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ABSTRACT

When a predictive model anticipates an undesired future event, a question arises:
what can we do to avoid it? Resolving this forward-looking challenge requires
determining the variables that positively influence the future, moving beyond statis-
tical correlations typically exploited for prediction. In this paper, we introduce a
novel framework for evaluating the influence of actionable variables in successfully
avoiding the undesired future. We quantify influence as the degree to which the
probability of success can be increased by altering variables based on the principle
of maximum expected utility. While closely related to causal effects, our analysis
reveals a counterintuitive insight: influential variables may not necessarily be those
with intrinsically strong causal effects on the target. In fact, due to the dynamics of
the decision process, it can be highly beneficial to alter a weak causal factor, or even
a variable that is not an intrinsic factor at all. We provide a practical implementation
for computing the proposed quantity using observational data and demonstrate its
utility through empirical studies on synthetic and real-world applications.

1 INTRODUCTION

When an intelligent machine receives a warning from a powerful predictive model anticipating that
an undesired event is going to happen, an important question naturally arises: what can be done to
avoid this potential future? This is known as the avoiding undesired future (AUF) problem (Zhou,
2022), sparking a transition from passively predicting results to proactively influencing them.

Addressing the AUF problem requires determining the variables that can be properly altered to shape
a more desirable future. While statistically correlated variables are effectively exploited by modern
machine learning (ML) techniques for predicting target variables (Jumper et al., 2021; Achiam et al.,
2023; Price et al., 2025), these correlations are often unreliable for influencing the future target.
For instance, although ice cream sales and drowning incidents are highly correlated in the summer,
suppressing ice cream sales would obviously not prevent drownings, as their superficial correlation
arises from a common cause: hot weather. This implies that a general understanding of the underlying
mechanisms connecting variables would be essential for settling the AUF problem.

X Z Y

Figure 1: To do, or not to do,
that is the question: Whether
a variable should be altered
to influence the eventuality?
Let X be a Bernoulli variable,
with Z := 1 − X and Y :=
X ·Z. Let both X and Z be ac-
tionable. Interestingly, while
the average causal effect of X
on Y is 0, it remains benefi-
cial to alter X . More details
are provided in Example 3.

To this end, an intuitive way is to exploit causal variables of the target.
Rich tools for discovering causal relations have been developed in
the literature (Pearl, 2009; Peters et al., 2017). Nevertheless, the fact
that a variable is a cause of the target variable does not imply that
altering it will be influential. For example, while a city’s reliance
on public transportation might be a cause of lengthy commute times,
a policy encouraging the use of private cars could fail to save time
due to offsetting effects: the positive impact on shortening commute
times obtained via private cars could be neutralized by the negative
aspect, such as the worsening traffic congestion caused by many
more cars on the road. This seems to suggest shifting our attention
to variables with non-negligible average causal effects. However,
this strategy is also incomplete. As illustrated by the simple case
of two actionable variables in Figure 1, it can be highly beneficial
to alter a variable with a negligible causal effect. Therefore, a more
principled way is needed to properly address the AUF problem.
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In this paper, we introduce a novel framework for measuring the influence of actionable variables
for successfully avoiding the undesired future. We begin by outlining several natural and intuitive
considerations that a measure of influence in AUF scenarios should incorporate. Then, we formulate
a novel quantity, termed influence power, defined as the degree to which the probability of success
can be increased through alteration based on the principle of maximum expected utility. This
quantity captures the dynamics of decision-making by accounting for the actionability, naturality,
and desirability of variables throughout the decision process. In this way, it offers a holistic assessment
of the consequence of alteration, capturing both its explicit and implicit impacts on the future target.

Next, we leverage the influence power to investigate the relationship between influential variables
and those with an intrinsic causal connection to the future target. Our analysis reveals a subtle yet
important nuance: influential variables are not simply a subset of causal ancestors, and vice versa.
Specifically, while the influence power is closely related to causal effects, we find that influential
variables are not necessarily those with intrinsically strong causal effects. In fact, due to the dynamics
of the decision process, it can be highly beneficial to alter a causal ancestor with negligible effects, or
even a variable that is not an intrinsic ancestor at all. Another important observation is that, not all
actionable variables can be safely altered, as for certain variables, any alteration is counterproductive.
This insight crystallizes the fundamental question for an intelligent agent facing an undesired future:
To do, or not to do? Our framework rests on a principled quantity for measuring influence in AUF,
thereby providing a rigorous way to answer this question.

Finally, we address the practical computation of influence power. We identify the challenges inherent
in its exact computation and present a Monte-Carlo-based approximation method to efficiently assess
it using observational data. The proposed method mitigates the need for full knowledge of structural
equations under the assumption of causal sufficiency and tends to remain useful when the probability
terms within our quantity are not approximated very perfectly. Empirical studies demonstrate the
utility of our framework for addressing the AUF problem on synthetic and real-world applications.

2 PRELIMINARY

Notation. We represent each random variable with a capital letter (V ), and its realized value with
the lowercase letter (v). We use bold capital letters (V) to denote a set of random variables with
their realized values denoted by bold lowercase letters (v). Let G = (V,E) denote a directed
graph with nodes V and edges E. In a causal graph G, a variable X is a causal ancestor of Y ,
denoted by X ∈ Anc(Y ), if there is a directed path from X to Y in G. When X is binary, its causal
strength can be quantified by the average causal effect (ACE) (Holland, 1988; Pearl, 2009), defined as
τ(X,Y ) := E(Y |do(X = 1)−E(Y |do(X = 0))), where E(Y |do(X = x)) denotes the expectation
of Y when X is set to the value x. We say that a causal ancestor X of Y is weak if the average
causal effect of X on Y is zero. Let ∆X denote the feasible domain of alteration for a variable X . If
∆X ̸= ∅, we call X an actionable variable; otherwise, X is unactionable.

Structural causal models. We use the language of the structural causal model (SCM) (Pearl, 2009),
which describes how nature assigns values to variables of interest, i.e., the physical mechanisms gov-
erning the natural generation process of random variables. An SCM is a tuple M = ⟨V,N, F, P (N)⟩,
where V = {V1, . . . , Vd} is a set of endogenous variables, N = {N1, . . . , Nd} is a set of indepen-
dent background noises destributed according to P (N), and F is a set of deterministic functions fi
for each Vi ∈ V such that Vi := fi(PAi, Ni) with PAi ⊆ V. Throughout this paper, we posit that
the natural generation process is governed by an underlying SCM M, though it may remain unknown
to the decision-maker due to its unobserved nature (Bareinboim et al., 2022). If Vi is an ancestor of
Vj in the causal graph induced by the underlying SCM M, we say that Vi is an intrinsic ancestor of
Vj in M. For a variable Vi, if ∆Vi ̸= ∅, we use the notation Vi :− vi to indicate that Vi can be altered
to vi ∈ ∆Vi . This operation replaces the structural function of Vi in M with the constant assignment
Vi := vi, and the distribution of W given that Vi is set to vi is denoted as P (W|Vi :− vi).

Problem definition. We consider a setting where observational data is drawn from a distribution
induced by an underlying SCM M. We suppose that this SCM characterizes the natural generation
process of a sequence of variables (V1, . . . , Vd+1), where the final variable Vd+1 represents the target
variable Y , whose desired domain is specified as S. The variable sequence is pre-specified and
is consistent with the underlying causal structure (i.e., variables are causally ordered with respect
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to M).1 For simplicity, we assume that all variables are discrete. The goal of decision-making
in the AUF problem is to maximize the possibility of Y falling into S through feasible alterations
on the variables V1, . . . , Vd. Generally, it is convenient to denote by x a realization of a subset of
variables X ⊂ {V1, . . . , Vd}, and denote by Z the set of actionable variables succeeding X, i.e.,
Z = {Vi | t < i ≤ d, ∆Vi

̸= ∅}, where t = max{s | Vs ∈ X}. Hence, when an initial observation
X = x is given, the AUF problem is addressed by altering variables in Z.2 Notably, we do not assume
that all variables preceding Z are observed when determining alterations to Z; the initial set X may
even be empty. This makes our framework more practical than those requiring full observability.

3 INFLUENCE POWER

3.1 MOTIVATION

We motivate the considerations that a measure of influence in AUF should incorporate by describing
the strategies and limitations of existing approaches for addressing the AUF problem.

A primary strategy is to find a feasible alteration that directly maximizes the probability of Y falling
within the desired domain S (Qin et al., 2023). This straightforward strategy is expressed as:

(Z∗, z∗) = argmaxZ∈Z,z∈∆Z
P (Y ∈ S|X = x, Z :− z), (1)

where x is the observation of X, and Z is the set of actionable variables succeeding X. This approach
is intuitive and can indeed achieve a better target in many cases, but it overlooks several important
considerations. Specifically, Equation (1) only accounts for the straightforward effect of altering a
single variable at a time, presuming a “static” future where subsequent variables unfold naturally.
Thus, an immediate consequence is that it ignores how multiple variables might combine their effects.
A very simple example illustrates this issue. Imagine two binary variables, Z1 and Z2, both of
which naturally take the value 0 with near certainty, and let Y := Z1 ∧ Z2. Clearly, altering either
variable alone is ineffective. It’s only by altering both variables together that we can achieve Y = 1.
Consequently, when judging the impact of an alteration in AUF scenarios, not only the feasible
domain of the alteration itself but also the actionability of other variables should be considered.

Given the insight from the example above, the next logical step would be to propose the joint alteration
of all actionable variables as a solution. This joint strategy has been adopted in previous work (Qin
et al., 2025; Du et al., 2025) with the following formulation:

z∗ = argmaxz∈∆Z
P (Y ∈ S|X = x,Z :− z), (2)

where ∆Z denotes the Cartesian product of the feasible domains of alteration for all variables in Z,
and Z :− z denotes the joint alteration of all variables in Z to the corresponding values in z. This
strategy overlooks an important fact: it’s often unnecessary to alter all variables. For instance, while
both light and water are crucial factors for crop growth, if sunlight is naturally abundant, adding
artificial light will have negligible impact on yield. Therefore, when judging the impact of altering a
variable in AUF scenarios, we need to consider its naturality, i.e., whether it is in a favorable state
naturally. Moreover, as we shall see in what follows, certain variables may not only be unnecessary
to alter, but could even be counterproductive no matter how they are altered. Thus, a more principled
approach is required to determine which actionable variables should be altered.

3.2 FORMULATION

In this subsection, we formulate a new quantity that measures whether an actionable variable is
worth altering in order to influence the future target. To holistically account for the actionability
and naturality of variables, as well as the desirability of the target variable in the decision process,
our formulation requires a principled way to envision future possibilities after an alteration. The
Bellman equation (Bellman, 1957) provides the conceptual foundation for this purpose, but its
standard formulation is not immediately applicable to our context. This is because the classical

1This ensures that the sequence of variables satisfies the definition of statistical time (Pearl, 2009) and thus
inherently accommodates a temporal interpretation.

2The variables Vs for s ≤ t are immutable, as the past cannot be changed. This situates our work within the
scope of Level 2 of the ladder of causation (Pearl & Mackenzie, 2018; Bareinboim et al., 2022).
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framework is usually built upon a prespecified separation between state and control variables. In the
AUF problem, however, every variable Vi in the sequence (V1, . . . , Vd) has a dual role: it could be
proactively manipulated through alteration or be passively observed as it unfolds naturally.

Drawing inspiration from the Bellman equation and grounding our proposal in the principle of
maximum expected utility (Russell & Norvig, 2020), we recursively define the maximum expected
probability (MEP) of avoiding the undesired future after an alteration or observation. Specifically, for
0 < k < d, the MEP after altering Vk to vk is given by

P(Y ∈ S|Vk :− vk, . . .) := max
{
maxvk+1∈∆Vk+1

P(Y ∈ S|Vk+1 :− vk+1, Vk :− vk, . . .), (3)

Evk+1∼P (Vk+1|Vk :− vk,...)P(Y ∈ S|Vk+1 = vk+1, Vk :− vk, . . .)
}
,

where P(Y ∈ S|Vk+1 = vk+1, Vk :− vk, . . .) is interpreted as the MEP after the observation of
Vk+1 = vk+1 and the alteration of Vk :− vk, and “. . .” abbreviates any form of alterations and
observations that happened before Vk. For k = d, the MEP after altering Vk to vk, P(Y ∈
S|Vk :− vk, . . .), simply equals to the AUF probability, P (Y ∈ S|Vk :− vk, . . .). Similarly, for
0 < k < d, the MEP after observing Vj as vj is given by

P(Y ∈ S|Vj = vj , . . .) := max
{
maxvj+1∈∆Vj+1

P(Y ∈ S|Vj+1 :− vj+1, Vj = vj , . . .), (4)

Evj+1∼P (Vj+1|Vj = vj ,...)P(Y ∈ S|Vj+1 = vj+1, Vj = vj , . . .)
}
.

For j = d, the MEP after observing Vj as vj , P(Y ∈ S|Vj = vj , . . .), simply equals to the AUF
probability, P (Y ∈ S|Vj = vj , . . .).

Based on the above recursive definition of MEP, we formulate a quantity called the influence power,
indicating the ability of an actionable variable to influence the future target.
Definition 1 (Influence Power). The influence power of an actionable variable Vi on Y is defined as

ṗ(Vi, Y ) := maxvi∈∆Vi
P(Y ∈ S|Vi :− vi)− Evi∼P (Vi)P(Y ∈ S|Vi = vi).

Remark. The influence power of Vi on Y represents the maximum increase in the MEP that can
be achieved by optimally altering Vi, compared to the expected MEP when Vi is observed naturally.
Consequently, a positive influence power indicates that the alteration is beneficial, while a zero or
negative influence power suggests that it is unnecessary or even harmful. By definition, the influence
power is bounded within the range of [−1, 1]. As Definition 1 recursively follows the principle of
maximum expected utility, the influence power can be interpreted as a variant of the Bellman equation.
Notably, this notion can be easily extended to a conditional form: e.g., given the observation X = x,
the conditional influence power of Vi ∈ Z on Y is given by ṗ(Vi, Y |X = x) := maxvi∈∆Vi

P(Y ∈
S|Vi :− vi,X = x)− Evi∼P (Vi|X = x)P(Y ∈ S|Vi = vi,X = x).

We end this subsection by highlighting a connection between Definition 1 and Equation (1). Consider
a scenario with three binary variables: V1, V2, and Y , where both V1 and V2 are actionable. Suppose
an oracle informs us that the structural function f defining the target variable Y depends solely on V1

and not V2, i.e., Y := f(V1). Based on this information, we deduce that the solution to Equation (1)
is V1 if the following condition holds:

maxv1∈∆V1
P (Y ∈ S|V1 :− v1) > P (Y ∈ S). (5)

On the other hand, the influence power of V1 on Y simplifies to

ṗ(V1, Y ) = maxv1∈∆V1
P (Y ∈ S|V1 :− v1)− P (Y ∈ S). (6)

Combining Equations (5) and (6) concludes that the solution of Equation (1) is V1 if ṗ(V1, Y ) > 0.
Thus, Equation (1) aligns with Definition 1 in determining whether V1 should be altered.

Furthermore, let ∆V1
= {0, 1} and S = {1}. By applying the identity 2 ·max(a, b) = a+b+ |a−b|,

the condition of ṗ(V1, Y ) > 0 reduces to

|τ(V1, Y )| ≡ |E(Y |V1 :− 1)− E(Y |V1 :− 0)| > 2E(Y )− E(Y |V1 :− 0)− E(Y |V1 :− 1), (7)

where |τ(V1, Y )| is the absolute value of average causal effect of V1 on Y . This reveals that ṗ(V1, Y )
is closely related to τ(V1, Y ), and the influence power seems to favor altering variables with strong
causal effects. This view, however, is incomplete. In the following section, we will demonstrate that
the relationship between influence power and average causal effect is, in fact, far more nuanced.
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3.3 CONNECTION

In this subsection, we investigate the connection between influential variables and those with an
intrinsic causal relationship to the target variable. Concretely, we analyze how variables with a
non-zero influence power, ṗ(X,Y ) ̸= 0, generally relate to the intrinsic ancestors of the target in
the underlying SCM, Anc(Y ). We also examine the qualitative relationship between the influence
power, ṗ(X,Y ), and the average causal effect, τ(X,Y ), a widely used measure of causal strength.
The results are formally summarized in the following theorem.

Theorem 1. Let X and Y be two endogenous variables in an SCM. The following statements hold:

1. X ∈ Anc(Y ) ≠⇒ ṗ(X,Y ) ̸= 0 and ṗ(X,Y ) ̸= 0 ≠⇒ X ∈ Anc(Y );

2. τ(X,Y ) ̸= 0 ≠⇒ ṗ(X,Y ) ̸= 0 and ṗ(X,Y ) ̸= 0 ≠⇒ τ(X,Y ) ̸= 0;

3. τ(X,Y ) ̸= 0 ≠⇒ ṗ(X,Y ) ≥ 0 and X ∈ Anc(Y ) ≠⇒ ṗ(X,Y ) ≥ 0.

Anc

𝜏 ≠ 0
𝑝̇ ≠ 0

𝑝̇ < 0

Figure 2: Relationship between
intrinsic ancestors, τ , and ṗ.

Theorem 1 reveals an intricate relationship between intrinsic an-
cestors and non-zero influence power: neither implies the other.
Specifically, a causal ancestor of the target can have zero influence
power, and conversely, a variable with non-zero influence power
is not necessarily an intrinsic ancestor in the underlying SCM.
Similarly, a variable may have a non-zero average causal effect on
the target while manifesting zero influence power, and vice versa.
Furthermore, neither having a non-zero average causal effect nor
being a causal ancestor guarantees non-negative influence power.
These relationships are visualized as a Venn diagram in Figure 2. In the following, we shed light
on several insights of statements in Theorem 1 with concrete examples, while a detailed proof is
deferred to Appendix B. To facilitate understanding, these examples focus on binary variables with
the desired domain S = {1}, though this restriction is not required generally.

A causal ancestor can have zero influence power. Altering a causal ancestor with a strong average
causal effect on the target may provide no benefit to the target.

Example 1. Consider the following structural equations with the corresponding causal graph:
X := NX ,

Z := X ·NZ + (1−X) · (1−NZ),

Y := Z ·NY + (1− Z) · (1−NY ),

X Z Y

where NX , NZ , NY
iid∼ Bern(0.9). Let X and Z be actionable variables, let ∆X = {0, 1} and

∆Z = {0, 1} be the feasible domains of alteration, and let the desired domain for Y be S = {1}.

In this example, while X is an ancestor of Y in the SCM, its influence power on Y is zero: ṗ(X,Y ) =
maxx∈∆X

P(Y = 1|X :− x) − Ex∼P (X)P(Y = 1|X = x) = maxx∈∆X
maxz∈∆Z

P (Y =
1|Z :− z,X :− x) − Ex∼P (X) maxz∈∆Z

P (Y = 1|Z :− z,X = x) = 0.9 − 0.9 = 0. This in-
dicates that altering X yields no improvement in the probability of Y = 1; a rational machine will
always maximize the probability of Y = 1 by setting Z to 1, regardless of the value of X . In a word,
altering X in Example 1 is useless as X is shielded by the actionability of Z. Thus, a causal ancestor
does not necessarily have non-zero influence power. In addition, the average causal effect of X on Y
in the SCM is non-zero: τ(X,Y ) = P (Y = 1|X :− 1)− P (Y = 1|X :− 0) = 0.82− 0.18 = 0.64.
This shows that a non-zero average causal effect does not guarantee non-zero influence power.

A non-ancestral variable can have non-zero influence power. Altering a variable that is not an
intrinsic ancestor of the target in the underlying SCM may still benefit the target.

Example 2. Consider the following structural equations with the corresponding causal graph:
U := NU ,

W := NW ,

X := U ·W · (1−NX),

Z := NZ ,

Y := Z · (1− U) + (1− Z) ·NY ,

U

W Z

X Y

5
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where NU ∼ Bern(0.5), NW , NX , NZ
iid∼ Bern(0.1), and NY ∼ Bern(0.4). Let W , X , and Z be

actionable variables with ∆W = ∆X = ∆Z = {0, 1}, and let the desired domain be S = {1}.

In this example, W is not an ancestor of Y in the SCM. Remarkably, the influence power of W on
Y is positive: ṗ(W,Y ) = 0.68 − 0.518 = 0.162. This indicates that altering W can significantly
improve the MEP of Y = 1. Intuitively, this positive influence manifests because altering W could
help X to reveal information about U , which facilitates a more informed alteration on Z, ultimately
benefiting Y . To provide concrete intuition, let us ground the variables from Example 4 in a medical
scenario: let U , W , X , Z, and Y denote an allergy gene, a skin test, the skin response, a drug
injection, and patient recovery, respectively. Performing a skin test (W ) has no therapeutic effect;
thus, the average causal effect of W on Y is zero. Nevertheless, the skin test is crucial because
it informs the doctor’s decision on administering the drug (Z), which impacts recovery (Y ). For
instance, if the skin test is positive (observing X = 1 after setting W :− 1), the doctor the doctor can
infer the presence of the allergy and decide not to administer the drug (Z :− 0), thereby maximizing
the probability of recovery (Y = 1). This shows that while W does not intrinsically cause Y , altering
W is instrumental for positively influencing Y . Influence power successfully captures this implicit
benefit, showing that even non-ancestral variables can be critical for AUF.

For completeness, we also examine the conditional influence power of W on Y given U . We find
that ṗ(W,Y |U = 1) = 0 and ṗ(W,Y |U = 0) = 0. This implies that if the allergy gene (U ) were
observed, performing the skin test (W ) would be unnecessary. In clinical practice, however, directly
observing the allergy gene (U ) for a new patient is often time-consuming or prohibitively expensive.
Thus, the unconditional influence power remains instructive for addressing the AUF problem.

A weak ancestor can have positive influence power. Altering a causal ancestor with a negligible
average causal effect on the target may still benefit the target.

Example 3. Consider the following structural equations with the corresponding causal graph:
X := NX ,

Z := (1−X) ·NZ ,

Y := X · Z ·NY ,
X Z Y

where NX , NZ , NY
iid∼ Bern(0.5). Let X and Z be actionable variables with ∆X = {0, 1} and

∆Z = {0, 1}, and let the desired domain for Y be S = {1}.

In this example, X is an ancestor of Y , and the average causal effect is zero: τ(X,Y ) = 0. Yet, the
influence power of X on Y is positive: ṗ(X,Y ) = 0.25. Intuitively, this positive influence power
manifests from the synergy between X and Z. The benefit of X on Y is elicited when we account
for the alteration of Z. This implicit impact is captured by ṗ(X,Y ) but missed by τ(X,Y ).

A strong ancestor can have negative influence power. Altering a causal ancestor with a non-
negligible average causal effect can be not only useless but also detrimental to the target.

Example 4. Consider the following structural equations with the corresponding causal graph:
U := NU ,

X := U ·NX + (1− U) · (1−NX),

Z := X ·NZ + (1−X) · (1−NZ),

Y := Z · (1− U) + (1− Z) ·NY ,
U X Z Y

where NU ,∼ Bern(0.5), NX , NZ
iid∼ Bern(0.9), and NY ∼ Bern(0.4). Let X and Z be actionable

variables with ∆X = {0, 1} and ∆Z = {0, 1}, and let the desired domain be S = {1}.

In this example, X is an ancestor of Y in the SCM with a non-zero average causal effect: τ(X,Y ) =
0.08, whereas the influence power is negative: ṗ(X,Y ) = −0.15. This indicates that the MEP
after altering X is lower than the expected MEP after observing X . Thus, any alteration on X
is counterproductive regardless of the specific value to which X is set. Intuitively, this negative
influence manifests because observing X reveals information about U , which is useful in determining
the alteration on Z during the computation of ṗ(X,Y ). Hence, while altering X can produce a
straightforward improvement in Y (as indicated by the non-zero τ(X,Y )), this benefit is overturned
by the negative consequence for the alteration of the subsequent variable, ultimately making the
alteration of X detrimental. Again, this implicit impact is successfully captured by ṗ(X,Y ).
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4 ESTIMATING INFLUENCE POWER

Influence power is a principled quantity for measuring the influence of actionable variables in AUF,
while computing it exactly is often intractable due to the need for an exhaustive computation of the
MEP terms and full knowledge of the underlying structural equations. In this section, we present a
practical estimation method to mitigate these challenges.

4.1 MONTE-CARLO APPROXIMATION

The recursive enumeration of MEP for all possible alterations can be computationally prohibitive
when the number of actionable variables is large. To mitigate this, we interpret the computation of
MEP as a single-player non-deterministic game and approximate it based on the Monte-Carlo tree
search UCT (Upper Confidence Tree) introduced by Kocsis & Szepesvári (2006).

Specifically, a search tree employing Monte-Carlo simulations is constructed incrementally. Each
node in the tree represents a state defined by a sequence of alterations and observations made so
far, associated with the next variable to be considered. Every iteration begins at the root node N0

(associated with a pre-specified variable Vi ∈ V), proceeds to its children (associated with Vi+1),
and continues until reaching a terminal state (associated with the target variable Y ). Each edge in the
tree represents a choice that can be made from the node, i.e., either an alteration or an observation on
the associated variable. The overall construction consists of four steps, iterated until time has expired:
(1) Selection: starting from the root node, recursively select an edge to child nodes according to the
UCT policy until reaching a leaf node; (2) Expansion: if the leaf node corresponds to a non-terminal
state, expand it by randomly adding one child node corresponding to possible choices; (3) Playout:
from the newly added node, execute a random sequence of choices until reaching a terminal state, and
compute the AUF probability at that terminal state; (4) Backpropagation: propagate the computed
AUF probability back up the tree, updating the statistics of each node along the path. During each
iteration, the UCT criterion is used at a node N to select the next edge to traverse:

c∗N = argmaxc∈∆+
N

{
p̂N,c + α ·

√
ln tN
tN,c

}
, (8)

where ∆+
N = ∆N ∪ ∅ is the set of choices at node N (comprising feasible alterations on the variable

associated with N , denoted by ∆N , and the option to make an observation, denoted by ∅), p̂N,c is the
average AUF probability obtained after taking choice c at node N , α is a parameter used to balance
between exploration and exploitation (Auer et al., 2002), tN is the number of times node N has been
selected, and tN,c is the number of times choice c has been selected at node N .

After the construction of search tree, the MEP terms in the influence power of Vi on Y are approxi-
mated as the average AUF probability for each choice at the root node N0 of search tree. Concretely,
we have P(Y ∈ S|Vi :− c) ≈ p̂N0,c for each c ∈ ∆N0 , and Evi∼P (Vi)P(Y ∈ S|Vi = vi) ≈ p̂N0,∅.
Hence, according to Definition 1, the influence power of Vi on Y is approximated as

ṗ(Vi, Y ) ≈ maxc∈∆N0
p̂N0,c − p̂N0,∅. (9)

The quality of this approximation improves over time, as UCT is guaranteed to converge to the best
choice given sufficient iterations. Moreover, the described procedure is an anytime algorithm, capable
of producing an approximate influence power at any point during its computation. We refer the reader
to Browne et al. (2012) for further details.

Finally, we note that Equation (9) can remain a useful indicator with a limited number of Monte-
Carlo simulations. This is because that a highly accurate estimate of influence power is not always
necessary for the AUF problem; in many cases, a rough approximation is enough. Specifically, if
the ground-truth influence power of a variable is non-positive (ṗ ≤ 0), the approximation succeeds
as long as it correctly suggests that no alteration on the variable is beneficial. This simply requires
the approximated MEP terms to satisfy p̂N0,∅ ≥ maxc∈∆N0

p̂N0,c. Similarly, if the ground-truth
influence power is positive (ṗ > 0), the approximation succeeds as long as it accurately identifies the
optimal alteration c∗, which implies that the relative magnitude of the MEP terms is correct. This
only requires the approximated MEP terms to satisfy p̂N0,c∗ ≥ maxc∈∆N0

p̂N0,c. Thus, even with
imperfect approximation, the method can still provide reliable indications of influence for AUF.
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4.2 AUF PROBABILITY ESTIMATION

Although the Monte-Carlo procedure described above can effectively approximate the influence
power, it still relies on the AUF probability when a terminal state is reached during simulations, whose
ground-truth value is dictated by the underlying SCM. For situations where the structural equations
are unknown, we present an expression for estimating the AUF probability from observational data.

Specifically, we express the joint probability of the ordered variables (V, Y ) as:

P (V, Y ) = P (V1, . . . , Vd, Y ) = P (Y |V)
∏d

i=1 P (Vi|V1, . . . , Vi−1), (10)

where the conditional probabilities P (Y |V) and P (Vi|V1, . . . , Vi−1) can be estimated from observa-
tional data D = {(vj , yj)}nj=1 using standard ML techniques. Denote by A the variables in V that
are altered, we express the joint probability of (V, Y ) given the alteration of A as follows:

P (V, Y |Â) = P (Y |V)
∏

Vi∈A δ(Vi)
∏

Vi∈V\A P (Vi|V1, . . . , Vi−1), (11)

where Â indicates that every variable Vi ∈ A is altered, and δ(·) is the Dirac delta function. Then,
denote by O the variables in V that are observed, the AUF probability given the alteration of A and
the observation of O is expressed as:

P (Y ∈ S|Â,O) =
P (Y ∈ S,O|Â)

P (O|Â)
=

∑
V\O P (Y ∈ S,V|Â)∑

V\O P (V|Â)

=

∑
V\O P (Y ∈ S|V)

∏
Vi∈A δ(Vi)

∏
Vi∈V\A P (Vi|V1, . . . , Vi−1)∑

V\O
∏

Vi∈A δ(Vi)
∏

Vi∈V\A P (Vi|V1, . . . , Vi−1)
,

(12)

which is a generic expression of the AUF probability given any alterations and observations. It can be
estimated from observational data D and then plugged into the Monte-Carlo procedure described
above to approximate the influence power. The following proposition demonstrates the consistency
of Equation (12) by leveraging the manipulation theorem in Spirtes et al. (2000).
Proposition 1. Assume causal sufficiency, i.e., the joint distribution P (V, Y ) is induced by an
acyclic SCM M with mutually independent background noises, and positivity, i.e., P (Vi|PAi) > 0
in the support of P , ∀1 ≤ i ≤ d. Then, the expression in Equation (11) is consistent to the joint
probability dictated by the SCM MA where variables A are altered. Furthermore, the expression in
Equation (12) is consistent to the AUF probability dictated by the SCM MA where variables A are
altered and variables O are observed.
Remark. Causal sufficiency is required in Proposition 1 but is not assumed for the rest of the
paper. Technically, this assumption is important for reliably estimating the conditional probabilities
in Equations (11) and (12) from observational data. Once these probabilities are estimated, some
variables can remain unobserved when deciding whether to alter a variable. This decoupling is more
practical than assuming full observability throughout both the estimation and decision phases.

5 EXPERIMENTS

In this section, we conduct experiments to validate the utility of our framework.

Tasks. We simulate three synthetic tasks (including TRADER, FARMER, and DOCTOR) and a real-
world case study (BERMUDA). For each task, we generate 1000 samples from the underlying SCM
to form the observational data and repeat the experiments ten times. The details of the tasks are
provided in Appendix A due to space limitation.

Baselines. We compare six methods for selecting alterations: (1) OBSERVE: a baseline that only
observes without altering variables; (2) MAX-ONE: selects the single variable with the highest AUF
probability for alteration, as described in Equation (1); (3) MAX-ALL: selects all actionable variables
for alteration, as described in Equation (2); (4) MIS: alters a variable if it belongs to the minimal
intervention set defined in Lee & Bareinboim (2018); (5) VOC: alters a variable when doing so
increases the AUF probability of altering the next variable (Everitt et al., 2021); and (6) OURS: uses
MCTS to perform 1000 iterations to determine whether and how to alter variables based on influence
power. The parameter α is set to

√
2 by default following Kocsis & Szepesvári (2006). For fair

8
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Figure 3: Convergence of the approximation of influence power (InP) and error rates (%) versus the
number of MCTS iterations. The deviation of the approximated influence power to the exact value of
influence power continues to decrease after the convergence of error rates in all cases.

TASK OBSERVE MAX-ONE MAX-ALL MIS VOC OURS

TRADER 38.34 ± 3.69 50.22 ± 5.90 50.50 ± 5.69 50.55 ± 7.36 53.20 ± 7.27 62.11 ± 9.05

FARMER 11.03 ± 4.66 56.32 ± 13.89 56.60 ± 12.98 56.70 ± 13.59 57.17 ± 13.86 57.94 ± 12.54

DOCTOR 39.47 ± 4.87 50.83 ± 5.36 50.64 ± 5.32 51.31 ± 6.41 53.72 ± 4.05 65.69 ± 8.06

Table 1: Success rates (%) of six different methods for three synthetic tasks.

TASK 10 50 100 500 1000 5000

TRADER 43.42 ± 5.97 50.06 ± 6.11 49.27 ± 9.59 59.48 ± 10.70 62.11 ± 9.05 62.39 ± 9.37

FARMER 20.21 ± 10.29 31.39 ± 9.83 53.32 ± 14.24 56.54 ± 14.05 57.94 ± 12.54 56.46 ± 14.00

DOCTOR 43.86 ± 4.78 42.56 ± 3.99 48.58 ± 7.29 64.48 ± 9.60 65.69 ± 8.06 66.26 ± 6.66

Table 2: Success rates (%) of our method with different sample sizes for three synthetic tasks.

TASK 0.01 0.1 0.5 1.0 2.0 10.0

TRADER 55.84 ± 7.69 58.08 ± 7.45 60.15 ± 4.37 61.04 ± 5.48 62.73 ± 5.40 59.04 ± 3.92

FARMER 55.79 ± 11.46 55.95 ± 14.66 57.93 ± 13.46 57.36 ± 12.75 56.22 ± 13.36 55.50 ± 13.86

DOCTOR 58.31 ± 5.93 59.90 ± 5.68 66.75 ± 7.14 65.92 ± 9.06 65.60 ± 6.11 58.22 ± 5.36

Table 3: Success rates (%) of our method with different α for three synthetic tasks.

comparison, the feasible domain for each actionable variable is set to be {0, 1} and the number of
actionable variables is set to 3 for all methods in synthetic tasks. The performance of each method
is evaluated by the success rate, i.e., the frequency of the target variable successfully achieving the
desired domain after performing alterations on the suggested variables.

Figure 3 shows the convergence of approximating influence power. The plot depicts the deviation of
the approximated value for the first actionable variable, measured as the absolute difference from the
corresponding exact value. The error rate represents the frequency of inconsistencies between the
suggested alterations based on the approximated value and the exact value. In all cases, the error rate
decrease as T increases, demonstrating the effectiveness of MCTS in approximating influence power.
Notably, the deviation continues to decrease after the error rate has converged to zero, demosntrating
that our method is useful when the MEP terms are not approximated very perfectly.

Table 1 compares our method with baselines. We observe that our method consistently outperforms
existing methods in most cases. These results demonstrate the superiority of the proposed method in
guiding alterations for AUF tasks. In the FARMER task, various methods perform comparably. This is
because the target variable in this specific task is influenced by a single critical variable, which all five
methods correctly determined. Table 2 investigates the impact of sample size on the effectiveness of
our method. The performance generally improves as the sample size increases. Notably, the success
rates exhibit a rapid growth initially and begin to plateau, stabilizing around 1,000 samples across
the tasks. The sensitivity of the hyperparameter α is reported in Table 3. The results indicate robust
performance for values between 0.5 and 2.0, where the method achieves consistently high success
rates. Extreme values (too small, e.g., 0.01, or too large, e.g., 10.0) degrade performance.
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TASK OBSERVE MAX-ONE MAX-ALL MIS VOC OURS

BERMUDA 2.36 ± 0.50 61.22 ± 0.91 72.68 ± 2.60 75.06 ± 1.67 63.44 ± 0.37 78.45 ± 0.56

Table 4: Success rates (%) of six different methods for the BERMUDA task.

Furthermore, we experiment with BERMUDA, a real-world application to further evaluate the utility
of our method. As presented in Table 4, our method achieves the highest performance with a success
rate of 78.45%, surpassing the second-best baseline by a clear margin. These results demonstrate that
our approach remains robust and effective in a complex real-world scenario involving non-binary
variables, where it consistently outperforms existing methods.

6 RELATED WORK

Many efforts have been dedicated to identify causal structures and causal effects from observational
data in the literature (Verma & Pearl, 1991; Cooper & Herskovits, 1992; Heckerman et al., 1995;
Zheng et al., 2018; Lorch et al., 2021). Apart from the average causal effect (Rosenbaum & Rubin,
1983; Holland, 1988), there are various other quantities for measuring causal strength such as analysis
of variance (Northcott, 2008) or other approaches (Janzing et al., 2013; Jung et al., 2022). We
primarily focus on comparing with average causal effects, as it is a popular and canonical measure
of causal strength in the literature. The comparison regarding other measures of causal strength
would be similar and left for future work. We also note that researchers have proposed various
ways of quantifying the strength of causal contributions, sometimes referred to as “causal influence”
(Rosenbaum & Rubin, 1983; Holland, 1988; Janzing et al., 2013; Heskes et al., 2020). Different
notions of influence coexist for good reason, as they formalize different perspectives on different
goals (Janzing et al., 2024). Much of the prior work has focused on quantifying intrinsic causal
contributions, i.e., the degree to which various factors “explain” the variance of a target variable,
which is valuable for attribution and scientific understanding. This work, in contrast, focuses on
quantifying practical utility for decision-making in the AUF problem.

This work is essentially distinct from approaches based on counterfactual reasoning (Pearl, 2009;
Halpern, 2015; Karimi et al., 2021; Tsirtsis et al., 2021). While counterfactuals generally involve
reasoning about the past (i.e., what would have happened, had we chosen differently at a point in
the past (Pearl et al., 2016)), the AUF problem is forward-looking (i.e., planning for the future).
Although some approaches share connections with the Bellman equation (Zhang & Bareinboim,
2019; Tsirtsis et al., 2021), they differ in objective and formalization. Specifically, unlike methods
that maintain a strict distinction between state and action variables, our framework treats all variables
uniformly as random variables; one can choose to alter (set the value) or explicitly refrain from
altering (letting it occur naturally). In addition, we estimate AUF probabilities from observational
data without assuming a known causal structure. Besides, compared to concepts like value of control
(VoC) (Everitt et al., 2021), which typically assumes that a decision node has no “natural value” and
restricts decisions to a single node, our formulation accommodates an arbitrary number of actionable
variables with natural generation processes. Additional related works are discussed in Appendix D.

7 CONCLUSION

In this paper, we aim to measure the influence of actionable variables in avoiding the undesired future.
Drawing on intuitive considerations, we introduce a novel quantity called influence power, designed
to evaluate the extent to which variables can be manipulated in increasing the AUF probability under
the principle of maximum expected utility. While closely related to causal effects, our analysis reveals
a counterintuitive insight that non-ancestral variables can have non-trivial influence power on the
future target. We further provide a practical implementation based on a Monte Carlo-based method
to estimate the probability terms in the proposed quantity using observational data, facilitating the
efficient approximation of influence power. Experiments on synthetic and real-world tasks validate
the utility of our framework in suggesting alterations for addressing the AUF problem.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide detailed references to experimental setups and
theoretical assumptions. Regarding the empirical evaluation, the experimental setups are outlined in
Section 5, while comprehensive details, including task specifications, data generation processes, and
exact hyperparameter configurations, are documented in Appendix A. The implementation leverages
the DOWHY library (Sharma & Kiciman, 2020; Blöbaum et al., 2024), and the code to reproduce
our results will be made publicly available upon publication. On the theoretical side, the problem
definitions and assumptions are clarified in Section 2 and the remark following Proposition 1, with
complete proofs for all claims provided in Appendix C.
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Patrick Blöbaum, Peter Götz, Kailash Budhathoki, Atalanti A. Mastakouri, and Dominik Janzing.
Dowhy-gcm: An extension of dowhy for causal inference in graphical causal models. Journal of
Machine Learning Research, 25(147):1–7, 2024. URL http://jmlr.org/papers/v25/
22-1258.html.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey
of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in
games, 4(1):1–43, 2012.

Gregory F Cooper and Edward Herskovits. A bayesian method for the induction of probabilistic
networks from data. Machine learning, 9:309–347, 1992.

Travis A Courtney, Mario Lebrato, Nicholas R Bates, Andrew Collins, Samantha J De Putron,
Rebecca Garley, Rod Johnson, Juan-Carlos Molinero, Timothy J Noyes, Christopher L Sabine,
et al. Environmental controls on modern scleractinian coral and reef-scale calcification. Science
advances, 3(11):e1701356, 2017.

James E Driskell, Carolyn Copper, and Aidan Moran. Does mental practice enhance performance?
Journal of applied psychology, 79(4):481, 1994.

Wen-Bo Du, Tian Qin, Tian-Zuo Wang, and Zhi-Hua Zhou. Avoiding undesired future with min-
imal cost in non-stationary environments. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

Wen-Bo Du, Hao-Yi Lei Lei, Lue Tao, Tian-Zuo Wang, and Zhi-Hua Zhou. Enabling optimal
decisions in rehearsal learning under care condition. In International Conference on Machine
Learning, 2025.

11

http://jmlr.org/papers/v25/22-1258.html
http://jmlr.org/papers/v25/22-1258.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tom Everitt, Ryan Carey, Eric D Langlois, Pedro A Ortega, and Shane Legg. Agent incentives: A
causal perspective. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp.
11487–11495, 2021.

Joseph Y Halpern. A modification of the halpern-pearl definition of causality. In Proceedings of the
24th International Conference on Artificial Intelligence, pp. 3022–3033, 2015.

David Heckerman, Dan Geiger, and David M Chickering. Learning bayesian networks: The combi-
nation of knowledge and statistical data. Machine learning, 20:197–243, 1995.

Tom Heskes, Evi Sijben, Ioan Gabriel Bucur, and Tom Claassen. Causal shapley values: Exploiting
causal knowledge to explain individual predictions of complex models. In Advances in neural
information processing systems, volume 33, pp. 4778–4789, 2020.

Paul W Holland. Causal inference, path analysis and recursive structural equations models. ETS
Research Report Series, 1988(1):i–50, 1988.

Dominik Janzing, David Balduzzi, Moritz Grosse-Wentrup, and Bernhard Schölkopf. Quantifying
causal influences. The Annals of Statistics, 41(5):2324–2358, 2013.
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A DETAILED SETTINGS

Our experiments are conducted using Intel Xeon E-2288G CPUs, featuring 8 cores and 16 threads
with a frequency of 3.7 GHz. The implementation is based on DOWHY (Sharma & Kiciman, 2020;
Blöbaum et al., 2024). The code to reproduce our results will be made publicly available.

A.1 THE SYNTHETIC TASKS

The underlying SCM for the TRADER task governs the sequence of variables (V1, V2, V3, V4, Y )
through the following structural equations:

V1 := N1,

V2 := V1 ·N2 + (1− V1) · (1−N2),

V3 := V2 ·N3 + (1− V2) · (1−N3),

V4 := V3 ·N4 + (1− V3) · (1−N4),

Y := V4 · (1− V1) + (1− V4) ·NY ,

where the noise terms follow N1 ∼ Bern(ρ1), N2 ∼ Bern(ρ2), N3 ∼ Bern(ρ3), N4 ∼ Bern(ρ4),
and NY ∼ Bern(ρY ). To facilitate diversity across experimental trials, the task parameters are
independently and uniformly sampled from the following intervals: ρ1 ∈ [0.4, 0.6], ρi ∈ [0.7, 0.9]
for i ∈ {2, 3, 4}, and ρY ∈ [0.3, 0.5]. The variables V2, V3, and V4 are actionable with feasible
domains ∆V2

= ∆V3
= ∆V4

= {0, 1}. The variable V1 is not observed at the time of decision. The
desired domain is specified as S = {1}. Here, V1 represents the economic climate, and the chain
V2 → V3 → V4 models the progression from consumer demand to the final marketing strategy. The
target Y denotes quarterly profit, whose structural equation explicitly encodes the interaction between
strategy (V4) and environment (V1), implying that the profitability of a specific strategy relates to the
prevailing economic state. The objective is to determine the actionable variables to maximize profit.

The underlying SCM for the FARMER task governs the sequence of variables (V1, V2, V3, V4, Y )
thorough the following structural equations:

V1 := N1,

V2 := (1− V1) ·N2,

V3 := (1− V2) ·N3,

V4 := (1− V3) ·N4,

Y := V1 · V4 ·NY ,

where the noise terms follow N1 ∼ Bern(β1), N2 ∼ Bern(β2), N3 ∼ Bern(β3), N4 ∼ Bern(β4),
and NY ∼ Bern(βY ). To facilitate diversity across experimental trials, the task parameters are
independently and uniformly sampled from the following intervals: βi ∈ [0.60, 0.95] for i ∈
{1, 2, 3, 4}, and βY ∈ [0.60, 0.95]. The variables V2, V3, and V4 are actionable with feasible domains
∆V2

= ∆V3
= ∆V4

= {0, 1}. The variable V1 is not observed at the time of decision. The desired
domain is specified as S = {1}. In this context, V1 represents sunlight exposure, while the chain
V2 → V3 → V4 models the natural water cycle affecting the soil. Specifically, intense sunlight (V1)
naturally reduces precipitation (V2), which in turn increases evaporation (V3), ultimately leading to
low soil moisture (V4). The target Y denotes crop yield. The structural equation for Y explicitly
encodes the essential interaction between light (V1) and water (V4), implying that high productivity
requires the simultaneous presence of both sunlight and adequate soil moisture. The objective is to
determine the actionable variables to maximize crop yield.

The underlying SCM for the DOCTOR task governs the sequence of variables (V1, V2, V3, V4, Y )
thorough the following structural equations:

V1 := N1,

V2 := N2,

V3 := V1 · V2 · (1−N3),

V4 := N4,

Y := V4 · (1− V1) + (1− V4) ·NY ,

14
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where the noise terms follow N1 ∼ Bern(γ1), N2 ∼ Bern(γ2), N3 ∼ Bern(γ3), N4 ∼ Bern(γ4),
and NY ∼ Bern(γY ). To facilitate diversity across experimental trials, the task parameters are
independently and uniformly sampled from the following intervals: γ1 ∈ [0.4, 0.6], γi ∈ [0.1, 0.3] for
i ∈ {2, 3, 4}, and γY ∈ [0.3, 0.5]. The variables V2, V3, and V4 are actionable with feasible domains
∆V2

= ∆V3
= ∆V4

= {0, 1}. The variable V1 is not observed at the time of decision. The desired
domain is specified as S = {1}. In this context, V1 represents the drug intolerance (or allergy gene),
while V2 represents an environmental trigger. V3 denotes a symptom (e.g., a rash), which serves as a
diagnostic indicator. The structural equation for V3 implies that the symptom manifests primarily
when both the intolerance (V1) and the trigger (V2) are present. V4 represents the administration of a
potent drug. The target Y denotes patient recovery. The equation for Y captures a critical medical
contraindication: the drug (V4) is effective for the general population (V1 = 0) but is harmful or fatal
to patients with the intolerance (V1 = 1). The objective is to determine the actionable variables to
maximize patient recovery.

A.2 THE BERMUDA TASK

The BERMUDA case study is derived from a real-world scenario involving the management of net
coral ecosystem calcification in Bermuda, where environmental variables are recorded (Aglietti et al.,
2020). The sequence of variables in this task are listed as follows:

• Light: bottom light levels;

• Tem: bottom temperature;

• Sal: sea surface salinity;

• DIC: seawater dissolved inorganic carbon;

• TA: seawater total alkalinity;

• ΩA: seawater saturation with respect to aragonite;

• Nut: PC1 of NH4, NiO2 + NiO3, SiO4;

• Chlα: sea surface chlorophyll-a;

• pHsw: seawater pH;

• PCO2
: seawater PCO2

;

• NEC: net ecosystem calcification.

The causal graph governing these variables is adopted from Courtney et al. (2017) and is illustrated
in Figure 4. Consistent with previous studies Aglietti et al. (2020); Qin et al. (2023), the structural
equations were obtained by performing linear regression on the 50 observations provided by An-
dersson & Bates (2018), and there are five actionable variables including DIC, TA, ΩA, Nut, and

Light

Tem

Sal

DIC

TA

Nut

PCO2

pHsw

ΩA

Chlα

NEC

Figure 4: The causal graph for the BERMUDA task.
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Chlα. Other variables are not observed at the time of decision. To ensure compatibility with our
method, we discretize the continuous variables by dividing their value ranges into six equal-width
bins. Accordingly, the feasible domains for alterations are set to {−2.5,−1.5,−0.5, 0.5, 1.5, 2.5}.
The desired domain is specified as S = [1, 2]. The objective is to determine which variables to alter
in order to achieve a net ecosystem calcification (NEC) within the desired range, thereby promoting
coral reef health and resilience.

B PROOF OF THEOREM 1

Theorem 1. Let X and Y be two endogenous variables in an SCM. The following statements hold:

1. X ∈ Anc(Y ) ≠⇒ ṗ(X,Y ) ̸= 0 and ṗ(X,Y ) ̸= 0 ≠⇒ X ∈ Anc(Y );

2. τ(X,Y ) ̸= 0 ≠⇒ ṗ(X,Y ) ̸= 0 and ṗ(X,Y ) ̸= 0 ≠⇒ τ(X,Y ) ̸= 0;

3. τ(X,Y ) ̸= 0 ≠⇒ ṗ(X,Y ) ≥ 0 and X ∈ Anc(Y ) ≠⇒ ṗ(X,Y ) ≥ 0.

Proof. We prove each statement separately by constructing a counterexample.

Statement (a): X ∈ Anc(Y ) ≠⇒ ṗ(X,Y ) ̸= 0.

To show that X ∈ Anc(Y ) does not imply ṗ(X,Y ) ̸= 0, it suffices to provide a case where a variable
is an ancestor of another, yet its influence power on the latter is zero.

Consider the following SCM over the sequence of variables (V1, Y ):

V1 := N1,

Y := V1 ·NY + (1− V1) · (1−NY ),

where N1 ∼ Bern(0.5), NY ∼ Bern(0.5), V1 is actionable with ∆V1
= {0, 1}, and the desired

domain for Y is S = {1}.

In the SCM, we have
V1 ∈ Anc(Y ),

and
ṗ(V1, Y ) = maxv1∈∆V1

P(Y = 1|V1 :− v1)− Ev1∼P (V1)P(Y = 1|V1 = v1)

= maxv1∈∆V1
P (Y = 1|V1 :− v1)− P (Y = 1)

= max{0.5, 0.5} − 0.5

= 0.

Thus, an ancestral relationship in the SCM does not imply non-zero influence power.

Statement (b): τ(X,Y ) ̸= 0 ≠⇒ ṗ(X,Y ) ̸= 0.

To show that τ(X,Y ) ̸= 0 does not imply ṗ(X,Y ) ̸= 0, it suffices to provide a case where a variable
has a non-zero average causal effect on another, yet its influence power on the latter is zero.

Consider the following SCM over the sequence of variables (V1, V2, Y ):

V1 := N1,

V2 := V1 ·N2 + (1− V1) · (1−N2),

Y := V2 ·NY + (1− V2) · (1−NY ),

where N1, N2, NY
iid∼ Bern(0.9), V1 and V2 are actionable with ∆V1

= ∆V2
= {0, 1}, and the

desired domain for Y is S = {1}. This SCM corresponds to Example 1 in the main text.

In the SCM, we have

τ(V1, Y ) = P (Y = 1|V1 :− 1)− P (Y = 1|V1 :− 0)

= 0.82− 0.18

= 0.64,
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and
ṗ(V1, Y ) = maxv1∈∆V1

P(Y = 1|V1 :− v1)− Ev1∼P (V1)P(Y = 1|V1 = v1)

= max
v1∈∆V1

max
v2∈∆V2

P (Y = 1|V2 :− v2, V1 :− v1)

− Ev1∼P (V1) max
v2∈∆V2

P (Y = 1|V2 :− v2, V1 = v1)

= max{0.9, 0.9} − 0.9

= 0.

Thus, a non-zero average causal effect in the SCM does not imply non-zero influence power.
We also note that Statement (b) implies Statement (a), as τ(X,Y ) ̸= 0 implies X ∈ Anc(Y ).

Statement (c): ṗ(X,Y ) ̸= 0 ≠⇒ τ(X,Y ) ̸= 0.

To show that ṗ(X,Y ) ̸= 0 does not imply τ(X,Y ) ̸= 0, it suffices to provide a case where a variable
has non-zero influence power on another, yet its average causal effect on the latter is zero.

Consider the following SCM over the sequence of variables (V1, V2, Y ):

V1 := N1,

V2 := (1− V1) ·N2,

Y := V1 · V2 ·NY ,

where N1, N2, NY
iid∼ Bern(0.5), V1 and V2 are actionable with ∆V1

= ∆V2
= {0, 1}, and the

desired domain for Y is S = {1}. This SCM corresponds to Example 3 in the main text.

In the SCM, we have

τ(V1, Y ) = P (Y = 1|V1 :− 1)− P (Y = 1|V1 :− 0)

= 0.82− 0.18

= 0.64,

and
ṗ(V1, Y ) = maxv1∈∆V1

P(Y = 1|V1 :− v1)− Ev1∼P (V1)P(Y = 1|V1 = v1)

= max
v1∈∆V1

max
v2∈∆V2

P (Y = 1|V2 :− v2, V1 :− v1)

− Ev1∼P (V1) max
v2∈∆V2

P (Y = 1|V2 :− v2, V1 = v1)

= max{0, 0.5} − 0.25

= 0.25.

Thus, non-zero influence power does not imply a non-zero average causal effect in the SCM.

Statement (d): ṗ(X,Y ) ̸= 0 ≠⇒ X ∈ Anc(Y ).

To show that ṗ(X,Y ) ̸= 0 does not imply X ∈ Anc(Y ), it suffices to provide a case where a variable
has non-zero influence power on another, yet it is not an ancestor of the latter.

Consider the following SCM over the sequence of variables (V1, V2, V3, V4, Y ):

V1 := N1,

V2 := N2,

V3 := V1 · V2 · (1−N3),

V4 := N4,

Y := V4 · (1− V1) + (1− V4) ·NY ,

where N1 ∼ Bern(0.5), N2, N3, N4
iid∼ Bern(0.1), NY ∼ Bern(0.4), V2, V3, and V4 are actionable

with ∆V2
= ∆V3

= ∆V4
= {0, 1}, and the desired domain for Y is S = {1}. This SCM corresponds

to Example 2 in the main text.

In the SCM, we have
V2 /∈ Anc(Y ),
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and

ṗ(V2, Y ) = maxv2∈∆V2
P(Y = 1|V2 :− v2)− Ev2∼P (V2)P(Y = 1|V2 = v2)

= max
v2∈∆V2

max
{

max
v3∈∆V3

P(Y = 1|V3 :− v3, V2 :− v2),

Ev3∼P (V3|V2:−v2)P(Y = 1|V3 = v3, V2 :− v2)
}

− Ev2∼P (V2) max
{

max
v3∈∆V3

P(Y = 1|V3 :− v3, V2 = v2),

Ev3∼P (V3|V2=v2)P(Y = 1|V3 = v3, V2 = v2)
}

= max
v2∈∆V2

Ev3∼P (V3|V2:−v2)P(Y = 1|V3 = v3, V2 :− v2)

− Ev2∼P (V2)Ev3∼P (V3|V2=v2)P(Y = 1|V3 = v3, V2 = v2)

= max
v2∈∆V2

Ev3∼P (V3|V2:−v2) max
v4∈∆V4

P (Y = 1|V4 :− v4, V3 = v3, V2 :− v2)

− Ev2∼P (V2)Ev3∼P (V3|V2=v2) max
v4∈∆V4

P (Y = 1|V4 :− v4, V3 = v3, V2 = v2)

= 0.68− 0.518

= 0.162.

Thus, non-zero influence power does not imply an ancestral relationship in the SCM.
We also note that Statement (d) implies Statement (c), as X /∈ Anc(Y ) implies τ(X,Y ) = 0.

Statement (e): X ∈ Anc(Y ) ≠⇒ ṗ(X,Y ) ≥ 0.

To show that X ∈ Anc(Y ) does not imply ṗ(X,Y ) ≥ 0, it suffices to provide a case where a variable
is an ancestor of another, yet its influence power on the latter is negative.

Consider the following SCM over the sequence of variables (V1, V2, Y ):

V1 := N1,

V2 := (1− V1) ·N2,

Y := (V1 ⊕ V2) ·NY ,

where N1 ∼ Bern(0.5), N2, NY
iid∼ Bern(0.8), V2 is actionable with ∆V2

= {0, 1}, and the desired
domain for Y is S = {1}.

In the SCM, we have
V2 ∈ Anc(Y ),

and
ṗ(V2, Y ) = maxv2∈∆V2

P(Y = 1|V2 :− v2)− Ev2∼P (V2)P(Y = 1|V2 = v2)

= maxv2∈∆V2
P (Y = 1|V2 :− v2)− P (Y = 1)

= max{0.4, 0.4} − 0.72

= −0.32.

Thus, an ancestral relationship in the SCM does not imply non-negative influence power.

Statement (f): τ(X,Y ) ̸= 0 ≠⇒ ṗ(X,Y ) ≥ 0.

To show that τ(X,Y ) ̸= 0 does not imply ṗ(X,Y ) ≥ 0, it suffices to provide a case where a variable
has a non-zero average causal effect on another, yet its influence power on the latter is negative.

Consider the following SCM over the sequence of variables (V1, V2, V3, Y ):

V1 := N1,

V2 := V1 ·N2 + (1− V1) · (1−N2),

V3 := V2 ·N3 + (1− V2) · (1−N3),

Y := V3 · (1− V1) + (1− V3) ·NY ,
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where N1 ∼ Bern(0.5), N2, N3
iid∼ Bern(0.9), NY ∼ Bern(0.4), V2 and V3 are actionable with

∆V2
= {0, 1} and ∆V3

= {0, 1}, and the desired domain for Y is S = {1}. This SCM corresponds
to Example 4 in the main text.

In the SCM, we have
τ(V2, Y ) = P (Y = 1|V2 :− 1)− P (Y = 1|V2 :− 0)

= 0.49− 0.41

= 0.08,

and
ṗ(V2, Y ) = maxv2∈∆V2

P(Y = 1|V2 :− v2)− Ev2∼P (V2)P(Y = 1|V2 = v2)

= max
v2∈∆V2

max
v3∈∆V3

P (Y = 1|V3 :− v3, V2 :− v2)

− Ev2∼P (V2) max
v3∈∆V3

P (Y = 1|V3 :− v3, V2 = v2)

= max{0.5, 0.5} − 0.65

= −0.15.

Thus, a non-zero average causal effect in the SCM does not imply non-negative influence power.
We also note that Statement (f) implies Statement (e), as τ(X,Y ) ̸= 0 implies X ∈ Anc(Y ).

C PROOF OF PROPOSITION 1

Proposition 1. Assume causal sufficiency, i.e., the joint distribution P (V, Y ) is induced by an
acyclic SCM M with mutually independent background noises, and positivity, i.e., P (Vi|PAi) > 0
in the support of P , ∀1 ≤ i ≤ d. Then, the expression in Equation (11) is consistent to the joint
probability dictated by the SCM MA where variables A are altered. Furthermore, the expression in
Equation (12) is consistent to the AUF probability dictated by the SCM MA where variables A are
altered and variables O are observed.

Proof. Recall from Equation (11), the joint distribution conditioned on the alteration set Â is ex-
pressed as P (X|Â) =

∏
Xi∈A δ(Xi)

∏
Xi∈X\A P (Xi|X1, . . . , Xi−1). As the sequence is topologi-

cally consistent with the underlying SCM, and the SCM is assumed to be acyclic, the value of each vari-
able Xi depends solely on its parents PAi. Consequently, P (Xi|X1, . . . , Xi−1) = P (Xi|PAi). Sub-
stituting this back into the product shows that P (X|Â) =

∏
Xi∈A δ(Xi)

∏
Xi∈X\A P (Xi|PAi). By

invoking the manipulation theorem (i.e., Theorem 3.6 in Spirtes et al. (2000)), we have that P (X|Â)

is exactly the probability of X under alteration of A. Moreover, the quantity P (Y ∈ S|Â,O) in
Equation (12) is fully determined by P (X|Â), and therefore Equation (12) indeed gives to the true
AUF probability dictated by the underlying SCM.

D ADDITIONAL RELATED WORK

The rehearsal paradigm was introduced by Zhou (2022), building on the concept of influence (Zhou,
2023), This paradigm advocates for mentally simulating future possibilities in order to find alterations
that positively influence the future target before making a final decision. This is analogous to how
human cognitive process prepares for future events (Driskell et al., 1994). Motivated by this, Qin
et al. (2023) proposed the first rehearsal learning approach, wherein the restriction of directionality
is relaxed and structural rehearsal models capable of accommodating bi-directional interactions
are developed. Several subsequent studies have addressed issues such as non-stationarity and non-
linearity in rehearsal learning (Du et al., 2024; Qin et al., 2025), requiring that the structure of the
underlying equations are provided by experts. Besides, while the forward-looking decision-making
problem is also conceptually related to markov decision processes in reinforcement learning (Sutton
& Barto, 2018), a key distinction is that the AUF problem operates under a “no going back” constraint.
Unlike in many RL settings where an agent can revisit states, the past variables cannot be changed in
our context. Our approximation method is particularly inspired by Monte Carlo Tree Search (MCTS)
(Browne et al., 2012), which excel at planning in large state spaces by simulating future trajectories,
making them well-suited for the challenges of the AUF problem.
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