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Abstract

Foundation models and self-supervised learning (SSL) have become central to mod-
ern AI, yet research in this area remains hindered by complex codebases, redundant
re-implementations, and the heavy engineering burden of scaling experiments. We
present stable-pretraining, a modular, extensible, and performance-optimized
library built on top of PyTorch, Lightning, Hugging Face, and TorchMetrics.
Unlike prior toolkits focused narrowly on reproducing state-of-the-art results,
stable-pretraining is designed for flexibility and iteration speed: it unifies
essential SSL utilities—including probes, collapse detection metrics, augmen-
tation pipelines, and extensible evaluation routines—within a coherent and re-
liable framework. A central design principle is logging everything, enabling
fine-grained visibility into training dynamics that makes debugging, monitoring,
and reproducibility seamless. We validate the library by demonstrating its abil-
ity to generate new research insights with minimal overhead, including depth-
wise representation probing and the analysis of CLIP degradation under synthetic
data finetuning. By lowering barriers to entry while remaining scalable to large
experiments, stable-pretraining aims to accelerate discovery and expand
the possibilities of foundation model research. The source code is available at
https://github.com/rbalestr-lab/stable-pretraining.
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Figure 1: Overview of stable-pretraining.
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1 Introduction

Foundation models have transformed artificial intelligence in the past decade, powering breakthroughs
across vision, language, and multimodal learning. Yet, despite this progress, research on foundation
models remains uniquely challenging. Unlike conventional supervised learning, it requires large-scale
datasets, multi-GPU training setups, and intricate monitoring of training dynamics. Researchers
must navigate debugging difficulties, collapse detection, careful hyperparameter tuning, and complex
evaluation protocols [2]—none of which are readily supported in mainstream frameworks like
PyTorch [12], Lightning[6], or Hugging Face[18, 10]. As a result, even simple experiments often
demand starting from massive, monolithic codebases such as DINOv2 [11] or MAE [9]. These
repositories are difficult to extend, tightly coupled to specific engineering choices, and slow to
prototype with—creating a bottleneck for innovation. Compounding the problem, many research
groups repeatedly re-implement the same essential components: data augmentation pipelines, training
loops, probes, loss functions, or evaluation metrics. This redundancy is not only inefficient but also
increases the likelihood of bugs, inconsistencies, and incomparable evaluation results across the
community. The consequence is a research ecosystem constrained to incremental improvements, with
limited room for rapid exploration of new ideas.

Several prior libraries have attempted to address these challenges, such as VISSL [8], solo-learn [4], or
lightly [15]. However, these toolkits share important limitations, e.g., they are static by design, focus-
ing on reproducing established methods rather than supporting new research exploration. Moreover,
VISSL and solo-learn are no longer actively maintained, with their last commits dating back to 2022
and 2023, respectively. Lightly, on the other hand, separates SSL functionality from training utilities,
many of which are only accessible through paid membership. Lastly, none of these frameworks treat
monitoring and debugging as first-class concerns, leaving researchers to repeatedly engineer their
own probes, evaluation pipelines, or collapse detection metrics. As a result, existing solutions only
partially reduce the engineering burden and do not fully support the rapid, exploratory workflows
needed for foundation model research.

To address these challenges, we present stable-pretraining, a library purpose-built for rapid
and scalable foundation model research. Built on top of PyTorch, Lightning, Hugging Face, and
TorchMetrics [5], it combines the reliability of widely adopted frameworks with specificities required
for foundation model training, typically absent elsewhere. Unlike prior toolkits focused narrowly on
reproducing state-of-the-art results, stable-pretraining is designed for flexibility and iteration
speed. Its modular framework consolidates critical SSL components—including probes (linear,
non-linear, k-NN), collapse detection metrics (RankMe [7], LiDAR [16]), and extensible evaluation
utilities—into a unified, performance-optimized system. At its core, stable-pretraining logs
every aspect of training and evaluation, providing fine-grained monitoring and transparent feedback
that facilitates debugging, reproducibility, and deeper insights from training dynamics. Our goal is to
expand what is possible in foundation model research: to accelerate discovery, foster reproducibility,
and empower the community to explore beyond today’s incremental progress.

Table 1: Linear probe top-1 accuracy across multiple datasets.
Method Arch. DTD aircraft cars cifar10 cifar100 flowers102 food101 galaxy10 pets avg.
I-JEPA [1] ViT-H 73.62 56.45 58.93 97.77 86.93 85.76 81.06 62.93 92.94 77.37
DINO [3] ViT-S 77.29 72.92 75.86 97.12 85.27 95.13 84.81 68.91 95.00 83.59
DINOv2 [11] ViT-S 80.43 80.56 84.21 97.75 88.04 99.56 90.52 67.60 95.67 87.15

2 stable-pretraining: An Overview

stable-pretraining’s focus is to alleviate the tedious process of assembling a foundation model
research codebase. We argue that the lack of such library poses an important limitation in current
research as the barrier to entry has become insurmountable. With our solution, the time from research
idea to first sign of success of failure is drastically reduced. In the following sections, we first
outline the design choices behind stable-pretraining. We then highlight our research utilities by
presenting two simple yet previously unverified experimental insights in self-supervised learning.
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2.1 Structure

Figure 1 provides an overview of stable-pretraining. Our design philosophy is simple: reuse
what the community already trusts, and build only what is missing to perform efficient research.
Components shown in blue represent modules we specifically developed, while those in orange
are borrowed and adapted from proven third-party libraries such as Lightning, Hugging Face, and
PyTorch. At the center of the pipeline is the Manager, a lightweight controller that works in tandem
with Lightning’s Trainer to coordinate the entire training process. The Manager abstracts away
many tedious engineering details—such as automatic checkpoint handling in cluster environments,
consistent logging, and monitoring (optional)—so that researchers can focus on experimentation
rather than infrastructure.

Manager and logging-everything. The Manager works synergistically with Lightning’s Trainer
to orchestrate the entire training pipeline, handling model execution, checkpointing, and environment-
specific details such as automated reloads on clusters. At the same time, it embodies our log-
everything ethos as a first-class concern: every component of the pipeline is logged in a fine-grained
and structured manner. This design turns monitoring, reproducibility, and debugging into routine
features rather than burdens, aligning the library’s ergonomics with the pace and reliability needs of
rapid foundation model research.

Dictionary-first design. Everything in stable-pretraining speaks dictionaries. Datasets emit
dictionary-shaped batches; modules consume and produce dictionaries; callbacks read/write named
fields. Common keys include image, label, embedding, loss. This uniform interface removes
glue code, keeps components swappable, and makes pipelines easy to extend.

Data and module composition. The DataModule encapsulates training and validation dataloaders
(e.g., from Hugging Face datasets or custom sources). The Module bundles any number of PyTorch
components (such as backbones, projectors, classifiers, or losses) and orchestrates their interaction
through a user-defined forward(self, batch, stage). Unlike PyTorch Lightning, where one
must implement separate training_step, validation_step, and related methods, this framework
consolidates all computation in the forward function. The forward not only produces embeddings,
predictions, or other intermediate representations, but can also compute losses directly when invoked
during training. The return value is a dictionary that may contain arbitrary keys (e.g., “embedding”,
“prediction”) for monitoring and analysis, with the special convention that a “loss” key—if present—
will be used automatically for optimization. This design keeps training logic explicit and flexible
while avoiding boilerplate, and it ensures that outputs, metrics, and losses are unified in a single,
stage-aware interface.

Callbacks. A major convenience of our library is its set of plug-and-play callbacks for monitoring
and evaluation: linear and non-linear (attentive) probes, k-NN probes, and collapse detection metrics
(RankMe, LiDAR), among others. The callback engine is backed by an intelligent, shared-memory
queue: when multiple callbacks consume the same tensors (e.g., embeddings), computations are dedu-
plicated and memory is reused. Our callbacks deliver (i) real-time feedback on representation quality,
(ii) early detection of collapse, and (iii) multi-metric views that turn debugging into insight—with
minimal overhead. Importantly, all callbacks are implemented as native Lightning callbacks, ensuring
full compatibility: researchers can freely mix and match our probes and monitors with any standard
or custom Lightning callback in a single training loop.

2.2 Accelerating Research

Beyond faithfully reproducing existing approaches, stable-pretraining is designed to accelerate
the process of exploring new ideas. Its modularity and plug-and-play utilities enable experiments that
would otherwise require considerable and repetitive effort to be carried out with minimal setup. We
illustrate this through two case studies. As a sanity check, we also report the linear probe accuracy
over a wide range of datasets for different methods in table 1.

Depth-wise representation probing. Analyzing intermediate representations in large models
typically demands intrusive modifications to training code and custom evaluation pipelines. With
stable-pretraining, this becomes trivial: adding a linear probe at arbitrary layers requires only a
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few lines of configuration. As a demonstration, we probe ImageNet-100 representations at multiple
depths across several state-of-the-art vision SSL models. Results (Figure 2) confirm the expected
trend that later layers yield stronger performance, while also revealing that MetaCLIP [19] excels
at earlier and intermediate layers, whereas DINOv2-3 [11, 14] dominates at the final layer. This
experiment, often prohibitively cumbersome, is reduced to a straightforward plug-and-play setup.
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Figure 2: Depth-wise representation probing (ImageNet-100). We report the top-1 and top-5 validation
accuracies of linear probes from different layers of SOTA vision self-supervised learning methods
after 100 epochs. MetaCLIP outperforms other approaches on beginning and intermediate layers,
while DINOv2-3 outperforms on the last layer.

CLIP degradation under synthetic data fine-tuning. We further showcase how
stable-pretraining facilitates rapid exploration of new research questions. Starting
from a frozen CLIP ViT-B/32 [13] checkpoint, we continue pretraining for 8 epochs on a synthetic
image dataset DiffusionDB-2M [17], monitoring zero-shot transfer throughout. As shown in Table 2,
performance degrades sharply: Top-1 accuracy on ImageNet-100 drops by 19% after just a single
epoch, with continued training yielding no recovery. This highlights how quickly synthetic data can
harm representation quality in self-supervised learning—a result that can be obtained with minimal
overhead using our framework.

Table 2: CLIP (OpenAI clip-vit-base-patch32 d) model accuracies on ImageNet-100 validation set
before and after finetuning on DiffusionDB2M. Synthetic data fine-tuning seems to degrade the
quality of learned SSL representations.

Metric No Finetuning Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 Epoch 6 Epoch 7 Epoch 8
Top-1 77.7 59.0 50.3 48.2 50.1 49.7 49.9 50.2 50.4
Top-5 94.6 87.4 81.9 79.8 81.5 80.4 80.2 80.8 81.3
Top-10 97.3 93.7 89.8 88.8 90.0 89.3 88.7 88.6 89.3

3 Conclusion

We introduced stable-pretraining, an open-source library designed to accelerate and simplify
research on foundation models and self-supervised learning. Built on top of PyTorch, Lightning,
Hugging Face, and TorchMetrics, it ensures stability and extensibility while avoiding redundant
engineering. Unlike prior efforts focused on reproducing existing methods, stable-pretraining
emphasizes flexibility, iteration speed, and modularity by consolidating essential SSL utilities—such
as probes, collapse detection, and extensible evaluation pipelines—into a unified, performance-
optimized framework. A central design principle is logging everything, making monitoring and
debugging transparent, reproducible, and directly useful for research. We validate that the library not
only reproduces state-of-the-art performance but also enables new research insights with minimal
effort, lowering the barrier to entry while supporting large-scale experimentation.
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A Code snippets.� �
1 import lightning as pl
2 import torch
3 import torchmetrics
4 import torchvision
5 from torch import nn
6 from lightning.pytorch.loggers import WandbLogger
7
8 import stable_pretraining as spt
9 from stable_pretraining.data import transforms

10
11 # Define augmentations for SimCLR (creates 2 views of each image)
12 simclr_transform = transforms.MultiViewTransform(
13 [
14 transforms.Compose(
15 transforms.RGB(),
16 transforms.RandomResizedCrop((32, 32), scale=(0.2, 1.0)),
17 transforms.RandomHorizontalFlip(p=0.5),
18 transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2,

hue=0.1, p=0.8),
19 transforms.RandomGrayscale(p=0.2),
20 transforms.ToImage(**spt.data.static.CIFAR10),
21 ),
22 # Second view with slightly different augmentations
23 transforms.Compose(
24 transforms.RGB(),
25 transforms.RandomResizedCrop((32, 32), scale=(0.08, 1.0)),
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26 transforms.RandomHorizontalFlip(p=0.5),
27 transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2,

hue=0.1, p=0.8),
28 transforms.RandomGrayscale(p=0.2),
29 transforms.RandomSolarize(threshold=0.5, p=0.2),
30 transforms.ToImage(**spt.data.static.CIFAR10),
31 ),
32 ]
33 )
34
35 # Load CIFAR-10 and wrap in dictionary format
36 cifar_train = torchvision.datasets.CIFAR10(train=True)
37 cifar_val = torchvision.datasets.CIFAR10(train=False)
38
39 train_dataset = spt.data.FromTorchDataset(
40 cifar_train,
41 names=["image", "label"], # Convert tuple to dictionary
42 transform=simclr_transform,
43 )
44
45 val_dataset = spt.data.FromTorchDataset(
46 cifar_val,
47 names=["image", "label"],
48 transform=transforms.Compose(
49 transforms.RGB(),
50 transforms.Resize((32, 32)),
51 transforms.ToImage(**spt.data.static.CIFAR10),
52 ),
53 )
54
55 # Create dataloaders with view sampling for contrastive learning
56 train_dataloader = torch.utils.data.DataLoader(
57 dataset=train_dataset,
58 sampler=spt.data.sampler.RepeatedRandomSampler(train_dataset, n_views=2),
59 batch_size=256,
60 num_workers=8,
61 drop_last=True,
62 )
63
64 val_dataloader = torch.utils.data.DataLoader(
65 dataset=val_dataset,
66 batch_size=256,
67 num_workers=10,
68 )
69
70 data = spt.data.DataModule(train=train_dataloader, val=val_dataloader)
71
72 # Define the forward function (replaces training_step in PyTorch Lightning)
73 def forward(self, batch, stage):
74 out = {}
75 out["embedding"] = self.backbone(batch["image"])
76 if self.training:
77 # Project embeddings and compute contrastive loss
78 proj = self.projector(out["embedding"])
79 views = spt.data.fold_views(proj, batch["sample_idx"])
80 out["loss"] = self.simclr_loss(views[0], views[1])
81 return out
82
83 # Build model components
84 backbone = spt.backbone.from_torchvision("resnet18", low_resolution=True)
85 backbone.fc = torch.nn.Identity() # Remove classification head
86
87 projector = nn.Sequential(
88 nn.Linear(512, 2048),
89 nn.BatchNorm1d(2048),
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90 nn.ReLU(inplace=True),
91 nn.Linear(2048, 2048),
92 nn.BatchNorm1d(2048),
93 nn.ReLU(inplace=True),
94 nn.Linear(2048, 256),
95 )
96
97 # Create the module with all components
98 module = spt.Module(
99 backbone=backbone,

100 projector=projector,
101 forward=forward,
102 simclr_loss=spt.losses.NTXEntLoss(temperature=0.5),
103 optim={
104 "optimizer": {"type": "LARS", "lr": 5, "weight_decay": 1e-6},
105 "scheduler": {"type": "LinearWarmupCosineAnnealing"},
106 "interval": "epoch",
107 },
108 )
109
110 # Add callbacks for monitoring performance during training
111 linear_probe = spt.callbacks.OnlineProbe(
112 name="linear_probe",
113 input="embedding",
114 target="label",
115 probe=torch.nn.Linear(512, 10),
116 loss_fn=torch.nn.CrossEntropyLoss(),
117 metrics={
118 "top1": torchmetrics.classification.MulticlassAccuracy(10),
119 "top5": torchmetrics.classification.MulticlassAccuracy(10, top_k=5),
120 },
121 )
122
123 knn_probe = spt.callbacks.OnlineKNN(
124 name="knn_probe",
125 input="embedding",
126 target="label",
127 queue_length=20000,
128 metrics={"accuracy": torchmetrics.classification.MulticlassAccuracy(10)},
129 input_dim=512,
130 k=10,
131 )
132
133 # Configure training
134 trainer = pl.Trainer(
135 max_epochs=1000,
136 callbacks=[knn_probe, linear_probe], # Monitor SSL quality in real-time
137 precision="16-mixed",
138 logger=WandbLogger(project="cifar10-simclr"),
139 )
140
141 # Launch training
142 manager = spt.Manager(trainer=trainer, module=module, data=data)
143 manager()� �

Listing 1: SimCLR training on CIFAR-10 with stable_pretraining and PyTorch Lightning
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