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ABSTRACT

When a predictive model anticipates an undesired future event, a question arises:
what can we do to avoid it? The key to resolving this forward-looking challenge
lies in determining the right variables that influence the result, moving beyond
statistical correlations typically exploited for prediction. In this paper, we introduce
a novel framework for evaluating the influence of alterable variables in successfully
avoiding the undesired future. We quantify influence as the degree to which the
probability of success can be increased by altering variables based on the principle
of maximum expected utility. A crucial insight from our analysis is that the most
influential variables may not necessarily be those with inherently strong causal
effects on the future event. In fact, it can be highly beneficial to alter a weak causal
ancestor, or even a variable that is not a causal ancestor at all. Furthermore, to
overcome the practical challenges of exact computation, we provide a Monte-Carlo
method for efficiently assessing influence using observational data. Experiments
demonstrate the empirical performance of the proposed framework.

1 INTRODUCTION

When an intelligent machine receives a warning from a powerful predictive model anticipating that
an undesired event is going to happen, an important question naturally arises: what can be done to
avoid this potential future? This is known as the avoiding undesired future (AUF) problem (Zhou,
2022), sparking a transition from passively predicting results to proactively influencing them.

Addressing the AUF problem requires determining the variables that can be properly altered to shape
a more desirable future. While statistically correlated variables are effectively exploited by modern
machine learning (ML) techniques for predicting target variables (Jumper et al., 2021; Achiam et al.,
2023; Price et al., 2025), these correlations are often unreliable for influencing the future target.
For instance, although ice cream sales and drowning incidents are highly correlated in the summer,
suppressing ice cream sales would obviously not prevent drownings, as their superficial correlation
arises from a common cause: hot weather. This implies that a general understanding of the underlying
mechanisms connecting variables would be essential for settling the AUF problem.

X Z Y

Figure 1: To do, or not to do,
that is the question: whether
a variable should be altered
to influence the eventuality?
Here, X and Z are both alter-
able variables, and Y is target
variable. Let X be a Bernoulli
variable, with Z := 1 − X
and Y := min(X,Z). Clearly,
while the average causal effect
of X on Y is 0, it is indeed
beneficial to alter X (and Z).
More details are in Example 3.

To this end, an intuitive strategy is to exploit causal variables of the
target. Rich tools for discovering causal relations have been devel-
oped in the literature (Pearl, 2009; Peters et al., 2017). Nevertheless,
the fact that a variable is a cause of the target variable does not imply
that altering it will be influential. For example, while a city’s reliance
on public transportation might be a cause of lengthy commute times,
a policy encouraging the use of private cars could fail to save time
due to offsetting effects: the positive impact on shortening commute
times obtained via private cars could be neutralized by the negative
aspect, such as the worsening traffic congestion caused by much
more cars on the road. This seems to suggest focusing our attention
on variables with non-negligible average causal effects. However,
this strategy is also insufficient. As illustrated by the simple case
of two alterable variables in Figure 1, it can be highly influential to
alter a variable with a negligible causal effect. Therefore, a more
principled way is needed to properly address the AUF problem.
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In this paper, we introduce a novel framework for measuring the influence of alterable variables
in successfully avoiding the undesired future. We begin by outlining several natural and intuitive
considerations that a measure of influence in AUF scenarios should incorporate. Then, we formulate
a new quantity, termed influence power, defined as the degree to which the probability of success can
be increased through alterations. Grounded in the principle of maximum expected utility, this quantity
systematically accounts for the alterability, naturality, and desirability of variables throughout the
decision process. In this way, the influence power offers a holistic assessment of the consequence of
alteration, capturing both its explicit and implicit impacts on the future target.

Next, we leverage influence power to methodically investigate the relationship between influential
variables and those with causal links to the future target. Our investigation indicates a subtle yet
important distinction: influential variables are not simply a subset of causal ancestors, and vice versa.
Although influence often arises from causal effects, we show that influential variables are not
necessarily those with inherent causal effects on the future target. In fact, it can be highly beneficial
to alter a causal ancestor with negligible effects, or even a variable that is not a causal ancestor at all.
Another important observation is that, not all alterable variables can be safely altered, as for certain
variables, any alteration is counterproductive. This insight crystallizes the fundamental question
for any agent facing an undesired future: To do, or not to do? Our framework rests on a principled
quantity for measuring influence in AUF, thereby providing a rigorous way to answer this question.

Finally, we address the practical computation of influence power. We address the challenges inherent
in its exact computation and then present a Monte-Carlo-based approximation method to efficiently
assess it using observational data. Notably, our method circumvents the need for causal information of
structural equations, and tends to remain effective even when the probability terms within our quantity
are not accurately approximated. Our empirical results demonstrate the effectiveness and efficiency
of the proposed method in measuring influence in AUF under limited quality of approximation.

2 PRELIMINARY

Notation. We represent each random variable with a capital letter (V ), and its realized value with
the lowercase letter (v). We use bold capital letters (V) to denote a set of random variables with
their realized values denoted by bold lowercase letters (v). Let G = (V,E) denote a directed graph
with nodes V and edges E. We say that a variable X is causally linked to another variable Y , or X
is a causal ancestor of Y , if there exists a directed path from X to Y in G. When X is binary, its
causal strength can be quantified by the average causal effect (ACE) (Holland, 1988; Pearl, 2009),
defined as τ(X,Y ) := E(Y |do(X = 1)− E(Y |do(X = 0))), where E(Y |do(X = x)) denotes the
expectation of Y when X is set to the value x. We say that a causal ancestor X of Y is weak when
the average causal effect of X on Y is nearly negligible. Let ∆X denote the feasible domain of
alteration for a variable X . If ∆X ̸= ∅, we call X an alterable variable; otherwise, X is unalterable.

Structural Causal Models. We use the language of structural causal models (SCMs) (Pearl,
2009) to describe the physical mechanisms governing the generating process of variables. An
SCM is a tuple M = ⟨V,N, F, P (N)⟩, where V = (V1, . . . , Vd) is a set of observable variables,
N = (N1, . . . , Nd) is a set of independent background noises destributed according to P (N), and F
is a set of deterministic functions fi for each Vi ∈ V such that Vi := fi(PAi, Ni) with PAi ⊆ V.
For a variable Vi ∈ V, if ∆Vi

̸= ∅, we use the notation Vi
a
= vi to indicate that Vi can be altered to

vi ∈ ∆Vi
. This alteration is formally represented by replacing the function for Vi in M with the

assignment Vi := vi. The resulting SCM is denoted as MVi
. The distribution of variables W ⊆ V

in MVi
is then denoted as P (W|Vi

a
= vi), i.e., the distribution of W given that Vi is altered to vi.

Problem Definition. We consider a scenario where observational data D is drawn from a distribution
P , induced by an underlying SCM M over ordered variables (V, Y ), with Y being the final variable in
the sequence. We assume for simplicity that variables are discrete and causally ordered. Furthermore,
each variable Vi ∈ V is accompanied by an alterable domain ∆Vi

, which is known beforehand.
Throughout this paper, we use Y to denote the target variable and S to denote its desired region.
Now, a new observation x for a subset of variables X ⊆ V appears, a predictive model h outputs a
prediction ŷ = h(x), and a warning is triggered if ŷ falls outside a predefined desired region S . Then,
the main goal of the AUF problem is to make feasible alterations to the subsequent variables before
the target variable Y is finalized, ensuring that Y falls into the desired region S as much as possible.
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3 INFLUENCE POWER

3.1 MOTIVATION

We motivate the considerations that a measure of influence in AUF should incorporate by describing
the strategies and limitations of existing approaches for addressing the AUF problem.

A primary strategy is to find a feasible alteration that directly maximizes the probability of Y falling
within the desired region S (Qin et al., 2023). This straightforward strategy is expressed as:1

(Z∗, z∗) = argmaxZ∈Z,z∈∆Z
P (Y ∈ S|Z a

= z), (1)

where Z ⊆ V denotes the set of alterable variables. This approach is intuitive and can indeed
achieve a better target in many cases, but it overlooks several important considerations. Specifically,
Equation (1) only accounts for the straightforward effect of altering a single variable at a time,
presuming a “static” future where subsequent variables unfold naturally. Thus, an immediate
consequence is that it ignores how multiple variables might combine their effects. A very simple
example illustrates this issue. Imagine two binary variables, Z1 and Z2, both of which naturally
take the value 0 with near certainty, and let Y := Z1 ∧ Z2. Clearly, altering either variable alone is
ineffective. It’s only by altering both variables together that we can achieve Y = 1. Consequently,
when judging the impact of an alteration in AUF scenarios, not only the feasible domain of the
alteration itself but also the alterability of other variables should be considered.

Given the insight from the example above, the next logical step would be to propose the joint alteration
of all alterable variables as a solution. This joint strategy has been adopted in previous work (Qin
et al., 2025; Du et al., 2025) with the following formulation:

(z∗1 , . . . , z
∗
m) = argmaxz1∈∆Z1

,...,zm∈∆Zm
P (Y ∈ S|Z1

a
= z1, . . . , Zm

a
= zm), (2)

where m = |Z| is the number of alterable variables. While the described strategy works for the
case of Y := Z1 ∧ Z2, it overlooks an important fact: it’s often unnecessary to alter all variables.
For instance, while both light and water are crucial factors for crop growth, if sunlight is naturally
abundant, adding artificial light will have no impact on yield and instead leads to unnecessary costs.
Therefore, when judging the impact of altering a variable in AUF scenarios, we need to consider its
naturality, i.e., whether it is already in a favorable state naturally. Moreover, as we shall see in what
follows, certain variables may not only be unnecessary to alter, but could even be counterproductive
no matter how they are altered. Thus, a better, more principled approach is required to determine
which alterable variables should be altered instead of indiscriminately altering all of them.

3.2 FORMULATION

In this subsection, we formulate a new quantity that measures whether an alterable variable are worth
altering in order to influence the future target. To holistically account for the alterability and naturality
of variables, as well as the desirability of the target variable in the decision process, our formulation
requires a principled way to envision future possibilities after an alteration. The Bellman equation
(Bellman, 1957) provides the conceptual foundation for this purpose, but its standard formulation is
not immediately applicable to our context. This is because the classical framework is usually built
upon a prespecified separation between state and control variables. In the AUF problem, however,
every Vi in the sequence of variables V = (V1, . . . , Vd) has a dual role: it could be proactively
manipulated through alteration or be passively observed as it unfolds naturally.

Drawing inspiration from the Bellman equation and grounding our proposal in the principle of
maximum expected utility (Russell & Norvig, 2020), we recursively define the maximum expected
probability (MEP) of avoiding the undesired future after an alteration or observation. Specifically,
if k = d, the MEP after altering Vk to vk, denoted as P(Y ∈ S|Vk

a
= vk, . . .), simply equals to

the AUF probability P (Y ∈ S|Vk
a
= vk, . . .), where “. . .” abbreviates any form of alterations and

observations that happened before Vk. For 0 < k < d, the MEP after altering Vk to vk is given by

P(Y ∈ S|Vk
a
= vk, . . .) := max

{
maxvk+1∈∆Vk+1

P(Y ∈ S|Vk+1
a
= vk+1, Vk

a
= vk, . . .), (3)

Evk+1∼P (Vk+1|Vk
a
= vk,...)P(Y ∈ S|Vk+1

o
= vk+1, Vk

a
= vk, . . .)

}
,

1For clarity, the observation of X = x is omitted from the condition of the probability P (Y ∈ S|Z a
= z).
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where P(Y ∈ S|Vk+1
o
= vk+1, Vk

a
= vk, . . .) is interpreted as the MEP after the observation of

Vk+1
o
= vk+1 and the alteration of Vk

a
= vk. Similarly, if j = d, the MEP after observing Vj as vj ,

denoted as P(Y ∈ S|Vj
o
= vj , . . .), simply equals to the AUF probability P (Y ∈ S|Vj

o
= vj , . . .).

For 0 < j < d, the MEP after observing Vj as vj is similarly given by

P(Y ∈ S|Vj
o
= vj , . . .) := max

{
maxvj+1∈∆Vj+1

P(Y ∈ S|Vj+1
a
= vj+1, Vj

o
= vj , . . .), (4)

Evj+1∼P (Vj+1|Vj
o
= vj ,...)P(Y ∈ S|Vj+1

o
= vj+1, Vj

o
= vj , . . .)

}
.

Based on the above recursive definition of MEP, we formulate a quantity called the influence power,
indicating the ability of an alterable variable to influence the future target.

Definition 1 (Influence Power). For any Vi ∈ V, the influence power of Vi on Y is defined as

ṗ(Vi, Y ) := maxvi∈∆Vi
P(Y ∈ S|Vi

a
= vi)− Evi∼P (Vi)P(Y ∈ S|Vi

o
= vi).

Remark. The influence power of Vi on Y represents the maximum increase in the MEP that can
be achieved by optimally altering Vi, compared to the expected MEP when Vi is observed naturally.
Consequently, a positive influence power indicates that an alteration is beneficial, while a zero
or negative influence power suggests that it is unnecessary or even harmful. By definition, the
influence power is bounded within the range of [−1, 1]. It is noteworthy that this concept can be
easily extended to a conditional form. For example, given the observation that a set of variables
X takes the value x, the conditional influence power of Vi on Y is given by ṗ(Vi, Y |X o

= x) :=
maxvi∈∆Vi

P(Y ∈ S|Vi
a
= vi,X

o
= x)− Evi∼P (Vi|X

o
= x)P(Y ∈ S|Vi

o
= vi,X

o
= x). Furthermore,

as Definition 1 recursively follows the principle of maximum expected utility, the influence power
can be interpreted as a variant of the Bellman equation.

We end this subsection by highlighting an intriguing connection between Definition 1 and Equation (1).
Consider an extremely simple setting involving three binary variables: V1, V2, and Y , where both V1

and V2 are alterable. It has been informed by an oracle that the deterministic function defining the
target variable Y depends solely on V1 and not V2, i.e., Y := f(V1). Given this, it is evident that the
solution to Equation (1) is V1 when the following condition holds:

maxv1∈∆V1
P (Y ∈ S|V1

a
= v1) > P (Y ∈ S). (5)

Meanwhile, in this case, it is clear that the influence power of V1 on Y can be simplified to ṗ(V1, Y ) =
maxv1 P (Y ∈ S|V1

a
= v1)− P (Y ∈ S). This implies that the solution of Equation (1) is V1 when

ṗ(V1, Y ) > 0. In other words, Definition 1 and Equation (1) agree on determining whether V1 should
be altered in this simple setting. Interestingly, by further assuming S = {1} and ∆V1

= {0, 1}, and
using the identity 2 ·max(a, b) = a + b + |a − b|, we can deduce that Equation (5) is equivalent
to |τ(V1, Y )| = |P (Y = 1|V1

a
= 1) − P (Y = 1|V1

a
= 0)| > γ, where the threshold γ = 2P (Y ∈

S) − P (Y = 1|V1
a
= 0) − P (Y = 1|V1

a
= 1), stating that the average causal effect of V1 on Y ,

denoted as τ(V1, Y ), is non-negligible compared with c. Consequently, in this case, the variable V1

is worth altering if and only if its average causal effect on Y is absolutely non-negligible.

While the simple case above suggests that Definition 1 and the baseline approach from Equation (1)
both favor altering variables with strong causal effects, this view is incomprehensive. In the following,
we will show that the relationship between influential and causal variables is far more subtle.

3.3 INVESTIGATION

We present a spectrum of configurations with concrete examples to investigate the relationship
between influential variables and causal ancestors, offering valuable insights into the AUF problem.

Causal Ancestors with No Influence. A variable can be a causal ancestor of the target yet have no
influence. This situation can arise trivially if a cause is unalterable. For instance, the past cannot be
changed, as anything that has already occurred is immutable. Also, a variable such as a person’s age
is unalterable. Beyond this, an alterable variable can also be non-influential. This can occur when
its causal effect is negligible, such as in the example discussed in Section 1 where the positive and
negative impacts of the variable on the target balanced out, resulting in offsetting effects.

4
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Strong Causal Ancestors with No Influence. A causal ancestor with a strong average causal effect
can also have no influence on the target variable.
Example 1. Consider the following structural equations with the corresponding causal graph:

X := NX ,

Z := X ·NZ + (1−X) · (1−NZ),

Y := Z ·NY + (1− Z) · (1−NY ),

X Z Y

where NX , NZ , NY
iid∼ Bern(0.9). Let X and Z be alterable variables, let ∆X = {0, 1} and

∆Z = {0, 1} be the feasible domains of alteration, and let the desired region for Y be S = {1}.

In this example, the average causal effect of X on Y is also non-negligible. Concretely, τ(X,Y ) =
P (Y = 1|X a

= 1) − P (Y = 1|X a
= 0) = 0.82 − 0.18 = 0.64. In contrast, the influence power

of X on Y can be simplified to ṗ(X,Y ) = maxx∈∆X
maxz∈∆Z

P (Y = 1|Z a
= z,X

a
= x) −

Ex∼P (X) maxz∈∆Z
P (Y = 1|Z a

= z,X
o
= x) = 0.9 − 0.9 = 0. Again, this indicates that the

alteration on X is unnecessary, as it makes no difference on the probability of Y = 1, given that a
rational agent will always alter Z to 1 to maximize the probability of Y = 1. In short, it is useless to
alter X in Example 1 because X is shielded by the alterability of Z.

Strong Causal Ancestors with Negative Influence. Perhaps the most counter-intuitive case is
when a variable with a non-negligible ACE can be not only useless to alter, but also detrimental.
Example 2. Consider the following structural equations with the corresponding causal graph:

U := NU ,

X := U ·NX + (1− U) · (1−NX),

Z := X ·NZ + (1−X) · (1−NZ),

Y := Z · (1− U) + (1− Z) ·NY ,
U X Z Y

where NU ,∼ Bern(0.5), NX , NZ
iid∼ Bern(0.9), and NY ∼ Bern(0.4). Let X and Z be alterable

variables with ∆X = {0, 1} and ∆Z = {0, 1}, and let the desired region be S = {1}.

In this example, we have the average causal effect of X on Y : τ(X,Y ) = P (Y = 1|X a
= 1) −

P (Y = 1|X a
= 0) = 0.49 − 0.41 = 0.08. However, the influence power of X on Y is negative:

ṗ(X,Y ) = maxx∈∆X
P(Y = 1|X a

= x) − Ex∼P (X)P(Y = 1|X o
= x) = 0.5 − 0.65 = −0.15.

This indicates that the MEP after altering X is always less than the expected MEP after observing X .
In other words, any alteration on X is counterproductive regardless of how X is altered. Intuitively,
this is because observing X somehow reflects information about U , and this reflection would help the
rationality of alteration on Z within the computation of ṗ(X,Y ). Hence, although the alteration of X
can lead to a straightforward effect on improving Y , its positive impact is overturned by the negative
impact on the alteration of the subsequent variable, making it detrimental to alter X . Moreover, based
on the intuition that observing X reflects U , it is interesting to evaluate the conditional influence
power of X on Y given the observation of U . Specifically, suppose that U has been observed to be 1,
we have ṗ(X,Y |U o

= 1) = 0, stating that altering X has no influence on Y . Thus, it is unnecessary
to alter X given the observation of U . This verifies the intuition above. We further point out that,
when U has been observed, Example 2 becomes reduces to a similar case of Example 1 where X
makes no difference because it is shileded by the alterability of Z. In practice, it could be plausible
that directly observing a variable, such as U in Example 2, is time-consuming and expensive. When
it is unable to timely observe the value of U , the conditional influence power ṗ(X,Y |U o

= 1) = 0
could not be evaluated, and thus the influence power ṗ(X,Y ) remains instructive for the agent.

Weak Causal Ancestors with Positive Influence. In direct contrast to the preceding case, a variable
with a negligible average causal effect can have a positive influence power.
Example 3. Consider the following structural equations with the corresponding causal graph:

X = NX ,

Z = (1−X) ·NZ ,

Y = X · Z ·NY ,
X Z Y

where NX , NZ , NY
iid∼ Bern(0.9). Let X and Z be alterable variables with ∆X = {0, 1} and

∆Z = {0, 1}, and let the desired region for Y be S = {1}.
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In this example, while X is a causal ancestor of Y , the average causal effect of X on Y is negligible:
τ(X,Y ) = 0. Meanwhile, the influence power of X on Y is positive: ṗ(X,Y ) = 0.9− 0.81 = 0.09.
Intuitively, the influence of X arises from its collaboration with the alterability of Z. Only by
considering to alter Z, the implicit impact of X on Y can be elicited. The implicit impact of X on Y
can only be elicited when the potential alteration of Z is also considered. Influence power captures
this implicit gain, whereas the τ(X,Y ) alone would dismiss Z as negligible.

Non-Causal Variables with Positive Influence. Finally, we present an example showing that a
variable can have positive influence power despite it is not a causal ancestor of the target.
Example 4. Consider the following structural equations with the corresponding causal graph:

U = NU ,

W = NW ,

X = U ·W · (1−NX),

Z = NZ ,

Y = Z · (1− U) + (1− Z) ·NY ,

U

W Z

X Y

where NU ∼ Bern(0.5), NW , NX , NZ
iid∼ Bern(0.1), and NY ∼ Bern(0.4). Let W , X , and Z be

alterable variables with ∆W = ∆X = ∆Z = {0, 1}, and let the desired region be S = {1}.

In this example, W is not a causal ancestor of Y , and thus its average causal effect is zero: τ(W,Y ) =
0. However, the influence power of W on Y is positive: ṗ(W,Y ) = 0.68 − 0.518 = 0.162. This
indicates that altering W can significantly improve the MEP of Y = 1. Intuitively, this positive
influence arises because altering W helps X to carry information about U . This information, in
turn, enables a more rational subsequent alteration of Z, which ultimately impacts Y . Influence
power successfully captures this implicit, indirect benefit, highlighting that even non-causal variables
can be crucial for AUF. For completeness, we can also evaluate the influence power of X on Y :
ṗ(X,Y ) = 0.68− 0.518 = −0.162. This is similar to the case in Example 2, where altering X is
counterproductive as its explicit positive impact is overturned by its negative impact on the alteration
of Z. If the variable U were observed, the influence of both X and W would be nullified. For
instance, given U

o
= 1, we have ṗ(X,Y |U o

= 1) = 0 and ṗ(W,Y |U o
= 1) = 0. Nonetheless, as

we have discussed, it is often time-consuming or unaffordable to promptly observe U in practice.
Therefore, the quantities ṗ(W,Y ) and ṗ(X,Y ) remain instructive and valuable for the AUF problem.

4 ASSESSING INFLUENCE POWER

In this section, we provide an efficient method to assess the influence power defined in Definition 1.
While influence power is a principled quantity for measuring the influence of alterable variables,
its investigation in Section 3.3 requires two conditions that are often impractical: an exhaustive
computation of the MEP terms and knowledge of the underlying structural equations. In what follows,
we address each of these obstacles. We then discuss how our method can still yield an informative
indicator of influence even when the MEP cannot be precisely estimated due to practical constraints.

4.1 MONTE-CARLO APPROXIMATION

The recursive enumeration of MEP for all possible alterations can be computationally prohibitive
when the number of alterable variables is large. To mitigate this, we interpret the computation of
MEP as a single-player non-deterministic game and approximate it based on the Monte-Carlo tree
search UCT (Upper Confidence Tree) introduced by Kocsis & Szepesvári (2006).

Specifically, a search tree employing Monte-Carlo simulations is constructed incrementally. Each
node in the tree represents a state defined by a sequence of alterations and observations made so
far, associated with the next variable to be considered. Every iteration begins at the root node N0

(associated with a pre-specified variable Vi ∈ V), proceeds to its children (associated with Vi+1),
and continues until reaching a terminal state (associated with the target variable Y ). Each edge in the
tree represents a choice that can be made from the node, i.e., either an alteration or an observation on
the associated variable. The overall construction consists of four steps, iterated until time has expired:
(1) Selection: starting from the root node, recursively select an edge to child nodes according to the
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UCT policy until reaching a leaf node; (2) Expansion: if the leaf node corresponds to a non-terminal
state, expand it by randomly adding one child node corresponding to possible choices; (3) Playout:
from the newly added node, execute a random sequence of choices until reaching a terminal state, and
compute the AUF probability at that terminal state; (4) Backpropagation: propagate the computed
AUF probability back up the tree, updating the statistics of each node along the path. During each
iteration, the UCT criterion is used at a node N to select the next edge to traverse:

c∗N = argmaxc∈∆+
N

{
p̂N,c + α ·

√
ln tN
tN,c

}
, (6)

where ∆+
N = ∆N ∪ ∅ is the set of choices at node N (comprising feasible alterations on the variable

associated with N , denoted by ∆N , and the option to make an observation, denoted by ∅), p̂N,c is the
average AUF probability obtained after taking choice c at node N , α is a parameter used to balance
between exploration and exploitation (Auer et al., 2002), tN is the number of times node N has been
selected, and tN,c is the number of times choice c has been selected at node N .

After the construction of search tree, the MEP terms in the influence power of Vi on Y are approxi-
mated as the average AUF probability for each choice at the root node N0 of search tree. Concretely,
we have P(Y ∈ S|Vi

a
= c) ≈ p̂N0,c for each c ∈ ∆N0

, and Evi∼P (Vi)P(Y ∈ S|Vi
o
= vi) ≈ p̂N0,∅.

Hence, according to Definition 1, the influence power of Vi on Y is approximated as

ṗ(Vi, Y ) ≈ maxc∈∆N0
p̂N0,c − p̂N0,∅. (7)

The quality of this approximation improves over time, as UCT is guaranteed to converge to the best
choice given enough iterations. Moreover, the described procedure is an anytime algorithm, capable
of producing an approximate influence power at any point during its computation. We refer the reader
to Browne et al. (2012) for further details.

4.2 AUF PROBABILITY ESTIMATION

Although the Monte-Carlo procedure described above can effectively approximate the influence
power, it still relies on the AUF probability when a terminal state is reached during simulations, whose
ground-truth value is dictated by the underlying SCM. For situations where the structural equations
are unknown, we present an expression for estimating the AUF probability from observational data.

Specifically, we express the joint probability of the ordered variables (V, Y ) as:

P (V, Y ) = P (V1, . . . , Vd, Y ) = P (Y |V)
∏d

i=1 P (Vi|V1, . . . , Vi−1), (8)

where the conditional probabilities P (Y |V) and P (Vi|V1, . . . , Vi−1) can be estimated from observa-
tional data D = {(vj , yj)}nj=1 using standard ML techniques. Denote by A the variables in V that
are altered, we express the joint probability of (V, Y ) given the alteration of A as follows:

P (V, Y |Â) = P (Y |V)
∏

Vi∈A δ(Vi)
∏

Vi∈V\A P (Vi|V1, . . . , Vi−1). (9)

Then, denote by O the variables in V that are observed, the AUF probability given the alteration of
A and the observation of O is expressed as:

P (Y ∈ S|Â,O) =
P (Y ∈ S,O|Â)

P (O|Â)
=

∑
V\O P (Y ∈ S,V|Â)∑

V\O P (V|Â)

=

∑
V\O P (Y ∈ S|V)

∏
Vi∈A δ(Vi)

∏
Vi∈V\A P (Vi|V1, . . . , Vi−1)∑

V\O
∏

Vi∈A δ(Vi)
∏

Vi∈V\A P (Vi|V1, . . . , Vi−1)
,

(10)

which is a generic expression of the AUF probability given any alterations and observations. It can be
estimated from observational data D and then plugged into the Monte-Carlo procedure described
above to approximate the influence power. The following proposition demonstrates the consistency
of Equation (10) by leveraging the manipulation theorem in Spirtes et al. (2000).
Proposition 1. Assume causal sufficiency, i.e., the joint distribution P (V, Y ) is induced by an
acyclic SCM M with mutually independent background noises. Then, the expression in Equation (9)
is consistent to the joint probability dictated by the SCM MA where variables A are altered.
Furthermore, the expression in Equation (10) is consistent to the AUF probability dictated by the
SCM MA where variables A are altered and variables O are observed.

7
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Figure 2: Convergence of the approximation of influence power and error rates (%) versus the number
of MCTS iterations. The deviation of the approximated influence power to the exact value of influence
power continues to decrease after the convergence of error rates in all cases.

TASK MAX-ONE MAX-ALL OURS (T = 10) OURS (T = 50) OURS (T = 100) OURS (T = 250)

TRADER 57.76 ± 9.15 57.74 ± 9.85 58.74 ± 9.38 60.74 ± 7.42 60.77 ± 7.43 60.77 ± 7.43

FARMER 48.91 ± 13.37 59.69 ± 19.79 71.57 ± 17.28 73.20 ± 14.08 74.22 ± 13.61 74.22 ± 13.61

DOCTOR 49.73 ± 5.57 49.83 ± 5.56 53.79 ± 8.61 54.54 ± 6.77 58.81 ± 5.85 62.19 ± 6.39

Table 1: Comparison of probability of success (%) in three tasks.

4.3 DISCUSSION

An efficient way to approximate influence power from observational data has been presented by
combining the Monte-Carlo approximation with the AUF probability estimation, and the accuracy of
this approximation requires enough iterations of Monte-Carlo simulations to ensure convergence.

We point out, however, that our method can remain a useful indicator with a limited number of
Monte-Carlo simulations. This is because that a highly accurate estimate of influence power is not
always necessary to solve the AUF problem; in many cases, a rough approximation is sufficient.

For instance, if a variable’s true influence is non-positive (ṗ ≤ 0), the approximation succeeds as long
as it correctly suggests that no alteration is beneficial. Formally, this only requires the approximated
MEP terms to satisfy p̂N0,∅ ≥ maxc∈∆N0

p̂N0,c. Similarly, if the true influence is positive (ṗ > 0),
the approximation succeeds as long as it correctly identifies the optimal alteration c∗, which is
possible if relative benefits are roughly gauged. Formally, this only requires the approximated MEP
terms to satisfy p̂N0,c∗ ≥ maxc∈∆N0

p̂N0,c. Therefore, even if the approximation is not perfect, our
method could still provide valuable guidance, helping practitioners to prioritize alterations and focus
on the variables most likely to be influential under limitied computational resources.

5 EXPERIMENTS

In this section, we conduct experiments to validate the effectiveness of influence power. The results
show that the influence power is informative for determining whether and how to alter variables
without relying heavily on precise estimates of probability quantities, and the proposed method
leveraging influence power outperforms existing methods on AUF tasks.

We simulate three tasks including TRADER, FARMER, and DOCTOR. For each task, we generate
1000 samples from the underlying SCM to form the observational data and repeat experiments with
10 times. The details of the tasks are provided in Appendix A due to space limitation. In each task,
we consider three different methods for selecting alterations: (1) MAX-ONE: selecting the single
variable with the highest AUF probability for alteration, as described in Equation (1); (2) MAX-ALL:
selecting all alterable variables for alteration, as described in Equation (2); and (3) OURS: using
MCTS to search for determining whether and how to alter variables based on influence power, with
different numbers of iterations T . The parameter α is set to

√
2 by following Kocsis & Szepesvári

(2006). For fair comparison, the feasible domain of alteration for each alterable variable to be {0, 1}
and the number of alterable variables is set to 3 for all methods. The performance of each method is
evaluated by probability of success, i.e., the probability that the target variable falls into the desired
region after performing alterations on the suggested variables.

Figure 2 shows the convergence of approximation of influence power using MCTS. We plot the
deviation of the approximated influence power for the first alterable variable in each task, which is the

8
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absolute difference with the exact value of influence power. The sign error rate indicates the frequency
of inconsistency between the sign of the approximated value and the exact value. The overall error
rate also takes into account of the optimality of the alteration value when the sign of approximated
influence power is positive. We observe that in all cases, both the deviation and error rate decrease as
T increases, demonstrating the effectiveness of MCTS in approximating influence power. Notably,
the deviation continues to decrease after the error rate has converged to zero, demosntrating that our
method could be effective when the MEP terms are not approximated very perfectly.

Table 1 compares our method with baselines. We observe that our method consistently outperforms
both MAX-ONE and MAX-ALL across all tasks. For instance, in the FARMER task, when T = 10,
our method achieves a probability of success of 71.57%, which is 11.88 percentage points higher than
MAX-ALL and 22.66 percentage points higher than MAX-ONE. As T increases, the performance of
our method improves further, reaching 74.22% when T = 250. Similar trends are observed in the
other two tasks, with our method consistently achieving higher probability of success. These results
demonstrate the superiority of the proposed method in guiding alterations for AUF tasks.

6 RELATED WORK

The rehearsal paradigm was introduced by Zhou (2022), building on the concept of influence (Zhou,
2023), This paradigm advocates for mentally simulating future possibilities in order to find alterations
that positively influence the future target before making a final decision. This is analogous to how
human cognitive process prepares for future events (Driskell et al., 1994). Motivated by this, Qin
et al. (2023) proposed the first rehearsal learning approach, wherein the restriction of directionality
is relaxed and structural rehearsal models capable of accommodating bi-directional interactions
are developed. Several subsequent studies have addressed issues such as non-stationarity and non-
linearity in rehearsal learning (Du et al., 2024; Qin et al., 2025), requiring that the structure of the
underlying equations are provided by experts. Besides, while the forward-looking decision-making
setting is also conceptually related to markov decision processes in reinforcement learning (Sutton &
Barto, 2018), a key distinction is that the AUF problem operates under a “no going back” constraint.
Unlike in many RL settings where an agent can revisit states, the past variables cannot be changed in
our context. Our approximation method is particularly inspired by Monte Carlo Tree Search (MCTS)
(Browne et al., 2012), which excel at planning in large state spaces by simulating future trajectories,
making them well-suited for the challenges of the AUF problem.

Many efforts have been dedicated to identify causal structures and causal effects from observational
data in the literature (Verma & Pearl, 1991; Cooper & Herskovits, 1992; Heckerman et al., 1995;
Zheng et al., 2018; Lorch et al., 2021). We also note that researchers have proposed various ways
of quantifying the strength of causal contributions, sometimes referred to as “causal influence”
(Rosenbaum & Rubin, 1983; Holland, 1988; Janzing et al., 2013; Heskes et al., 2020). Different
notions of influence coexist for good reason, as they formalize different perspectives on different
goals (Janzing et al., 2024). Much of the prior work has focused on quantifying intrinsic causal
contributions—that is, the degree to which various factors “explain” the variance of a target variable.
This is valuable for attribution and scientific understanding. Our work, in contrast, focuses on
quantifying practical utility for decision-making in the AUF problem. This paper primarily focuses
on comparing with average causal effects, a most commonly used measure of causal strength; the
comparison regarding other measures of causal strength would be similar and left for future work.

7 CONCLUSION

In this paper, we attempt to quantify the influence of alterable variables in avoiding undesired future.
Drawing on intuitive considerations within the AUF framework, we introduce a novel quantity
called influence power, designed to assess the extent to which variables can be manipulated to
increase the AUF probability. Our investigation uncovers an intriguing possibility that non-causal
variables can have non-trivial influence power on the future target, and shows that the influence power
remains meaningful with imprecise approximation of probabilities. We pinpoint the obstacles in
exactly evaluating the proposed measure and provide a Monte Carlo-based method for efficiently
approximating it using observational data. Experiments on simulated tasks validate effectiveness of
influence power for suggesting alterations to address the AUF problem.

9
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Dominik Janzing, Patrick Blöbaum, Atalanti A Mastakouri, Philipp M Faller, Lenon Minorics,
and Kailash Budhathoki. Quantifying intrinsic causal contributions via structure preserving
interventions. In International Conference on Artificial Intelligence and Statistics, pp. 2188–2196.
PMLR, 2024.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
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A DETAILED SETTINGS

Our experiments are conducted using Intel Xeon E-2288G CPUs, featuring 8 cores and 16 threads
with a frequency of 3.7 GHz. The implementation is based on DOWHY (Sharma & Kiciman, 2020;
Blöbaum et al., 2024). The code to reproduce our results will be made publicly available.

A.1 THE TRADER TASK

The underlying structural equations in the TRADER Task are described in Example 5. For a trader,
both the economic climate (U ) and marketing strategy (Z) are important for final quarterly profit (Y ).
During an economic recession (U = 1), the initial consumer demand (X) is naturally lower, which
affects the choice of marketing strategy (Z) through intermediate adjustments.

Example 5. Consider the following structural equations with the corresponding causal graph:
U := NU ,

X := U ·NX + (1− U) · (1−NX),

Z := X ·NZ + (1−X) · (1−NZ),

Y := Z · (1− U) + (1− Z) ·NY ,
U X Z Y

where NU ,∼ Bern(0.5), NX , NZ
iid∼ Bern(0.9), and NY ∼ Bern(0.4). Let X and Z be alterable

variables with ∆X = {0, 1} and ∆Z = {0, 1}, and let the desired region be S = {1}.

A.2 THE FARMER TASK

The underlying structural equations in the FARMER Task are described in Example 6. For a farmer,
both light (Z) and water (Z) are both important for crop yields (Y ). When sunlight is abundant, it
will affect the situation of water Z through intermediate variables (V and W ).

Example 6. Consider the following structural equations with the corresponding causal graph:

X = NX ,

V = (1−X) ·NV ,

W = (1− V ) ·NW ,

Z = (1−W ) ·NZ ,

Y = X · Z ·NY ,

X V W Z Y

where NX , NV , NW , NZ , NY
iid∼ Bern(0.9). Alterable variables include V , W , and Z, whose

alterable domains are all specified as {0, 1}. The desired region for Y is S = {1}.

A.3 THE DOCTOR TASK

The underlying structural equations in the DOCTOR Task are described in Example 7. Suppose that a
doctor diagnosed a patient with seasonal flu, and the doctor had developed a fast-acting drug (Z). W
denotes the administration of a skin test, and X denotes the skin response. Together, W and X would
reflects the information of U , the allergy gene. The target variable Y denotes the state of recovery.

Example 7. Consider the following structural equations with the corresponding causal graph:

U = NU ,

W = NW ,

X = U ·W · (1−NX),

Z = NZ ,

Y = Z · (1− U) + (1− Z) ·NY ,

U

W Z

X Y

where NU ∼ Bern(0.5), NW , NX , NZ
iid∼ Bern(0.1), and NY ∼ Bern(0.4). Let W , X , and Z be

alterable variables with ∆W = ∆X = ∆Z = {0, 1}, and let the desired region be S = {1}.
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B PROOF OF PROPOSITION 1

Recall from Equation (9), the joint distribution conditioned on the alteration set Â is expressed
as P (X|Â) =

∏
Xi∈A δ(Xi)

∏
Xi∈X\A P (Xi|X1, . . . , Xi−1). Because the sequence is topolog-

ically consistent with the underlying SCM, and the SCM is assumed to be acyclic, the value of
each variable Xi depends solely on its direct parents PAi; consequently, P (Xi|X1, . . . , Xi−1) =

P (Xi|PAi). Substituting this observation back into the product shows that P (X|Â) =∏
Xi∈A δ(Xi)

∏
Xi∈X\A P (Xi|PAi). By invoking the manipulation theorem (i.e., Theorem 3.6

in Spirtes et al. (2000)), we conclude that Equation (9) is precisely the probability of X under alter-
ation of A. Moreover, the quantity P (Y ∈ S|Â,O) in Equation (10) is fully determined by P (X|Â),
and therefore Equation (10) indeed gives to the true AUF probability dictated by the underlying SCM.
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