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Abstract

The electron localization function (ELF) is a powerful diagnostic of bonding and
electronic structure across materials conditions, including the extreme regimes rel-
evant to high-pressure chemistry. However, its direct generation from the chemical
formula and crystal structure is very challenging due to its highly non-linear nature.
We propose developing a supervised deep learning method that can transform
the 3D superposition of atomic densities (SAD) and yield the ELF. The method
can naturally incorporate pressure-implicit structural representations and can be
used to rapidly score candidate metal sublattices (templates) for compounds under
compression. Our approach combines a periodic 3D U-Net with circular padding,
an explicit symmetry-pooling layer built from space-group Seitz operators in the
local patch frame, and memory-aware training on periodic patches with epoch-
wise origin jitter. The model has been trained on 50,000 metal-only structures
drawn from a curated subset of Alexandria-MP20, using a 90/10 train/test split.
Reproducible and comparable results have been achieved after detailing the rep-
resentation, symmetry handling, patching strategy, and learning objectives. Our
implementation is symmetry-aware at the data and network levels and is designed
to scale to large unit cells without significant memory use.

1 Introduction

The electron localization function (ELF), valued for its bounded range and interpretability, provides a
powerful assessment of the chemical nature of molecules and compounds [1,2]: regions with ELF
close to 1 indicate strong localization (e.g., lone pairs, covalent basins), to 0.5 indicates delocalization
similar to a uniform electron gas, and to O tends toward nodes [3,4]. A fast, symmetry-respecting
predictor of ELF conditioned on crystal structure would thus be a useful “inner loop” for exploring
candidate materials across a large chemical space [5,6].

ELF is particularly useful for screening high-pressure compounds, a task hindered by limited data
since fewer materials are known under extreme conditions. A prominent example is the family
of metal superhydrides, which have been extensively investigated over the past decade for their
promise of achieving room-temperature superconductivity [7—10]. The ELF of these superhydrides
has been demonstrated to correlate strongly with their superconducting behavior. Moreover, the
ELF associated with the metal sublattices provides a measure of the so-called chemical template
strength, the essential driving force behind the stability of metal superhydrides. This makes ELF a
valuable descriptor for identifying candidate superhydrides, especially those stable at lower pressures
with higher critical temperatures. However, ELF is a highly non-linear function whose values vary
unpredictably across compounds, making its direct prediction from chemical composition and crystal
structure a major challenge.
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We propose to learn ELF directly from a pressure-implicit representation of the crystal: the superposi-
tion of atomic densities (SAD) rasterized on the unit-cell grid [11-13]. Because the SAD is evaluated
in the actual lattice (compressed or expanded), pressure enters implicitly via interatomic distances and
unit cell volumes, without requiring an explicit pressure scalar as input. The task is then a 3D image
transform on a fixed grid size per sample: given SAD, predict ELF on the same grid. To include
crystal symmetries and periodicity, we build periodicity into both the data pipeline and the network
[14]. At data time, we train on periodic patches with epoch-wise origin jitter and pass patch-local
Seitz operators; at model time, we use circular padding everywhere and average features over the
patch’s symmetry operations via a batched geometric warp [15-18]. This combination enforces
invariances that are standard in generative models for crystals such as E(3), while keeping compute
tractable [19,20].

2 Background

2.1 Crystal structure representation

Let a crystal unit cell be M = (A, X, L) with A = {a;}, the atom types, X = [z1,...,2n]T €
[0, 1)V*3 the fractional coordinates, and L € R3*? the lattice columns. The infinite crystal is the
periodic set X = {z; + Z?Zl kje; | k; € Z} in fractional space and LX in Cartesian space [21].
A superposition of atomic density is a one-channel scalar field defined on the unit-cell volume that
approximates the in-cell electron density using an independent-atom ansatz,

N
psap(r) = szi(ﬂr — Lzi|),
i=1

where pyz, is a spherically symmetric density associated with atomic number Z; [22,23]. When
evaluated on the actual lattice L, psap is implicitly pressure-aware: compression changes L and
hence interatomic separations, reshaping the superposed density without providing pressure explicitly
as a feature. We rasterize pgap on aregular N, x N, x N, grid covering the unit cell; the supervised
target is the ELF field on the same grid. Although ELF depends on kinetic-energy density and Pauli
effects, not just on p, the SAD field acts as a physically informed, translation— and rotation-covariant
summary of local environments that a sufficiently expressive network can map to the bounded ELF.

2.2 Seitz invariance

Space-group operations are represented in Seitz form {R | t}, where R € GL(3,Z) N O(3) is an
integer rotation (orthogonal; the inverse equals the transpose) acting on fractional coordinates and
t € [0,1)3 is a fractional translation [16]. The group action on fractional coordinates is x — Rz +t
(mod 1); the lattice L transforms as L + LR~ to preserve Cartesian geometry [24]. Periodic
E(3) invariance for a crystal-conditioned predictor requires invariance under (i) permutation of atom
indices, (ii) translation of all atomic positions, (iii) rigid rotations coupled with the induced lattice
transform, and (iv) periodic choices of the unit cell [25-27]. Generative crystal models enforce these
symmetries through equivariant backbones; we realize the same principle by averaging features over
Seitz operations supplied with each sample and by making all convolutions periodic so the domain is
a 3-torus rather than a bounded box [28].

2.3 3D convolutional networks on periodic domains

A 3D convolution with circular padding computes the discrete convolution on the quotient domain
Zy, X Zyn, X Zn,, i.e., a torus, which exactly matches unit-cell periodicity [29]. U-Nets, en-
coder—decoder architectures with skip connections, provide an effective inductive bias for dense field
prediction because they aggregate multiscale context while preserving spatial detail through skips
[30,31]. In a symmetry-aware variant, intermediate feature maps can be warped by group actions and
averaged, yielding features that are invariant (or equivariant, depending on where the averaging is
inserted) [32-34]. Our backbone combines these ideas with explicit space-group averaging at input
and optionally after each stage, ensuring that the predicted ELF respects the crystal’s symmetry class
up to the numerical tolerance of interpolation.



3 Model Architecture
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Figure 1: Symmetry-aware pipeline and model for ELF prediction. SAD and ELF volumetric grids
are sliced into 16 patches with jitter and circular padding; structure- and patch-level Seitz matrices
apply crystallographic symmetry for augmentation. Patches are processed by a 3-D U-Net (box
labels give #channels and spatial size), and a head PConv3d(3x3) — GroupNorm — GELU —
PConv3d(1x1) — Sigmoid produces a 1 x 162 prediction. Patch outputs are stitched to reconstruct
the full ELFCAR volume.

3.1 Dataloading: patches, Seitz operators, and jitter

We train on periodic p X p X p patches extracted from SAD/ELF volumes defined on a unit-cell grid
of size (N, N, N.). Patches are sampled with stride s < p using wrap-around indexing so that
periodic boundaries are exactly respected. To decorrelate the patch lattice from the crystal grid, each
epoch applies an origin jitter: a single offset (0,,0,,0.) € {0,...,s — 1}3 is added to all patch
starts modulo (N, Ny, N.); jitter is disabled for validation to ensure determinism.

Each structure provides space-group symmetry as Seitz operators { R | ¢} in fractional coordinates.
Because training uses patches, translations are expressed in the patch frame whose fractional origin
is 0 = (ig/Ng, iy /Ny, 1. /N;), yielding the transformed translation

= (Ro+t—o0)mod 1, {R|t}—{R|t}.

The data loader returns per-patch operators { R | t'} together with the corresponding patch tensors,
enabling symmetry-consistent warping and averaging during training.

3.2 3D U-Net backbone with periodic convolutions and symmetry pooling

We use a 3D U-Net whose convolutions are periodic so that feature extraction respects lattice
periodicity. Encoder stages downsample and decoder stages upsample in the usual U-Net fashion, and
the head maps to a single channel with a Sigmoid to bound the ELF in [0, 1]. To enforce space-group
invariance, we interleave feature extraction with a symmetry-averaging layer that uses the per-item
Seitz operators (rotations and fractional translations) to sample features under all symmetry-equivalent
coordinate transforms and average them. This can be applied to the input and, optionally, after each
encoder/decoder stage, yielding representations invariant to the structure’s space group while retaining



equivariance at the sampling-grid level. Training minimizes a composite objective comprising
voxelwise fidelity, periodic-gradient agreement, and value-distribution alignment. Relative weights
are learned via uncertainty weighting, and optimization uses AdamW with cosine annealing.

4 Discussion
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Figure 2: Validation loss decomposed into its three terms across training epochs. Each point is a
per-epoch mean computed from step-level logs. The HIST term drops sharply in the early epochs and
then stabilizes, VOX declines steadily throughout training, and GRAD shows a modest early rise as
the loss weights are learned, followed by a gradual decay to a plateau.

We have demonstrated that a symmetry-aware, periodic 3D U-Net can learn a supervised transforma-
tion from a pressure-implicit structural field (SAD) to the electron localization function (ELF) on
the unit-cell torus. The model’s invariances (periodicity and space-group handling by Seitz pooling),
its memory-aware patch training with origin jitter, and a composite loss that couples voxel fidelity,
periodic gradients, and value-distribution alignment together yield an operator that is fast enough
for inner-loop screening of crystal templates. At the same time, our present training set—metal-only
structures from a curated Alexandria-MP20 subset—places deliberate constraints on composition and
pressure coverage. Below we outline the near-term steps and longer-term program needed to turn this
prototype into a practical high-pressure ELF engine for superhydride discovery and broader materials
design.

The next step is to expose the model to compression. Although pressure enters implicitly through
the lattice L in SAD, reliable generalization to the extreme compressions of interest requires that
the learned mapping see such regimes during training. The most direct next step is to assemble
a high-pressure ELF training set by (i) generating families of structures at multiple compressions
for each composition/topology and (ii) computing reference ELFs at those volumes. Two practical
curricula are natural: (a) isotropic volume sweeps V/Vj € {1.0,0.9,0.8, ...} with fixed fractional
coordinates, followed by (b) relaxed high-pressure structures including lower symmetry cells to
capture the complexity of the chemistry at higher pressures.

The same symmetry-aware pipeline can learn other field-valued operators on the 3-torus by changing
the target (e.g. charge density, charge density difference) and optionally augmenting inputs with multi-
channel SADs or gradients. Coupled with differentiable stitching and gradient-aware objectives, this
suggests a route to fast, lightweight, physically aligned models that can steer closed-loop discovery
in high-pressure chemistry and general crystal design, while retaining exact periodicity and explicit
space-group handling.
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5 Appendix

File discovery and 1I/0. The loader discovers triplets of *.npy files with matching stems:
stem_sad, stem_elf, stem_sym. Arrays are opened via memory-mapped NumPy for low-overhead
header reads and I/O. The grid shape (N, N, N,) is read from the ELF file header and stored per
sample to support consistent patch extraction and rescaling across structures.

Patch extraction and channels. The core dataset class emits periodic p X p X p patches with
optional overlap controlled by a stride s < p. Given integer starts (i, %,,¢,), a patch is cut out
using np.take (..., mode="wrap") along each axis, which is equivalent to modular indexing and
exactly enforces periodic boundaries. The input tensor stacks channels in the specified order; by
default, SAD and ELF are concatenated to form X € RE*P*PXP with C' € {1,2} depending on
whether the target (ELF) is carried through the loader for supervised training.

Epoch-wise jitter and samplers. To avoid pathological alignment between the patch lattice and
the crystal grid, the dataset implements epoch-wise origin jitter. Let (05, 0y,05) € {0,...,5 —1}3
be a random offset drawn once per epoch from a deterministic seed; patch starts are then

(iz8 + 0g, iyS + 0y, 125+ 0,) mod (Ng, Ny, N,).

A dataset hook set_epoch(e) sets this offset deterministically from the seed and epoch num-
ber. Training samplers call this hook once per epoch in both single-GPU and distributed set-
tings: _RandomSamplerWithEpoch subclasses RandomSampler to increment an internal epoch
counter on each __iter__, and _DistributedSamplerWithJitter forwards the framework’s
set_epoch(e) to the dataset, preserving DDP semantics and data partitioning. Validation uses the
same stride with jitter disabled.

Symmetry bookkeeping and batching. Space-group symmetries are provided per structure as
Seitz operators {R | t} in fractional coordinates, stored as an (R, 4, 4) array with integer rotation
blocks and fractional translations. Because training uses patches, these global operators must be
expressed in the patch frame whose fractional origin is 0 = (i /Ny, iy /Ny, ./N.). The translational
part is shifted via

t'=(Ro+t—o0) mod 1, {R|t} = {R|1'}.



For each item, the dataset returns both the global operators and the patch-frame operators. A dedicated
collate_patches routine pads ragged symmetry lists in a batch to the maximum group size and
returns

(X, sym_batch, mask, origin_frac, orig_shape, stems),

where sym_batche RE*ftmaxx4x4 and maske {0, 1}5* fmax preserve per-item group sizes for
downstream weighting and symmetry-averaged computation.

Periodic convolutions and U-Net wiring. The predictor fy is a 3D U-Net whose every convolution
is periodic. A PeriodicConv3d layer performs circular padding of width (k — 1)/2 for an odd
kernel k and then applies a standard Conv3d with zero explicit padding. Residual blocks comprise
PeriodicConv3d — GroupNorm — GELU — (Dropout3d) — PeriodicConv3d — GroupNorm,
with a residual connection and final GELU, providing stable training at depth. Downsampling uses a
stride-2 periodic convolution followed by GroupNorm and GELU; upsampling uses trilinear interpola-
tion followed by periodic convolution, concatenation with the corresponding encoder skip, further
residual processing, and a periodic “merge” convolution. The head comprises a periodic 3 X 3 x 3
convolution, normalization, GELU, a 1 X 1 x 1 periodic projection to one channel, and a Sigmoid to
bound the ELF prediction in [0, 1].

Symmetry pooling (SymmAvg3D). Let f € REXCXDXHXW he 3 feature map on the patch grid
and S = {(R,t)} the per-item Seitz operators in the patch frame returned by the loader. The
layer constructs base sampling coordinates p,,; € [—1,1] (and the associated fractional grid
Cout = 12(pout + 1) € [0,1]?) and, for each operator, computes the input sampling grid by

Gin = Wrap(571R71S<out - SilRilt/) s Pin = 2Cn — 1,

where S = diag(W/N,, H/N,, D/N.) rescales between patch-voxel and fractional coordinates and
wrap projects component-wise to [0, 1). Because R is orthogonal with integer entries, R~1 = R is
implemented by transpose for numerical stability. The network samples f at p;;,, using grid_sample
in trilinear mode and averages across valid operations with a per-item mask, yielding a symmetry-
averaged feature map with the same shape as f. The layer is applied to the input SAD and, optionally,
after every encoder and decoder stage.

Training objective and optimization. Let§ = fy(z) and y be predicted and true ELF patches. We
use a voxelwise Smooth-L1 loss L., a periodic-gradient loss

Ly = [|Az) — Azyllr + ||Ay? - Ayyul + 1A — Azyl,

where forward differences use circular shifts along each axis, and a soft-histogram KL that compares
Gaussian-smoothed marginal histograms of ELF values in [0, 1]. Learnable log-precisions 7, balance
the terms,
L(0) = > e L+,
ke{vox,V hist}

removing the need for manual loss-weight tuning during training. Optimization uses AdamW with
cosine annealing; the module is implemented with PyTorch Lightning for reproducibility.



	Introduction
	Background
	Crystal structure representation
	Seitz invariance
	3D convolutional networks on periodic domains

	Model Architecture
	Data loading: patches, Seitz operators, and jitter
	3D U-Net backbone with periodic convolutions and symmetry pooling

	Discussion
	Appendix

