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Abstract. The increasing demand for accurate medical image segmen-
tation is crucial for alleviating the workload of doctors and enhancing
diagnostic accuracy, particularly in low-income countries with limited
computational resources. This study investigates the application of a
novel deep learning model, class-prompt Tiny-VIT, to segment various
medical image modalities using a laptop. The primary focus is on the
challenges posed by the significant differences across image modalities,
which render a unified model ineffective in handling certain modalities
like positron emission tomography (PET) with high dice similarity on
the segmentation task. Experimental results demonstrate that the class
prompt, a simplified yet efficient method, can effectively boost model
performance on modalities such as PET and microscopy, achieving im-
proved overall segmentation accuracy. This research holds significant po-
tential for the practical implementation of medical image segmentation
in resource-constrained settings, and underlines the importance of de-
veloping deep learning algorithms tailored to specific medical imaging
modalities.

Keywords: Multi-modality · Medical image segmentation · Class prompt
· TinyVIT .

1 Introduction

Medical image segmentation plays a crucial role in computer-aided diagnosis,
treatment planning, disease progression monitoring, image-guided interventions,
and personalized medicine. The accurate delineation of anatomical structures
and pathological regions is essential for effective clinical decision-making [1].

Various deep-learning based semantic segmentation models have been pro-
posed [2, 3] while most existing fundamental segmentation models are mainly
based on natural images. Various machine learning based models were proposed
to cope with different specific segmentation tasks including brain, liver, tumour,
cell, lung, cardiac, vascular etc [4–11]with different imaging modalities such as
MRI, OCT, ultrasound, X-Ray, ultrasound etc and have demonstrated remark-
able success in medical image segmentation tasks which helps on various medical
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tasks including tumor diagnostic [12, 13], vessel and tissue characterization and
so on [14–17].

However, the complexity and diversity of medical imaging modalities, along
with the inherent variability in anatomical structures, make it difficult to de-
sign a robust and efficient segmentation model that can perform well across
different imaging scenarios [18]. Instead of focusing on specialized models for
single tasks, researchers have explored more generalized models that can man-
age multiple scenarios like SAM [19], this trend also lead to the development
of generalized methods for medical image segmentation across different modal-
ities with U-Net architecture [18, 20] and models inspired by SAM like Med-
SAM [21–23] and so on. While in the meantime, these methods often require sub-
stantial computational resources, which may not be feasible for deployment on
resource-constrained devices such as laptops. To enable real-time processing and
edge-machine use with such machine learning models, the size and computation
complexity need to be reduced. To this end, MobileSAM [24], and EfficientViT-
SAM [25], TinyVIT [26] have shown promising results in terms of both accuracy
and computational efficiency. These methods employ self-attention mechanisms
to capture global and local contextual information to improve performance with
comparable small models. However, despite their success, these methods still face
limitations in terms of model size, computational complexity, and adaptability
to different imaging modalities, particularly when considering the deployment of
these methods on resource-constrained devices such as laptops with an 8G CPU
without GPU that is commonly used in clinical.

To solve the computation cost and multi-modality generalization challenges
mentioned above, inspired by TinyVIT [26] and Vision Transformer (ViT) archi-
tecture [27] which have demonstrated great potential in computer vision tasks,
here we propose a novel approach Class-prompted TinyVIT network for medical
image segmentation across different imaging modalities, with high accuracy and
low computation cost that is capable of running on an 8G CPU device in al-
most real-time. The Class-prompted TinyVIT is inspired by the actual divisions
in hospitals where different modalities are assigned to specific doctors instead
of letting the same doctor to read all modalities images. By this class-prompt
method, the model would acquire the modality class information while using the
same model with tuned parameters with specific modality while keep the similar
model size.

By adapting this architecture, we aim to provide a compact and efficient
solution that can be deployed on devices with limited computational resources.
Our primary contribution lies in introducing class-prompt to the lite TinyVIT
model to cope with the multi-modality medical image segmentation across dif-
ferent imaging modalities effectively as specialized models. The combination of
compact model size, high accuracy, and compatibility with resource-constrained
CPUs makes our approach a promising solution for real-world medical imag-
ing applications. Furthermore, we conduct experiments on the provided dataset
to validate the effectiveness of our approach. The results demonstrate superior
segmentation accuracy and computational efficiency, highlighting the potential



Abbreviated paper title 3

of our approach in advancing medical image analysis for edge-device applica-
tion. In summary, this paper presents a novel class-prompted TinyVIT-based
approach for medical image segmentation that addresses the challenges of model
size, computational complexity, and adaptability to diverse imaging modalities.
Our solution holds the potential to significantly impact the field of medical im-
age analysis, particularly in the context of deployment on resource-constrained
devices.

2 Method

We introduce a pioneering class-prompt-based methodology aimed at enhancing
segmentation efficacy across a spectrum of medical imaging modalities. Drawing
inspiration from the specialized organizational structure of hospitals, where do-
main experts are assigned to interpret distinct imaging modalities, our objective
is to cultivate expert models tailored to each modality. However, the deployment
of 11 individual models on a laptop proves unfeasible due to memory constraints.
To address this challenge, we propose a prompt-driven approach that effectively
communicates the current input modality to the model, thereby transforming
it into an adept specialist for the specific modality under consideration. This
innovative strategy enables us to uphold a concise and efficient model architec-
ture while attaining superior segmentation performance across diverse medical
imaging tasks.

2.1 Preprocessing

The original dataset consists of eleven modalities with unbalanced data samples
as illustrated in Fig. 1. Among those, CT holds the biggest portion with 1218411
items. The size of the whole training dataset is about 6TB with 1,000,000+
image-mask pairs, covering 10 medical image modalities and more than 20 cancer
types. To deal with such a large and imbalanced dataset, to avoid redundant and
long training time costs, we first sampled the original dataset. Though we can try
to train on the whole dataset to get a more comprehensive model, the time and
electricity cost for the training process would be very burdensome. As a result,
not only to make the model lite, we decide to make the training process also
lite so that researchers with a single normal GPU can train it within reasonable
time and calculation cost. Here we first sampled the original large dataset less
than 1/10 of its original size. As CT images are far more than the number of
other modalities, we randomly sampled CT images with 1/50 and randomly
sampled other modalities to 1/10 of original numbers as shown in Figure 1.
After sampling, the sampled dataset size drops to less than 300 GB.

Not only the number of each modality is different, the image and mask size in
different modalities are also different which draws a problem to input the same
model for training. As a result, to fit the training model, we first resize all the
input images to 256*256 pixels to keep consistence so that we can use the same
lite model. Boxes are generated using ground truth. Ground truth are covered
completely by the box. In theory, area outside the box should not be segmented.
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Fig. 1. Number of images of different modalities in original dataset and sampled dataset
for training.

2.2 Proposed Method

Class Prompt: Various image classifier models have been explored, including
traditional networks, deep learning, transfer learning, self-supervised learning,
and more [28–31]. However, most of these models use large architectures, making
them unsuitable for tasks with limited computational resources.

In our model, we address this limitation by incorporating a classifier that
leverages the TinyVIT encoder. This approach notably diminishes both the
model’s size and parameter count. To enhance the classifier’s efficacy further,
we have integrated a three-layer multilayer perceptron (MLP) network as the
modality classifier head. This augmentation exploits the insights derived from
the encoder structure. As a result, our model showcases outstanding perfor-
mance.

Specifically, we equipped TinyVIT with a class prediction head, which is im-
plemented as a multilayer perceptron (MLP) that starts with an input dimension
of 256. This MLP features a hidden layer dimension of 256, and is designed to
classify data into one of 11 distinct categories. The architecture includes three
layers, to process and refine the information through successive transformations.
The first layer takes the input vector x of dimension 256 and transforms it to a
hidden state h1 using a linear transformation followed by a non-linear activation
function (ReLU). The MLP is represented as:

h1 = ReLU(W1x+ b1) (1)
h2 = ReLU(W2h1 + b2) (2)

y = W3h2 + b3 (3)
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where W1,W2,W3 are the weight matrixes and b1,b2,b3 is the bias vectors.
This structure allows the classifier to effectively learn and make predictions by
capturing complex patterns and relationships in the data, making it a vital
component in achieving high accuracy in our classification tasks.

Class-prompt Tiny-VIT Class prompt takes the categories from the classifi-
cation head in encoder and returns a prompt for mask decoder. The pretrained
encoder makes sure that images modalities can be correctly identified. The small
size of class prompt encoder is specially designed for running inference on laptop.
The prompt is added to the box prompt as the input of decoder. Our decoder is
a transformer with three blocks.

Fig. 2. Class-prompted TinyVIT Network architecture. Class prompt takes the cate-
gories from the classification head in encoder and returns a prompt for mask decoder.

Loss function: We use the summation between Dice loss and focal loss because
compound loss functions have been proven to be robust in various medical image
segmentation tasks [32].

a) Dice loss is a performance metric derived from the Dice coefficient, which is
commonly used to gauge the similarity between two samples. Specifically tailored
for the field of medical image segmentation, the Dice loss function is particularly
effective in handling class imbalance, a frequent challenge where the region of
interest occupies a significantly smaller portion of the image compared to the
background. The Dice loss is calculated as

LDice = 1− 2× |X ∩ Y |
|X|+ |Y |

(4)
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where X and Y represent the binary prediction and ground truth masks, respec-
tively. This loss function ensures that the model is not only predicting the classes
accurately but also aligning closely with the actual contours and boundaries of
the regions of interest in the images.

b) Focal loss is an advanced adaptation of the cross-entropy loss, specifically
designed to address the prevalent issue of class imbalance by concentrating more
on difficult, misclassified examples. This is particularly useful in image segmen-
tation tasks where there is a significant imbalance between different classes. The
focal loss function is mathematically represented as:

LFocal = −αt(1− pt)
γ log(pt) (5)

Here, pt is the probability that the model assigns to the ground truth class.
The parameter γ is the focusing parameter, which scales how much the function
focuses on hard examples. The term (1−pt)

γ decreases the loss contribution from
easy examples and increases the importance of correcting misclassified examples.
αt is a balancing factor that can be used to give more focus to rare classes. This
formulation helps in fine-tuning the model’s predictions, ensuring that it not only
achieves high accuracy but also improves performance on the more challenging
aspects of the segmentation task.

From the perspective of inference efficiency, our simple MLP structure can be
easily implemented on CPU-only machines without complex acceleration strate-
gies.

2.3 Post-processing

The size of the mask outputted from the model is unified to 256 by 256. In
order to obtain the mask for the original medical image, we resize the outputted
mask to the original size with bilinear interpolation. The model will produce a
prediction for each box with its index. To save the complete result, all boxes and
corresponding segmentation are saved as an overlay.

3 Experiments

3.1 Dataset and evaluation measures

We used the challenge dataset for model development, including 11 modalities
and both 2D and 3D images.

The evaluation metrics include two accuracy measures—Dice Similarity Co-
efficient (DSC) and Normalized Surface Dice (NSD)—alongside one efficiency
measure—running time.The Dice Similarity Coefficient (DSC) is formulated as
follows:

DSC =
2× |P ∩G|
|P |+ |G|

where P represents the set of pixels in the predicted segmentation mask, G
represents the set of pixels in the ground truth segmentation mask, | · | denotes
the cardinality or size of the set, ∩ denotes the intersection of sets.
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The formula for Normalized Surface Dice (NSD) is given by:

NSD = 1− 2× Surface(A ∩B)

Surface(A) + Surface(B)

where A and B are the segmentation mask and ground truth being compared.
Surface(A) and Surface(B) represent the surface areas of masks A and B
respectively. Surface(A ∩ B) represents the surface area of the intersection of
masks A and B.

This formula calculates the Dice similarity coefficient between the surfaces of
the two masks and normalizes it by the average surface area of the two masks.
A higher NSD value indicates a better overlap between the surfaces of the two
masks.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Table 1. Development environments and requirements. (mandatory table)

System Ubuntu 18.04.5 LTS
CPU Intel Xeon W-2225 10C/20T 4.1Ghz
RAM 32GB DDR4-3200 ECC RDIMM
GPU (number and type) One NVIDIA GeForce RTX 3090 24G
CUDA version 10.496
Programming language Python 3.80
Deep learning framework torch 2.0, torchvision 0.2.2
Specific dependencies None
Code None

Training protocols 1. Data augmentation: in the domain of multimodal med-
ical image segmentation, the strategic implementation of data augmentation
stands as a pivotal factor in augmenting model generalization and precision.
By adhering to a data augmentation rate of 0.5, incorporating stochastic hori-
zontal flips (fliplr) and vertical flips (flipud), we enrich the training dataset by
introducing nuanced variations within the multimodal input images and their
corresponding segmentation maps. These meticulous operations empower the
model to discern and delineate anatomical structures resilient to horizontal and
vertical transformations, thereby fortifying its resilience and efficacy across a
spectrum of modalities. Through these refined data augmentation methodolo-
gies, our primary objective is to enhance the model’s proficiency in accurately
segmenting intricate anatomical entities in multimodal medical images, thereby
advancing its efficacy within clinical frameworks.
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2. Data sampling strategy: during the model training phase, the challenge or-
ganizer’s publicly available training data was partitioned randomly into training
and validation sets in a 7:3 ratio. Specifically, for the 2D image modality, random
sampling was directly employed. However, in the case of 3D image modalities
such as CT, MRI, and PET, the conventional approach of preprocessing in-
volves segmenting each 3D image into multiple consecutive 2D slices, leading
to a proliferation of redundant data due to the significant similarity between
adjacent slices. To address this issue, a uniform interval sampling technique was
implemented to extract 2D slices from the 3D images, with a fixed spacing of 5
between neighboring samples. This method effectively reduces data redundancy
and enhances training efficiency by minimizing the inclusion of highly similar
information found in adjacent slices.

3. Optimal model selection criteria: optimal model selection criteria are par-
ticularly critical when tasked with segmenting multimodal medical images. In
this context, the criteria must be tailored to the nuances of medical image anal-
ysis. Given the complexity and variability of medical data, the selected criteria
should prioritize robustness and generalizability across different imaging modal-
ities, such as MRI, CT, and PET scans. Here we used Dice similarity coefficient,
Jaccard index, and Normalized Surface Distance(NSD) to evaluate segmentation
performance in medical imaging tasks. Besides, inferences time is also included in
the selection program, giving the same weight as the segmentation performance.

Table 2. Training protocols. (mandatory table)

Pre-trained Model MedSAM [21]
Batch size 64
Patch size 256×256×3
Total epochs 20
Optimizer AdamW [33]
Initial learning rate (lr) 5e-4
Lr decay schedule ReduceLROnPlateau
Training time 75 hours
Loss function Dice Loss, Cross Entropy Loss, Focal Loss
Number of model parameters 10.99M
Number of flops 2.2G
CO2eq 15 Kg

4 Results and discussion

4.1 Quantitative results on validation set

Table 4 explains the efficiency of all models by computing the inference time on
14 representative images across all image modalities. On laptop with CPU, 3D
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images take much longer inference time since the model deals with segmentation
frame by frame. The bottleneck is also on resizing large images to regular input
size 256 by 256. Overall, baseline model runs fastest and ablation study is com-
parable in running time. Our proposed method runs 1.3% to 16.7% slower than
baseline model.

Table 3. Quantitative evaluation results.

Target Baseline Ablation Study Proposed
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

CT 89.1 91.03 89.69 91.29 92.26 94.90
MR 83.28 86.1 81.39 83.42 89.63 93.37
PET 55.1 29.12 63.19 46.04 70.28 56.88
US 94.78 96.81 92.92 96.3 94.77 96.81
X-Ray 75.83 80.39 76.7 82.53 76.74 82.53
Dermotology 92.47 93.85 92.45 94.01 93.73 94.01
Endoscopy 96.04 98.11 95.41 97.56 96.04 98.11
Fundus 94.8 96.41 94.56 96.2 94.81 96.41
Microscopy 61.63 65.39 73.76 79.34 73.76 79.34
Average 82.56 81.91 84.45 85.18 86.89 88.04

The results of our quantitative experiments are shown in Table 3. The ta-
ble presents a comprehensive quantitative evaluation of three models: baseline,
ablation model, and our class-prompt Tiny-VIT. Each model’s performance is
assessed based on Dice Similarity Coefficient (DSC) and Normalized Surface
Dice (NSD) metrics across various imaging modalities including CT, MR, PET,
US, X-ray, dermatology, endoscopy, fundus, and microscopy.

Upon the quantitative results, it is evident that our class-prompt Tiny-
VIT consistently outperforms both the baseline and ablation model across most
modalities. Specifically, compared with the baseline, our class-prompt Tiny-VIT
demonstrates superior DSC of 3.54%, 7.62%, 27.55%, 1.20%, 1.36%, and 19.68%
for CT, MR, PET, X-ray, dermatology, and microscopy, respectively. compared
with the baseline, our class-prompt Tiny-VIT demonstrates superior NSD of
4.25%, 8.44%, 95.32%, 2.66%, 0.17%, and 21.33% for CT, MR, PET, X-ray, der-
matology, and microscopy, respectively. The improvement indicates our efficacy
in accurately segmenting, especially for PET and microscopy images, which is
also evidenced by the normalized radargram. As for ultrasound, endoscopy, and
fundus images, our class-prompt Tiny-VIT can reach segmentation performance
in line with the baseline, thus demonstrating that our improvement in the ma-
jority of modalities does not compromise the segmentation performance of the
minority modalities. Notably, our class-prompt Tiny-VIT achieves the highest
average DSC and NSD values of 86.89% and 88.04% respectively, showcasing its
overall effectiveness in comparison to the baseline and ablation modal.

To further demonstrate the role of class prompts, we conducted three fine-
tuning experiments. We fine-tuned the baseline on PET, ultrasound, and X-ray
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datasets separately to simulate the effect when the model focuses only on a
certain class of modes. The DSC and NSD radargrams of the fine-tuning results
are shown in Fig. 3. The results show that continual fine-tuning on the ultrasound
and X-ray datasets alone does not improve the model performance, but rather
leads to a degradation of it. Therefore, it is not feasible to simply fine-tune
on each class and then integrate the fine-tuned models of each class. However,
the original baseline performs poorly on certain modalities (e.g., PET), and
further fine-tuning on these modalities can significantly boost the segmentation
performance on that modality, which is not achievable with multimodal mixed
training. Therefore, it is worthwhile to enable the model to have an independent
perception of each class and to make class-specific processing.
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Fig. 3. The Dice result (the first row) and NSD result (the second row) of the baseline
model, and baseline model fine-tuned (FT) on PET, Ultrasound, and X-ray datasets,
respectively. The left plot shows the raw numerical comparison and the right plot
shows the normalized comparison, where the maximum Dice or NSD on each modality
is scaled as 1 and the minimum Dice or NSD on each modality is scaled as 0.
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Table 4. Quantitative evaluation of segmentation efficiency in terms of running time
(s).

Case ID Size Num. Objects Baseline Ablation Study Proposed
3DBox_CT_0566 (287, 512, 512) 6 373.6 373.5 381.2
3DBox_CT_0888 (237, 512, 512) 6 92.4 92.3 95.1
3DBox_CT_0860 (246, 512, 512) 1 10.3 10.1 12.7
3DBox_MR_0621 (115, 400, 400) 6 143.6 143.2 150.5
3DBox_MR_0121 (64, 290, 320) 6 91.3 91.5 95.3
3DBox_MR_0179 (84, 512, 512) 1 10.5 10.7 12.2
3DBox_PET_0001 (264, 200, 200) 1 5.8 5.9 7.4
2DBox_US_0525 (256, 256, 3) 1 0.6 0.6 0.7
2DBox_X-Ray_0053 (320, 640, 3) 34 1.9 2.0 2.1
2DBox_Dermoscopy_0003 (3024, 4032, 3) 1 0.8 0.9 1.1
2DBox_Endoscopy_0086 (480, 560, 3) 1 0.6 0.6 0.7
2DBox_Fundus_0003 (2048, 2048, 3) 1 0.8 0.8 0.8
2DBox_Microscope_0008 (1536, 2040, 3) 19 1.7 1.6 1.8
2DBox_Microscope_0016 (1920, 2560, 3) 241 12.9 13.5 14.1

4.2 Qualitative results on validation set

Here we show some examples with good segmentation results and two examples
with bad segmentation results. The good cases can almost perfectly segment the
region of interest with high DSC ad NSD. Fig. 4 shows the examples with good
segmentation results.

Fig. 5 shows the examples with bad segmentation results. For the bad per-
formance cases,some of the segmentation masks cannot fully cover the correct
area and some segmentation masks covers more than the region of interest.

4.3 Segmentation efficiency results on validation set

Here we compare the segmentation efficiency based on the time cost on the
Codabench platform. On the validation set, the proposed method cost 03:08
min to segment all images and the baseline model costs 03:35 min on validation
set. For single cases, please refer to Table.4.

4.4 Results on final testing set

This is a placeholder. We will announce the testing results during CVPR (6.17-
18)

4.5 Limitation and future work

In this work, we want to show that class prompt helps with the segmentation of
medical images from the perspective of doctors. Unlike natural images, medical
images are obtained based on physics. A universal model that understands how
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Fig. 4. Examples with good segmentation results

Fig. 5. Examples with bad segmentation results
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all modalities work is difficult to achieve. Prompts such as image modality are
crucial as patients need to be divided to different departments in a hospital. The
class prompt is now built with a 3 layer MLP module. We will design more com-
plicated and reasonable prompt that better suits medical images. Currently the
proposed class-prompt TinyVIT is a structure based on TinyVIT. The trans-
former architecture is still a heavy burden for segmenting medical images on
laptop. A smaller model with the same or better precision is highly demanded.

5 Conclusion

Segmenting medical images using laptop is indispensable for alleviating the work-
load of doctors and improving diagnosing accuracy especially in low-income
countries. The main findings and results show that differences across image
modalities are huge and a unified model cannot handle modalities such as PET
with high dice similarity on segmentation task. Class prompt, as a simple net-
work, can efficiently boost model performance on PET and thus leading to better
accuracy overall.
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