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Abstract
The robustness of recent Large Language Mod-001
els (LLMs) has become increasingly crucial002
as their applicability expands across various003
domains and real-world applications. Retrieval-004
Augmented Generation (RAG) is a promising005
solution for addressing the limitations of LLMs,006
yet existing studies on the robustness of RAG007
often overlook the interconnected relationships008
between RAG components or the potential009
threats prevalent in real-world databases, such010
as minor textual errors. In this work, we investi-011
gate two underexplored aspects when assessing012
the robustness of RAG: 1) vulnerability to noisy013
documents through low-level perturbations and014
2) a holistic evaluation of RAG robustness. Fur-015
thermore, we introduce a novel attack method,016
the Genetic Attack on RAG (GARAG), which017
targets these aspects. Specifically, GARAG is018
designed to reveal vulnerabilities within each019
component and test the overall system func-020
tionality against noisy documents. We validate021
RAG robustness by applying our GARAG to022
standard QA datasets, incorporating diverse re-023
trievers and LLMs. The experimental results024
show that GARAG consistently achieves high025
attack success rates. Also, it significantly dev-026
astates the performance of each component and027
their synergy, highlighting the substantial risk028
that minor textual inaccuracies pose in disrupt-029
ing RAG systems in the real world. The code030
will be disclosed after acceptance.1031

1 Introduction032

Large Language Models (LLMs) (Brown et al.,033

2020; OpenAI, 2023b) have enabled remarkable034

advances in diverse Natural Language Processing035

(NLP) tasks, especially in Question-Answering036

(QA) tasks (Joshi et al., 2017; Kwiatkowski et al.,037

2019). Despite these advances, however, LLMs038

face challenges in having to adapt to ever-evolving039

or long-tailed knowledge due to their limited para-040

metric memory (Kasai et al., 2023; Mallen et al.,041

1The code is submitted anonymously for the review.

Figure 1: Impact of noisy documents in real-world databases
on the RAG system: The retriever selects a noisy document,
causing the reader to produce incorrect answers.

2023), resulting in a hallucination where the mod- 042

els generate convincing yet factually incorrect 043

text (Li et al., 2023a). Retrieval-Augmented Gen- 044

eration (RAG) (Lewis et al., 2020) has emerged 045

as a promising solution by utilizing a retriever to 046

fetch enriched knowledge from external databases, 047

thus enabling accurate, relevant, and up-to-date re- 048

sponse generation. Specifically, RAG has shown 049

its superior performance across diverse knowledge- 050

intensive tasks (Lewis et al., 2020; Lazaridou et al., 051

2022; Jeong et al., 2024), leading to its integra- 052

tion as a core component in various real-world 053

APIs (Qin et al., 2024; Chase, 2022; OpenAI, 054

2023a). Given its extensive applications, ensuring 055

robustness under diverse conditions of real-world 056

scenarios becomes critical for safe deployment. 057

Thus, assessing potential vulnerabilities within the 058

overall RAG system is vital, particularly by assess- 059

ing its components: the retriever and the reader. 060

However, existing studies on assessing the ro- 061

bustness of RAG often focus solely on either re- 062

trievers (Zhong et al., 2023; Zou et al., 2024; Long 063

et al., 2024) or readers (Li et al., 2023b; Wang et al., 064

2023; Zhu et al., 2023). The robustness of a single 065

component might only partially capture the com- 066

plexities of RAG systems, where the retriever and 067

reader work together in a sequential flow, which is 068

crucial for optimal performance. In other words, 069

the reader’s ability to accurately ground informa- 070
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tion significantly depends on the retriever’s capa-071

bility of sourcing query-relevant documents (Baek072

et al., 2023; Lee et al., 2023). Thus, it is important073

to consider both components simultaneously when074

evaluating the robustness of an RAG system.075

While concurrent work has shed light on the se-076

quential interaction between two components, they077

have primarily evaluated the performance of the078

reader component given the high-level perturbed079

errors within retrieved documents, such as context080

relevance or counterfactual information (Thakur081

et al., 2023; Chen et al., 2024; Cuconasu et al.,082

2024). However, they have overlooked the impact083

of low-level errors, such as textual typos due to084

human mistakes or preprocessing inaccuracies in085

retrieval corpora, which often occur in real-world086

scenarios (Piktus et al., 2021; Le et al., 2023).087

Additionally, LLMs, commonly used as readers,088

struggle to produce accurate predictions when con-089

fronted with textual errors (Zhu et al., 2023; Wang090

et al., 2023). Note that these are the practical is-091

sues that can affect the performance of any RAG092

system in real-world scenarios, as illustrated in Fig-093

ure 1. Therefore, to deploy a more realistic RAG094

system, we should consider: “Can minor document095

typos comprehensively disrupt both the retriever096

and reader components in RAG systems?”097

In this paper, we evaluate the RAG system’s ro-098

bustness against textual typos in the database by099

generating a perturbed counterpart of the clean doc-100

ument retrieved for a given query. Initially, we101

establish two attack objectives to qualitatively mea-102

sure the negative impact of the adversarial docu-103

ment on the RAG system’s retrieval and ground-104

ing capabilities. To comprehensively assess sys-105

tem resilience under these objectives, we pro-106

pose a novel black-box adversarial attack method,107

GARAG, which uses a genetic algorithm to search108

for the most adversarial document with low val-109

ues for both loss objectives among the perturbed110

documents. The method begins by generating an111

initial population of adversarial documents by in-112

jecting minor textual errors into the original doc-113

ument while ensuring that answer tokens remain114

unaltered. Through an iterative process of mutation,115

crossover, and selection to refine the population,116

the method searches for the most adversarial docu-117

ment for a given query by effectively exploring the118

vast search space of typos space and exploiting the119

most adversarial documents. To sum up, GARAG120

assesses the holistic robustness of an RAG system121

against minor textual errors, offering insights into122

the system’s resilience through iterative adversarial 123

refinement. 124

We validate our method on three standard QA 125

datasets (Joshi et al., 2017; Kwiatkowski et al., 126

2019; Rajpurkar et al., 2016), with diverse retriev- 127

ers (Karpukhin et al., 2020; Izacard et al., 2022) and 128

LLMs (Touvron et al., 2023; Chiang et al., 2023; 129

Jiang et al., 2023). The experimental results reveal 130

that adversarial documents with low-level pertur- 131

bation generated by GARAG significantly induce 132

retrieval and grounding errors, achieving a high at- 133

tack success rate of approximately 70%, along with 134

a significant reduction in the performance of each 135

component and the overall system. Our analyses 136

also highlight that lower perturbation rates pose a 137

greater threat to the RAG system, emphasizing the 138

challenges of mitigating such inconspicuous yet 139

critical vulnerabilities. 140

Our contributions in this paper are threefold: 141

• We point out that the RAG system is vulnerable 142

to minor but frequent textual errors within the 143

documents, prevalent in real-world scenarios. 144

• We propose a black-box adversarial attack 145

method, GARAG, based on a genetic algorithm 146

searching for adversarial documents targeting 147

both components within RAG simultaneously. 148

• We experimentally show that GARAG effectively 149

attacks the RAG system with significant perfor- 150

mance degradation, validating the vulnerability 151

to textual typos. 152

2 Related Work 153

2.1 Robustness in RAG 154

The robustness of RAG, characterized by its ability 155

to fetch and incorporate external information dy- 156

namically, has gained much attention for its critical 157

role in real-world applications (Chase, 2022; Liu, 158

2022; OpenAI, 2023a). However, previous studies 159

concentrated on the robustness of individual com- 160

ponents within RAG systems, either retriever or 161

reader. The vulnerability of the retriever is cap- 162

tured by injecting adversarial documents, specially 163

designed to disrupt the retrieval capability, into 164

retrieval corpora (Zhong et al., 2023; Zou et al., 165

2024; Long et al., 2024). Additionally, the ro- 166

bustness of LLMs, often employed as readers, has 167

been critically examined for their resistance to out- 168

of-distribution data and adversarial attacks (Wang 169

et al., 2021; Li et al., 2023b; Wang et al., 2023; 170

Zhu et al., 2023). However, these studies overlook 171

the sequential interaction between the retriever and 172
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reader components, thus not fully addressing the173

overall robustness of RAG systems.174

In response, there is an emerging consensus on175

the need to assess the holistic robustness of RAG,176

with a particular emphasis on the sequential interac-177

tion of the retriever and reader (Thakur et al., 2023;178

Chen et al., 2024). They point out that RAG’s vul-179

nerabilities stem from retrieval inaccuracies and in-180

consistencies in how the reader interprets retrieved181

documents. Specifically, the reader generates in-182

correct responses if the retriever fetches partially183

(or entirely) irrelevant or counterfactual documents184

within the retrieved set. The solutions to these chal-185

lenges range from prompt design (Cho et al., 2023;186

Press et al., 2023) and plug-in models (Baek et al.,187

2023) to specialized language models for enhanc-188

ing RAG’s performance (Yoran et al., 2024; Asai189

et al., 2024). However, they focus on the high-190

level errors within retrieved documents, which may191

overlook more subtle yet realistic low-level errors192

frequently encountered in the real world.193

In this study, we spotlight a novel vulnerabil-194

ity in RAG systems related to low-level textual195

errors found in retrieval corpora, often originating196

from human mistakes or preprocessing inaccura-197

cies (Thakur et al., 2021; Piktus et al., 2021; Le198

et al., 2023). Specifically, Faruqui et al. (2018)199

pointed out that Wikipedia, a widely used retrieval200

corpus, frequently contains minor errors within its201

contents. Therefore, we focus on a holistic evalua-202

tion of the RAG system’s robustness against perva-203

sive low-level text perturbations, emphasizing the204

critical need for systems that can maintain compre-205

hensive effectiveness for real-world data.206

2.2 Adversarial Attacks in NLP207

Adversarial attacks involve generating adversarial208

samples designed to meet specific objectives to209

measure the robustness of models (Zhang et al.,210

2020). In NLP, such attacks use a transformation211

function to inject perturbations into text, accompa-212

nied by a search algorithm that identifies the most213

effective adversarial sample.214

The operations of the transformation function215

can be categorized into high-level and low-level216

perturbations. High-level perturbations leverage217

semantic understanding (Alzantot et al., 2018;218

Ribeiro et al., 2018; Jin et al., 2020), while low-219

level perturbations are based on word or character-220

level changes, simulating frequently occurring er-221

rors (Eger et al., 2019; Eger and Benz, 2020; Le222

et al., 2022; Formento et al., 2023).223

Search algorithms aim to find optimal adversar- 224

ial samples by identifying victim tokens in the orig- 225

inal document, chosen based on their word impor- 226

tance as calculated by a single target model. For 227

instance, deletion-based scoring (Gao et al., 2018) 228

identifies important tokens by assessing increases 229

in attack objectives when a token is deleted, while 230

gradient-based scoring (Yoo and Qi, 2021a) uses 231

the gradient of the attack objective for each to- 232

ken. Since these methods are unsuitable for multi- 233

objective scenarios, a genetic algorithm that ran- 234

domly selects tokens with elaborate exploitation is 235

more effective (Alzantot et al., 2018; Zang et al., 236

2020; Williams and Li, 2023). To evaluate the ro- 237

bustness of the overall RAG system, which has non- 238

differentiable and dual objectives for a retriever and 239

a reader, we propose a novel attack algorithm in- 240

corporating a genetic algorithm. 241

3 Method 242

Here, we introduce our problem formulation and 243

a novel attack method, GARAG. Further details of 244

the proposed method are described in Appendix A. 245

3.1 Problem Formulation 246

Pipeline of RAG. Let q be a query the user re- 247

quests. In a RAG system, the retriever first fetches 248

the query-relevant document d, then the reader gen- 249

erates the answer grounded on document-query 250

pair (d, q). The retriever, parameterized with ϕ = 251

(ϕd, ϕq), identifies the most relevant document in 252

the database. The relevance score r is computed by 253

the dot product of the embeddings for document d 254

and query q, as rϕ(d, q) = Enc(d;ϕd)·Enc(q;ϕq). 255

Finally, the reader, using an LLM parameterized 256

with θ, generates the answer a from the document- 257

query pair (d, q), as a = LLM(d, q; θ). 258

Adversarial Document Generation. To simulate 259

the adversarial document having typical noise en- 260

countered in real-world scenarios, we introduce 261

low-level perturbations to mimic these conditions. 262

We generate an adversarial document d′ by trans- 263

forming the clean document d using a function f 264

that alters each token d into a perturbed version 265

d′. The function f randomly applies one of sev- 266

eral operations — inner-shuffling, truncation, key- 267

board errors, or natural typos — to each token, then 268

outputs the perturbed token: d′ = f(d). This ran- 269

domness reflects the unpredictable nature of textual 270

typos. Therefore, we explore a broad search space 271

of potential adversarial documents generated from 272
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d using f to identify the adversarial document for273

the RAG system,274

Attack Objective on RAG. To identify an adver-275

sarial document d′ that challenges the capabilities276

of the RAG, we compare its negative impact against277

the original document d for a given query q. The278

goal is for d′ to divert attention from d, ensur-279

ing that d no longer appears as the top result for280

q. Additionally, d′ should mislead LLM into gen-281

erating an incorrect answer a′ when paired with282

(d∗, q). To measure this negative impact, we use283

two loss objectives: the Relevance Score Ratio284

(RSR) and the Generation Probability Ratio (GPR)285

for retrieval and grounding, respectively.286

The RSR calculates the ratio of the relevance287

score2 from the adversarial document d′ to the288

score from the original document d for the given289

query q. Conversely, the GPR calculates the ratio290

of the generation probability3 of the correct answer291

a from the original pair (d, q) to the probability292

from the adversarial pair (d′, q). These two metrics293

are formally represented as:294

LRSR(d
′) =

erϕ(d,q)

erϕ(d′,q)
,LGPR(d

′) =
pθ(a|d′, q)

pθ(a|d, q)
. (1)295

The values below 1 signify that a noisy document296

d′ generated from the adversarial attack success-297

fully satisfies the attack objectives of distracting298

the retriever and misleading LLM. Note that, as299

these objectives are designed for adversarial at-300

tacks, they don’t directly align with each module’s301

performance measured by conventional metrics.302

Consequently, the search for an optimal adver-303

sarial document within the RAG system is defined304

as a dual-objective optimization problem, aiming to305

minimize both the RSR and GPR simultaneously:306

d∗ = argmin
d′∈D′

(LRSR(d
′),LGPR(d

′)) (2)307

This optimization problem involves dual-model en-308

vironments, resulting in non-differentiable condi-309

tions. To design effective adversarial attack meth-310

ods targeting the RAG system through noisy docu-311

ment simulation, these methods must address the312

challenges of dual-objective and dual-model opti-313

mization within a vast search space characterized314

by unpredictable and diverse textual typos.315

3.2 GARAG: Genetic Attack on RAG 316

In this work, we introduce a novel black-box adver- 317

sarial attack method called GARAG, employing a 318

genetic algorithm to address the dual-objective and 319

dual-model optimization problem in a large search 320

space. Initially, as shown in Figure 2, we divide the 321

search space into four zones based on the attack 322

objectives: safety, retrieval error, grounding error, 323

and holistic error. The adversarial document should 324

ideally be in a holistic error zone, where retrieval 325

and grounding errors intersect, and should be closer 326

to the origin, indicating a more significant negative 327

impact on the RAG system. Then, our proposed 328

method, GARAG, iteratively refines a population of 329

adversarial documents, methodically moving them 330

closer to the origin. This process involves explor- 331

ing the search space to discover new adversarial 332

documents and exploit the most adversarial ones 333

with crossover, mutation, and selection steps. 334

Formally, given the query-document pair (q,d) 335

where the document d = {di}Ni=1 is retrieved for 336

the query q, our objective is to generate the ad- 337

versarial counterpart d′ with N · prpert perturbed 338

tokens, where prpert is a pre-defined hyperparame- 339

ter and N is the number of tokens in d. The steps, 340

including crossover, mutation, and selection, are 341

repeated Niter times after initialization. 342

Initialization. Our attack begins with the initializa- 343

tion step. We first construct the initial population 344

P0, consisting of adversarial documents d′
i, formal- 345

ized as P = {d′
i}Si=1, where S is the total number 346

of documents in the population. In detail, generat- 347

ing the adversarial document d′
i involves selecting 348

tokens for the attack, applying perturbations, and 349

assembling the modified document. Initially, to 350

determine which tokens to alter, a subset of in- 351

dices I ′ containing N · prpert. indices is randomly 352

selected from the complete set of token indices 353

I = {1, . . . , N}, where N represents the total num- 354

ber of tokens in the document d. This selection is 355

designed to exclude any indices that correspond 356

to the correct answer a within the document, thus 357

ensuring that the perturbations focus exclusively 358

on assessing the impact of noise. Each selected 359

token di is then transformed using the function f , 360

yielding a perturbed version d′i, for i ∈ I ′ ⊂ I . 361

The final document d′ merges the set of unaltered 362

2Given the potential for relevance scores to be negative,
we have structured the term to guarantee positivity.

3The generation probability represents the joint probabil-
ities over the answer tokens given a single document and a
single question.
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Figure 2: (Left) The search space formulated by our proposed attack objectives, LRSR and LGPR. (Right) An overview of the
iterative process implemented by our proposed method, GARAG.

tokens T = {di|i /∈ I \I ′} with the set of modified363

tokens, represented by T ′ = {d′j |j ∈ I ′}, forming364

d′ = T ∪ T ′. In Figure 2, the figure on the right365

shows the initialization step where the initial (par-366

ent) documents are represented as orange-colored367

dots, given the star-shaped original document.368

Crossover & Mutation. Then, through the369

crossover and mutation steps, the adversarial docu-370

ments are generated by balancing the exploitation371

of existing knowledge within the current popula-372

tion (parent documents) and the exploration of new373

documents (offspring documents). In detail, the374

crossover step generates offspring documents by re-375

combining tokens from pairs of parent documents,376

incorporating their most effective adversarial fea-377

tures. Subsequently, the mutation step introduces378

new perturbations to some tokens in the offspring,379

aiming to explore genetic variations that are not380

present in the parent documents.381

Formally, the crossover step selects Nparents pairs382

of parent documents from the population P . Let383

d′
0 and d′

1 be the selected parent documents along384

with their perturbed token sets T ′
0 and T ′

1, respec-385

tively. Then, the swapping tokens perturbed in each386

parent document generate the offspring documents,387

excluding those in the shared set T ′
0∩T ′

1. The num-388

ber of swapping tokens is determined by the prede-389

fined crossover rate prcross, applied to the number390

of unique perturbed tokens in each document.391

The mutation step selects two corresponding sub-392

sets of tokens, M from the original token set T and393

M ′ from the perturbed token set T ′, ensuring that394

both subsets are of equal size |M | = |M ′|. The395

size of these subsets is determined by the prede-396

fined mutation probability prmut., which is applied397

to prpert. · N . Tokens di ∈ M are altered using a398

perturbation function f , whereas tokens d′j ∈ M ′399

are reverted to their original states dj . Following400

this, the sets of unperturbed and perturbed tokens,401

Tnew and T ′
new, respectively, are updated to incorpo-402

rate these modifications: Tnew = (T \M)∪M ′ and403

T ′
new = (T ′ \M ′) ∪M . The newly mutated docu- 404

ment, d′
new, is composed of the updated sets Tnew 405

and T ′
new, and the offspring set O is then formed, 406

comprising these mutated documents. The off- 407

spring documents are represented by blue-colored 408

dots in the figure on the right in Figure 2. 409

Selection. The remaining step is to select the most 410

optimal adversarial documents from the combined 411

set P̂ = P ∪ O, which includes both parent and 412

offspring documents. Specifically, each document 413

within P̂ is evaluated against the two attack objec- 414

tives, LRSR and LGPR, to assess their effectiveness 415

in the adversarial context. Therefore, we incorpo- 416

rate a non-dominated sorting strategy (Deb et al., 417

2002) to identify the optimal set of documents, 418

known as the Pareto front. In this front, each doc- 419

ument is characterized by having all objective val- 420

ues lower than those in any other set, as shown 421

in the right of Figure 2. Then, the documents in 422

the Pareto front will be located in a holistic error 423

zone closer to the origin. Additionally, to help 424

preserve diversity within the document population, 425

we further utilize the crowding distance sorting 426

strategy to identify adversarial documents that pos- 427

sess unique knowledge by measuring how isolated 428

each document is relative to others. Then, the most 429

adversarial document d∗ is selected from a less 430

crowded region of the Pareto front. Details of a 431

non-dominated sorting algorithm are described in 432

Appendix A.4. 433

Note that this process, including crossover, muta- 434

tion, and selection steps, continues iteratively until 435

a successful attack is achieved, where the selected 436

adversarial document d∗ prompts an incorrect an- 437

swer a′, as illustrated in the figure on the right in 438

Figure 2. If the process fails to produce a success- 439

ful attack, it persists through the predefined number 440

of iterations, Niter.. 441

4 Experimental Setup 442

In this section, we describe the experimental setup. 443
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Table 1: Results of adversarial attacks using GARAG, aver-
aged across three datasets, NQ, TQA, and SQuAD. The most
vulnerable results are in bold.

Attack Success Ratio (↑) End-to-End (↓)

Retriever LLM ASRR ASRL ASRT EM Acc

DPR

Llama2-7b 79.2 90.5 70.1 77.1 81.3
Llama2-13b 78.4 92.0 70.8 81.9 87.3

Vicuna-7b 88.7 80.7 69.8 57.2 79.3
Vicuna-13b 88.8 81.6 70.8 58.4 83.2

Mistral-7b 83.7 85.5 69.5 66.7 96.5

Contriever

Llama2-7b 85.3 91.0 76.6 75.0 79.6
Llama2-13b 82.0 92.0 74.2 80.7 87.3

Vicuna-7b 92.1 81.5 73.9 55.1 76.9
Vicuna-13b 91.3 83.2 74.7 53.5 79.5

Mistral-7b 89.2 86.6 75.9 63.1 95.3

w/o GARAG - - - 100 100

4.1 Model444

Retriever. We use two recent dense retriev-445

ers: DPR (Karpukhin et al., 2020), a supervised446

one trained on query-document pairs, and Con-447

triever (Izacard et al., 2022), an unsupervised one.448

Reader. Following concurrent work (Asai et al.,449

2024; Wang et al., 2024) that utilizes LLMs as read-450

ers for the RAG system, with parameters ranging451

from 7B to 13B, we have selected open-source452

LLMs of similar capacities: Llama2 (Touvron453

et al., 2023), Vicuna (Chiang et al., 2023), and Mis-454

tral (Jiang et al., 2023). Each model has been either455

chat-versioned or instruction-tuned. To adapt these456

models for open-domain QA tasks, we employ a457

zero-shot prompting template for exact match QA458

derived from Wang et al. (2024).459

4.2 Dataset460

We leverage three representative QA datasets: Nat-461

ural Questions (NQ) (Kwiatkowski et al., 2019),462

TriviaQA (TQA) (Joshi et al., 2017), and SQuAD463

(SQD) (Rajpurkar et al., 2016), following the se-464

tups of Karpukhin et al. (2020). To assess the ro-465

bustness of the RAG system, we randomly extract466

1,000 instances of the triple (q,d,a). In each triple,467

q is a question from the datasets, d is a document468

from the top-100 documents retrieved from the469

Wikipedia corpus corresponding to q, and a is the470

answer generated by the LLM, which is considered471

as correct for the specific question-document pair.472

4.3 Evaluation Metric473

To measure the effectiveness of GARAG and the ac-474

tual impact of generated adversarial documents on475

RAG systems, we incorporate two types of metrics476

to show the effectiveness of the adversarial attacks477

and the end-to-end QA performance measuring the478

actual impact on the RAG system.479

Table 2: Retrieval performance under RAG system us-
ing Llama-7b when the adversarial documents generated by
GARAG are injected into the retrieval corpus.

DPR Contriever

Dataset Attacked MAP@100 NDCG@100 ASRR MAP@100 NDCG@100 ASRR

NQ ✗ .417 .633 - .248 .489 -
✓ .356 .593 75.4 .219 .462 85.9

TQA ✗ .532 .740 - .337 .696 -
✓ .471 .696 78.2 .298 .559 84.9

SQD ✗ .321 .540 - .267 .498 -
✓ .279 .513 80.0 .223 .468 86.1

Attack Success Ratio (ASR). Attack Success Ra- 480

tio (ASR) is the ratio of the generated documents 481

from the adversarial attack, located in the holis- 482

tic error zone (i.e., the values below 1 for LRSR 483

and LGPR). Specifically, ASR is for measuring the 484

effectiveness of the proposed method addressing 485

dual-objective optimization problems. 486

End-to-End Performance (E2E). To evaluate the 487

impact of the adversarial document on RAG sys- 488

tems, we report it with standard QA metrics: Exact 489

Match (EM) and Accuracy (Acc). EM evaluates 490

if a prediction precisely matches the correct answer, 491

while Acc checks if the answer span is included 492

in the predicted response. If the attack fails (i.e., 493

either value for LRSR or LGPR exceeds 1), we trans- 494

mit the original document d to LLM instead of the 495

adversarial one d′ during prediction. 496

4.4 Implementation Details 497

The proposed method, GARAG, was configured 498

with hyperparameters: Niter was set to 25, Nparents 499

to 10, and S to 25. prpert, prcross, and prmut were 500

set to 0.2, 0.2, and 0.4, respectively. The opera- 501

tions of perturbation function f in GARAG consist 502

of the inner swap, truncate, keyboard typo, and nat- 503

ural typo, following Eger and Benz (2020)4. For 504

computing resources, we use A100 GPU clusters. 505

5 Results 506

In this section, we show our experimental results 507

with an in-depth analysis of the adversarial attack. 508

Main Result. Table 1 shows our main results av- 509

eraged over three datasets using GARAG with two 510

metrics: attack success ratio (ASR) and end-to- 511

end performance (E2E). First, a notable success 512

rate of over 70% across all scenarios indicates that 513

GARAG effectively locates adversarial documents 514

within the holistic error zone by simultaneously 515

considering retrieval and reader errors. Addition- 516

ally, we analyze the E2E performance to assess 517

4https://github.com/yannikbenz/zeroe
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Figure 3: (Left & Center) Adversarial attack results depending on the number of iterations Niter, on NQ with Contriever and
Llama2-7b. (Right) Distribution of correctness among predictions with the Contriever and Llama-7b depending on LGPR.

Figure 4: Confusion matrices of prediction from d∗ across
EM and Acc. on NQ with Contriever.

how adversarial attacks impact overall QA perfor-518

mance. Based on the EM metric, the performance519

of RAG systems decreased by an average of 30%520

and a maximum of close to 50% in all cases. These521

findings imply that noisy documents with minor522

errors, frequently found in the real world, can pose523

significant risks to downstream tasks using RAG.524

Impact on Retrieval Ability. We qualitatively525

explored the impact of adversarial documents on526

the RAG system’s retrieval ability. After injecting527

these documents into the original retrieval corpus,528

we evaluated the results using conventional IR met-529

rics like MAP and NDCG. As shown in Table 2,530

the adversarial documents degrade retrieval perfor-531

mance across all scenarios, despite being assessed532

solely by the LRSR in the GARAG process without533

considering the entire retriever corpus. Addition-534

ally, as DPR achieves better retrieval performance535

both before and after the attack, these results sug-536

gest that retrievers with superior retrieval perfor-537

mance tend to be more robust against typos.538

Impact on Grounding Ability. We further ana-539

lyze the response patterns of LLM to adversarial540

documents, categorizing the results based on EM541

and Acc as shown in Figure 4. For instance, an542

EM of 0 and Acc of 1 indicates that the response543

includes the correct answer along with irrelevant544

tokens, whereas an EM and Acc of 0 means that the545

response is entirely incorrect, likely a hallucination.546

First, Llama2 tends to produce exact matches more547

frequently, as evidenced by a high rate of (1,1)548

outcomes. but struggles with completely incorrect549

responses under adversarial conditions, indicated550

by a lower proportion of (0,1). By contrast, Mistral,551

despite fewer exact matches, consistently includes552

the correct answer span in its responses. These 553

insights are vital for understanding how different 554

models perform in realistic scenarios, especially 555

when handling noisy or adversarially altered doc- 556

uments, highlighting the varied impacts of such 557

conditions on LLMs. 558

Impact of prpert and Niter Then, we further explore 559

how varying the perturbation probability prpert or 560

the number of iterations Niter affects the attack out- 561

comes. As the left and center figures of Figure 3 562

illustrate, there is an apparent correlation between 563

the attack success rates for the retriever (ASRR) 564

and the entire pipeline (ASRT ). Moreover, the con- 565

sistently high success rate for the LLM (ASRL) 566

across all cases highlights a significant vulnera- 567

bility in the reader against typos. These findings 568

highlight the critical role of the retriever as a first 569

line of defense in the RAG system. Interestingly, 570

in the left figure of Figure 3, the results indicate 571

that a lower proportion of perturbation within a 572

document leads to a more disruptive impact on the 573

RAG system. This suggests that documents with 574

a few typos, which are common in the wild, could 575

have a more detrimental effect on performance. 576

Impact of Lowering LGPR. Since the value of 577

LGPR does not directly indicate the likelihood of 578

generating incorrect answers with auto-regressive 579

models, we analyze the correlation between the 580

likelihood of generating incorrect answers and 581

LGPR. As illustrated in the right panel of Figure 3, 582

we categorize predictions into buckets based on 583

their LGPR ranges and calculate the proportion of 584

incorrect answers within each bucket. The results 585

validate our objective design, demonstrating that a 586

lower LGPR value is associated with a higher likeli- 587

hood of incorrect responses. 588

Types of Low-level Perturbation. Table 4 589

presents the results of an ablation study on the oper- 590

ations included and excluded in the transformation 591

function f . Using multiple operations in f as the 592

default setup consistently outperformed all single 593

operations included in f , highlighting GARAG’s 594

ability to exploit promising areas in a vast search 595
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Table 3: Case study with Contriever and Llama-7b, where perturbed texts are in red and correct answers are in blue .

Question Who sang the first line of ‘We Are The World’?
Noisy Document We Are the World lines in the sing’s repetitive chorus proclaim, "We are the world, we are the children, we

are the onss who make a brighger day, so letś start giving". "We Are the World" pens with Lionel Richie
, Stevie Wonder , Paul Simon , Kenny Rogers , James Ingram , Tina Turner , and Billy Joel singing
the first verse. Michael Jackson and Diana Ross f0llow , completing the first choruc together. Dionne
Warwick, Willif Nelson, and Al Jarreau singe the second vers4 , before Bruce Springsteen, Kenny
Loggins, Steve Perry, and Daryl Hall go through the second chorus.

Answer Stevie Wonder, Tina Turner, Billy Joel, James Ingram, Kenny Rogers, Paul Simon, Lionel Richie
Prediction Michael Jackson

Table 4: Ablation study of GARAG on NQ with Contriever
and Llama-7b.

ASR E2E

ASRR ASRL ASRT EM

GARAG 85.9 91.1 77.5 70.1

Low-level Perturbations included f

Natural Typo 88.8 90.0 78.8 75.4
Keyboard Typo 84.6 91.4 76.2 71.2
Truncate 89.2 90.2 79.4 71.4
Inner Swap 83.4 87.8 71.4 78.0

Low-level Perturbations not included f

Punc. 93.0 93.7 86.7 68.9
Phonetic. 84.7 92.1 76.8 70.0
Visual. 77.7 90.5 68.8 72.5

space. Furthermore, the other types of low-level596

perturbations not initially included in f—such as597

punctuation insertion, phonetic similarity, and vi-598

sual similarity—successfully comprise the RAG599

system with a significant performance drop. No-600

tably, punctuation insertion alone compromised601

the system in 86% of the attacks, demonstrating602

GARAG’s effectiveness in leveraging diverse per-603

turbations for attacks.604

Comparison with Other Search Methods. We605

validated the effectiveness of our proposed method,606

GARAG, by comparing it with two search methods607

based on word importance calculated through dele-608

tion scoring (DS) and gradient scoring (GS). Note609

that both methods can target only a single module.610

As shown in Table 5, these single-targeted methods611

fail to comprehensively search for adversarial docu-612

ments across all modules. Even when implemented613

for single-module attacks, GARAG achieves sig-614

nificantly higher ASR and lower E2E than other615

methods, demonstrating the genetic algorithm’s ef-616

fectiveness. This underscores the importance of617

attacking both retriever and reader rather than tar-618

geting a single module.619

Case Study. We further qualitatively assess the620

impact of low-level textual perturbations within a621

document in Table 3. Note that since we ensure622

that the answer spans remain unperturbed, LLMs623

should ideally generate correct answers. However,624

Table 5: Comparison with other search methods on NQ with
Contriever and Llama-7b.

ASR E2E

ASRR ASRL ASRT EM

GARAG 85.9 91.1 77.5 70.1
GARAG on Retriever 96.6 18.0 18.0 94.4
GARAG on LLM 33.2 100.0 33.2 85.2

DS on Retriever 94.8 56.6 53.8 89.2
DS on LLM 16.0 100.0 16.0 90.4

GS on Retriever 26.5 75.0 4.6 93.2
GS on LLM 4.9 96.2 17.8 97.2

interestingly, an LLM fails to identify the correct 625

answers, which are mentioned six times in the doc- 626

ument, but instead generates an incorrect answer, 627

“Michael Jackson,” included in the document. 628

In Appendix B, we provide detailed results of 629

adversarial attacks for each dataset and analysis 630

including evaluating GARAG with paraphrased 631

queries, comparing high-level perturbation attacks, 632

and attacking closed-source models. We also dis- 633

cuss defense strategies for RAG systems against 634

minor textual typos and offer diverse case studies. 635

6 Conclusion 636

In this work, we highlighted the importance of as- 637

sessing the overall robustness of the retriever and 638

reader components within the RAG system, par- 639

ticularly against noisy documents containing mi- 640

nor typos that are common in real-world databases. 641

Specifically, we proposed two objectives to eval- 642

uate the resilience of each component, focusing 643

on their sequential dependencies. Furthermore, to 644

simulate real-world noises with low-level pertur- 645

bations, we introduced a novel adversarial attack 646

method, GARAG, incorporating a genetic algorithm. 647

Our findings indicate that noisy documents criti- 648

cally hurt the RAG system, significantly degrading 649

its performance. Although the retriever serves as a 650

protective barrier for the reader, it still remains sus- 651

ceptible to minor disruptions. Our GARAG shows 652

promise as an adversarial attack strategy when as- 653

sessing the holistic robustness of RAG systems 654

against various low-level perturbations. 655
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In this work, we explored the robustness of the658
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LLMs of different sizes, which are widely used as660

reader components in this system. However, due661

to our limited academic budget, we could not in-662

clude much larger black-box LLMs such as the663

GPT series models, which have a hundred billion664

parameters. We believe that exploring the robust-665

ness of these LLMs as reader components would666

be a valuable line of future work. Furthermore,667

GARAG aims for the optimal adversarial document668

to be located within a holistic error zone, by simul-669

taneously considering both retrieval and grounding670

errors. However, we would like to note that even671

though the adversarial document is located within672

the holistic error zone, this does not necessarily673

mean that the reader will always generate incorrect674

answers for every query, due to the auto-regressive675

nature of how reader models generate tokens. Nev-676

ertheless, as shown in the right figure of Figure 3677

and discussed in its analysis, we would like to em-678

phasize that there is a clear correlation: a lower679

LGPR value is associated with a higher likelihood680

of incorrect responses.681

Ethics Statement682

We designed a novel attack strategy for the purpose683

of building robust and safe RAG systems when684

deployed in the real world. However, given the685

potential for malicious users to exploit our GARAG686

and deliberately attack the system, it is crucial to687

consider these scenarios. Therefore, to prevent688

such incidents, we also present a defense strategy,689

detailed in Figure 5 and its analysis. Addition-690

ally, we believe that developing a range of defense691

strategies remains a critical area for future work.692
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A Implementation Detail1095

A.1 Operations1096

We explore four types of low-level perturbations,1097

capturing the unpredictable and diverse nature of1098

textual typos from Eger and Benz (2020). The1099

operations of transformation function f in our work1100

are as follows:1101

• Inner-Shuffle: Randomly shuffles the letters1102

within a subsequence of a word token, limited1103

to words with more than three characters.1104

• Truncate: Removes a random number of let-1105

ters from a word token’s beginning or end.1106

This operation is restricted to words with more1107

than three characters, with a maximum of1108

three characters removed.1109

• Keyboard Typo: Substitutes a letter with its1110

adjacent counterpart on an English keyboard1111

layout to simulate human typing errors. Only1112

one character per word is replaced.1113

• Natural Typo: Replaces letters based on com-1114

mon human errors derived from Wikipedia’s1115

edit history. This operation encompasses a1116

variety of error types, including phonetic er-1117

rors, omissions, morphological errors, and1118

their combinations.1119

Additionally, we explore other types of low-level1120

perturbations, such as punctuation insertion and1121

phonetic and visual similarity. The operations of1122

these low-level perturbations are as follows:1123

• Punctuation Insertion: Insert random punc-1124

tuations into the beginning or end of a word1125

token. We insert a maximum of three identical1126

punctuations into the beginning or end of the1127

word. Exploited punctuations are " ,.’!?; ".1128

• Phonetic Similarity: Swap the characters1129

in a word into the other tokens having pho-1130

netic similarity with the original ones. We1131

exploit two types of phonetic similarity at-1132

tacks from Eger and Benz (2020) and Le et al.1133

(2022).1134

• Visual Similarity: Swap the characters in a1135

word into the other tokens having visual simi-1136

larity with the original ones. We exploit two1137

types of phonetic similarity attacks from Eger1138

et al. (2019).1139

A.2 Details of Attack Objectives 1140

In this section, we explain the details of the attack 1141

objectives: the Relevance Score Ratio (RSR) and 1142

the Generation Probability Ratio (GPR). 1143

First, the Relevance Score Ratio (RSR) calcu- 1144

lates the ratio of the relevance score from the adver- 1145

sarial document d′ to the score from the original 1146

document d for a given query q. This ratio mea- 1147

sures the superiority of the relevance score for q 1148

between d and d′. For instance, if the RSR value 1149

is below 1, the relevance score from d′ is higher 1150

than that from d. Although this ratio is relative to 1151

the original document d and does not capture the 1152

actual rank in the retriever corpus, we validated 1153

the actual performance degradation of the retriever 1154

models, as shown in Table 2. 1155

The Generation Probability Ratio (GPR) calcu- 1156

lates the ratio of the generation probabilities of the 1157

correct answer a from the original pair (d, q) to 1158

the probability from the adversarial pair (d′, q). 1159

The generation probability of the answer a for a 1160

document-query pair (d, q) is the joint probabil- 1161

ity over the answer tokens in a, represented as 1162

p(a|d, q) =
∏L

i=1 p(ai|a<i,d, q). This ratio mea- 1163

sures the likelihood that the adversarial document 1164

will cause the LLM to generate the correct answer 1165

a compared to the original document d. For in- 1166

stance, if the GPR value is below 1, the adversarial 1167

document d′ is more successful in distracting the 1168

LLM than the original document d. Although this 1169

measurement does not directly imply generating 1170

incorrect answers, we validate the correlation be- 1171

tween GPR and the correctness of predictions, as 1172

shown in the right panel of Figure 3. These results 1173

highlight that lowering the GPR tends to induce the 1174

generation of more incorrect answers. 1175

A.3 Process of GARAG 1176

The detailed process of GARAG is showcased in 1177

Algorithm 1. Our process begins with the initializa- 1178

tion of the adversarial document population, and 1179

then the population repeats the cycles of crossover, 1180

mutation, and selection. 1181

A.4 Sorting Algorithm 1182

In this study, we utilize the sorting algorithms from 1183

NSGA-II (Deb et al., 2002) to identify the most ad- 1184

versarial documents within extensive search spaces 1185

of noisy documents derived from an original docu- 1186

ment. The algorithm employs non-dominated sort- 1187

ing coupled with crowding distance sorting to or- 1188

ganize the population. 1189
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Algorithm 1: Genetic Attack on RAG
Input: Query q, Document d, Number of iterations

Niter, Number of parents Nparent, Population
size S, Perturbation rate prper, Crossover rate
prcross, Mutation rate prmut

Function: Non-dominated sorting NDS, Crowd
sorting CS

Output: Adversarial document d′∗

// Initialization

P0 ← {d′
i}Si=1 with prper;

for i = 1 to Niter do
// Crossover
O ← CROSSOVER(Pi−1, Nparent, prcross);
// Mutation
O ← MUTATE(O, prmut);
// Selection

P̂i ← Pi−1 ∪O;
for d′ in P̂i do

Evaluate LRSR(d
′) and LGPR(d

′);

P̂i ← CS(NDS(P̂i));
d∗ ← Top-1(P̂i) ;
if a ̸= LLM(d∗, q; θ) and LRSR(d

∗) < 1 then
return d∗ as adversarial example;

Pi ← Top-S(P̂i);

d∗ ← Top-1(PNiter) ;
return d∗ as adversarial example;

Algorithm 2: Non-Dominated Sorting Algorithm
Input: Population P
Output: Document Set Fi having the front level i
for d′ ∈ P do

Sd′ ← ∅;
nd′ ← 0;
for d′′ ∈ P do

if d′ ≺ d′′ then
Sd′ ← Sd′ ∪ {d′′};

else
if d′′ ≺ d′ then

nd′ ← nd′ + 1;

if nd′ = 0 then
d′

rank ← 1;
F1 ← F1 ∪ {d′};

i← 1;
while Fi ̸= ∅ do

Q← ∅;
for d′ ∈ Fi do

for d′′ ∈ Sp do
nd′′ ← nd′′ − 1;
if nd′′ = 0 then

d′′
rank ← i+ 1;

Q← Q ∪ {d′′};

i← i+ 1;
Fi ← Q;

Non-Dominated Sorting. Initially, non-1190

dominated sorting arranges the adversarial1191

documents into different front levels, ensuring that1192

documents within the same level do not dominate 1193

one another. The domination relation between the 1194

adversarial documents is defined as follows: 1195

Definition A.1 (Domination). Given two adver- 1196

sarial documents d′
i and d′

j perturbed from the 1197

original document d leading to generate correct 1198

answer a for a query q, d′
i is said to dominate 1199

d′
j (i.e., d′

j ≺ d′
i) if the following conditions are 1200

satisfied: 1201

• LRSR(d
′
i) < LRSR(d

′
j) 1202

• LGPR(d
′
i) < LGPR(d

′
j) 1203

The specifics of non-dominated sorting are illus- 1204

trated in Algorithm 2. 1205

Crowding Distance Sorting The crowding dis- 1206

tance sorting is applied to rank the documents 1207

within each front level. The crowding distance 1208

is a crucial part of the algorithm, helping maintain 1209

population diversity by giving higher preference to 1210

solutions in less crowded regions. 1211

The process of calculating crowding distance in 1212

a population begins by assigning each individual a 1213

crowding distance value of zero. The population 1214

is then sorted in ascending order for each objec- 1215

tive function. Boundary points, the first and last 1216

individuals in each sorted list, are assigned an in- 1217

finite crowding distance to ensure their selection. 1218

For all other individuals, the crowding distance is 1219

calculated by normalizing the difference in objec- 1220

tive function values between adjacent individuals, 1221

adjusted by the range of the objective values in the 1222

population, as given by d(i) = d(i) + fi+1−fi−1

fmax−fmin
. 1223

This calculation is repeated for each objective func- 1224

tion. Finally, the individual crowding distances 1225

computed for each objective are summed to esti- 1226

mate the density of solutions surrounding a partic- 1227

ular solution, facilitating the selection of diverse 1228

solutions in multi-objective optimization. 1229

A.5 Template 1230

We adopt the zero-shot prompting template optimal 1231

for exact QA tasks, following (Wang et al., 2024), 1232

for all LLMs exploited in our experiments. 1233
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QA Template for LLMs

[INST] Documents:
{Document}

Answer the following question with a very
short phrase, such as "1998", "May 16th, 1931", or
"James Bond", to meet the criteria of exact match
datasets.

Question: {Question} [/INST]

Answer:
1234

B Additional Results1235

B.1 Overall Result1236

Table 9 shows the overall results across three QA1237

datasets, two retrievers, and five LLMs.1238

B.2 Evaluation on Paraphrased Query.1239

Table 6: Adversarial attack on paraphrased query on NQ with
Contriever and Llama-7b.

Paraphrased Attacked ASRR ASRL ASRT EM

✗ ✗ - - - 100
✗ ✓ 85.9 91.1 77.5 70.1

✓ ✗ - - - 79.1
✓ ✓ 72.8 62.5 44.1 75.1

For a more realistic scenario, we validate the im-1240

pact of noisy documents with paraphrased queries1241

not exploited in the adversarial attack. After1242

generating an adversarial document for a given1243

document-query pair, we paraphrased this query1244

using GPT-3.5 (Brown et al., 2020). Note that the1245

paraphrased queries are not involved in the gen-1246

eration process of the adversarial documents, but1247

they request the same answer as the original ver-1248

sions. As depicted in Table 6, our experimental1249

results show the robustness of the adversarial doc-1250

ument generated by GARAG. Although the adver-1251

sarial documents are less effective for paraphrased1252

queries compared to the original ones, resulting in1253

lower ASR and higher EM scores, they still degrade1254

the performance of RAG systems after adversarial1255

attacks. Additionally, the paraphrased queries nega-1256

tively affect RAG systems, indicating the instability1257

of these systems. This analysis highlights the vul-1258

nerability of noisy documents in realistic settings,1259

such as interactive environments between humans1260

and the RAG system.1261

B.3 Comparison with HotFlip1262

We compare the vulnerability of low-level perturba-1263

tions with high-level perturbations implemented by1264

Table 7: Comparison with HotFlip Attack on NQ with Con-
triever and Llama-7b.

ASR E2E

ASRR ASRL ASRT EM

GARAG 85.9 91.1 77.5 70.1
GARAG on Retriever 96.6 18.0 18.0 94.4
GARAG on LLM 33.2 100.0 33.2 85.2

HotFlip on Retriever 100.0 79.0 79.0 59.6
HotFlip on LLM 6.1 99.9 6.1 94.9

HotFlip (Ebrahimi et al., 2018) targeting each mod- 1265

ule within RAG systems, following the settings 1266

of Zhong et al. (2023). Note that HotFlip is for 1267

high-level perturbations based on word swap, not 1268

for low-level perturbations targeting our work. As 1269

shown in Table 7, HotFlip on the retriever showed 1270

a higher attack success rate and significant perfor- 1271

mance degradation compared to LLM, confirming 1272

the retriever acts as a shield for the RAG system. 1273

Also, HotFlip, with its gradient-based optimization, 1274

inevitably finds more adversarial documents than 1275

GARAG, showing a lower EM score than GARAG 1276

after the attack. However, as ours is the black-box 1277

attack just relying on the outputs of the model, not 1278

requiring any gradient calculation, it can applied to 1279

more diverse scenarios such as exploiting diverse 1280

types of perturbations or attacking closed-source 1281

models such as ChatGPT (Brown et al., 2020). 1282

B.4 Adversarial Attack on Closed-source 1283

Model 1284

Table 8: Adversarial attack with GARAG on NQ to GPT-3.5

Retriever ASR E2E

ASRR ASRL ASRT EM

DPR 64.7 85.3 50.0 88.2
Contriever 74.0 86.3 60.3 83.6

We further explore the applicability of black- 1285

box attacks on the closed-source model, GPT-3.5. 1286

Since OpenAI limits access to their models, pre- 1287

venting operations such as gradient calculation for 1288

loss objectives, gradient-based attacks like Hot- 1289

Flip (Ebrahimi et al., 2018) cannot be applied. 1290

However, our proposed method, GARAG, can as- 1291

sess the vulnerability of such models as it only 1292

requires model outputs for adversarial attacks. Ta- 1293

ble 8 presents the results of adversarial attacks on 1294

GPT-3.5 with two types of retrievers: DPR and 1295

Contriever. Although GPT-3.5 showed some weak- 1296

ness to textual typos, it was more robust than the 7B 1297

to 13B size models primarily tested in this experi- 1298

ment. Additionally, the results align with our previ- 1299

ous experiments, demonstrating that DPR, which 1300
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has stronger search performance, is more robust1301

against typos.1302

B.5 Defense Strategy.1303

Figure 5: Distribution of grammatically correct documents
among d∗ on NQ with the Contriever and Llama2-7b.

Various defense mechanisms against adversarial1304

attacks in NLP have been proposed. Adversarial1305

training, fine-tuning the model on adversarial sam-1306

ples, is a popular approach (Yoo and Qi, 2021b).1307

However, this strategy is not practically viable for1308

RAG systems, given the prohibitive training costs1309

associated with models exceeding a billion param-1310

eters. Alternatively, a grammar checker is an effec-1311

tive defense against low-level perturbations within1312

documents (Formento et al., 2023).1313

Our analysis, depicted in Figure 5, compares the1314

grammatical correctness of original and adversarial1315

documents via grammar checker model 5 presented1316

in Dehghan et al. (2022). It reveals that approxi-1317

mately 50% of the original samples contain gram-1318

matical errors. Also, even within the adversarial set,1319

about 25% of the samples maintain grammatical1320

correctness at a low perturbation level. This obser-1321

vation highlights a critical limitation: relying solely1322

on a grammar checker would result in dismissing1323

many original documents and accepting some ad-1324

versarial ones. Consequently, this underscores the1325

limitations of grammar checkers as a standalone de-1326

fense and points to more sophisticated and tailored1327

defense strategies.1328

B.6 Changes in Population Distribution1329

Across Iterations in GARAG1330

We provide a detailed distribution of how the pop-1331

ulation is refined through the iterative process, as1332

illustrated in Figure 6. As the iteration number in-1333

creases, the population distribution progressively1334

converges towards the holistic error zone, demon-1335

strating the effectiveness of GARAG in optimiza-1336

tion.1337

5https://huggingface.co/imohammad12/
GRS-Grammar-Checker-DeBerta

Figure 6: The process of population refinement by GARAG
on NQ with Contriever and Llama-7b

B.7 Case Study 1338

We conducted case studies with diverse LLMs, in- 1339

cluding Llama-7b, Vicuna-7b, and Mistral-7b, as 1340

shown in Table 10. In all these studies, while the 1341

correct answer tokens were not perturbed — allow- 1342

ing for the possibility of grounding correct infor- 1343

mation — the LLMs typically failed to answer the 1344

correct knowledge within the document. This often 1345

resulted in incorrect predictions or even halluci- 1346

nations, where the answer was not just wrong but 1347

absent from the document. However, there was an 1348

exception with Mistral-7b, which generated the cor- 1349

rect answer and additional explanatory text. While 1350

this prediction did not meet the Exact Match (EM) 1351

metric, it was semantically correct. 1352
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Table 9: Adversarial attack results of GARAG on three QA datasets across different retrievers and LLMs.

NQ TriviaQA SQuAD

ASR(↑) E2E(↓) ASR(↑) E2E(↓) ASR(↑) E2E(↓)
Retriever LLM ASRR ASRL ASRT EM Acc. ASRR ASRL ASRT EM Acc. ASRR ASRL ASRT EM Acc.

DPR

Llama2-7b 75.4 89.8 66.0 76.8 80.6 78.2 91.7 70.2 81.6 85.3 84.1 90.1 74.2 73.0 78.
Llama2-13b 71.3 91.7 63.5 82.8 88.2 83.9 92.0 76.1 76.7 83.3 80.0 92.4 72.7 86.3 90.5

Vicuna-7b 83.0 81.6 65.1 62.0 79.2 91.1 79.5 70.8 58.4 81.7 92.0 81.1 73.4 51.2 76.9
Vicuna-13b 82.8 80.9 64.4 58.5 83.3 91.8 83.5 75.4 59.2 85.7 91.7 80.5 72.5 57.4 80.5

Mistral-7b 78.5 85.9 65.1 69.1 96.5 84.7 84.9 69.8 66.5 97.7 87.8 85.7 73.5 64.4 95.2

Contriever

Llama2-7b 85.9 91.1 77.5 70.1 74.7 84.9 90.7 76.0 82.0 86.9 85.2 91.2 76.4 72.9 77.2
Llama2-13b 78.9 91.2 70.5 78.7 85.7 81.0 91.9 72.9 86.2 91.7 86.1 93.0 79.1 77.2 84.5

Vicuna-7b 90.8 81.3 72.4 52.2 72.5 93.0 80.8 74.0 60.3 81.5 92.6 82.5 75.2 52.7 76.7
Vicuna-13b 87.5 85.5 73.3 63.9 95.4 88.8 86.4 75.2 66.2 97.8 91.2 88.0 79.3 59.2 92.6

Mistral-7b 87.5 85.5 73.3 63.9 95.4 88.8 86.4 75.2 66.2 97.8 91.2 88.0 79.3 59.2 92.6
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Table 10: Case study on NQ with Contriever, where perturbed texts are in red and correct answers are in blue .

Llama-7b

Question Which site of an enzyme is called allosteric site?
Noisy Document A;losteric enzyme Long-range allostery is esprcially imponant in cell signaling. Allosteric regulation is

also particularly important in the cell’s abil9ty to adjusy enzyme activity. The term "allostery" comes from
the Greek "allos", "other," and "stereos", " silid (object)." This is in reference to the fact that the regulatory
site of an allosteric protein is physically distinct from its active site. The protein catalyst (enzyme) may be
paft of a multi-subunit complex, and/or may transiently or permanently associatr with a Cofactor (e.g.
adenosine triphosphate). Catalysis of biochejical reactions is vital due to the very law reaction rates of the
uncatalysed reactioms .

Answer Regulatory site
Prediction Active site

Question Who did Cora marry in once upon a time?
Noisy Document The Millerś Daughter (Once Upon a Time) to the King and accepts Henry ’s resultant marriage proposal.

The day before her wedding, Cora ques6ions her olans ; she is unlikely to become qjeen as Henry is fifth
in linf to the throne, while Rumplestiltskin, with whom she has been having an affair, offers her love. They
agree to amend the contratc so Cora owes Rumplestiltskin "his" child. He also agrees to teach her how
to take a heart, so that she can kilk King Savier. That night, she confromts the king. He reveals that he
knows of her relationship with Rumplestiltskin; telling her that " pove is weakness," he ays

Answer Henry
Prediction Rumplestiltskin

Vicuna-7b

Question What is the 3rd largest state in USA?
Noisy Document Wextern United States LGBT community, and Oakland, California has a large percen5age of residents

being African-American, as well as Long Beadh , California which also has a large Black community.
Ths state of Utah has a Mormon majority (estimate at 62.4% in 2004), while some cities like Albuquerque,
Nrw Mexico; Billkngs , Montqna ; Spokane, Washington; and Tucson, Arizona are located near Indian
Reservations. In remote areas there are settlements of Alaskan Natives and Native Hawaiians. Fqcing
both the Pacitic Ocean and the Mexican border, the West has been shaped by a cariety of ethnic groups.
Hawaii is the only state in the union in which

Answer California, Alaska
Prediction Oregon

Question When did the movie peter pan come out
Noisy Document Peter Pan as an adult by Robin Williams, with iblue eyes and dark brown hair; in flashbacks to him in his

youth, his hwir is light brown. In this film his ears ap;ear poin only when he is Petef Pan, not as Peter
Banning. His Pan attire resembles the D9sney outfit (minus the cap). In the lvie-action 2003 " -eter
Pan" film, he is portrayed by Jeremy Su,pter , who has blond hair and blue-green eyes. His outfit is made
of leaves and vines. J.M. Barrie created his character based on his older brother, Davic , who died in an
ice-skating accieent the day before

Answer 25 December 2003, 2003
Prediction 1998

Mistral-7b

Question Make it or break it who goes to the Olympics?
Noisy Document Make It or Break It A new gymnast, Max (Josh Bowman), cpmes to The Rock, wttracting the attention of

Lauren and Payson . Though Max seems more interested in Payson , she is more focused on her dream.
Lauren tells Payson that Max is her nww boyfriend; Max denies this. Mas, Austin, and Payson hope
Kaylie train in secret, as they try to convince Sasha that Kaylie is ready to compete at Worlds. In the week
of Emily’s departure, Kelly Parke becomes closer to Kaylie , des-ite the scheming of her stage her, Sheila
(Kathy Najimy). Kaylie offers her comfort as Kelly’s mom is only sup[ortive of Kelly’s

Answer Jordan, Payson, Lauren, Colleen, Kaylie
Prediction Kaylie goes to the Olympics

Question When did Michael Jordan get his last ring?
Noisy Document Hisfory of basketball A large place of this is due to the transcendent stars that have played the game through

the years. It was because of the play of Michael Jordan that basketball started to rsach international
audiences, especially on the 992 United States men’s Olympic basketball team, known as the Dream Team.
After his fianl championship and second retirement in 1998 , there was a void as in who would be the face
of basketball. So;n after with the help of Shaquille O’Neal, Koge Bryant would go on to win three straight
championships from 2000–2002 with the Los Angeles kers , helping make basketball

Answer 1998
Prediction 2002. (This is based on the context of the given document stating that Kobe Bryant and Shaquille O’Neal)
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