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Abstract

Large dataset requirements for deep learning methods can pose a challenge in the medical
field, where datasets tend to be relatively small. Synthetic data can provide a suitable
solution to this problem, when complemented with real data. However current generative
methods normally require all data to be of the same resolution and, ideally, aligned to
an atlas. This not only creates more stringent restrictions on the training data but also
limits what data can be used for inference. To overcome this our work proposes a latent
diffusion model that is able to control sample geometries by varying their resolution, field of
view, and orientation. We demonstrate this work on whole body CT data, using a spatial
conditioning mechanism. We showcase how our model provides samples as good as an
ordinary latent diffusion model trained fully on whole body single resolution data. This is
in addition to the benefit of further control over resolution, field of view, orientation, and
even the emergent behaviour of super-resolution. We found that our model could create
realistic images across the varying tasks showcasing the potential of this application.

Keywords: Generative Modelling, Latent Diffusion Models, Multi-Resolution, Field of
View Invariant

1. Introduction

Deep learning methods have achieved remarkable growth in recent years in both natural
imaging and medical imaging analysis. Nevertheless deep learning methods are data-hungry,
and the size of publicly available medical datasets are much smaller than their natural image
counterparts. These sizes can be drastically smaller depending on the area of focus, with the
average dataset being less than 200 samples (Kiryati and Landau, 2021). This limitation is
also increased by the stringent data requirements for medical imaging. Most work requires
data to be of the same resolution aligned to an atlas, in addition to showcasing the same field
of view. This can consequently require large amounts of preprocessing and/or simplified
model design which can result in poor generalisation (Varoquaux and Cheplygina, 2022;
Decuyper et al., 2021; Dinsdale et al., 2022). A restriction we hope to overcome with our
proposed model invariant to such characteristics, as displayed in figure 1.

Being able to produce high quality synthetic data can provide the medical imaging
community a promising alternative to improve ones ability to carry out the appropriate
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Figure 1: Spatial Conditioning provided by generating any arbitrary affine transform grid that
showcases the mapping from a group space grid to a new space that defines the images orientation,
resolution and field of view. The coordinate grid is then concatenated to the input fed into the
diffusion model to control sampling. The three paths show a coarse affine coordinate grid to generate
a low resolution image (blue), a fine grained grid for high resolution image (green) and a rotated
fine grained image to create a rotated high resolution image (red).

research on larger scales (Jordon et al., 2020, 2022; Wang et al., 2021). The use of generative
models have shown a promising solution for this, by learning the probability density function
of the underlying training data, which they can then use to create new realistic examples.

Variational Autoencoders (VAEs) (Baur et al., 2020) are a simple baseline for generative
modelling in imaging, however they have been shown to produce blurry samples with a
number of better alternatives. Until recently, Generative Adversarial Networks (GANs) have
been at the forefront of generative modelling research (Creswell et al., 2017; Kwon et al.,
2019; Wang et al., 2020). However an added difficulty within medical imaging, especially
with 3D images, is the computational requirements. Further limitations of such networks
are commonly documented drawbacks, namely unstable training, mode collapse and failure
to converge (Kodali et al., 2017). In addition they are hard to guide via conditioning.

Recently diffusion models have shown great promise and development showing state-
of-the-art results for generating synthetic images, surpassing GANs in sample quality and
diversity (Dhariwal and Nichol, 2021). They have also been shown to effectively create
images based on various conditionings i.e. class-based, image and text-based (using tech-
niques like classifier-free guidance (Ho and Salimans, 2022)). Notable real-life examples
include Latent Diffusion Models (LDMs) (Rombach et al., 2021) and DALL-E (Ramesh
et al., 2021). Latent diffusion models specifically have shown promise in medical imaging
as they make use of an Autoencoder model to compress data, and then a diffusion model
to work on the compressed latent space. The work in (Pinaya et al., 2022) and (Graham
et al., 2023) showcases the use of LDMs in medical imaging for generative modelling and
out-of-distribution detection respectively displaying state-of-the-art results.

Even so, current methods in generative modelling lack in diversity of image geometry. In
medical imaging, they are all designed to generate images at a particular dimension, resolu-
tion and field-of-view. Models able to train and infer on varying data types be it resolution
and field-of-view is still a relatively new concept, however as demonstrated in (Patel et al.,
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2023), they can have a number of benefits including maximising data utilisation, reducing
data preprocessing and improving generalisability. As such being able to compliment such a
model and producing a generative model with the added flexibility of being able to control
the resolution, field-of-view and orientation can have significant benefits to further pursuing
the goal of a singular model with performance capabilities not limited to single group space.
To do so we should be modelling both the image and the affine mapping to a group space.

In this study we aim to showcase the use of a Latent Diffusion Model (LDM) with a
spatial conditioning that defines both the affine transform grid to a group space and voxel
sizing of an image that allows us to control the resolution of images generated, in additional
to the field-of-view and orientation. We demonstrate this work on a dataset of 1014 3D
whole body CT scans. We showcase that the addition of this spatial conditioning still
generates samples with comparable quality to an LDM trained only on whole body images
of one resolution, but with the added benefit of control over the generation. Additionally,
without specifically training for such a task, we show a unique emergent behaviour by this
model for the downstream task of image super-resolution to any specified resolution.

2. Method

2.1. Generative Modelling

Our methodology is based around LDMs, which use an autoencoder-based model to com-
press input data into a lower-dimensional latent representation in conjunction with the gen-
erative modelling properties of a diffusion model. As we are working with high-dimensional
3D data, the compression model is an essential step. For this we trained a Vector Quantized-
Variational Autoencoder (van den Oord et al., 2017).

Vector Quantized-Variational Autoencoder: The VQ-VAE consists of an en-
coder part that maps an image x ∈ RH×W×D onto a compressed latent representation
z ∈ Rh×w×d×nz where nz is the latent embedding vector dimension. The compressed latent
representation z is then passed through a quantization block where each feature column vec-
tor is mapped to its nearest codebook vector via a euclidean distance metric. Each spatial
code zijl ∈ Rnz is then replaced by its nearest codebook element ek ∈ Rnz , k ∈ 1, ...,K where
K denotes the codebook vocabulary size, resulting in the quantized latent space zq. Given
zq, the VQ-VAE decoder then reconstructs the observations x̂ ∈ RH×W×D. In practice we
employ a VQ-GAN model (Esser et al., 2020), to produce higher quality reconstructions by
employing adversarial training. See appendix B for implementation details.

Denoising Diffusion Probabilistic Models: Once we have trained the VQ-GAN,
we can then train a Denoising Diffusion Probablistic Model (DDPM) (Ho et al., 2020) on
the sample latents (de-quantized latents). During training, noise is added to the latent z
with respect to a timestep t using a fixed Gaussian noise schedule defined by βt rendering
a noised sample zt such that:

q(zt|z0) = N
(
zt
√
ᾱtz0, (1− ᾱt) I

)
(1)

where z0 refers to a noise free latent z and 0 < t ≤ T . Additionally αt := 1 − βt and
ᾱt :=

∏t
s=1 αs. The aim is to generate a network that can perform the reverse process or

denoising process which can be presented as the Gaussian transition:

pθ (zt−1 | zt) = N (zt−1 | µθ (zt, t) ,Σθ (zt, t)) (2)
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From (Ho et al., 2020) we can train our network ϵθ(zt, t) to predict the noise directly
in the forward noising process, ϵ. We can then train with the simplified objective loss

L(θ) = Et,z0,ϵ

[
∥ϵ− ϵθ(zt)∥2

]
and denoise according to :

zt−1 =
1

√
αt

(
zt −

βt√
1− ᾱt

ϵθ(zt, t)

)
+ σtn (3)

where n ∼ N (0, I) and σt
2 = βt

For training, we use a noise schedule of T = 1000 with a scaled linear variance noise
schedule with β0 = 0.0015 and βT = 0.0195. See appendix C for implementation details.

2.2. Spatial Conditioning

As the VQ-GAN and DDPM are purely convolution, we are able to input data of varying
dimension i.e. allowing for data at varying resolution and FOVs. However this requires a
form of spatial conditioning that enables modelling of such geometric variations. To produce
images of varying resolution, FOV and orientation we need to model both the image and
the geometry of said image represented by the affine mapping of the given image to a group
space plus the grid size (or voxel dimensions). This affine transformation gives us an explicit
coordinate frame to work from to control the image generation.

VQ-VAE Spatial Conditioning: To control the generation we require a form of
conditioning to help the VQ-VAE encode and reconstruct data at varying resolutions and
also to help steer the denoising process in the DDPM. For this we take inspiration from
the work in CoordConv (Liu et al., 2018). This is further adapted to model more intricate
image geometries to essentially define any affine transform from one image to a group
space, as similarly explored in (Patel et al., 2023) for anomaly detection. This accounts for
some level of spatial awareness in the data fed into the models. A CoordConv layer is a
concatenation of channels to the input image referencing a predefined coordinate system.
After concatenation, the input can then be fed through any given convolutional layer as
normal. For a 3D image, we would thus have 3 coordinates, ijk, where the i coordinate
channel is a h × w × d rank-1 matrix with its first row filled with 0’s, second row with 1’s
and so on. This would then of course be the same for the j coordinate channel, but with
columns filled with constant values not rows, and likewise for the k channel in a depth-wise
fashion. These channels would then be normalised between [0,1]. The main utilisation
of the coordinate system in this work however is due to the 0-1 scale across the channels
regardless of image resolution. For example 2 whole body images of varied resolution and
dimensions would still have coordinate channels ranging from 0-1 along each axis, but with
differing increments between each voxel, thus conveying the notion of spatial resolution i.e.
showcasing the grid sizing of the affine. It was found in (Patel et al., 2023), that training
a VQ-VAE on images with large variations in resolution resulted in poor reconstructions,
and the coordinate channels helped to overcome this issue. Furthermore, we can further
adapt these coordinates to convey a notion of the field-of-view (FOV) present in the image.
It is common when working with various types of scans of the body, that a whole-body
scan is not always taken. This data can still be useful if we can provide a way for our
models to work with data of varying FOVs. We can convey this by adapting the 0-1 range
of the coordinate channels. In our case a whole body image (upper leg to neck in this work)
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represents our full range of [0,1], where in the axial plane 0 represents the bottom of the
body and 1 represents the top. We then contract the range to represent a different FOV,
i.e. perhaps [0.5,1] to showcase a scan of the upper body only. A graphic demonstration of
this can be found in Figure 2 also highlighting changes to the coordinate grid as a result of
a rotation. Note that while the proposed model assumes translation, scale and rotational
changes, as we are modelling the affine transform to a group space, this can be trivially
extended to a full affine mapping of the coordinate system including shearing.

Figure 2: Coordinate System for the axial channel displaying an example affine grid for whole-body
images at 2 different resolutions (top row), cropped (bottom left) and rotated (bottom right)

LDM Spatial Conditioning: To include the spatial conditioning in the DDPM, the
coordinate channels used in the VQ-GAN encoding, are downsampled to the size of the
latent space via an average pooling with kernel size and stride of 8 , equaivalent to the
downsampling applied in the VQ-GAN. This then gives us 3 spatial channels at the latent
dimension that define the affine and grid sizing in order to steer the generation process.
These channels are then concatenated as channels to the input to condition the generation.
For sampling, we define the extremes of the coordinate channels and desired dimension, for
which we can then linearly interpolate the intermediate values to give the conditioning.

2.3. Emergent Behaviour – Super-resolution

Further to the generative modelling capabilities of our model and as a result of our model
being able to control generation at varying resolutions, we showcase an emergent behaviour
of our model - super-resolution. This requires no further training and is purely an emergent
behaviour of the training mechanism and conditioning employed in this methodology. As
reported in the work of (Ho et al., 2020), different t values are responsible for modelling
different image features, with higher values associated with coarser features, and lower
t values responsible for finer details. We can take this information to define a suitable
denoising schedule to super-resolve an image. The method works by taking a low resolution
image, and upscaling it via a linear upscaling to the desired dimension we require. We then
encode this to get our latent space. At which point we partially noise the encoded image
and then proceed to denoise the image. Utilising the information that finer grained detailed
occur at lower t-values, and that the larger scale details are already present from the original
upscaled image we use a low t value of t = 100 chosen empirically from visualising samples
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qualitatively. It was found that higher t values eventually resulted in larger changes in
the structure of the CT image away from the original sample, although sample quality was
higher. To overcome this we repeated the noising and denoising process. The advantage
of this was to slowly improve the image resolution over cycles without deviating from the
original CT content. The final process chosen made use of 5 cycles of noising the image to
t= 100 and denoising. For this we use a Denoising Diffusion Implicit Model Scheduler which
does not add any noise during each denoising step to prevent the image moving away from
the original sample. One highlight of this emergent behaviour is that we did not require
any paired low and high resolution images, and additionally we are able to super-resolve
from any arbitrary resolution to any higher resolution.

3. Results

3.1. Experiment 1 - Generative Modelling

Table 1: Quantitative Results showcasing FID score for varying sample types

Experiment Baseline LDM Spatial Conditioned LDM

Whole Body High Resolution 0.0378 ±0.0032 0.0302 ±0.0036
Whole Body Medium Resolution 0.0406 ±0.0047 0.0414 ±0.0045
Whole Body Low Resolution 0.0712 ±0.0059 0.0562 ±0.0046
Upper Body Medium Resolution 0.0586 ±0.0059 0.0594 ±0.0063
Half Body Medium Resolution 0.0451 ±0.0052 0.0472 ±0.0041
Whole Body Rotated 0.0442 ±0.0048 0.0491 ±0.0057

Our first experiment is designed to demonstrate the generative modelling capabilities of
our method for both whole-body CT images at a fixed intermediate resolution in addition to
being able to generate images at varying resolutions, FOVs and orientation. Prior research
has showcased that LDMs display state-of-the-art performance for generative modelling,
and as such we will compare our results to that of an LDM identical in architecture to our
proposed method without any spatial conditioning, trained solely on whole body CT images
at a fixed resolution (192 × 192 × 208). To compare to our geometry invariant model, we
will take whole-body samples from the baseline LDM and apply transforms to generate the
desired sample i.e. via scaling, cropping and rotating. We aim to showcase that our model
showcases no performance degradation compared to a whole-body fixed resolution model.
This is complimented with the added benefit of being able to control sample attributes
without any reduction in sample quality. We test our model at 3 resolutions (96×96×104,
192 × 192 × 208 and 272 × 272 × 288), in addition to 2 partial body views and a rotated
orientation. To obtain quantitative metrics we use the Fréchet Inception Distance (FID)
(Heusel et al., 2017) to measure how realistic the synthetic images are, with smaller values
indicating images are more similar to the distribution of the real images. To calculate
these values, we followed a similar approach to (Sun et al., 2022), by extracting features
using a pretrained Med3D (Chen et al., 2019). For each experiment 1000 samples were
generated to calculate the FID scores. Statistical tests were carried out via bootstrapping,
and statistically significant findings (p < .01) are reported in bold in Table 1.
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Figure 3: Qualitative results of samples generated by the Baseline LDM, Spatially Conditioned LDM
and ground truth examples from training data

From table 1 we can generally see in cases where any scaling is required i.e. for the
low and high resolution whole body experiments, our model shows superior performance,
highlighting our model’s ability to generate more realistic images and avoid any inaccuracies
associated with resampling. With regards to the final three experiments that are simple
transforms of rotating or cropping, we see roughly equal performance between both models,
with our spatially conditioning LDM falling slightly short, albeit a statistically insignificant
difference. It is not expected that our model would outperform in this case due to the non-
intrusive transformations applied to the baseline, however this does showcase that under
these conditions, our model generates consistent and structurally sound samples with almost
no degradation in performance.

3.2. Experiment 2 - Super-resolution

Our second experiment showcases the emergent behaviour of our model for super-resolution
without further training. For this we showcase low resolution samples and super-resolve
them to 2 differing higher resolutions. For each sample we generate the super-resolved image
50 times and calculate the mean absolute error (MAE) between the original high resolution
image and the super resolved images, in addition to the standard deviation across samples.

We can see from Figure 4 that our model performs well to super-resolve the images to
different resolutions, with limited error. Generally most of the error can be seen around the
edges of large and higher intensity structures i.e. bone structures etc where finer detail is
lost in the low resolution image. The standard deviation maps also highlight areas of high
variation over each reconstruction. These maps are telling, as we can see from Figure 4 that
there is a high correlation between the standard deviation and the mean error. This shows
us that although there is some error, the model understands that it is uncertain around
these areas showcased by the correlated high standard deviation and error.
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Figure 4: Example samples super-resolved using LDM. Columns from left to right showcase: low
resolution image (1st), super-resolved image output (2nd), grounth truth high resolution image (3rd),
MAE map across reconstructions (4th), standard deviation map across reconstructions (5th). Top
sample is super-resolved from 104× 104× 112 to 272× 272× 288 and the bottom is super-resolved
from 88× 88× 96 to 192× 192× 208 in voxel dimensions.

4. Conclusion

In our study, we have shown to effectively train a latent diffusion model to generative
synthetic CT data at varying resolutions, fields of view and orientation. We showcase
that our model is equal in performance to that of a model trained only on whole body
data, with the necessary transforms applied post generation to produce a sample of given
resolution or field of view and orientation. Even so in cases where scaling would be required,
our model shows improved FID scores, showing greater consistency in the samples against
inaccuracies brought about by resampling. Furthermore we show as an emergent behaviour
of our training scheme, our model can be used to super-resolve images from any arbitrary
lower resolution to any higher resolution, whilst also maintaining some awareness of areas
of uncertainty and inaccuracies in the super-resolved images. This work brings to light the
efficacy and potential of modelling not only the image, but the image geometry, represented
by the affine to a group space with respective grid sizing to enable a better interaction
with varying image characteristics. We hope this works warrants further efforts into such
developments for a wider scope of applications in medical imaging.
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Appendix A. Data

The Data used for this work makes use of AutoPET (Gatidis et al., 2022; Clark et al., 2013)
(1014 scans). This data contains paired PET/CT whole body data for which we use the CT
data. The original voxel dimensions of this data are very high resolution at 0.8×0.8×2.5mm.
However to cater to memory restrictions and increase computational times and costs we
decided to resample all the data to 1.6× 1.6× 2.5mm dimensions. Additionally we clipped
all images to obtain the soft-tissue window of the CT images, although not a necessary
step, we found when visually and qualitatively assessing the images, this window made it
easier to assess image quality and would be more appropriate to demonstrate our results.
From the whole-body data, all images then had the full coordinate channels added to them
ranging from 0-1 across each dimension due to the whole body nature. Then during training
of both the VQ-VAE and DDPM, both random crops, random resizing and rotations. The
range of resolutions seen were such that for a whole body image the dimensions ranged from
272× 272× 288 at the highest resolution to 96× 96× 104 at the lowest resolution.

Appendix B. VQ-GAN Implementation

The VQ-VAE model was trained using a jukebox loss that is given as:

LV QV AE = ∥(x− x̂)∥22 + ∥|STFT (x)| − |STFT (x̂)|∥22 + β ∥ze(x)− sg[e]]∥22 + ∥sg[ze(x)]− e∥22 (4)

where sg stands for a stop gradient operator to stop gradients from flowing back into their
argument. The loss used from (Dhariwal et al., 2020) uses a spectral loss component that
is based on the magnitude of the Fourier Transformer of the original and reconstructed
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image. From equation 4 the first term seen is the L2 pixel loss, whilst the second term
represents the spectral loss between the original and reconstruction. Here SFTF stands
for the short-time Fourier transform. The third term is the commitment cost to ensure
the encoder commits to the codebook. The final term is to move the codebook embedding
vectors towards the encoder output. We replace this final term with an exponential moving
average update for the codebook as implemented in (van den Oord et al., 2017). During
training, a β of 0.25 was used.

To adjust the network to a VQ-GAN we additionally apply adversarial training with the
existing VQ-VAE architecture and losses. In doing so the loss function is further amended
to include a perceptual loss (Takaki et al., 2018) that helps to preserve spatial consistency,
making use of the lpips library (Zhang et al., 2018). This loss is randomly applied to 50%
of slices across each plane.

The architecture used for this work in the VQ-VAE makes use of an encoder with
three downsampling layers containing convolutions with stride 2 and kernels of size 4, each
followed by a ReLU activation and 3 residual blocks. Each residual block is made up of
convolutions with kernel size 3, followed by a ReLU, another convolution with kernel size
1 and another ReLU. The decoder architecture mirrors that of the encoder except that it
uses transposed convolutional layers with stride 2 and kernel size 4 for upscaling of the
image. This work made use of a VQ-VAE codebook with 512 atomic elements (vocabulary
size), each of length 8. An ADAM optimiser was used with a learning rate of 1e-4 and an
exponentional learning rate decay with a gamma of 0.9999. Training was run for 600 epochs
with a batch size of 3.

Appendix C. DDPM Implementation

The DDPM was trained following the objectives described in Section 2.1. For the baseline
and the spatially conditioned LDM the model consisted of 3 layers of downsampling with
128, 256 and 256 channels at each level respectively. Furthermore self-attention is applied at
the bottleneck of the network, i.e. after 3 layers of downsampling, applied with 8 attention
heads .

The models were trained for 6000 epochs with a learning rate of 2.5e−5 with an ADAM
optimiser. For the baseline input data underwent the following transforms: gaussian noise,
contrast adjustment, intensity shifts, translations, and elastic deformations. Similarly for
the proposed spatially conditioned model, in addition to these transforms, random crops,
resizing and rotations were used. For the range of resolutions seen during training, an
normally oriented whole body image had dimensions range from 272 × 272 × 288 at the
highest resolution to 96 × 96 × 104 at the lowest resolution. The codebase used for the
DDPM model makes use of the Monai Generative framework (Pinaya et al., 2023).
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