

ON MEASURING INFLUENCE IN AVOIDING UNDESIRED FUTURE

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

When a predictive model anticipates an undesired future event, a question arises: what can we do to avoid it? Resolving this forward-looking challenge requires determining the variables that positively influence the future, moving beyond statistical correlations typically exploited for prediction. In this paper, we introduce a novel framework for evaluating the influence of actionable variables in successfully avoiding the undesired future. We quantify influence as the degree to which the probability of success can be increased by altering variables based on the principle of maximum expected utility. While closely related to causal effects, our analysis reveals a counterintuitive insight: influential variables may not necessarily be those with intrinsically strong causal effects on the target. In fact, due to the dynamics of the decision process, it can be highly beneficial to alter a weak causal factor, or even a variable that is not an intrinsic factor at all. We provide a practical implementation for computing the proposed quantity using observational data and demonstrate its utility through empirical studies on synthetic and real-world applications.

1 INTRODUCTION

When an intelligent machine receives a warning from a powerful predictive model anticipating that an undesired event is going to happen, an important question naturally arises: what can be done to avoid this potential future? This is known as the *avoiding undesired future* (AUF) problem (Zhou, 2022), sparking a transition from passively predicting results to proactively influencing them.

Addressing the AUF problem requires determining the variables that can be properly altered to shape a more desirable future. While statistically correlated variables are effectively exploited by modern machine learning (ML) techniques for predicting target variables (Jumper et al., 2021; Achiam et al., 2023; Price et al., 2025), these correlations are often unreliable for influencing the future target. For instance, although ice cream sales and drowning incidents are highly correlated in the summer, suppressing ice cream sales would obviously not prevent drownings, as their superficial correlation arises from a common cause: hot weather. This implies that a general understanding of the underlying mechanisms connecting variables would be essential for settling the AUF problem.

To this end, an intuitive way is to exploit causal variables of the target. Rich tools for discovering causal relations have been developed in the literature (Pearl, 2009; Peters et al., 2017). Nevertheless, the fact that a variable is a cause of the target variable does not imply that altering it will be influential. For example, while a city’s reliance on public transportation might be a cause of lengthy commute times, a policy encouraging the use of private cars could fail to save time due to offsetting effects: the positive impact on shortening commute times obtained via private cars could be neutralized by the negative aspect, such as the worsening traffic congestion caused by many more cars on the road. This seems to suggest shifting our attention to variables with non-negligible average causal effects. However, this strategy is also incomplete. As illustrated by the simple case of two actionable variables in Figure 1, it can be highly beneficial to alter a variable with a negligible causal effect. Therefore, a more principled way is needed to properly address the AUF problem.

Figure 1: *To do, or not to do, that is the question:* Whether a variable should be altered to influence the eventuality? Let X be a Bernoulli variable, with $Z := 1 - X$ and $Y := X \cdot Z$. Let both X and Z be actionable. Interestingly, while the average causal effect of X on Y is 0, it remains beneficial to alter X . More details are provided in Example 3.

In this paper, we introduce a novel framework for measuring the influence of actionable variables for successfully avoiding the undesired future. We begin by outlining several natural and intuitive considerations that a measure of influence in AUF scenarios should incorporate. Then, we formulate a novel quantity, termed *influence power*, defined as the degree to which the probability of success can be increased through alteration based on the principle of maximum expected utility. This quantity captures the dynamics of decision-making by accounting for the *actionability*, *naturality*, and *desirability* of variables throughout the decision process. In this way, it offers a holistic assessment of the consequence of alteration, capturing both its explicit and implicit impacts on the future target.

Next, we leverage the influence power to investigate the relationship between influential variables and those with an intrinsic causal connection to the future target. Our analysis reveals a subtle yet important nuance: influential variables are not simply a subset of causal ancestors, and vice versa. Specifically, while the influence power is closely related to causal effects, we find that influential variables are not necessarily those with intrinsically strong causal effects. In fact, due to the dynamics of the decision process, it can be highly beneficial to alter a causal ancestor with negligible effects, or even a variable that is not an intrinsic ancestor at all. Another important observation is that, not all actionable variables can be safely altered, as for certain variables, any alteration is counterproductive. This insight crystallizes the fundamental question for an intelligent agent facing an undesired future: *To do, or not to do?* Our framework rests on a principled quantity for measuring influence in AUF, thereby providing a rigorous way to answer this question.

Finally, we address the practical computation of influence power. We identify the challenges inherent in its exact computation and present a Monte-Carlo-based approximation method to efficiently assess it using observational data. The proposed method mitigates the need for full knowledge of structural equations under the assumption of causal sufficiency and tends to remain useful when the probability terms within our quantity are not approximated very perfectly. Empirical studies demonstrate the utility of our framework for addressing the AUF problem on synthetic and real-world applications.

2 PRELIMINARY

Notation. We represent each random variable with a capital letter (V), and its realized value with the lowercase letter (v). We use bold capital letters (\mathbf{V}) to denote a set of random variables with their realized values denoted by bold lowercase letters (\mathbf{v}). Let $G = (\mathbf{V}, \mathbf{E})$ denote a directed graph with nodes \mathbf{V} and edges \mathbf{E} . In a causal graph G , a variable X is a causal ancestor of Y , denoted by $X \in \text{Anc}(Y)$, if there is a directed path from X to Y in G . When X is binary, its causal strength can be quantified by the *average causal effect* (ACE) (Holland, 1988; Pearl, 2009), defined as $\tau(X, Y) := \mathbb{E}(Y|do(X = 1)) - \mathbb{E}(Y|do(X = 0))$, where $\mathbb{E}(Y|do(X = x))$ denotes the expectation of Y when X is set to the value x . We say that a causal ancestor X of Y is weak if the average causal effect of X on Y is zero. Let Δ_X denote the feasible domain of alteration for a variable X . If $\Delta_X \neq \emptyset$, we call X an actionable variable; otherwise, X is unactionable.

Structural causal models. We use the language of the *structural causal model* (SCM) (Pearl, 2009), which describes how *nature* assigns values to variables of interest, i.e., the physical mechanisms governing the natural generation process of random variables. An SCM is a tuple $\mathcal{M} = \langle \mathbf{V}, \mathbf{N}, F, P(\mathbf{N}) \rangle$, where $\mathbf{V} = \{V_1, \dots, V_d\}$ is a set of endogenous variables, $\mathbf{N} = \{N_1, \dots, N_d\}$ is a set of independent background noises distributed according to $P(\mathbf{N})$, and F is a set of deterministic functions f_i for each $V_i \in \mathbf{V}$ such that $V_i := f_i(\text{PA}_i, N_i)$ with $\text{PA}_i \subseteq \mathbf{V}$. Throughout this paper, we posit that the natural generation process is governed by an underlying SCM \mathcal{M} , though it may remain unknown to the decision-maker due to its unobserved nature (Bareinboim et al., 2022). If V_i is an ancestor of V_j in the causal graph induced by the underlying SCM \mathcal{M} , we say that V_i is an *intrinsic* ancestor of V_j in \mathcal{M} . For a variable V_i , if $\Delta_{V_i} \neq \emptyset$, we use the notation $V_i := v_i$ to indicate that V_i can be altered to $v_i \in \Delta_{V_i}$. This operation replaces the structural function of V_i in \mathcal{M} with the constant assignment $V_i := v_i$, and the distribution of \mathbf{W} given that V_i is set to v_i is denoted as $P(\mathbf{W}|V_i := v_i)$.

Problem definition. We consider a setting where observational data is drawn from a distribution induced by an underlying SCM \mathcal{M} . We suppose that this SCM characterizes the natural generation process of a sequence of variables (V_1, \dots, V_{d+1}) , where the final variable V_{d+1} represents the target variable Y , whose desired domain is specified as \mathcal{S} . The variable sequence is pre-specified and is consistent with the underlying causal structure (i.e., variables are causally ordered with respect

108 to \mathcal{M}).¹ For simplicity, we assume that all variables are discrete. The goal of decision-making
 109 in the AUF problem is to maximize the possibility of Y falling into \mathcal{S} through feasible alterations
 110 on the variables V_1, \dots, V_d . Generally, it is convenient to denote by \mathbf{x} a realization of a subset of
 111 variables $\mathbf{X} \subset \{V_1, \dots, V_d\}$, and denote by \mathbf{Z} the set of actionable variables succeeding \mathbf{X} , i.e.,
 112 $\mathbf{Z} = \{V_i \mid t < i \leq d, \Delta_{V_i} \neq \emptyset\}$, where $t = \max\{s \mid V_s \in \mathbf{X}\}$. Hence, when an initial observation
 113 $\mathbf{X} = \mathbf{x}$ is given, the AUF problem is addressed by altering variables in \mathbf{Z} .² Notably, we do not assume
 114 that all variables preceding \mathbf{Z} are observed when determining alterations to \mathbf{Z} ; the initial set \mathbf{X} may
 115 even be empty. This makes our framework more practical than those requiring full observability.

116

117 3 INFLUENCE POWER

118

119 3.1 MOTIVATION

120

121 We motivate the considerations that a measure of influence in AUF should incorporate by describing
 122 the strategies and limitations of existing approaches for addressing the AUF problem.

123 A primary strategy is to find a feasible alteration that directly maximizes the probability of Y falling
 124 within the desired domain \mathcal{S} (Qin et al., 2023). This straightforward strategy is expressed as:

125

$$126 (Z^*, z^*) = \arg \max_{Z \in \mathbf{Z}, z \in \Delta_Z} P(Y \in \mathcal{S} | \mathbf{X} = \mathbf{x}, Z := z), \quad (1)$$

127

128 where \mathbf{x} is the observation of \mathbf{X} , and \mathbf{Z} is the set of actionable variables succeeding \mathbf{X} . This approach
 129 is intuitive and can indeed achieve a better target in many cases, but it overlooks several important
 130 considerations. Specifically, Equation (1) only accounts for the straightforward effect of altering a
 131 single variable at a time, presuming a “static” future where subsequent variables unfold naturally.
 132 Thus, an immediate consequence is that it ignores how multiple variables might combine their effects.
 133 A very simple example illustrates this issue. Imagine two binary variables, Z_1 and Z_2 , both of
 134 which naturally take the value 0 with near certainty, and let $Y := Z_1 \wedge Z_2$. Clearly, altering either
 135 variable alone is ineffective. It’s only by altering both variables together that we can achieve $Y = 1$.
 136 Consequently, when judging the impact of an alteration in AUF scenarios, not only the feasible
 137 domain of the alteration itself but also the *actionability* of other variables should be considered.

138

Given the insight from the example above, the next logical step would be to propose the joint alteration
 139 of all actionable variables as a solution. This joint strategy has been adopted in previous work (Qin
 et al., 2025; Du et al., 2025) with the following formulation:

140

$$141 \mathbf{z}^* = \arg \max_{\mathbf{z} \in \Delta_{\mathbf{Z}}} P(Y \in \mathcal{S} | \mathbf{X} = \mathbf{x}, \mathbf{Z} := \mathbf{z}), \quad (2)$$

142

143 where $\Delta_{\mathbf{Z}}$ denotes the Cartesian product of the feasible domains of alteration for all variables in \mathbf{Z} ,
 144 and $\mathbf{Z} := \mathbf{z}$ denotes the joint alteration of all variables in \mathbf{Z} to the corresponding values in \mathbf{z} . This
 145 strategy overlooks an important fact: it’s often unnecessary to alter all variables. For instance, while
 146 both light and water are crucial factors for crop growth, if sunlight is naturally abundant, adding
 147 artificial light will have negligible impact on yield. Therefore, when judging the impact of altering a
 148 variable in AUF scenarios, we need to consider its *naturality*, i.e., whether it is in a favorable state
 149 naturally. Moreover, as we shall see in what follows, certain variables may not only be unnecessary
 150 to alter, but could even be counterproductive no matter how they are altered. Thus, a more principled
 151 approach is required to determine which actionable variables should be altered.

152

153 3.2 FORMULATION

154

155 In this subsection, we formulate a new quantity that measures whether an actionable variable is
 156 worth altering in order to influence the future target. To holistically account for the actionability
 157 and naturality of variables, as well as the desirability of the target variable in the decision process,
 158 our formulation requires a principled way to envision future possibilities after an alteration. The
 159 Bellman equation (Bellman, 1957) provides the conceptual foundation for this purpose, but its
 160 standard formulation is not immediately applicable to our context. This is because the classical

161 ¹This ensures that the sequence of variables satisfies the definition of *statistical time* (Pearl, 2009) and thus
 162 inherently accommodates a temporal interpretation.

163

164 ²The variables V_s for $s \leq t$ are immutable, as the past cannot be changed. This situates our work within the
 165 scope of Level 2 of the ladder of causation (Pearl & Mackenzie, 2018; Bareinboim et al., 2022).

framework is usually built upon a prespecified separation between state and control variables. In the AUF problem, however, every variable V_i in the sequence (V_1, \dots, V_d) has a dual role: it could be proactively manipulated through alteration or be passively observed as it unfolds naturally.

Drawing inspiration from the Bellman equation and grounding our proposal in the principle of maximum expected utility (Russell & Norvig, 2020), we recursively define the *maximum expected probability* (MEP) of avoiding the undesired future after an alteration or observation. Specifically, for $0 < k < d$, the MEP after *altering* V_k to v_k is given by

$$\mathcal{P}(Y \in \mathcal{S} | V_k := v_k, \dots) := \max \left\{ \max_{v_{k+1} \in \Delta_{V_{k+1}}} \mathcal{P}(Y \in \mathcal{S} | V_{k+1} := v_{k+1}, V_k := v_k, \dots), \mathbb{E}_{v_{k+1} \sim P(V_{k+1} | V_k := v_k, \dots)} \mathcal{P}(Y \in \mathcal{S} | V_{k+1} = v_{k+1}, V_k := v_k, \dots) \right\}, \quad (3)$$

where $\mathcal{P}(Y \in \mathcal{S} | V_{k+1} = v_{k+1}, V_k := v_k, \dots)$ is interpreted as the MEP after the observation of $V_{k+1} = v_{k+1}$ and the alteration of $V_k := v_k$, and “ \dots ” abbreviates any form of alterations and observations that happened before V_k . For $k = d$, the MEP after altering V_k to v_k , $\mathcal{P}(Y \in \mathcal{S} | V_k := v_k, \dots)$, simply equals to the *AUF probability*, $P(Y \in \mathcal{S} | V_k := v_k, \dots)$. Similarly, for $0 < k < d$, the MEP after *observing* V_j as v_j is given by

$$\mathcal{P}(Y \in \mathcal{S} | V_j = v_j, \dots) := \max \left\{ \max_{v_{j+1} \in \Delta_{V_{j+1}}} \mathcal{P}(Y \in \mathcal{S} | V_{j+1} := v_{j+1}, V_j = v_j, \dots), \mathbb{E}_{v_{j+1} \sim P(V_{j+1} | V_j = v_j, \dots)} \mathcal{P}(Y \in \mathcal{S} | V_{j+1} = v_{j+1}, V_j = v_j, \dots) \right\}. \quad (4)$$

For $j = d$, the MEP after observing V_j as v_j , $\mathcal{P}(Y \in \mathcal{S} | V_j = v_j, \dots)$, simply equals to the AUF probability, $P(Y \in \mathcal{S} | V_j = v_j, \dots)$.

Based on the above recursive definition of MEP, we formulate a quantity called the *influence power*, indicating the ability of an actionable variable to influence the future target.

Definition 1 (Influence Power). *The influence power of an actionable variable V_i on Y is defined as*

$$\dot{p}(V_i, Y) := \max_{v_i \in \Delta_{V_i}} \mathcal{P}(Y \in \mathcal{S} | V_i := v_i) - \mathbb{E}_{v_i \sim P(V_i)} \mathcal{P}(Y \in \mathcal{S} | V_i = v_i).$$

Remark. The influence power of V_i on Y represents the maximum increase in the MEP that can be achieved by optimally altering V_i , compared to the expected MEP when V_i is observed naturally. Consequently, a positive influence power indicates that the alteration is beneficial, while a zero or negative influence power suggests that it is unnecessary or even harmful. By definition, the influence power is bounded within the range of $[-1, 1]$. As Definition 1 recursively follows the principle of maximum expected utility, the influence power can be interpreted as a variant of the Bellman equation. Notably, this notion can be easily extended to a conditional form: e.g., given the observation $\mathbf{X} = \mathbf{x}$, the conditional influence power of $V_i \in \mathbf{Z}$ on Y is given by $\dot{p}(V_i, Y | \mathbf{X} = \mathbf{x}) := \max_{v_i \in \Delta_{V_i}} \mathcal{P}(Y \in \mathcal{S} | V_i := v_i, \mathbf{X} = \mathbf{x}) - \mathbb{E}_{v_i \sim P(V_i | \mathbf{X} = \mathbf{x})} \mathcal{P}(Y \in \mathcal{S} | V_i = v_i, \mathbf{X} = \mathbf{x})$.

We end this subsection by highlighting a connection between Definition 1 and Equation (1). Consider a scenario with three binary variables: V_1 , V_2 , and Y , where both V_1 and V_2 are actionable. Suppose an oracle informs us that the structural function f defining the target variable Y depends solely on V_1 and not V_2 , i.e., $Y := f(V_1)$. Based on this information, we deduce that the solution to Equation (1) is V_1 if the following condition holds:

$$\max_{v_1 \in \Delta_{V_1}} \mathcal{P}(Y \in \mathcal{S} | V_1 := v_1) > P(Y \in \mathcal{S}). \quad (5)$$

On the other hand, the influence power of V_1 on Y simplifies to

$$\dot{p}(V_1, Y) = \max_{v_1 \in \Delta_{V_1}} \mathcal{P}(Y \in \mathcal{S} | V_1 := v_1) - P(Y \in \mathcal{S}). \quad (6)$$

Combining Equations (5) and (6) concludes that the solution of Equation (1) is V_1 if $\dot{p}(V_1, Y) > 0$. Thus, Equation (1) aligns with Definition 1 in determining whether V_1 should be altered.

Furthermore, let $\Delta_{V_1} = \{0, 1\}$ and $\mathcal{S} = \{1\}$. By applying the identity $2 \cdot \max(a, b) = a + b + |a - b|$, the condition of $\dot{p}(V_1, Y) > 0$ reduces to

$$|\tau(V_1, Y)| \equiv |\mathbb{E}(Y | V_1 := 1) - \mathbb{E}(Y | V_1 := 0)| > 2\mathbb{E}(Y) - \mathbb{E}(Y | V_1 := 0) - \mathbb{E}(Y | V_1 := 1), \quad (7)$$

where $|\tau(V_1, Y)|$ is the absolute value of average causal effect of V_1 on Y . This reveals that $\dot{p}(V_1, Y)$ is closely related to $\tau(V_1, Y)$, and the influence power seems to favor altering variables with strong causal effects. This view, however, is incomplete. In the following section, we will demonstrate that the relationship between influence power and average causal effect is, in fact, far more nuanced.

216
217

3.3 CONNECTION

218 In this subsection, we investigate the connection between influential variables and those with an
 219 intrinsic causal relationship to the target variable. Concretely, we analyze how variables with a
 220 non-zero influence power, $\dot{p}(X, Y) \neq 0$, generally relate to the intrinsic ancestors of the target in
 221 the underlying SCM, $\text{Anc}(Y)$. We also examine the qualitative relationship between the influence
 222 power, $\dot{p}(X, Y)$, and the average causal effect, $\tau(X, Y)$, a widely used measure of causal strength.
 223 The results are formally summarized in the following theorem.

224 **Theorem 1.** *Let X and Y be two endogenous variables in an SCM. The following statements hold:*

- 226 1. $X \in \text{Anc}(Y) \Rightarrow \dot{p}(X, Y) \neq 0 \quad \text{and} \quad \dot{p}(X, Y) \neq 0 \Rightarrow X \in \text{Anc}(Y);$
- 227 2. $\tau(X, Y) \neq 0 \Rightarrow \dot{p}(X, Y) \neq 0 \quad \text{and} \quad \dot{p}(X, Y) \neq 0 \Rightarrow \tau(X, Y) \neq 0;$
- 228 3. $\tau(X, Y) \neq 0 \Rightarrow \dot{p}(X, Y) \geq 0 \quad \text{and} \quad X \in \text{Anc}(Y) \Rightarrow \dot{p}(X, Y) \geq 0.$

231 Theorem 1 reveals an intricate relationship between intrinsic ancestors and non-zero influence power: neither implies the other.
 232 Specifically, a causal ancestor of the target can have zero influence power, and conversely, a variable with non-zero influence power
 233 is not necessarily an intrinsic ancestor in the underlying SCM.
 234 Similarly, a variable may have a non-zero average causal effect on the target while manifesting zero influence power, and vice versa.
 235 Furthermore, neither having a non-zero average causal effect nor
 236 being a causal ancestor guarantees non-negative influence power.
 237 These relationships are visualized as a Venn diagram in Figure 2. In the following, we shed light
 238 on several insights of statements in Theorem 1 with concrete examples, while a detailed proof is
 239 deferred to Appendix B. To facilitate understanding, these examples focus on binary variables with
 240 the desired domain $\mathcal{S} = \{1\}$, though this restriction is not required generally.

241 **A causal ancestor can have zero influence power.** Altering a causal ancestor with a strong average
 242 causal effect on the target may provide no benefit to the target.

243 **Example 1.** Consider the following structural equations with the corresponding causal graph:

$$\begin{aligned} 247 \quad X &:= N_X, \\ 248 \quad Z &:= X \cdot N_Z + (1 - X) \cdot (1 - N_Z), \\ 249 \quad Y &:= Z \cdot N_Y + (1 - Z) \cdot (1 - N_Y), \end{aligned}$$

250 where $N_X, N_Z, N_Y \stackrel{iid}{\sim} \text{Bern}(0.9)$. Let X and Z be actionable variables, let $\Delta_X = \{0, 1\}$ and
 251 $\Delta_Z = \{0, 1\}$ be the feasible domains of alteration, and let the desired domain for Y be $\mathcal{S} = \{1\}$.
 252

253 In this example, while X is an ancestor of Y in the SCM, its influence power on Y is zero: $\dot{p}(X, Y) =$
 254 $\max_{x \in \Delta_X} \mathcal{P}(Y = 1 | X := x) - \mathbb{E}_{x \sim P(X)} \mathcal{P}(Y = 1 | X = x) = \max_{x \in \Delta_X} \max_{z \in \Delta_Z} P(Y =$
 255 $1 | Z := z, X := x) - \mathbb{E}_{x \sim P(X)} \max_{z \in \Delta_Z} P(Y = 1 | Z := z, X = x) = 0.9 - 0.9 = 0$. This in-
 256 dicates that altering X yields no improvement in the probability of $Y = 1$; a rational machine will
 257 always maximize the probability of $Y = 1$ by setting Z to 1, regardless of the value of X . In a word,
 258 altering X in Example 1 is useless as X is shielded by the actionability of Z . Thus, a causal ancestor
 259 does not necessarily have non-zero influence power. In addition, the average causal effect of X on Y
 260 in the SCM is non-zero: $\tau(X, Y) = P(Y = 1 | X := 1) - P(Y = 1 | X := 0) = 0.82 - 0.18 = 0.64$.
 261 This shows that a non-zero average causal effect does not guarantee non-zero influence power.

262 **A non-ancestral variable can have non-zero influence power.** Altering a variable that is not an
 263 intrinsic ancestor of the target in the underlying SCM may still benefit the target.

264 **Example 2.** Consider the following structural equations with the corresponding causal graph:

$$\begin{aligned} 265 \quad U &:= N_U, \\ 266 \quad W &:= N_W, \\ 267 \quad X &:= U \cdot W \cdot (1 - N_X), \\ 268 \quad Z &:= N_Z, \\ 269 \quad Y &:= Z \cdot (1 - U) + (1 - Z) \cdot N_Y, \end{aligned}$$

Figure 2: Relationship between intrinsic ancestors, τ , and \dot{p} .

270 where $N_U \sim \text{Bern}(0.5)$, $N_W, N_X, N_Z \stackrel{iid}{\sim} \text{Bern}(0.1)$, and $N_Y \sim \text{Bern}(0.4)$. Let W , X , and Z be
 271 actionable variables with $\Delta_W = \Delta_X = \Delta_Z = \{0, 1\}$, and let the desired domain be $\mathcal{S} = \{1\}$.
 272

273 In this example, W is not an ancestor of Y in the SCM. Remarkably, the influence power of W on
 274 Y is positive: $\dot{p}(W, Y) = 0.68 - 0.518 = 0.162$. This indicates that altering W can significantly
 275 improve the MEP of $Y = 1$. Intuitively, this positive influence manifests because altering W could
 276 help X to reveal information about U , which facilitates a more informed alteration on Z , ultimately
 277 benefiting Y . To provide concrete intuition, let us ground the variables from Example 4 in a medical
 278 scenario: let U , W , X , Z , and Y denote an allergy gene, a skin test, the skin response, a drug
 279 injection, and patient recovery, respectively. Performing a skin test (W) has no therapeutic effect;
 280 thus, the average causal effect of W on Y is zero. Nevertheless, the skin test is crucial because
 281 it informs the doctor’s decision on administering the drug (Z), which impacts recovery (Y). For
 282 instance, if the skin test is positive (observing $X = 1$ after setting $W := 1$), the doctor can
 283 infer the presence of the allergy and decide not to administer the drug ($Z := 0$), thereby maximizing
 284 the probability of recovery ($Y = 1$). This shows that while W does not intrinsically cause Y , altering
 285 W is instrumental for positively influencing Y . Influence power successfully captures this implicit
 286 benefit, showing that even non-ancestral variables can be critical for AUF.

287 For completeness, we also examine the conditional influence power of W on Y given U . We find
 288 that $\dot{p}(W, Y|U = 1) = 0$ and $\dot{p}(W, Y|U = 0) = 0$. This implies that if the allergy gene (U) were
 289 observed, performing the skin test (W) would be unnecessary. In clinical practice, however, directly
 290 observing the allergy gene (U) for a new patient is often time-consuming or prohibitively expensive.
 291 Thus, the unconditional influence power remains instructive for addressing the AUF problem.

292 **A weak ancestor can have positive influence power.** Altering a causal ancestor with a negligible
 293 average causal effect on the target may still benefit the target.

294 **Example 3.** Consider the following structural equations with the corresponding causal graph:

$$\begin{aligned} X &:= N_X, \\ Z &:= (1 - X) \cdot N_Z, \\ Y &:= X \cdot Z \cdot N_Y, \end{aligned}$$

295 where $N_X, N_Z, N_Y \stackrel{iid}{\sim} \text{Bern}(0.5)$. Let X and Z be actionable variables with $\Delta_X = \{0, 1\}$ and
 296 $\Delta_Z = \{0, 1\}$, and let the desired domain for Y be $\mathcal{S} = \{1\}$.
 297

301 In this example, X is an ancestor of Y , and the average causal effect is zero: $\tau(X, Y) = 0$. Yet, the
 302 influence power of X on Y is positive: $\dot{p}(X, Y) = 0.25$. Intuitively, this positive influence power
 303 manifests from the synergy between X and Z . The benefit of X on Y is elicited when we account
 304 for the alteration of Z . This implicit impact is captured by $\dot{p}(X, Y)$ but missed by $\tau(X, Y)$.
 305

306 **A strong ancestor can have negative influence power.** Altering a causal ancestor with a non-
 307 negligible average causal effect can be not only useless but also detrimental to the target.

308 **Example 4.** Consider the following structural equations with the corresponding causal graph:

$$\begin{aligned} U &:= N_U, \\ X &:= U \cdot N_X + (1 - U) \cdot (1 - N_X), \\ Z &:= X \cdot N_Z + (1 - X) \cdot (1 - N_Z), \\ Y &:= Z \cdot (1 - U) + (1 - Z) \cdot N_Y, \end{aligned}$$

309 where $N_U \sim \text{Bern}(0.5)$, $N_X, N_Z \stackrel{iid}{\sim} \text{Bern}(0.9)$, and $N_Y \sim \text{Bern}(0.4)$. Let X and Z be actionable
 310 variables with $\Delta_X = \{0, 1\}$ and $\Delta_Z = \{0, 1\}$, and let the desired domain be $\mathcal{S} = \{1\}$.
 311

312 In this example, X is an ancestor of Y in the SCM with a non-zero average causal effect: $\tau(X, Y) =$
 313 0.08 , whereas the influence power is negative: $\dot{p}(X, Y) = -0.15$. This indicates that the MEP
 314 after altering X is lower than the expected MEP after observing X . Thus, any alteration on X
 315 is counterproductive regardless of the specific value to which X is set. Intuitively, this negative
 316 influence manifests because observing X reveals information about U , which is useful in determining
 317 the alteration on Z during the computation of $\dot{p}(X, Y)$. Hence, while altering X can produce a
 318 straightforward improvement in Y (as indicated by the non-zero $\tau(X, Y)$), this benefit is overturned
 319 by the negative consequence for the alteration of the subsequent variable, ultimately making the
 320 alteration of X detrimental. Again, this implicit impact is successfully captured by $\dot{p}(X, Y)$.
 321

324 4 ESTIMATING INFLUENCE POWER

326 Influence power is a principled quantity for measuring the influence of actionable variables in AUF,
 327 while computing it exactly is often intractable due to the need for an exhaustive computation of the
 328 MEP terms and full knowledge of the underlying structural equations. In this section, we present a
 329 practical estimation method to mitigate these challenges.

331 4.1 MONTE-CARLO APPROXIMATION

333 The recursive enumeration of MEP for all possible alterations can be computationally prohibitive
 334 when the number of actionable variables is large. To mitigate this, we interpret the computation of
 335 MEP as a single-player non-deterministic game and approximate it based on the Monte-Carlo tree
 336 search UCT (Upper Confidence Tree) introduced by Kocsis & Szepesvári (2006).

337 Specifically, a *search tree* employing Monte-Carlo simulations is constructed incrementally. Each
 338 *node* in the tree represents a *state* defined by a sequence of alterations and observations made so
 339 far, associated with the next variable to be considered. Every iteration begins at the root node N_0
 340 (associated with a pre-specified variable $V_i \in \mathbf{V}$), proceeds to its children (associated with V_{i+1}),
 341 and continues until reaching a terminal state (associated with the target variable Y). Each *edge* in the
 342 tree represents a *choice* that can be made from the node, i.e., either an alteration or an observation on
 343 the associated variable. The overall construction consists of four steps, iterated until time has expired:
 344 (1) *Selection*: starting from the root node, recursively select an edge to child nodes according to the
 345 UCT policy until reaching a leaf node; (2) *Expansion*: if the leaf node corresponds to a non-terminal
 346 state, expand it by randomly adding one child node corresponding to possible choices; (3) *Playout*:
 347 from the newly added node, execute a random sequence of choices until reaching a terminal state, and
 348 compute the AUF probability at that terminal state; (4) *Backpropagation*: propagate the computed
 349 AUF probability back up the tree, updating the statistics of each node along the path. During each
 350 iteration, the UCT criterion is used at a node N to select the next edge to traverse:

$$351 c_N^* = \arg \max_{c \in \Delta_N^+} \left\{ \hat{p}_{N,c} + \alpha \cdot \sqrt{\frac{\ln t_N}{t_{N,c}}} \right\}, \quad (8)$$

353 where $\Delta_N^+ = \Delta_N \cup \emptyset$ is the set of choices at node N (comprising feasible alterations on the variable
 354 associated with N , denoted by Δ_N , and the option to make an observation, denoted by \emptyset), $\hat{p}_{N,c}$ is the
 355 average AUF probability obtained after taking choice c at node N , α is a parameter used to balance
 356 between exploration and exploitation (Auer et al., 2002), t_N is the number of times node N has been
 357 selected, and $t_{N,c}$ is the number of times choice c has been selected at node N .

359 After the construction of search tree, the MEP terms in the influence power of V_i on Y are approximated
 360 as the average AUF probability for each choice at the root node N_0 of search tree. Concretely,
 361 we have $\mathcal{P}(Y \in \mathcal{S} | V_i := c) \approx \hat{p}_{N_0,c}$ for each $c \in \Delta_{N_0}$, and $\mathbb{E}_{v_i \sim P(V_i)} \mathcal{P}(Y \in \mathcal{S} | V_i = v_i) \approx \hat{p}_{N_0, \emptyset}$.
 362 Hence, according to Definition 1, the influence power of V_i on Y is approximated as

$$363 \hat{p}(V_i, Y) \approx \max_{c \in \Delta_{N_0}} \hat{p}_{N_0,c} - \hat{p}_{N_0, \emptyset}. \quad (9)$$

365 The quality of this approximation improves over time, as UCT is guaranteed to converge to the best
 366 choice given sufficient iterations. Moreover, the described procedure is an *anytime* algorithm, capable
 367 of producing an approximate influence power at any point during its computation. We refer the reader
 368 to Browne et al. (2012) for further details.

369 Finally, we note that Equation (9) can remain a useful indicator with a limited number of Monte-
 370 Carlo simulations. This is because that a highly accurate estimate of influence power is not always
 371 necessary for the AUF problem; in many cases, a rough approximation is enough. Specifically, if
 372 the ground-truth influence power of a variable is non-positive ($\dot{p} \leq 0$), the approximation succeeds
 373 as long as it correctly suggests that no alteration on the variable is beneficial. This simply requires
 374 the approximated MEP terms to satisfy $\hat{p}_{N_0, \emptyset} \geq \max_{c \in \Delta_{N_0}} \hat{p}_{N_0,c}$. Similarly, if the ground-truth
 375 influence power is positive ($\dot{p} > 0$), the approximation succeeds as long as it accurately identifies the
 376 optimal alteration c^* , which implies that the relative magnitude of the MEP terms is correct. This
 377 only requires the approximated MEP terms to satisfy $\hat{p}_{N_0,c^*} \geq \max_{c \in \Delta_{N_0}} \hat{p}_{N_0,c}$. Thus, even with
 378 imperfect approximation, the method can still provide reliable indications of influence for AUF.

378 4.2 AUF PROBABILITY ESTIMATION
379

380 Although the Monte-Carlo procedure described above can effectively approximate the influence
381 power, it still relies on the AUF probability when a terminal state is reached during simulations, whose
382 ground-truth value is dictated by the underlying SCM. For situations where the structural equations
383 are unknown, we present an expression for estimating the AUF probability from observational data.

384 Specifically, we express the joint probability of the ordered variables (\mathbf{V}, Y) as:

$$386 P(\mathbf{V}, Y) = P(V_1, \dots, V_d, Y) = P(Y|\mathbf{V}) \prod_{i=1}^d P(V_i|V_1, \dots, V_{i-1}), \quad (10)$$

387 where the conditional probabilities $P(Y|\mathbf{V})$ and $P(V_i|V_1, \dots, V_{i-1})$ can be estimated from observa-
388 tional data $\mathcal{D} = \{(\mathbf{v}^j, y^j)\}_{j=1}^n$ using standard ML techniques. Denote by \mathbf{A} the variables in \mathbf{V} that
389 are altered, we express the joint probability of (\mathbf{V}, Y) given the alteration of \mathbf{A} as follows:
390

$$391 P(\mathbf{V}, Y|\hat{\mathbf{A}}) = P(Y|\mathbf{V}) \prod_{V_i \in \mathbf{A}} \delta(V_i) \prod_{V_i \in \mathbf{V} \setminus \mathbf{A}} P(V_i|V_1, \dots, V_{i-1}), \quad (11)$$

392 where $\hat{\mathbf{A}}$ indicates that every variable $V_i \in \mathbf{A}$ is altered, and $\delta(\cdot)$ is the Dirac delta function. Then,
393 denote by \mathbf{O} the variables in \mathbf{V} that are observed, the AUF probability given the alteration of \mathbf{A} and
394 the observation of \mathbf{O} is expressed as:
395

$$396 P(Y \in \mathcal{S}|\hat{\mathbf{A}}, \mathbf{O}) = \frac{P(Y \in \mathcal{S}, \mathbf{O}|\hat{\mathbf{A}})}{P(\mathbf{O}|\hat{\mathbf{A}})} = \frac{\sum_{\mathbf{V} \setminus \mathbf{O}} P(Y \in \mathcal{S}, \mathbf{V}|\hat{\mathbf{A}})}{\sum_{\mathbf{V} \setminus \mathbf{O}} P(\mathbf{V}|\hat{\mathbf{A}})} \quad (12)$$

$$399 = \frac{\sum_{\mathbf{V} \setminus \mathbf{O}} P(Y \in \mathcal{S}|\mathbf{V}) \prod_{V_i \in \mathbf{A}} \delta(V_i) \prod_{V_i \in \mathbf{V} \setminus \mathbf{A}} P(V_i|V_1, \dots, V_{i-1})}{\sum_{\mathbf{V} \setminus \mathbf{O}} \prod_{V_i \in \mathbf{A}} \delta(V_i) \prod_{V_i \in \mathbf{V} \setminus \mathbf{A}} P(V_i|V_1, \dots, V_{i-1})},$$

402 which is a generic expression of the AUF probability given any alterations and observations. It can be
403 estimated from observational data \mathcal{D} and then plugged into the Monte-Carlo procedure described
404 above to approximate the influence power. The following proposition demonstrates the consistency
405 of Equation (12) by leveraging the manipulation theorem in Spirtes et al. (2000).

406 **Proposition 1.** *Assume causal sufficiency, i.e., the joint distribution $P(\mathbf{V}, Y)$ is induced by an
407 acyclic SCM \mathcal{M} with mutually independent background noises, and positivity, i.e., $P(V_i|PA_i) > 0$
408 in the support of P , $\forall 1 \leq i \leq d$. Then, the expression in Equation (11) is consistent to the joint
409 probability dictated by the SCM $\mathcal{M}_{\mathbf{A}}$ where variables \mathbf{A} are altered. Furthermore, the expression in
410 Equation (12) is consistent to the AUF probability dictated by the SCM $\mathcal{M}_{\mathbf{A}}$ where variables \mathbf{A} are
411 altered and variables \mathbf{O} are observed.*

412 **Remark.** Causal sufficiency is required in Proposition 1 but is not assumed for the rest of the
413 paper. Technically, this assumption is important for reliably estimating the conditional probabilities
414 in Equations (11) and (12) from observational data. Once these probabilities are estimated, some
415 variables can remain unobserved when deciding whether to alter a variable. This decoupling is more
416 practical than assuming full observability throughout both the estimation and decision phases.

417 5 EXPERIMENTS
418

419 In this section, we conduct experiments to validate the utility of our framework.

420 **Tasks.** We simulate three synthetic tasks (including TRADER, FARMER, and DOCTOR) and a real-
421 world case study (BERMUDA). For each task, we generate 1000 samples from the underlying SCM
422 to form the observational data and repeat the experiments ten times. The details of the tasks are
423 provided in Appendix A due to space limitation.

424 **Baselines.** We compare six methods for selecting alterations: (1) OBSERVE: a baseline that only
425 observes without altering variables; (2) MAX-ONE: selects the single variable with the highest AUF
426 probability for alteration, as described in Equation (1); (3) MAX-ALL: selects all actionable variables
427 for alteration, as described in Equation (2); (4) MIS: alters a variable if it belongs to the minimal
428 intervention set defined in Lee & Bareinboim (2018); (5) VOC: alters a variable when doing so
429 increases the AUF probability of altering the next variable (Everitt et al., 2021); and (6) OURS: uses
430 MCTS to perform 1000 iterations to determine whether and how to alter variables based on influence
431 power. The parameter α is set to $\sqrt{2}$ by default following Kocsis & Szepesvári (2006). For fair

Figure 3: Convergence of the approximation of influence power (InP) and error rates (%) versus the number of MCTS iterations. The deviation of the approximated influence power to the exact value of influence power continues to decrease after the convergence of error rates in all cases.

TASK	OBSERVE	MAX-ONE	MAX-ALL	MIS	VoC	OURS
TRADER	38.34 ± 3.69	50.22 ± 5.90	50.50 ± 5.69	50.55 ± 7.36	53.20 ± 7.27	62.11 ± 9.05
FARMER	11.03 ± 4.66	56.32 ± 13.89	56.60 ± 12.98	56.70 ± 13.59	57.17 ± 13.86	57.94 ± 12.54
DOCTOR	39.47 ± 4.87	50.83 ± 5.36	50.64 ± 5.32	51.31 ± 6.41	53.72 ± 4.05	65.69 ± 8.06

Table 1: Success rates (%) of six different methods for three synthetic tasks.

TASK	10	50	100	500	1000	5000
TRADER	43.42 ± 5.97	50.06 ± 6.11	49.27 ± 9.59	59.48 ± 10.70	62.11 ± 9.05	62.39 ± 9.37
FARMER	20.21 ± 10.29	31.39 ± 9.83	53.32 ± 14.24	56.54 ± 14.05	57.94 ± 12.54	56.46 ± 14.00
DOCTOR	43.86 ± 4.78	42.56 ± 3.99	48.58 ± 7.29	64.48 ± 9.60	65.69 ± 8.06	66.26 ± 6.66

Table 2: Success rates (%) of our method with different sample sizes for three synthetic tasks.

TASK	0.01	0.1	0.5	1.0	2.0	10.0
TRADER	55.84 ± 7.69	58.08 ± 7.45	60.15 ± 4.37	61.04 ± 5.48	62.73 ± 5.40	59.04 ± 3.92
FARMER	55.79 ± 11.46	55.95 ± 14.66	57.93 ± 13.46	57.36 ± 12.75	56.22 ± 13.36	55.50 ± 13.86
DOCTOR	58.31 ± 5.93	59.90 ± 5.68	66.75 ± 7.14	65.92 ± 9.06	65.60 ± 6.11	58.22 ± 5.36

Table 3: Success rates (%) of our method with different α for three synthetic tasks.

comparison, the feasible domain for each actionable variable is set to be $\{0, 1\}$ and the number of actionable variables is set to 3 for all methods in synthetic tasks. The performance of each method is evaluated by the success rate, i.e., the frequency of the target variable successfully achieving the desired domain after performing alterations on the suggested variables.

Figure 3 shows the convergence of approximating influence power. The plot depicts the deviation of the approximated value for the first actionable variable, measured as the absolute difference from the corresponding exact value. The error rate represents the frequency of inconsistencies between the suggested alterations based on the approximated value and the exact value. In all cases, the error rate decrease as T increases, demonstrating the effectiveness of MCTS in approximating influence power. Notably, the deviation continues to decrease after the error rate has converged to zero, demonstrating that our method is useful when the MEP terms are not approximated very perfectly.

Table 1 compares our method with baselines. We observe that our method consistently outperforms existing methods in most cases. These results demonstrate the superiority of the proposed method in guiding alterations for AUF tasks. In the FARMER task, various methods perform comparably. This is because the target variable in this specific task is influenced by a single critical variable, which all five methods correctly determined. Table 2 investigates the impact of sample size on the effectiveness of our method. The performance generally improves as the sample size increases. Notably, the success rates exhibit a rapid growth initially and begin to plateau, stabilizing around 1,000 samples across the tasks. The sensitivity of the hyperparameter α is reported in Table 3. The results indicate robust performance for values between 0.5 and 2.0, where the method achieves consistently high success rates. Extreme values (too small, e.g., 0.01, or too large, e.g., 10.0) degrade performance.

486	TASK	OBSERVE	MAX-ONE	MAX-ALL	MIS	VoC	OURS
487	BERMUDA	2.36 ± 0.50	61.22 ± 0.91	72.68 ± 2.60	75.06 ± 1.67	63.44 ± 0.37	78.45 ± 0.56

489
490 Table 4: Success rates (%) of six different methods for the BERMUDA task.
491492 Furthermore, we experiment with BERMUDA, a real-world application to further evaluate the utility
493 of our method. As presented in Table 4, our method achieves the highest performance with a success
494 rate of 78.45%, surpassing the second-best baseline by a clear margin. These results demonstrate that
495 our approach remains robust and effective in a complex real-world scenario involving non-binary
496 variables, where it consistently outperforms existing methods.
497498
499

6 RELATED WORK

500501 Many efforts have been dedicated to identify causal structures and causal effects from observational
502 data in the literature (Verma & Pearl, 1991; Cooper & Herskovits, 1992; Heckerman et al., 1995;
503 Zheng et al., 2018; Lorch et al., 2021). Apart from the average causal effect (Rosenbaum & Rubin,
504 1983; Holland, 1988), there are various other quantities for measuring causal strength such as analysis
505 of variance (Northcott, 2008) or other approaches (Janzing et al., 2013; Jung et al., 2022). We
506 primarily focus on comparing with average causal effects, as it is a popular and canonical measure
507 of causal strength in the literature. The comparison regarding other measures of causal strength
508 would be similar and left for future work. We also note that researchers have proposed various
509 ways of quantifying the strength of causal contributions, sometimes referred to as “causal influence”
510 (Rosenbaum & Rubin, 1983; Holland, 1988; Janzing et al., 2013; Heskes et al., 2020). Different
511 notions of influence coexist for good reason, as they formalize different perspectives on different
512 goals (Janzing et al., 2024). Much of the prior work has focused on quantifying intrinsic causal
513 contributions, i.e., the degree to which various factors “explain” the variance of a target variable,
514 which is valuable for attribution and scientific understanding. This work, in contrast, focuses on
515 quantifying practical utility for decision-making in the AUF problem.
516517 This work is essentially distinct from approaches based on counterfactual reasoning (Pearl, 2009;
518 Halpern, 2015; Karimi et al., 2021; Tsirtsis et al., 2021). While counterfactuals generally involve
519 reasoning about the past (i.e., what would have happened, had we chosen differently at a point in
520 the past (Pearl et al., 2016)), the AUF problem is forward-looking (i.e., planning for the future).
521 Although some approaches share connections with the Bellman equation (Zhang & Bareinboim,
522 2019; Tsirtsis et al., 2021), they differ in objective and formalization. Specifically, unlike methods
523 that maintain a strict distinction between state and action variables, our framework treats all variables
524 uniformly as random variables; one can choose to alter (set the value) or explicitly refrain from
525 altering (letting it occur naturally). In addition, we estimate AUF probabilities from observational
526 data without assuming a known causal structure. Besides, compared to concepts like value of control
527 (VoC) (Everitt et al., 2021), which typically assumes that a decision node has no “natural value” and
528 restricts decisions to a single node, our formulation accommodates an arbitrary number of actionable
529 variables with natural generation processes. Additional related works are discussed in Appendix D.
530531
532

7 CONCLUSION

533534 In this paper, we aim to measure the influence of actionable variables in avoiding the undesired future.
535 Drawing on intuitive considerations, we introduce a novel quantity called influence power, designed
536 to evaluate the extent to which variables can be manipulated in increasing the AUF probability under
537 the principle of maximum expected utility. While closely related to causal effects, our analysis reveals
538 a counterintuitive insight that non-ancestral variables can have non-trivial influence power on the
539 future target. We further provide a practical implementation based on a Monte Carlo-based method
to estimate the probability terms in the proposed quantity using observational data, facilitating the
efficient approximation of influence power. Experiments on synthetic and real-world tasks validate
the utility of our framework in suggesting alterations for addressing the AUF problem.
540

540 REPRODUCIBILITY STATEMENT
541

542 To ensure the reproducibility of our work, we provide detailed references to experimental setups and
543 theoretical assumptions. Regarding the empirical evaluation, the experimental setups are outlined in
544 Section 5, while comprehensive details, including task specifications, data generation processes, and
545 exact hyperparameter configurations, are documented in Appendix A. The implementation leverages
546 the DOWHY library (Sharma & Kiciman, 2020; Blöbaum et al., 2024), and the code to reproduce
547 our results will be made publicly available upon publication. On the theoretical side, the problem
548 definitions and assumptions are clarified in Section 2 and the remark following Proposition 1, with
549 complete proofs for all claims provided in Appendix C.

550
551 REFERENCES
552

553 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
554 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
555 *arXiv preprint arXiv:2303.08774*, 2023.

556 Virginia Aglietti, Xiaoyu Lu, Andrei Paleyes, and Javier González. Causal bayesian optimization. In
557 *International Conference on Artificial Intelligence and Statistics*, pp. 3155–3164, 2020.

558 Andreas Andersson and Nicholas Bates. In situ measurements used for coral and reef-scale calcification
559 structural equation modeling including environmental and chemical measurements, and coral
560 calcification rates in bermuda from 2010 to 2012 (beacon project), 2018, 2018.

561 Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
562 problem. *Machine learning*, 47(2):235–256, 2002.

563 Elias Bareinboim, Juan D Correa, Duligur Ibeling, and Thomas Icard. On pearl’s hierarchy and the
564 foundations of causal inference. In *Probabilistic and causal inference: the works of judea pearl*,
565 pp. 507–556. 2022.

566 Richard Bellman. *Dynamic Programming*. Princeton University Press, Princeton, 1957.

567 Patrick Blöbaum, Peter Götz, Kailash Budhathoki, Atalanti A. Mastakouri, and Dominik Janzing.
568 Dowhy-gcm: An extension of dowhy for causal inference in graphical causal models. *Journal of
569 Machine Learning Research*, 25(147):1–7, 2024. URL <http://jmlr.org/papers/v25/22-1258.html>.

570 Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp
571 Röhlfschen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey
572 of monte carlo tree search methods. *IEEE Transactions on Computational Intelligence and AI in
573 games*, 4(1):1–43, 2012.

574 Gregory F Cooper and Edward Herskovits. A bayesian method for the induction of probabilistic
575 networks from data. *Machine learning*, 9:309–347, 1992.

576 Travis A Courtney, Mario Lebrato, Nicholas R Bates, Andrew Collins, Samantha J De Putron,
577 Rebecca Garley, Rod Johnson, Juan-Carlos Molinero, Timothy J Noyes, Christopher L Sabine,
578 et al. Environmental controls on modern scleractinian coral and reef-scale calcification. *Science
579 advances*, 3(11):e1701356, 2017.

580 James E Driskell, Carolyn Copper, and Aidan Moran. Does mental practice enhance performance?
581 *Journal of applied psychology*, 79(4):481, 1994.

582 Wen-Bo Du, Tian Qin, Tian-Zuo Wang, and Zhi-Hua Zhou. Avoiding undesired future with min-
583 imal cost in non-stationary environments. In *The Thirty-eighth Annual Conference on Neural
584 Information Processing Systems*, 2024.

585 Wen-Bo Du, Hao-Yi Lei Lei, Lue Tao, Tian-Zuo Wang, and Zhi-Hua Zhou. Enabling optimal
586 decisions in rehearsal learning under care condition. In *International Conference on Machine
587 Learning*, 2025.

594 Tom Everitt, Ryan Carey, Eric D Langlois, Pedro A Ortega, and Shane Legg. Agent incentives: A
 595 causal perspective. In *Proceedings of the AAAI conference on artificial intelligence*, volume 35, pp.
 596 11487–11495, 2021.

597 Joseph Y Halpern. A modification of the halpern-pearl definition of causality. In *Proceedings of the*
 598 *24th International Conference on Artificial Intelligence*, pp. 3022–3033, 2015.

600 David Heckerman, Dan Geiger, and David M Chickering. Learning bayesian networks: The combi-
 601 nation of knowledge and statistical data. *Machine learning*, 20:197–243, 1995.

603 Tom Heskes, Evi Sijben, Ioan Gabriel Bucur, and Tom Claassen. Causal shapley values: Exploiting
 604 causal knowledge to explain individual predictions of complex models. In *Advances in neural*
 605 *information processing systems*, volume 33, pp. 4778–4789, 2020.

606 Paul W Holland. Causal inference, path analysis and recursive structural equations models. *ETS*
 607 *Research Report Series*, 1988(1):i–50, 1988.

609 Dominik Janzing, David Balduzzi, Moritz Grosse-Wentrup, and Bernhard Schölkopf. Quantifying
 610 causal influences. *The Annals of Statistics*, 41(5):2324–2358, 2013.

611 Dominik Janzing, Patrick Blöbaum, Atalanti A Mastakouri, Philipp M Faller, Lenon Minorics,
 612 and Kailash Budhathoki. Quantifying intrinsic causal contributions via structure preserving
 613 interventions. In *International Conference on Artificial Intelligence and Statistics*, pp. 2188–2196.
 614 PMLR, 2024.

616 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
 617 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
 618 protein structure prediction with alphafold. *nature*, 596(7873):583–589, 2021.

619 Yonghan Jung, Shiva Kasiviswanathan, Jin Tian, Dominik Janzing, Patrick Blöbaum, and Elias
 620 Bareinboim. On measuring causal contributions via do-interventions. In *International Conference*
 621 *on Machine Learning*, pp. 10476–10501. PMLR, 2022.

623 Amir-Hossein Karimi, Bernhard Schölkopf, and Isabel Valera. Algorithmic recourse: from coun-
 624 terfactual explanations to interventions. In *Proceedings of the 2021 ACM conference on fairness,*
 625 *accountability, and transparency*, pp. 353–362, 2021.

626 Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In *European conference*
 627 *on machine learning*, pp. 282–293. Springer, 2006.

629 Sanghack Lee and Elias Bareinboim. Structural causal bandits: Where to intervene? *Advances in*
 630 *neural information processing systems*, 31, 2018.

631 Lars Lorch, Jonas Rothfuss, Bernhard Schölkopf, and Andreas Krause. Dibs: Differentiable bayesian
 632 structure learning. *Advances in Neural Information Processing Systems*, 34:24111–24123, 2021.

633 Robert Northcott. Can anova measure causal strength? *The Quarterly Review of Biology*, 83(1):
 635 47–55, 2008.

636 Judea Pearl. *Causality*. Cambridge university press, 2009.

638 Judea Pearl and Dana Mackenzie. *The book of why: the new science of cause and effect*. Basic books,
 639 2018.

641 Judea Pearl, Madelyn Glymour, and Nicholas P Jewell. *Causal inference in statistics: A primer*. John
 642 Wiley & Sons, 2016.

643 Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. *Elements of causal inference: foundations*
 644 *and learning algorithms*. The MIT Press, 2017.

646 Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Tom R Andersson, Andrew El-Kadi, Dominic
 647 Masters, Timo Ewalds, Jacklynn Stott, Shakir Mohamed, Peter Battaglia, et al. Probabilistic
 weather forecasting with machine learning. *Nature*, 637(8044):84–90, 2025.

648 Tian Qin, Tian-Zuo Wang, and Zhi-Hua Zhou. Rehearsal learning for avoiding undesired future. In
649 *Advances in Neural Information Processing Systems*, volume 36, pp. 80517–80542, 2023.
650

651 Tian Qin, Tian-Zuo Wang, and Zhi-Hua Zhou. Gradient-based nonlinear rehearsal learning with
652 multivariate alterations. In *AAAI conference on artificial intelligence*, volume 39, 2025.

653 Paul R Rosenbaum and Donald B Rubin. The central role of the propensity score in observational
654 studies for causal effects. *Biometrika*, 70(1):41–55, 1983.

655

656 Stuart J Russell and Peter Norvig. *Artificial intelligence: a modern approach*. Pearson, 4 edition,
657 2020.

658

659 Amit Sharma and Emre Kiciman. Dowhy: An end-to-end library for causal inference. *arXiv preprint*
arXiv:2011.04216, 2020.

660

661 Peter Spirtes, Clark N Glymour, and Richard Scheines. *Causation, prediction, and search*. MIT
662 press, 2000.

663

664 Richard S Sutton and Andrew G Barto. *Reinforcement learning: An introduction*. MIT press, 2018.

665

666 Stratis Tsirtsis, Abir De, and Manuel Rodriguez. Counterfactual explanations in sequential decision
667 making under uncertainty. *Advances in Neural Information Processing Systems*, 34:30127–30139,
2021.

668

669 Thomas S Verma and Judea Pearl. Equivalence and synthesis of causal models. In *Proceedings of the*
6th Annual Conference on Uncertainty in Artificial Intelligence, pp. 255–270, 1991.

670

671 Junzhe Zhang and Elias Bareinboim. Near-optimal reinforcement learning in dynamic treatment
672 regimes. *Advances in Neural Information Processing Systems*, 32, 2019.

673

674 Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. Dags with no tears: Continuous
675 optimization for structure learning. *Advances in neural information processing systems*, 31, 2018.

676

677 Zhi-Hua Zhou. Rehearsal: learning from prediction to decision. *Frontiers of Computer Science*, 16
(4):164352, 2022.

678

679 Zhi-Hua Zhou. Rehearsal: Learning from prediction to decision. Keynote at the CCF Conference on
AI, 2023.

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A DETAILED SETTINGS**
 703

704 Our experiments are conducted using Intel Xeon E-2288G CPUs, featuring 8 cores and 16 threads
 705 with a frequency of 3.7 GHz. The implementation is based on DOWHY (Sharma & Kiciman, 2020;
 706 Blöbaum et al., 2024). The code to reproduce our results will be made publicly available.
 707

708 **A.1 THE SYNTHETIC TASKS**
 709

710 The underlying SCM for the TRADER task governs the sequence of variables (V_1, V_2, V_3, V_4, Y)
 711 through the following structural equations:

$$\begin{aligned} V_1 &:= N_1, \\ V_2 &:= V_1 \cdot N_2 + (1 - V_1) \cdot (1 - N_2), \\ V_3 &:= V_2 \cdot N_3 + (1 - V_2) \cdot (1 - N_3), \\ V_4 &:= V_3 \cdot N_4 + (1 - V_3) \cdot (1 - N_4), \\ Y &:= V_4 \cdot (1 - V_1) + (1 - V_4) \cdot N_Y, \end{aligned}$$

712 where the noise terms follow $N_1 \sim \text{Bern}(\rho_1)$, $N_2 \sim \text{Bern}(\rho_2)$, $N_3 \sim \text{Bern}(\rho_3)$, $N_4 \sim \text{Bern}(\rho_4)$,
 713 and $N_Y \sim \text{Bern}(\rho_Y)$. To facilitate diversity across experimental trials, the task parameters are
 714 independently and uniformly sampled from the following intervals: $\rho_1 \in [0.4, 0.6]$, $\rho_i \in [0.7, 0.9]$
 715 for $i \in \{2, 3, 4\}$, and $\rho_Y \in [0.3, 0.5]$. The variables V_2 , V_3 , and V_4 are actionable with feasible
 716 domains $\Delta_{V_2} = \Delta_{V_3} = \Delta_{V_4} = \{0, 1\}$. The variable V_1 is not observed at the time of decision. The
 717 desired domain is specified as $\mathcal{S} = \{1\}$. Here, V_1 represents the economic climate, and the chain
 718 $V_2 \rightarrow V_3 \rightarrow V_4$ models the progression from consumer demand to the final marketing strategy. The
 719 target Y denotes quarterly profit, whose structural equation explicitly encodes the interaction between
 720 strategy (V_4) and environment (V_1), implying that the profitability of a specific strategy relates to the
 721 prevailing economic state. The objective is to determine the actionable variables to maximize profit.
 722

723 The underlying SCM for the FARMER task governs the sequence of variables (V_1, V_2, V_3, V_4, Y)
 724 thorough the following structural equations:

$$\begin{aligned} V_1 &:= N_1, \\ V_2 &:= (1 - V_1) \cdot N_2, \\ V_3 &:= (1 - V_2) \cdot N_3, \\ V_4 &:= (1 - V_3) \cdot N_4, \\ Y &:= V_1 \cdot V_4 \cdot N_Y, \end{aligned}$$

725 where the noise terms follow $N_1 \sim \text{Bern}(\beta_1)$, $N_2 \sim \text{Bern}(\beta_2)$, $N_3 \sim \text{Bern}(\beta_3)$, $N_4 \sim \text{Bern}(\beta_4)$,
 726 and $N_Y \sim \text{Bern}(\beta_Y)$. To facilitate diversity across experimental trials, the task parameters are
 727 independently and uniformly sampled from the following intervals: $\beta_i \in [0.60, 0.95]$ for $i \in$
 728 $\{1, 2, 3, 4\}$, and $\beta_Y \in [0.60, 0.95]$. The variables V_2 , V_3 , and V_4 are actionable with feasible domains
 729 $\Delta_{V_2} = \Delta_{V_3} = \Delta_{V_4} = \{0, 1\}$. The variable V_1 is not observed at the time of decision. The desired
 730 domain is specified as $\mathcal{S} = \{1\}$. In this context, V_1 represents sunlight exposure, while the chain
 731 $V_2 \rightarrow V_3 \rightarrow V_4$ models the natural water cycle affecting the soil. Specifically, intense sunlight (V_1)
 732 naturally reduces precipitation (V_2), which in turn increases evaporation (V_3), ultimately leading to
 733 low soil moisture (V_4). The target Y denotes crop yield. The structural equation for Y explicitly
 734 encodes the essential interaction between light (V_1) and water (V_4), implying that high productivity
 735 requires the simultaneous presence of both sunlight and adequate soil moisture. The objective is to
 736 determine the actionable variables to maximize crop yield.

737 The underlying SCM for the DOCTOR task governs the sequence of variables (V_1, V_2, V_3, V_4, Y)
 738 thorough the following structural equations:

$$\begin{aligned} V_1 &:= N_1, \\ V_2 &:= N_2, \\ V_3 &:= V_1 \cdot V_2 \cdot (1 - N_3), \\ V_4 &:= N_4, \\ Y &:= V_4 \cdot (1 - V_1) + (1 - V_4) \cdot N_Y, \end{aligned}$$

756 where the noise terms follow $N_1 \sim \text{Bern}(\gamma_1)$, $N_2 \sim \text{Bern}(\gamma_2)$, $N_3 \sim \text{Bern}(\gamma_3)$, $N_4 \sim \text{Bern}(\gamma_4)$,
 757 and $N_Y \sim \text{Bern}(\gamma_Y)$. To facilitate diversity across experimental trials, the task parameters are
 758 independently and uniformly sampled from the following intervals: $\gamma_1 \in [0.4, 0.6]$, $\gamma_i \in [0.1, 0.3]$ for
 759 $i \in \{2, 3, 4\}$, and $\gamma_Y \in [0.3, 0.5]$. The variables V_2 , V_3 , and V_4 are actionable with feasible domains
 760 $\Delta_{V_2} = \Delta_{V_3} = \Delta_{V_4} = \{0, 1\}$. The variable V_1 is not observed at the time of decision. The desired
 761 domain is specified as $\mathcal{S} = \{1\}$. In this context, V_1 represents the drug intolerance (or allergy gene),
 762 while V_2 represents an environmental trigger. V_3 denotes a symptom (e.g., a rash), which serves as a
 763 diagnostic indicator. The structural equation for V_3 implies that the symptom manifests primarily
 764 when both the intolerance (V_1) and the trigger (V_2) are present. V_4 represents the administration of a
 765 potent drug. The target Y denotes patient recovery. The equation for Y captures a critical medical
 766 contraindication: the drug (V_4) is effective for the general population ($V_1 = 0$) but is harmful or fatal
 767 to patients with the intolerance ($V_1 = 1$). The objective is to determine the actionable variables to
 768 maximize patient recovery.

769 A.2 THE BERMUDA TASK

770 The BERMUDA case study is derived from a real-world scenario involving the management of net
 771 coral ecosystem calcification in Bermuda, where environmental variables are recorded (Aglietti et al.,
 772 2020). The sequence of variables in this task are listed as follows:

- 775 • *Light*: bottom light levels;
- 776 • *Tem*: bottom temperature;
- 777 • *Sal*: sea surface salinity;
- 778 • *DIC*: seawater dissolved inorganic carbon;
- 779 • *TA*: seawater total alkalinity;
- 780 • Ω_A : seawater saturation with respect to aragonite;
- 781 • *Nut*: PC1 of NH_4 , $NiO_2 + NiO_3$, SiO_4 ;
- 782 • *Chla*: sea surface chlorophyll-a;
- 783 • pH_{sw} : seawater pH ;
- 784 • P_{CO_2} : seawater P_{CO_2} ;
- 785 • *NEC*: net ecosystem calcification.

786 The causal graph governing these variables is adopted from Courtney et al. (2017) and is illustrated
 787 in Figure 4. Consistent with previous studies Aglietti et al. (2020); Qin et al. (2023), the structural
 788 equations were obtained by performing linear regression on the 50 observations provided by An-
 789 dersson & Bates (2018), and there are five actionable variables including *DIC*, *TA*, Ω_A , *Nut*, and

809 Figure 4: The causal graph for the BERMUDA task.

810 *Chla*. Other variables are not observed at the time of decision. To ensure compatibility with our
 811 method, we discretize the continuous variables by dividing their value ranges into six equal-width
 812 bins. Accordingly, the feasible domains for alterations are set to $\{-2.5, -1.5, -0.5, 0.5, 1.5, 2.5\}$.
 813 The desired domain is specified as $\mathcal{S} = [1, 2]$. The objective is to determine which variables to alter
 814 in order to achieve a net ecosystem calcification (*NEC*) within the desired range, thereby promoting
 815 coral reef health and resilience.

817 B PROOF OF THEOREM 1

819 **Theorem 1.** *Let X and Y be two endogenous variables in an SCM. The following statements hold:*

- 821 1. $X \in \text{Anc}(Y) \nRightarrow \dot{p}(X, Y) \neq 0 \quad \text{and} \quad \dot{p}(X, Y) \neq 0 \nRightarrow X \in \text{Anc}(Y);$
- 822 2. $\tau(X, Y) \neq 0 \nRightarrow \dot{p}(X, Y) \neq 0 \quad \text{and} \quad \dot{p}(X, Y) \neq 0 \nRightarrow \tau(X, Y) \neq 0;$
- 824 3. $\tau(X, Y) \neq 0 \nRightarrow \dot{p}(X, Y) \geq 0 \quad \text{and} \quad X \in \text{Anc}(Y) \nRightarrow \dot{p}(X, Y) \geq 0.$

826 *Proof.* We prove each statement separately by constructing a counterexample.

827 *Statement (a): $X \in \text{Anc}(Y) \nRightarrow \dot{p}(X, Y) \neq 0$.*

829 To show that $X \in \text{Anc}(Y)$ does not imply $\dot{p}(X, Y) \neq 0$, it suffices to provide a case where a variable
 830 is an ancestor of another, yet its influence power on the latter is zero.

831 Consider the following SCM over the sequence of variables (V_1, Y) :

$$833 \quad V_1 := N_1, \\ 834 \quad Y := V_1 \cdot N_Y + (1 - V_1) \cdot (1 - N_Y),$$

836 where $N_1 \sim \text{Bern}(0.5)$, $N_Y \sim \text{Bern}(0.5)$, V_1 is actionable with $\Delta_{V_1} = \{0, 1\}$, and the desired
 837 domain for Y is $\mathcal{S} = \{1\}$.

838 In the SCM, we have

$$839 \quad V_1 \in \text{Anc}(Y),$$

840 and

$$841 \quad \begin{aligned} \dot{p}(V_1, Y) &= \max_{v_1 \in \Delta_{V_1}} \mathcal{P}(Y = 1 | V_1 := v_1) - \mathbb{E}_{v_1 \sim P(V_1)} \mathcal{P}(Y = 1 | V_1 = v_1) \\ 842 &= \max_{v_1 \in \Delta_{V_1}} P(Y = 1 | V_1 := v_1) - P(Y = 1) \\ 843 &= \max\{0.5, 0.5\} - 0.5 \\ 844 &= 0. \end{aligned}$$

846 Thus, an ancestral relationship in the SCM does not imply non-zero influence power.

848 *Statement (b): $\tau(X, Y) \neq 0 \nRightarrow \dot{p}(X, Y) \neq 0$.*

849 To show that $\tau(X, Y) \neq 0$ does not imply $\dot{p}(X, Y) \neq 0$, it suffices to provide a case where a variable
 850 has a non-zero average causal effect on another, yet its influence power on the latter is zero.

852 Consider the following SCM over the sequence of variables (V_1, V_2, Y) :

$$853 \quad V_1 := N_1, \\ 854 \quad V_2 := V_1 \cdot N_2 + (1 - V_1) \cdot (1 - N_2), \\ 855 \quad Y := V_2 \cdot N_Y + (1 - V_2) \cdot (1 - N_Y),$$

857 where $N_1, N_2, N_Y \stackrel{iid}{\sim} \text{Bern}(0.9)$, V_1 and V_2 are actionable with $\Delta_{V_1} = \Delta_{V_2} = \{0, 1\}$, and the
 858 desired domain for Y is $\mathcal{S} = \{1\}$. This SCM corresponds to Example 1 in the main text.

859 In the SCM, we have

$$861 \quad \begin{aligned} \tau(V_1, Y) &= P(Y = 1 | V_1 := 1) - P(Y = 1 | V_1 := 0) \\ 862 &= 0.82 - 0.18 \\ 863 &= 0.64, \end{aligned}$$

864 and

$$\begin{aligned}
\dot{p}(V_1, Y) &= \max_{v_1 \in \Delta_{V_1}} \mathcal{P}(Y = 1 | V_1 := v_1) - \mathbb{E}_{v_1 \sim P(V_1)} \mathcal{P}(Y = 1 | V_1 = v_1) \\
&= \max_{v_1 \in \Delta_{V_1}} \max_{v_2 \in \Delta_{V_2}} P(Y = 1 | V_2 := v_2, V_1 := v_1) \\
&\quad - \mathbb{E}_{v_1 \sim P(V_1)} \max_{v_2 \in \Delta_{V_2}} P(Y = 1 | V_2 := v_2, V_1 = v_1) \\
&= \max\{0.9, 0.9\} - 0.9 \\
&= 0.
\end{aligned}$$

872 Thus, a non-zero average causal effect in the SCM does not imply non-zero influence power.
873 We also note that *Statement (b)* implies *Statement (a)*, as $\tau(X, Y) \neq 0$ implies $X \in \text{Anc}(Y)$.

875 *Statement (c):* $\dot{p}(X, Y) \neq 0 \nRightarrow \tau(X, Y) \neq 0$.

876 To show that $\dot{p}(X, Y) \neq 0$ does not imply $\tau(X, Y) \neq 0$, it suffices to provide a case where a variable
877 has non-zero influence power on another, yet its average causal effect on the latter is zero.

878 Consider the following SCM over the sequence of variables (V_1, V_2, Y) :

$$\begin{aligned}
V_1 &:= N_1, \\
V_2 &:= (1 - V_1) \cdot N_2, \\
Y &:= V_1 \cdot V_2 \cdot N_Y,
\end{aligned}$$

884 where $N_1, N_2, N_Y \stackrel{iid}{\sim} \text{Bern}(0.5)$, V_1 and V_2 are actionable with $\Delta_{V_1} = \Delta_{V_2} = \{0, 1\}$, and the
885 desired domain for Y is $\mathcal{S} = \{1\}$. This SCM corresponds to Example 3 in the main text.

887 In the SCM, we have

$$\begin{aligned}
\tau(V_1, Y) &= P(Y = 1 | V_1 := 1) - P(Y = 1 | V_1 := 0) \\
&= 0.82 - 0.18 \\
&= 0.64,
\end{aligned}$$

892 and

$$\begin{aligned}
\dot{p}(V_1, Y) &= \max_{v_1 \in \Delta_{V_1}} \mathcal{P}(Y = 1 | V_1 := v_1) - \mathbb{E}_{v_1 \sim P(V_1)} \mathcal{P}(Y = 1 | V_1 = v_1) \\
&= \max_{v_1 \in \Delta_{V_1}} \max_{v_2 \in \Delta_{V_2}} P(Y = 1 | V_2 := v_2, V_1 := v_1) \\
&\quad - \mathbb{E}_{v_1 \sim P(V_1)} \max_{v_2 \in \Delta_{V_2}} P(Y = 1 | V_2 := v_2, V_1 = v_1) \\
&= \max\{0, 0.5\} - 0.25 \\
&= 0.25.
\end{aligned}$$

900 Thus, non-zero influence power does not imply a non-zero average causal effect in the SCM.

902 *Statement (d):* $\dot{p}(X, Y) \neq 0 \nRightarrow X \in \text{Anc}(Y)$.

903 To show that $\dot{p}(X, Y) \neq 0$ does not imply $X \in \text{Anc}(Y)$, it suffices to provide a case where a variable
904 has non-zero influence power on another, yet it is not an ancestor of the latter.

905 Consider the following SCM over the sequence of variables (V_1, V_2, V_3, V_4, Y) :

$$\begin{aligned}
V_1 &:= N_1, \\
V_2 &:= N_2, \\
V_3 &:= V_1 \cdot V_2 \cdot (1 - N_3), \\
V_4 &:= N_4, \\
Y &:= V_4 \cdot (1 - V_1) + (1 - V_4) \cdot N_Y,
\end{aligned}$$

913 where $N_1 \sim \text{Bern}(0.5)$, $N_2, N_3, N_4 \stackrel{iid}{\sim} \text{Bern}(0.1)$, $N_Y \sim \text{Bern}(0.4)$, V_2, V_3 , and V_4 are actionable
914 with $\Delta_{V_2} = \Delta_{V_3} = \Delta_{V_4} = \{0, 1\}$, and the desired domain for Y is $\mathcal{S} = \{1\}$. This SCM corresponds
915 to Example 2 in the main text.

917 In the SCM, we have

$$V_2 \notin \text{Anc}(Y),$$

918 and

$$\begin{aligned}
\dot{p}(V_2, Y) &= \max_{v_2 \in \Delta_{V_2}} \mathcal{P}(Y = 1 | V_2 := v_2) - \mathbb{E}_{v_2 \sim P(V_2)} \mathcal{P}(Y = 1 | V_2 = v_2) \\
&= \max_{v_2 \in \Delta_{V_2}} \max \left\{ \max_{v_3 \in \Delta_{V_3}} \mathcal{P}(Y = 1 | V_3 := v_3, V_2 := v_2), \right. \\
&\quad \left. \mathbb{E}_{v_3 \sim P(V_3 | V_2 := v_2)} \mathcal{P}(Y = 1 | V_3 = v_3, V_2 := v_2) \right\} \\
&\quad - \mathbb{E}_{v_2 \sim P(V_2)} \max \left\{ \max_{v_3 \in \Delta_{V_3}} \mathcal{P}(Y = 1 | V_3 := v_3, V_2 = v_2), \right. \\
&\quad \left. \mathbb{E}_{v_3 \sim P(V_3 | V_2 = v_2)} \mathcal{P}(Y = 1 | V_3 = v_3, V_2 = v_2) \right\} \\
&= \max_{v_2 \in \Delta_{V_2}} \mathbb{E}_{v_3 \sim P(V_3 | V_2 := v_2)} \mathcal{P}(Y = 1 | V_3 = v_3, V_2 := v_2) \\
&\quad - \mathbb{E}_{v_2 \sim P(V_2)} \mathbb{E}_{v_3 \sim P(V_3 | V_2 = v_2)} \mathcal{P}(Y = 1 | V_3 = v_3, V_2 = v_2) \\
&= \max_{v_2 \in \Delta_{V_2}} \mathbb{E}_{v_3 \sim P(V_3 | V_2 := v_2)} \max_{v_4 \in \Delta_{V_4}} \mathcal{P}(Y = 1 | V_4 := v_4, V_3 = v_3, V_2 := v_2) \\
&\quad - \mathbb{E}_{v_2 \sim P(V_2)} \mathbb{E}_{v_3 \sim P(V_3 | V_2 = v_2)} \max_{v_4 \in \Delta_{V_4}} \mathcal{P}(Y = 1 | V_4 := v_4, V_3 = v_3, V_2 = v_2) \\
&= 0.68 - 0.518 \\
&= 0.162.
\end{aligned}$$

938 Thus, non-zero influence power does not imply an ancestral relationship in the SCM.

939 We also note that *Statement (d)* implies *Statement (c)*, as $X \notin \text{Anc}(Y)$ implies $\tau(X, Y) = 0$.

940 *Statement (e):* $X \in \text{Anc}(Y) \not\Rightarrow \dot{p}(X, Y) \geq 0$.

942 To show that $X \in \text{Anc}(Y)$ does not imply $\dot{p}(X, Y) \geq 0$, it suffices to provide a case where a variable
943 is an ancestor of another, yet its influence power on the latter is negative.

944 Consider the following SCM over the sequence of variables (V_1, V_2, Y) :

$$\begin{aligned}
V_1 &:= N_1, \\
V_2 &:= (1 - V_1) \cdot N_2, \\
Y &:= (V_1 \oplus V_2) \cdot N_Y,
\end{aligned}$$

950 where $N_1 \sim \text{Bern}(0.5)$, $N_2, N_Y \stackrel{iid}{\sim} \text{Bern}(0.8)$, V_2 is actionable with $\Delta_{V_2} = \{0, 1\}$, and the desired
951 domain for Y is $\mathcal{S} = \{1\}$.

953 In the SCM, we have

$$V_2 \in \text{Anc}(Y),$$

955 and

$$\begin{aligned}
\dot{p}(V_2, Y) &= \max_{v_2 \in \Delta_{V_2}} \mathcal{P}(Y = 1 | V_2 := v_2) - \mathbb{E}_{v_2 \sim P(V_2)} \mathcal{P}(Y = 1 | V_2 = v_2) \\
&= \max_{v_2 \in \Delta_{V_2}} P(Y = 1 | V_2 := v_2) - P(Y = 1) \\
&= \max\{0.4, 0.4\} - 0.72 \\
&= -0.32.
\end{aligned}$$

961 Thus, an ancestral relationship in the SCM does not imply non-negative influence power.

963 *Statement (f):* $\tau(X, Y) \neq 0 \not\Rightarrow \dot{p}(X, Y) \geq 0$.

964 To show that $\tau(X, Y) \neq 0$ does not imply $\dot{p}(X, Y) \geq 0$, it suffices to provide a case where a variable
965 has a non-zero average causal effect on another, yet its influence power on the latter is negative.

967 Consider the following SCM over the sequence of variables (V_1, V_2, V_3, Y) :

$$\begin{aligned}
V_1 &:= N_1, \\
V_2 &:= V_1 \cdot N_2 + (1 - V_1) \cdot (1 - N_2), \\
V_3 &:= V_2 \cdot N_3 + (1 - V_2) \cdot (1 - N_3), \\
Y &:= V_3 \cdot (1 - V_1) + (1 - V_3) \cdot N_Y,
\end{aligned}$$

972 where $N_1 \sim \text{Bern}(0.5)$, $N_2, N_3 \stackrel{iid}{\sim} \text{Bern}(0.9)$, $N_Y \sim \text{Bern}(0.4)$, V_2 and V_3 are actionable with
 973 $\Delta_{V_2} = \{0, 1\}$ and $\Delta_{V_3} = \{0, 1\}$, and the desired domain for Y is $\mathcal{S} = \{1\}$. This SCM corresponds
 974 to Example 4 in the main text.

975 In the SCM, we have

$$\begin{aligned} 977 \quad \tau(V_2, Y) &= P(Y = 1|V_2 := 1) - P(Y = 1|V_2 := 0) \\ 978 &= 0.49 - 0.41 \\ 979 &= 0.08, \end{aligned}$$

980 and

$$\begin{aligned} 981 \quad \dot{p}(V_2, Y) &= \max_{v_2 \in \Delta_{V_2}} \mathcal{P}(Y = 1|V_2 := v_2) - \mathbb{E}_{v_2 \sim P(V_2)} \mathcal{P}(Y = 1|V_2 = v_2) \\ 982 &= \max_{v_2 \in \Delta_{V_2}} \max_{v_3 \in \Delta_{V_3}} P(Y = 1|V_3 := v_3, V_2 := v_2) \\ 983 &\quad - \mathbb{E}_{v_2 \sim P(V_2)} \max_{v_3 \in \Delta_{V_3}} P(Y = 1|V_3 := v_3, V_2 = v_2) \\ 984 &= \max\{0.5, 0.5\} - 0.65 \\ 985 &= -0.15. \end{aligned}$$

986 Thus, a non-zero average causal effect in the SCM does not imply non-negative influence power.
 987 We also note that *Statement (f)* implies *Statement (e)*, as $\tau(X, Y) \neq 0$ implies $X \in \text{Anc}(Y)$. \square
 988

989 C PROOF OF PROPOSITION 1

990 **Proposition 1.** *Assume causal sufficiency, i.e., the joint distribution $P(\mathbf{V}, Y)$ is induced by an
 991 acyclic SCM \mathcal{M} with mutually independent background noises, and positivity, i.e., $P(V_i|\text{PA}_i) > 0$
 992 in the support of P , $\forall 1 \leq i \leq d$. Then, the expression in Equation (11) is consistent to the joint
 993 probability dictated by the SCM $\mathcal{M}_{\mathbf{A}}$ where variables \mathbf{A} are altered. Furthermore, the expression in
 994 Equation (12) is consistent to the AUF probability dictated by the SCM $\mathcal{M}_{\mathbf{A}}$ where variables \mathbf{A} are
 995 altered and variables \mathbf{O} are observed.*

996 *Proof.* Recall from Equation (11), the joint distribution conditioned on the alteration set $\hat{\mathbf{A}}$ is ex-
 997 pressed as $P(\mathbf{X}|\hat{\mathbf{A}}) = \prod_{X_i \in \mathbf{A}} \delta(X_i) \prod_{X_i \in \mathbf{X} \setminus \mathbf{A}} P(X_i|X_1, \dots, X_{i-1})$. As the sequence is topolog-
 998 ically consistent with the underlying SCM, and the SCM is assumed to be acyclic, the value of each vari-
 999 able X_i depends solely on its parents PA_i . Consequently, $P(X_i|X_1, \dots, X_{i-1}) = P(X_i|\text{PA}_i)$. Sub-
 1000 tituting this back into the product shows that $P(\mathbf{X}|\hat{\mathbf{A}}) = \prod_{X_i \in \mathbf{A}} \delta(X_i) \prod_{X_i \in \mathbf{X} \setminus \mathbf{A}} P(X_i|\text{PA}_i)$. By
 1001 invoking the manipulation theorem (i.e., Theorem 3.6 in Spirtes et al. (2000)), we have that $P(\mathbf{X}|\hat{\mathbf{A}})$
 1002 is exactly the probability of \mathbf{X} under alteration of \mathbf{A} . Moreover, the quantity $P(Y \in \mathcal{S}|\hat{\mathbf{A}}, \mathbf{O})$ in
 1003 Equation (12) is fully determined by $P(\mathbf{X}|\hat{\mathbf{A}})$, and therefore Equation (12) indeed gives to the true
 1004 AUF probability dictated by the underlying SCM. \square

1005 D ADDITIONAL RELATED WORK

1006 The rehearsal paradigm was introduced by Zhou (2022), building on the concept of influence (Zhou,
 1007 2023). This paradigm advocates for mentally simulating future possibilities in order to find alterations
 1008 that positively influence the future target before making a final decision. This is analogous to how
 1009 human cognitive process prepares for future events (Driskell et al., 1994). Motivated by this, Qin
 1010 et al. (2023) proposed the first rehearsal learning approach, wherein the restriction of directionality
 1011 is relaxed and *structural rehearsal models* capable of accommodating bi-directional interactions
 1012 are developed. Several subsequent studies have addressed issues such as non-stationarity and non-
 1013 linearity in rehearsal learning (Du et al., 2024; Qin et al., 2025), requiring that the structure of the
 1014 underlying equations are provided by experts. Besides, while the forward-looking decision-making
 1015 problem is also conceptually related to markov decision processes in reinforcement learning (Sutton
 1016 & Barto, 2018), a key distinction is that the AUF problem operates under a “no going back” constraint.
 1017 Unlike in many RL settings where an agent can revisit states, the past variables cannot be changed in
 1018 our context. Our approximation method is particularly inspired by Monte Carlo Tree Search (MCTS)
 1019 (Browne et al., 2012), which excel at planning in large state spaces by simulating future trajectories,
 1020 making them well-suited for the challenges of the AUF problem.