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Abstract

3D dense captioning aims to generate multiple cap-
tions localized with their associated object regions. Exist-
ing methods follow a sophisticated “detect-then-describe”
pipeline equipped with numerous hand-crafted components.
However, these hand-crafted components would yield sub-
optimal performance given cluttered object spatial and
class distributions among different scenes. In this pa-
per, we propose a simple-yet-effective transformer frame-
work Vote2Cap-DETR based on recent popular DEtection
TRansformer (DETR). Compared with prior arts, our
framework has several appealing advantages: 1) With-
out resorting to numerous hand-crafted components, our
method is based on a full transformer encoder-decoder ar-
chitecture with a learnable vote query driven object de-
coder, and a caption decoder that produces the dense cap-
tions in a set-prediction manner. 2) In contrast to the two-
stage scheme, our method can perform detection and cap-
tioning in one-stage. 3) Without bells and whistles, exten-
sive experiments on two commonly used datasets, ScanRe-
fer and Nr3D, demonstrate that our Vote2Cap-DETR sur-
passes current state-of-the-arts by 11.13% and 7.11% in
CIDEr@0.5IoU, respectively. Codes will be released soon.

1. Introduction
In recent years, works on 3D learning has grown dramat-

ically for various applications [10, 11, 21, 41, 42]. Among

them, 3D dense captioning [7, 13] requires a system to lo-

calize all the objects in a 3D scene and generate descrip-

tive sentences for each object. This problem is challenging,

given 1) the sparsity of point clouds and 2) the cluttered

distribution of objects.

3D dense captioning can be divided into two tasks, object

detection, and object caption generation. Scan2Cap [13],

MORE [20], and SpaCap3D [39] propose well-designed re-
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Figure 1. Illustration of existing two-stage 3D dense captioning
method (upper) and our Vote2Cap-DETR (bottom). Existing

methods adopt a two-stage pipeline that heavily depends on a de-

tector’s output. Therefore, we propose a transformer-based one-

stage model, Vote2Cap-DETR, that frames 3D dense captioning

as a set prediction problem.

lation reasoning modules to model relations among object

proposals efficiently. [48] introduces contextual information

from two branches to improve the caption. 3DJCG [4] and

D3Net [7] study the correlation between 3D visual ground-

ing and 3D dense captioning and point out that these two

tasks promote each other. Additionally, χ-Trans2Cap [43]

discusses how to transfer knowledge from additional 2d in-

formation to boost 3d dense captioning.

Among existing methods, they all adopt a two-stage

“detect-then-describe” pipeline [4, 7, 13, 20, 39, 48] (Fig-

ure 1). This pipeline first generates a set of object pro-

posals, then decodes each object by a caption generator

with an explicit reasoning procedure. Though these meth-

ods have achieved remarkable performance, the “detect-

then-describe” pipeline suffers from the following issues:

1) Because of the serial and explicit reasoning, the cap-

tioning performance highly depends on the object detection

performance, which limits the mutual promotion of detec-

tion and captioning. 2) The heavy reliance on hand-crafted

components, e.g., radii, 3D operators, the definition of pro-
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the final published version of the proceedings is available on IEEE Xplore.
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posal neighbors, and post-processing (non-maximum sup-

pression [28]) introduces additional hyper-parameters, lead-

ing to a sub-optimal performance given the sparse object

surfaces and cluttered object distributions among different

indoor scenes. This inspires us to design a one-stage 3D

dense captioning system.

To address the above issues, we propose Vote2Cap-

DETR, a full transformer encoder-decoder architecture for

one-stage 3D dense captioning. Unlike traditional “detect-

then-describe” pipelines, we directly feed the decoder’s out-

put into the localization head and caption head in paral-

lel. By casting 3D dense captioning as a set-to-set problem,

each target instance and its language annotation is matched

with a query in a one-to-one correspondence manner, en-

abling a more discriminative feature representation for pro-

posals to identify each distinctive object in a 3D scene. Ad-

ditionally, we also propose a novel vote query driven de-

coder to introduce spatial bias for better localization of ob-

jects in a cluttered 3D scene.

With fully attentional design, we resolve 3D dense cap-

tioning with the following innovations: 1) Our method

treats the 3D dense captioning task as a set prediction prob-

lem. The proposed Vote2Cap-DETR directly decodes the

features into object sets with their locations and correspond-

ing captions by applying two parallel prediction heads. 2)

We propose a novel vote decoder by reformulating the ob-

ject queries in 3DETR into the format of the vote query,

which is a composition of the embeddings of the seeds

point and the vote transformation with respect to the seeds.

This indicates the connection between the vote query in

Vote2Cap-DETR with the VoteNet, but with better local-

ization and higher training efficiencies; 3) We develop a

novel query driven caption head, which absorbs the rela-

tion and attribute modeling into self- and cross-attention, so

that it can look into both local and global contexts for better

scene description. Extensive experiments on two commonly

used datasets, ScanRefer and Nr3D, demonstrate that our

approach surpasses prior arts with many hand-crafted pro-

cedures by a large margin, which demonstrates the superi-

ority that fully transformer architecture with sophisticated

vote head and caption head can inspire many 3D vision and

language tasks.

To summarize, the main contributions of this work in-

clude:

• We propose a novel one-stage and fully attention

driven architecture for 3D dense captioning as a set-

to-set prediction problem, which achieves object local-

ization and caption generation in parallel.

• Extensive experiments show that our proposed

Vote2Cap approach achieves a new state-of-the-art

performance on both Nr3D [1] (45.53% C@0.5) and

ScanRefer [13] (73.77% C@0.5).

2. Related Work

We briefly summarize works on 3D and video dense cap-

tioning, and DETR-based methods for images and 3D point

clouds. Additionally, we also introduce some methods for

image captioning, which are closely related to our work.

3D and Video Dense Captioning. 3D dense captioning,

a task that requires translating 3D scene information to a

set of bounding boxes and natural language descriptions,

is challenging and has raised great interest among schol-

ars recent years. Scan2Cap [13] and MORE [20] build

graph on a detector’s [19, 32] box estimations with hand-

crafted rules for complex relation reasoning among objects

in a 3D scene. SpaCap3D [39] build a spatiality-guided

transformer to model spatial relations among the detector’s

output. 3DJCG [4] and D3Net [7] study the joint pro-

motion of 3D dense captioning and 3D visual grounding.

χ-Trans2Cap [43] introduces additional 2D prior to com-

plement information for 3D dense captioning with knowl-

edge transfer. Recently, [48] shifts attention to contextual

information for the perception of non-object information.

Though these approaches have made great attempts at 3D

dense captioning, they all follow a “detect-then-describe”

pipeline, which heavily depends on a detector’s perfor-

mance. Our proposed Vote2Cap-DETR differs from exist-

ing works in that our method is a one-stage model that de-

tects and generates captions in parallel and treats 3D dense

captioning as a set prediction problem. Video dense cap-

tioning requires a model to segment and describe video clips

from an input video. [40, 49] propose transformer architec-

ture for end-to-end video dense captioning. In this paper,

we design elements specially for 3D dense captioning, such

as vote queries for better localization in sparse 3D space and

the utilization of local contextual information through cross

attention for informative object description.

DETR: from 2D to 3D. DEtection Transformer(DETR) [5]

is a transformer [37] based architecture that treats object de-

tection as a set prediction problem and does not require non-

maximum suppression [28] for post-processing. Though

great results have been achieved, DETR suffers from slow

convergence. Many follow-up works [9, 16, 18, 26, 44, 50]

put efforts on speeding up DETR’s training by introduc-

ing multi-scale features, cross attention designs, and la-

bel assignment techniques. Researchers also attempt to in-

troduce transformer architectures to 3D object detection.

GroupFree3D [24] learns proposal features from the whole

point cloud through the transformer rather than grouping

local points. 3DETR [27] analyzes the potential of the

standard transformer model and generates proposals by uni-

formly sampling seed points from a 3D scene. In our work,

we extend the DETR architecture for 3D dense captioning

that makes caption generation and box localization fully in-

terrelated with parallel decoding. Additionally, we propose
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vote query for better performance and faster convergence.

Image Captioning. Image captioning requires a model to

generate sentences describing key elements in an image,

which has become a hot topic in computer vision. Exist-

ing image captioning works adopt an encoder-decoder ar-

chitecture, where the decoder generates sentences from vi-

sual features extracted by the encoder. [2, 14, 17, 30] adopt

a detector to extract region features as visual clues for the

decoder, while [23,46] extract grid features directly from an

image. Additionally, [29] generates captions from both re-

gion and grid visual features. Though these methods are ef-

fective in image captioning, they cannot be directly applied

to 3D dense captioning since it requires describing each 3D

object in a scene with respect to its surroundings. In con-

trast, our proposed caption head sufficiently leverages the

rich context information in a 3D point cloud, receives vi-

sual clues from both the object query and its local context,

and fuses them to achieve effective 3D dense captioning.

3. Method
As shown in Fig. 2, given a 3D scene, our goal is to

localize objects of interest and generate informative nat-

ural language descriptions for each object. The input of

our model is a point cloud PC = [pin; fin] ∈ R
N×(3+F )

representing an indoor 3D scene. Here, pin ∈ R
N×3 is

the absolute locations for each point, and fin ∈ R
N×F is

additional input feature for each point, such as color, nor-
mal, height, or multiview feature introduced by [6, 13]. The

expected output is a set of box-caption pairs (B̂, Ĉ) =

{(b̂1, ĉ1), · · · , (b̂K , ĉK)}, representing an estimation of K
distinctive objects in this 3D scene.

Specifically, our system adopts 3DETR [27] encoder as

our scene encoder and a transformer decoder to capture both

object-object and object-scene interactions through the at-

tention mechanism. Then, we feed the query feature to two

parallel task-specific heads for object detection and caption

generation.

3.1. 3DETR Encoder

Inspired by DETR [5], 3DETR [27] has made a success-

ful attempt at bringing full transformer architecture to the

3D object detection task, which removes many hand-coded

design decisions as the popular VoteNet and PointNet++

modules in most two-stage methods.

In 3DETR encoder, the input PC is first tokenized with

a set-abstraction layer [33]. Then, point tokens are fed into

a masked transformer encoder with a set-abstraction layer

followed by another two encoder layers. We denote the en-

coded scene tokens as [penc; fenc] ∈ R
1,024×(3+256).

3.2. Vote Query

Though 3DETR has achieved initial success in 3D ob-

ject detection, it suffers from certain limitations. 3DETR

proposes box estimations around the query points (aka pro-

posal centers) sampled from the scenes, which can make

these predictions far away from real objects given the sparse

object surfaces, resulting in slow convergence to capture

discriminative object features with further miss detections.

Prior works on fast convergence DETR models [12, 26,

45] show that injecting more structured bias to initialize ob-

ject queries, such as anchor points or content-aware queries,

accelerates training. Therefore, we propose the vote query,

which introduces both 3D spatial bias and content-related

information, for faster convergence and performance im-

provement.

More specifically, we reformulate the object queries in

3DETR into the format of vote query as a composition of

the embedding of the reference points and vote transfor-

mation around them. This helps build the connection be-

tween the object query in 3DETR and the vote set prediction

widely studied in VoteNet [32].

The detailed structure is shown in Figure 3. Here, vote

Δpvote is predicted from encoded scene token feature fenc
with a Feed Forward Network (FFN) FFNvote that learns

to shift the encoded points to objects’ centers spatially:

pvote = penc +Δpvote = penc + FFNvote (fenc) . (1)

Then, we sample 256 points pseed from penc with farthest

point sampling and locate each point’s offset estimation for

pvq = pseed + Δpvote. Finally, we gather features from

(penc, fenc) for pvq with a set-abstraction layer [33], to for-

mulate the vote query feature fvq ∈ R
256×256. We repre-

sent vote query as (pvq, fvq).
Following 3DETR [27], our model adopts an eight-layer

transformer decoder, and the i-th layer’s input query feature

f i
query is calculated through

f i
query = Layeri−1

(
f i−1
query + FFN (PE (pvq))

)
, (2)

where f0
query = fvq , and PE(·) is the 3D Fourier posi-

tional encoding function [35]. Experiments in later sec-

tions demonstrate that: 1) Vote query injects additional spa-

tial bias to object detection and boosts the detection perfor-

mance. 2) Encoding features from the point cloud as initial

queries accelerates convergence.

3.3. Parallel Decoding

We adopt two task-specific heads for simultaneous ob-

ject detection and caption generation. The two task heads

are agnostic to each other’s output.

Detection Head. Detecting objects in a 3D scene requires

box corner estimation B̂ and class estimation Ŝ (contain-

ing “no object” class) from each object query feature. Fol-

lowing 3DETR [27], box corner estimation is generated by

learning spatial offset from a query point to an object’s cen-

ter and box size regression. All subtasks are implemented
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Figure 3. Vote Query Generation. Vote query pvq contains spa-

tial bias (Δpvote) to initial object queries (pseed), which are sam-

pled from the scene with farthest point sampling (FPS) and gath-

ered feature fvq from the point cloud for each query.

by FFNs. In practice, the object localization head is shared

through different layers in the decoder, following all exist-

ing works on DETR [5, 12, 26, 27].

Caption Head. 3D dense captioning requires attribute de-

tails on an object and its relation with its close surroundings.

However, the vote query itself is agnostic to box predictions

and fails to provide adequate attribute and spatial relations

for informative caption generation. Therefore, the main dif-

ficulty is how to leverage sufficient surrounding contextual

information without confusing the caption head.

To address the above issues, we propose Dual-Clued

Captioner(DCC), a lightweight transformer decoder-based

caption head, for 3D dense captioning. DCC consists of

a stack of 2 identical transformer decoder blocks, sinusoid

position embedding, and a linear classification head. To

generate informative captions, DCC receives two streams

of visual clue V = (Vq,Vs). Here, Vq is the last decoder

layer’s output feature of a vote query, and Vs is contextual
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Figure 4. Dual-Clued Captioner(DCC). DCC is a lightweight

transformer based caption head that uses vote query feature Vq as

caption perfix to identify the region to be described, and contextual

features Vs surrounding the vote query to complement with more

surrounding information for descriptive caption generation.

information surrounding the absolute location of each vote

query. When generating a caption for a proposal, we substi-

tute the standard Start Of Seqenece(‘SOS’) prefix with Vq

to identify the object to be described following [39]. Since

the vote query is agnostic of actual neighbor object propos-

als because of the parallel detection branch, we introduce

the vote query’s ks nearest local context token features as

its local surroundings Vs as keys for cross attention. Dur-

ing inference, we generate captions through beam search

with a beam size of 5.

3.4. Set prediction loss for 3D Dense Captioning

Our proposed Vote2Cap-DETR requires supervision for

vote query (Lvq), detection head (Ldet), and caption head

(Lcap).

Vote Query Loss. We borrow vote loss from VoteNet [32]

as Lvq , to help the vote query generation module learn to
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shift points penc to an object’s center:

Lvq =
1

M

M∑
i=1

Ngt∑
j=1

∥∥pivote − cntj
∥∥
1
· I{pienc ∈ Ij

}
. (3)

Here, I(·) is an indicator function that equals 1 when the

condition meets and 0 otherwise, Ngt is the number of in-

stances in a 3D scene, M is the size of pvote, and cntj is the

center of jth instance Ij .

Detection Loss. Following 3DETR [27], we use the same

Hungarian algorithm to assign each proposal with a ground

truth label. Since 3D dense captioning cares much for the

object localization ability, we apply a larger weight on the

gIoU loss in set loss [27]:

Lset = α1Lgiou+α2Lcls+α3Lcenter−reg+α4Lsize−reg,
(4)

where α1 = 10, α2 = 1, α3 = 5, α4 = 1 are set heuristi-

cally. The set loss Lset is applied to all ndec−layer layers in

the decoder for better convergence.

Caption Loss. Following the standard practice of image

captioning, we train our caption head first with standard

cross-entropy loss (MLE training), and then fine-tune it

with Self-Critical Sequence Training (SCST) [34]. During

MLE training, the model is trained to predict the (t+ 1)th

word ct+1
i , given the first t words c

[1:t]
i and the visual clue

V . The loss function for a T -length sentence is defined as:

Lci =

T∑
i=1

Lci(t) = −
T∑

i=1

log P̂
(
ct+1
i |V, c[1:t]i

)
. (5)

After the caption head is trained under word-level supervi-

sion, we fine-tune it with SCST. During SCST, the model

generates multiple captions ĉ1,··· ,k with a beam size of k
and another ĝ through greedy search as a baseline. The loss

function for SCST is defined as:

Lci = −
k∑

i=1

(R (ĉi)−R (ĝ)) · 1

|ĉi| log P̂ (ĉi|V) . (6)

Here, the reward function R (·) is the CIDEr metric for cap-

tion evaluation, and the log probability of caption ĉi is nor-

malized by caption length |ĉi| to encourage the model to

treat captions in different length with equal importance.

Set to Set Training for 3D Dense Captioning. We pro-

pose an easy-to-implement set-to-set training strategy for

3D dense captioning. Given a 3D scene, we randomly sam-

ple one sentence from the corpus for each annotated in-

stance. Then, we assign language annotations to the cor-

responding number of proposals in the corresponding scene

with the same Hungarian algorithm. During training, we

average losses for captions Lci on all annotated instances in

a batch to compute the caption loss Lcap. To balance loss

for different tasks, our loss function is defined as:

L = β1Lvq + β2

ndec−layer∑
i=1

Lset + β3Lcap, (7)

where β1 = 10, β2 = 1, β3 = 5 are set heuristically.

4. Experiments
We first present the datasets, metrics, and implementa-

tion details for 3D dense captioning (section 4.1). Then, we

provide comparisons with all state-of-the-art methods (sec-

tion 4.2). We also provide studies on the effectiveness of

different parts in our model (section 4.3). Finally, we visu-

alize several qualitative results to address the effectiveness

of our method (section 4.4).

4.1. Datasets, Metrics, and Implementation Details

Datasets. We analyze performance on ScanRefer [6] and

Nr3D [1], both of which are built on 3D scenes from Scan-

Net [15]. ScanRefer/Nr3D contains 36,665/32,919 free-

form language annotations describing 7,875/4,664 objects

from 562/511 out of 1201 3D scenes in ScanNet for train-

ing and evaluates on 9,508/8,584 sentences for 2,068/1,214

objects from 141/130 out of 312 3D scenes in ScanNet.

Evaluation Metrics. Following [4, 13, 20, 39], we first ap-

ply NMS on object proposals to drop duplicate object pre-

dictions. Each object proposal is a box-caption pair (b̂i, ĉi),

containing box corner prediction b̂i and generated caption

ĉi. Then, each annotated instance is assigned an object pro-

posal with the largest IoU among the remaining proposals.

Here, we use (bi, Ci) to represent an instance’s label, where

bi is an instance’s box corner label, and Ci is the corpus con-

taining all caption annotations for this instance. To jointly

evaluate the model’s localization and caption generation ca-

pability, we adopt the m@kIoU metric [13]:

m@kIoU =
1

N

N∑
i=1

m (ĉi, Ci) · I
{
IoU

(
b̂i, bi

)
≥ k

}
.

(8)

Here, N is the number of total annotated instances in the

evaluation dataset, and m could be any metric for natural

language generation, such as CIDEr [38], METEOR [3],

BLEU-4 [31], and ROUGE-L [22].

Implementation Details. We offer implementation details

of different baselines. “w/o additional 2D” means the in-

put PC ∈ R
40,000×10 contains absolute location as well as

color, normal and height for 40, 000 points representing a

3D scene. “additional 2D” means we replace color informa-

tion with 128-dimensional multiview feature extracted by

ENet [8] from 2D images following [13].

We first pre-train the whole network without the caption

head on ScanNet [15] for 1, 080 epochs (163k iterations,

11128



∼34 hours) using an AdamW optimizer [25] with a learn-

ing rate decaying from 5 × 10−4 to 10−6 by a cosine an-

nealing scheduler, a weight decay of 0.1, a gradient clip-

ping of 0.1, and a batch size of 8 following [27]. Then, we

jointly train the full model from pre-trained weights with

the MLE caption loss for another 720 epochs (51k/46k it-

erations for ScanRefer/Nr3D, ∼11/10 hours). To prevent

overfitting, we fix the learning rate of the detector as 10−6,

and set that of the caption head decaying from 10−4 to

10−6 using another cosine annealing scheduler. During

SCST, we tune the caption head with a batch size of 2 and

freeze the detector for 180 epochs because of high mem-

ory cost (50k/46k iterations for ScanRefer/Nr3D, ∼14/11

hours) with a fixed learning rate of 10−6. We evaluate

the model every 2, 000 iterations during training for con-

sistency with existing works [13, 39], and all experiments

mentioned above are conducted on a single RTX3090 GPU.

4.2. Comparison with Existing Methods

In this section, we compare performance with existing

works on metrics C, M, B-4, R as abbreviations for CIDEr

[38], METEOR [3], BLEU-4 [31], Rouge-L [22] under IoU

thresholds of 0.25, 0.5 for ScanRefer (Table 1) and 0.5 for

Nr3D (Table 2). In both tables, “-” indicates that neither

the original paper nor any follow-up works provide such

results. We make separate comparisons for MLE training

and SCST since different supervisions on the caption head

have huge influence on the captioning performance. Among

all the listed methods, experiments other than D3Net [7]

and 3DJCG [4] utilize the standard VoteNet [32] detector.

Meanwhile, D3Net adopts PointGroup [19], a 3D instance

segmentation model, for better object detection. 3DJCG

substitute the proposal head with an FCOS [36] head to

improve VoteNet’s localization performance. Additionally,

3DJCG and D3Net are trained on 3D dense captioning

as well as 3D visual grounding to study the joint promo-

tion of both tasks. Among methods listed under SCST,

χ-Trans2Cap [43] combines MLE training with standard

SCST in an additive manner, while Scan2Cap and D3Net

[7] adopt the same reward that combines CIDEr score with

a listener’s [47] grounding loss by weighted summation.

Meanwhile, our method adopts the standard SCST with

CIDEr reward.

Table 1 reports comparisons on ScanRefer [6] valida-

tion dataset. Our Vote2Cap-DETR surpasses current state-

of-the-art methods. Under MLE training with additional

2D inputs, Vote2Cap-DETR achieves 59.32% C@0.5 while

3DJCG [4] achieves 49.48% (9.84% C@0.5↑) with addi-

tional training data. Under SCST, our Vote2Cap-DETR

achieves 70.63% C@0.5 comparing to 62.64% (7.99%

C@0.5↑) for current state-of-the-art D3Net [7].

In Table 2, we list results on the Nr3D [1] dataset with

additional 2D input following [39]. Since Scan2Cap [13]

has not reported results on Nr3D, we adopt the best-reported

result from [4]. Our Vote2Cap-DETR also surpasses current

state-of-the-art methods (5.78%/7.11% C@0.5↑ for MLE

training/SCST).

4.3. Ablation Study

Since 3D dense captioning concerns both localization

and caption generation, we perform ablation studies to un-

derstand the effectiveness of different components.

Does the vote query improve 3DETR? We performed ab-

lation experiments in Table 3 and Figure 5 to see if the vote

query can improve 3DETR’s localization and convergence.

We notice that introducing position features pvq alone helps

improve detection performance (0.97% mAP50↑). How-

ever, it (green line in Figure 5) converges slower in the

earlier training procedure than the 3DETR baseline (blue

line in Figure 5), inferring the vote query generation mod-

ule is not well learned to predict accurate spatial offset es-

timations at early training epochs. Introducing additional

content feature fvq in vote query features results in another

boost in both detection performance (2.98% mAP50↑) and

training speed (red line in Figure 5). The overall localiza-

tion performance of Vote2Cap-DETR is about 7.2% mAP

higher than the popular VoteNet.

Figure 5. Vote query and convergence. We take out convergence

study on a different combination of content feature fvq and posi-

tion pvq in vote query. The baseline model (pquery, f
0
query) =

(pseed,0) downgrades to 3DETR. Introducing pvq boosts perfor-

mance but decelerates training since FFNvote requires time to

converge, and fvq accelerates training.

Does 3D context feature help captioning? Since the per-

formance of 3D dense captioning is affected by both lo-

calization and caption capability, we freeze all parameters

other than the caption head and train with 3D only input

and standard cross entropy loss (MLE training) for a fair

evaluation. We use object-centric decoder [39] as our base-

line, which is a decoder that generates captions with object

feature as a caption’s prefix. In Table 4, “-” refers to the

object-centric decoder baseline, “global” means naively in-

cluding all context tokens extracted from the scene encoder

in the decoder, “local” is our proposed caption head that
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Method Ldes

w/o additional 2D input w/ additional 2D input

IoU = 0.25 IoU = 0.50 IoU = 0.25 IoU = 0.50

C↑ B-4↑ M↑ R↑ C↑ B-4↑ M↑ R↑ C↑ B-4↑ M↑ R↑ C↑ B-4↑ M↑ R↑
Scan2Cap [13]

MLE

53.73 34.25 26.14 54.95 35.20 22.36 21.44 43.57 56.82 34.18 26.29 55.27 39.08 23.32 21.97 44.78

MORE [20] 58.89 35.41 26.36 55.41 38.98 23.01 21.65 44.33 62.91 36.25 26.75 56.33 40.94 22.93 21.66 44.42

SpaCap3d [39] 58.06 35.30 26.16 55.03 42.76 25.38 22.84 45.66 63.30 36.46 26.71 55.71 44.02 25.26 22.33 45.36

3DJCG [4] 60.86 39.67 27.45 59.02 47.68 31.53 24.28 51.80 64.70 40.17 27.66 59.23 49.48 31.03 24.22 50.80

D3Net [7] - - - - - - - - - - - - 46.07 30.29 24.35 51.67

Ours 71.45 39.34 28.25 59.33 61.81 34.46 26.22 54.40 72.79 39.17 28.06 59.23 59.32 32.42 25.28 52.53
χ-Trans2Cap [43]

SCST

58.81 34.17 25.81 54.10 41.52 23.83 21.90 44.97 61.83 35.65 26.61 54.70 43.87 25.05 22.46 45.28

Scan2Cap [13] - - - - - - - - - - - - 48.38 26.09 22.15 44.74

D3Net [7] - - - - - - - - - - - - 62.64 35.68 25.72 53.90
Ours 84.15 42.51 28.47 59.26 73.77 38.21 26.64 54.71 86.28 42.64 28.27 59.07 70.63 35.69 25.51 52.28

Table 1. Evaluating Vote2Cap-DETR on ScanRefer [6]. We compare Vote2Cap-DETR with all published state-of-the-art 3D dense

caption methods on the ScanRefer dataset. Though our method does not depend on hand-crafted NMS [28] to drop overlapped boxes,

we follow the standard evaluation protocol from [13] for fair comparison and provide evaluation without NMS in Table 7. Our proposed

Vote2Cap-DETR achieves new state-of-the-art under both MLE training and SCST.

Method Ldes C@0.5↑ B-4@0.5↑ M@0.5↑ R@0.5↑
Scan2Cap [13]

MLE

27.47 17.24 21.80 49.06

SpaCap3d [39] 33.71 19.92 22.61 50.50

D3Net [7] 33.85 20.70 23.13 53.38

3DJCG [4] 38.06 22.82 23.77 52.99

Ours 43.84 26.68 25.41 54.43
χ-Tran2Cap [43]

SCST

33.62 19.29 22.27 50.00

D3Net [7] 38.42 22.22 24.74 54.37

Ours 45.53 26.88 25.43 54.76

Table 2. Evaluating Vote2Cap-DETR on Nr3D [1]. Likewise,

we perform the standard evaluation on the Nr3D dataset, and our

proposed Vote2Cap-DETR surpasses prior arts.

pquery f0
query

IoU=0.25 IoU=0.50 1st layer IoU=0.50

mAP↑ AR↑ mAP↑ AR↑ mAP↑ AR↑
VoteNet Baseline 63.42 82.18 44.96 60.65 - -

pseed 0 67.25 84.91 48.18 64.98 34.80 55.06

pvq 0 67.33 85.60 49.15 66.38 30.23 58.44

pvq fvq 69.61 87.20 52.13 69.12 46.53 66.51

Table 3. Vote query and performance. We provide quantitative

results for Figure 5. Introducing pvq as query positions improves

detection, and gathering fvq from content further boosts perfor-

mance.

includes a vote query’s ks (ks = 128 empirically) nearest

context tokens extracted from the scene encoder.

Results show that the caption generation performance

benefits from the introduction of additional contextual in-

formation. Additionally, compared with naively introduc-

ing contextual information from the whole scene, the in-

troduction of local context could be more beneficial. This

demonstrates our motivation that close surroundings matter

when describing an object.

key
IoU=0.25 IoU=0.5

C↑ B-4↑ M↑ R↑ C↑ B-4↑ M↑ R↑
- 68.62 38.61 27.67 58.47 60.15 34.02 25.80 53.82

global 70.05 39.23 27.84 58.44 61.20 34.66 25.93 53.79

local 70.42 39.98 27.99 58.89 61.39 35.24 26.02 54.12

Table 4. Different keys for caption generation. We provide a

comparison on different keys used in caption generation. Intro-

ducing contextual information relates to more informative captions

generated. Since 3D dense captioning is more object-centric, in-

troducing vote queries’ local contextual feature is a better choice.

Do set-to-set training benefit dense captioning? To ana-

lyze the effectiveness of set-to-set training, we use a smaller

learning rate (10−6) for all parameters other than the cap-

tion head and freeze these parameters during SCST. We

name the traditional training strategy as “Sentence Train-

ing” adopted in previous works [13, 39], which traverses

through all sentence annotations in the dataset. As is shown

in Figure 7, our proposed “Set-to-Set” training achieves

comparable results with the traditional strategy during MLE

training and converges faster because of a bigger batch size

on the caption head, which also benefits SCST.

Training Ldes C@0.5↑ B-4@0.5↑ M@0.5↑ R@0.5↑
Sentence

MLE
61.21 35.35 26.12 54.52

Set-to-Set 61.81 34.46 26.22 54.40

Sentence
SCST

71.39 37.57 26.01 54.28

Set-to-Set 73.77 38.21 26.64 54.71

Table 5. Set to Set training and performance. We compare

our proposed set-to-set training with traditional “Sentence Train-

ing”, which traverses through all sentence annotations. We achieve

comparable performance with MLE training, and 2.38% C@0.5

improvement with SCST.

End to end training from scratch. Our Vote2Cap-DETR

also supports end-to-end training from scratch for 3D dense

captioning. However, both ScanRefer and Nr3D are anno-

tated on limited scenes (562/511 scenes) for training; thus,

directly training Vote2Cap-DETR from scratch will under-

perform given to satisfy two objectives simultaneously. Ex-

periments on Scanrefer in Table 6 show that the greedy

strategy we choose by pre-training detection head as a good

pre-requisite for captioning achieves better performance.

pretrain/end2end C@0.5↑ B-4@0.5↑ M@0.5↑ R@0.5↑ AP@0.5↑ AR@0.5↑
end2end 52.15 28.87 24.68 49.76 46.68 62.17

pretrain+end2end 62.03 34.90 26.06 54.33 51.26 67.57

Table 6. Ablation study for training strategies. The greedy

strategy we choose by pre-training detection head as a good pre-

requisite for captioning achieves better performance than directly

end to end training from scratch.
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3DJCG: This is a rectangular 
whiteboard. It is on the wall.

SpaCap3D: The whiteboard is 
affixed to the wall. It is to the right 
of the window.

Ours: The tv is on the wall. It is to 
the right of the table.

GT: This is a big black tv. It is 
above a thin table.

scene0011_00

3DJCG: This is a brown table. It 
is in the middle of the room.

SpaCap3D: This is a wooden
table. It is in the center of the 
room. 

Ours: This is a wooden table. It is 
in the corner of the room. 

GT: This is a small table with a 
wood look. It is the table closest 
to the front of the room in the 
upper left corner.

scene0015_00

3DJCG: The is a small brown
cabinet. It is to the right of the 
desk.

SpaCap3D: The cabinet is below 
the desk. It is to the left of the 
chair.

Ours: This is a white cabinet. It is 
to the right of the table.

GT: A white cabinet is sitting on 
the floor next to the wall. It is to 
the left of the couch.

scene0025_00

3DJCG: This is a brown table. It 
is in front of the couch.

SpaCap3D: This is a wooden 
coffee table. It is in front of the 
couch.

Ours: This is a brown ottoman. It 
is to the right of the chair.

GT: This is a brown ottoman. It is 
in front of a couch.

scene0050_00

Figure 6. Qualitative Comparisons. We compare qualitative results with two state-of-the-art “detect-then-describe” methods, 3DJCG [4]

and SpaCap3D [39]. We underline phrases describing spatial locations, and mark correct attribute words in green and wrong description in

red. Our Vote2Cap-DETR produces tight bounding boxes close to the ground truth and accurate descriptions.

Figure 7. Set-to-Set training and convergence. Convergence

speed analysis of two different training strategies with MLE train-

ing as well as SCST. Set-to-Set training enables a larger batch size

for the caption head and accelerates convergence.

Is Vote2Cap-DETR robust to NMS? Similar to other

DETR works, the set loss encourages the model to produce

compact predictions. We compare performance on both 3D

dense caption (C@0.5) and detection (mAP50, AR50) in

Table 7. Since the m@kIoU metric (Eq. 8) does not con-

tain any penalties on redundant predictions, getting rid of

NMS [28] results in performance growth in C@0.5. Re-

sults show that Vote2Cap-DETR is more stable compared

to VoteNet based methods with the absence of NMS.

Models
w/ NMS w/o NMS

C@0.5↑ mAP50↑ AR50↑ C@0.5↑ mAP50↑ AR50↑
SpaCap3D 43.93 37.77 53.96 51.35 23.30 64.14

3DJCG 50.22 47.58 62.12 54.94 30.03 68.69

Vote2Cap-DETR 70.63 52.79 66.09 71.57 52.82 67.80

Table 7. Effect of NMS. We analyze whether the absence of NMS

affects the 3D dense captioning performance (C@0.5) as well as

detection performance (mAP50, AR50).

4.4. Qualitative Results
We compare qualitative results with two state-of-the-art

models, SpaCap3D [39] and 3DJCG [4] in Figure 6. One

can see that our method produces tight bounding boxes

close to the ground truth as well as accurate descriptions

of object attributes, classes, and spatial relationships.

5. Conclusion
In this work, we present Vote2Cap-DETR, a trans-

former based one-stage approach, for 3D dense caption-

ing. The proposed Vote2Cap-DETR adopts a full trans-

former encoder-decoder architecture that decodes a set of

vote queries to box predictions and captions in parallel. We

show that by introducing spatial bias and content-aware fea-

tures, vote query boosts both convergence and detection

performance. Additionally, we develop a novel lightweight

query-driven caption head for informative caption genera-

tion. Experiments on two widely used datasets for 3D dense

captioning validate that our proposed one-stage Vote2Cap-

DETR model surpasses prior works with heavy dependence

on hand-crafted components by a large margin.
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