61 | 77.96 | 13.95 | 23.81 | 29.93
el VGGJ/Asian | 4537 | 58.77 | 66.81 | 13.51 | 23.14 | 29
1a Fair/Male | 37.08 | 50.21 | 53.07 | 15.89 | 26.66 | 33.18
Fair/Female | 27.13 | 46.12 | 63.99 | 12.95 | 23.24 | 30.02
Fy,! [ VGG/White | 83.87 | 86.65 | 953 | 9.07 | 2049 [ 27.52
VGG/Black | 42.01 | 63.19 | 66.83 | 6.5 13.6 | 18.89
7 7 VGGJ/Asian | 30.1 | 51.15 | 68.85 | 7.7 | 1556 | 21.6
2 3 Fair/Male | 49.87 | 66.72 | 69.04 | 18.62 | 31 | 38.84
Fair/Female | 34.71 | 57.85 | 72.93 | 14.87 | 26.92 | 34.41
Fy! [ VGG/White | 83.07 | 87.76 | 98.59 | 9.61 | 21.67 | 29.83
VGG/Black | 45.85 | 67.53 | 70.1 | 9.13 | 17.62 | 23.11
el VGG/Asian | 26.27 | 42.17 | 57.17 | 84 | 16.71 | 21.94
1p Fair/Male | 25.57 | 37.06 | 41.4 | 10.02 | 18.38 | 24.33
Fair/Female | 1647 | 31.96 | 4647 | 7.99 | 16.37 | 22.01
Fy,} [ VGG/White | 5734 | 6649 | 86.26 | 4.14 | 10.61 | 15.9
VGG/Black | 279 | 49.82 | 56.37 | 4.04 | 954 | 13.55
VGGJ/Asian | 19.88 | 37.53 | 544 | 553 | 121 | 17.25
Fair/Male | 66.64 | 81.08 | 80.19 | 26.97 | 39.98 | 44.61
Fair/Female | 58.75 | 77.89 | 84.85 | 22.7 | 36.12 | 40.68
Fy! [ VGG/White | 9544 [ 96.69 | 99.61 | 132 | 2525 | 3045
VGG/Black | 57.04 | 73.79 | 744 | 11.32 | 18.98 | 22.09
el VGG/Asian | 43.13 | 57.56 | 62.14 | 11.1 | 20.33 | 23.92
1a Fair/Male | 37.68 | 50.97 | 54.44 | 19.47 | 31.58 | 35.88
Fair/Female | 33.75 | 53.53 | 64.54 | 1834 | 29.92 | 34.63
Fy' [ VGG/White | 84.05 | 8483 | 93.92 | 8.64 | 1874 | 229
VGG/Black | 43.55 | 649 | 67.75 | 828 | 15.57 | 18.93
7 7 VGGJ/Asian | 3544 | 5699 | 6842 | 9.7 | 18.79 | 22.47
3 3 Fair/Male | 53.25 | 63.24 | 6897 | 17.73 | 29.06 | 33.61
Fair/Female | 39.36 | 62.68 | 73.98 | 13.42 | 23.29 | 27.43
Fy! [ VGG/White | 85.44 | 88.88 | 98.88 | 7.63 | 16.87 | 2141
VGG/Black | 44.04 | 6478 | 67.27 | 7.54 | 1417 | 17.1
el VGGJ/Asian | 26.62 | 4257 | 50.38 | 721 | 146 | 1745
1p Fair/Male | 27.72 | 40.31 | 40.29 | 11.49 | 21.74 | 25.86
Fair/Female | 19.79 | 36.45 | 47.89 | 10.53 | 19.54 | 232
Fy' [ VGG/White | 63.13 | 70.14 | 86.12 | 472 | 11.67 | 15.14
VGG/Black | 30.35 | 50.27 | 56.11 | 5.58 | 11.58 | 14.73
VGGJ/Asian | 23.06 | 425 | 52.56 | 7.2 | 1497 | 18.43
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Table 27: Black-Box Transfer ASR(%).



	Introduction
	Our Contribution

	Related Works
	Attributed Subsphere Skf and Non-Adaptive Adversarial Face Generation
	Our Approach to Avoid Iterative Solvers using Attributed Subsphere Projection
	Validation of the Existence of the Attributed Subsphere Skf and Conjecture 1.
	Non-Adaptive Adversarial Face Generation

	Experimental Results
	Experimental Setting
	Black-Box Attack

	Ablation Studies and Discussion
	Comparison with Prior Work
	Black-box Attack on Non-facial Target
	Possible Mitigation of Our Black-box Attack

	Ethics Statement
	Conclusion
	Additional Implementation Details
	Details of the Models Employed
	Statistics of the Datasets

	Validation of Proposition 3.1.
	Efficient OFS Generator
	Additional Examples of Attribute-Specific Subspheres
	More Finer Interpolation Results
	Interpolation from Other Attributes
	Subspaces from Other Inverse Models

	Transfer Attack (Naïve Approach)
	Additional Techniques
	Addditional Experiments
	White-box Attack Setting
	Effect of Correction Matrix R in Black-box
	Black-box Attack against target FRS FT
	Experimental Setup for Table 4 and Table 5
	Black-box Attack on Non-facial Target
	Ablation Study about F-1 in Black-box
	Transfer Attack in Black-box
	Prototype of FRS for Strict Threshold
	Adversarial Training and Certifiably Robust Face Recognition Models


