
Under review as a conference paper at ICLR 2023

DYNAMICS-AWARE SKILL GENERATION FROM
BEHAVIOURALLY DIVERSE DEMONSTRATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning from demonstrations (LfD) provides a data-efficient way for a robot to
learn a task by observing humans performing the task, without the need for an
explicit reward function. However, in many real-world scenarios (e.g., driving a
car) humans often perform the same task in different ways, motivated not only
by the primary objective of the task (e.g., reaching the destination safely) but also
by their individual preferences (e.g., different driving styles), leading to a multi-
modal distribution of demonstrations. In this work, we consider a Learning from
state-only Demonstration setup, where the reward function for the common ob-
jective of the task is known to the learning agent; however, the individual prefer-
ences leading to the variations in the demonstrations are unknown. We introduce
an imitation-guided Reinforcement Learning (RL) framework that formulates the
policy optimisation as a constrained RL problem to learn a diverse set of policies
to perform the task with different constraints imposed by the preferences. Then
we propose an algorithm called LfBD and show that we can build a parameterised
solution space that captures different behaviour patterns from the demonstrations.
In this solution space, a set of policies can be learned to produce behaviours that
not only capture the modes but also go beyond the provided demonstrations.

1 INTRODUCTION

Learning from demonstrations (LfD) (Schaal, 1996) provides an alternative way to Reinforcement
Learning (RL) for an agent to learn a policy by observing how humans perform similar tasks. How-
ever, in many real-world scenarios (e.g., driving a car), humans often perform the same task in
different ways. Their behaviours are not only influenced by the primary objective of the task (e.g.,
reaching the destination safely) but also by their individual preferences or expertise (e.g., different
driving styles) (Fürnkranz & Hüllermeier, 2010; Babes et al., 2011). In other words, all the under-
lying policies maximize the same task reward, but under different constraints imposed by individual
preferences. This leads to a multi-modal distribution of demonstrations, where each mode represents
a unique behaviour.

With multi-modal demonstrations, typical LfD methods, such as Behaviour Cloning and Generative
Adversarial Imitation Learning, either learn a policy that converges to one of the modes resulting in
a mode-seeking behaviour or exhibit a mean-seeking behaviour by trying to average across different
modes (Ke et al., 2020; Ghasemipour et al., 2020; Zhang et al., 2020). While the former will still
recover a subset of solutions, the latter may cause unknown behaviour (see Fig 1). Furthermore,
none of these approaches is able to learn policies that correspond to the behaviours of a wide range
of individuals. The problem becomes even more challenging when there are only “state observa-
tions” in the demonstrations without the actions. In such situations, supervised or unsupervised
learning approaches cannot be applied directly to find a policy, and the agent must interact with the
environment or with a simulator (Torabi et al., 2019).

Being able to learn a diverse set of policies from demonstrations is often desirable to serve the
requirements of a wide range of individual users. For instance, every self-driving car can have a
driving policy (selected from the diverse set of pre-trained policies) that matches the preferences of
a user. Many recent works show the advantages of having a diverse set of policies, for instance,
rapid damage adaptation in robotics (Kaushik et al., 2020; Chatzilygeroudis et al., 2018; Cully et al.,
2015) and safe sim-to-real policy transfer in robotics (Kaushik et al., 2022).

1

Under review as a conference paper at ICLR 2023

A. Diverse demonstrations B. Mean-seeking LfD

BAMM!

C. Mode-seeking LfD D. LfBD (Ours)

Figure 1: Given the demonstrations from several individuals in A, the mean-seeking policy produces unseen
behaviour that is unsafe as shown in B, the mode-seeking policy only recovers one mode as shown in C. We
propose a new framework that recovers all the possible solution modes as shown in D. The example is inspired
from (Ke et al., 2020)

.

In this work, we consider a specific setup of LfD, known as Imitation Learning from Observations
alone (ILfO) (Sun et al., 2019), where the learning agent only has access to the state observations
without their corresponding actions. We propose a new framework that combines Reinforcement
Learning with ILfO to solve the issues of learning from the multi-modal states-only demonstrations,
especially with a small set of unlabelled demonstrations. Unlike most of the LfD methods, our goal
is not just to learn how to perform a task or how to mimic humans, but rather how to perform a task in
all possible ways as shown in Fig 1D. Thus, we focus on applications where a high-level task reward
function can be defined easily, but the preference components that cause diverse behaviours cannot
be explicitly defined. These include tasks such as autonomous driving or robotic manipulations,
where the agent needs to mimic the human’s behaviour pattern (i.e., preference) while reaching the
intended goal (i.e., task reward).

In practice, defining a high-level task reward can be straightforward, i.e., for autonomous driving,
this can be a function of the distance to a target location and the penalty for collisions. However,
defining the preference component is far from easy, as it may be impossible to find a mathematical
expression for each individual’s preferences. Thus, we formulate the multimodal policy genera-
tion guided through demonstration as a constrained optimisation problem; where the generation of
multimodal behaviours results from optimising policies for a given task reward function that satisfy
different preference constraints.

As contributions, we first propose a new imitation-guided RL framework and an algorithm called
Learning from Behaviourally diverse Demosntration (LfBD) to solve the problem of policy genera-
tion from multimodal (state-only) demonstrations. We then propose a novel projection function that
captures preferences as state-region visitations. This projection function allows us to build a pa-
rameterised solution space to allocate policies such that they satisfy different preference constraints.
We show that our approach is capable of generating multimodal solutions beyond the provided
demonstrations, i.e. the resulting solutions also include interpolations between the provided demon-
strations. Furthermore, our method allows us to perform different types of post-hoc policy searches
in the solution space: 1) Given a (sate-only) demonstration, find the closest policy capable of gen-
erating this demonstration. 2) Search policies in the solution space that have a high/low likelihood
according to the provided demonstrations (i.e., similar to the provided demonstrations). 3) Find
solutions that satisfy different constraints.

2 BACKGROUND

2.1 IMITATION LEARNING AS DIVERGENCE MINIMISATION

In this section, we discuss why current Imitation Learning (IL) methods are incapable of dealing
with multi-modal demonstration distributions; especially, when only a small set of demonstrations
is available. Zhang et al. (2020); Ke et al. (2020); Ghasemipour et al. (2020) have shown that
current the Imitation learning (IL) methods can be derived as a family of f-divergence minimisation
methods, where the divergence of the state-action distributions of the expert pπexp(s, a) and learning

2

Under review as a conference paper at ICLR 2023

A. Mode-seeking B. Mean-seeking

Figure 2: Fitting a Gaussian to a multimodal distribution (blue) by minimising the reverse-KL (A, mode-
seeking) and the forward-KL (B, mean-seeking)

agent pπθ
(s, a) is minimised using either Kullback-Lebler (KL) divergences or Jensen-Shanon (JS)

divergence. As KL divergence is not symmetric, both forward KL and reverse KL are used. And
depending on the choice of the divergence, the optimisation yields different results (Nowozin et al.,
2016; Ke et al., 2020; Ghasemipour et al., 2020) (see Fig 2). Additional details in Appx. A.2.

Behaviour cloning (Pomerleau, 1988), a supervised off-line learning approach, is one of the ex-
amples that use forward KL to optimise its policy. In practice, it either follows a mean-seeking
behaviour under a stochastic policy and assumes data sampled during training are balanced or ex-
hibits a mode-seeking pattern. As it is a supervised learning method that lacks interaction with the
environment, it often requires a large amount of demonstration data in order to accurately estimate
the true state-action distribution (Neu & Szepesvári, 2009).

One example of using reverse KL is Adversarial Inverse Reinforcement Learning (Fu et al., 2017),
which recovers both the reward function and the policy by formulating IL as a min-max opti-
misation using Generative Adversarial Networks (GAN) (Goodfellow et al., 2014). Here, the
generator serves as the policy network and a discriminator as the reward function. The opti-
mised objective is the reverse KL divergence, which can be expressed in terms of entropy H as:
Epπθ

(s,a) [log πexp(s, a)]−H(pπθ
(s, a)). In practice, it faces additional challenges, such as the am-

biguity of the reward function (Ng et al., 2000; Arora & Doshi, 2021) (i.e., many reward functions
could generate the same behaviours). Thus, its policy learning counterpart, Generative Adversarial
Imitation Learning (GAIL) (Ho & Ermon, 2016) is more frequently used. This latter optimises the
JS divergence (Goodfellow et al., 2014; Ghasemipour et al., 2020; Ke et al., 2020) with the causal
entropy as policy regularisation term.

Optimising the JS-divergence result in the same mode-seeking behaviour as the reverse KL (Theis
et al., 2015). It further faces one of the most notorious problems of the GAN-based approach,
commonly known as mode collapse (Srivastava et al., 2017; Bau et al., 2019), where the genera-
tor collapses to produce only a small set of data samples (partial collapse) or even a single sample
(complete collapse), which disregards the multi-modal nature of the distribution. Furthermore, the
adversarial optimisation scheme in GAN-based methods further imposes other challenges, such as
instability in the optimisation. It is often difficult to guarantee that both the generator and the dis-
criminator converge optimally at the same time (Radford et al., 2015). It is common to observe that
the loss of the discriminator converges very quickly to zero (Arjovsky & Bottou, 2017; Xu et al.,
2018) that impedes the gradient updates of the generator. It often needs a considerably large number
of data and fine-tuning or additional regularization in order to stabilise the training process. The
optimisation of IL methods is convex if the actions are deterministic and the demonstrations cover
the complete state space (Neu & Szepesvári, 2009). In practice, it is always difficult to make sure
that the demonstrations span the entire state space; instead, they just cover one of the global optima
which ensures the convergence of the solution.

2.2 IMITATION LEARNING FROM OBSERVATION ONLY

Towards ILfO, Torabi et al. (2018) proposes a new approach called BCO, where an inverse dynamics
model is learnt through interaction with the environment and a policy is learnt from state observa-
tions by using the action inferred by the inverse dynamics. However, as with most LfD methods,
BCO does not handle multimodal demonstrations. Similarly, another approach called ILPO (Ed-
wards et al., 2019) learns a forward dynamics model and a latent policy to circumvent the need
for the actions; however, it is limited to discrete action space. Latent policy learning from demon-
strations has also been proposed by Ren et al. (2020); Fujiishi et al. (2021); Wang et al. (2022a).
GAIfO (Torabi et al., 2019) extends GAIL to state-only observations by using a discriminator that
discriminates the state transitions instead of state-action pairs from the expert. State-alignment

3

Under review as a conference paper at ICLR 2023

based Imitation Learning (Liu et al., 2019) uses state alignment to recover state sequences close to
the demonstrations using local state alignment and global state alignment. While it shares some sim-
ilarities with our method (i.e., state distribution matching), it needs state-action pairs to pre-training
their model. A similar work is proposed in Lee et al. (2019). InfoGAIL (Li et al., 2017) combines
InfoGAN (Chen et al., 2016) with GAIL to capture the variations of diverse demonstrations using
interpretable latent factors. However, it is not a state-only approach and suffers, in addition, from
the mode-collapse problem of GAN. (Gavenski et al., 2020) shares similarities with us by using
the sampling-based method to imitate unknown policies but with state-action demonstrations. The
closest work is perhaps by Ghasemipour et al. (2020), where they recover a multi-modal policy from
state distributions that preserves 2 solution modes using a modified reverse KL. However, this mul-
timodality is due to the use of the stochastic policy(i.e., outputs mean and variance of a Gaussian
distribution). Unlike our approach, it does not allow the post-hoc policy search we propose, there-
fore, it cannot obtain a specific policy deterministically. Shafiullah et al. (2022) uses a transformer to
learn multimodal demonstrations; however, it does not deal with state-only data. Similar examples
include the diffusion model (Wang et al., 2022b) for path planning that focuses on in-distribution
data generation with access to the action set.

3 PROBLEM SETUP

Consider a finite-horizon Markov Decision Process (MDP) ⟨S,A, p, p0, R, γ, T ⟩, where S ⊆ Rds

andA ⊆ Rda are the continuous state and action spaces, p(s′|s, a) is the state-transition probability,
s and s′ are the current and the next state, a is the applied action, p0 the initial state distribution,
γ ∈ [0, 1] the discount factor, R : S × A → R the reward function, and T the time horizon.
We assume that this MPD has differentiable dynamics with a continuous states transition function
st+1 = fc(st, at), such that d(st, st+1) < δ, with d as a distance metric, and δ a small constant.

Let D = {τ0, τ1, . . . , τn−1} be a set of state-trajectories (demonstrations) such that τi =
(si0, s

i
1, . . . , s

i
T−1), s

i
t ∈ Rds , τi ∈ RT×ds . The demonstration set D results from a set of n hu-

man policies {πi
h(a|s)|i = 0 : n − 1}, where the subscript h indicates that it is a human policy,

which is inaccessible for us.

We hypothesise that while all human policies maximise the same task reward Rtask(s, a), each
policy is constrained by a preference component. We define the preference component as the state
distribution, such that different individuals prefer to visit different states while solving the task.
Therefore, human policies are the results of solving the following constrained optimisation problem:

πi
h := argmax

π
E
[T−1∑

t=0

γtRtask(st, at)|π
]
, (1)

subject toDKL[pπ(s)||gi(s)] < ϵ (2)

where gi(s) = p(s|πi
h) is the state distribution preferred by the individual i, and pπ(s) the state

distribution of the learning agent. As different individuals optimise the task reward function with
different preferred states, the demonstration distribution can have multiple solution modes.

Our goal is to learn a large set of policies capable of solving the same task in different ways by
satisfying different preference components of the demonstrators, rather than learning a single way of
solving the task (i.e., mode-seeking policy or mean-seeking policy).Thus, we propose a setup where
the learning agent has access to a simulator to receive the task reward from the environment and to
observe the true dynamics of the system. At the same time, it receives the demonstrations D, where
it needs to optimise its policies for the different unobserved (as it is not explicitly defined) preference
components from these demonstrations. In other words, we propose to solve the objective above by
combining the optimisation scheme of RL with IL that uses a divergence minimisation scheme.

4 SKILL GENERATION FROM BEHAVIOURALLY DIVERSE DEMONSTRATIONS

Our method consists of two steps: (1) latent space modelling from the demonstration, and (2) diverse
policy generation on the latent space. In addition, our method allows us to perform post-hoc solution
searching on this space in order to obtain solutions (policies) that satisfy different constraints.

4

Under review as a conference paper at ICLR 2023

To find out a large set of policies, one for each gi(·) as per the KL constraint in Eq. 2, we first need
to construct a latent space Z , such that any gi(·) can be mapped onto that space. Now, if we use
a projection function that maps two similar gi(·)s closer to each other in the latent space Z , the
KL constraint in Eq. 2 can be approximated using a Euclidean constraint in this space Z . More
concretely, for some constant δ ∈ R+, zi ∈ Z , and projection function Enc(·) the problem can be
reformulated on the latent space Z as

πi := argmax
π

E[(Rtask|π)],

subject to ||Enc(τπ)− zi||2 < δ
(3)

Practically, we want to find one policy for each zi ∈ Z , optimising the objective in Eq. 3, where
zi are uniformly and densely distributed in the space Z . In other words, we want to optimize
policies for each niche so that the optimized policies maximise the task reward while producing state
trajectories specified by its own niche only. This is a quality-diversity optimization problem (Cully
& Demiris, 2017): finding high-quality solutions according to a cost/fitness function in a space that
specifies the behaviour of the solutions. We solve this optimisation problem using a quality-diversity
algorithm called MAP-Elites (Mouret & Clune, 2015; Vassiliades et al., 2017), where we determine
the behaviour of the solutions as the latent preferences extracted from our projection function.

4.1 LATENT SPACE MODELLING FROM DENSITY ESTIMATION

We first model the latent factors that explain the diversity in the behaviours from the demonstrations.
As mentioned in Sec. 3, we hypothesise that the diversity is caused by individual preference over
the state visitations; i.e., different individuals prefer visiting different regions in the state space. A
similar hypothesis has also been made in previous works such as max-margin planning (Ratliff et al.,
2006), where the reward function is recovered by matching the state-visitation frequency for every
single state and the state-action feature vector. While they use single state visitation counts, we
propose to estimate the state region visitation frequencies as latent preferences.

C. Latent spaceA. State observations (Demos) B. Density distribution (GMM)

Figure 3: Generation of the latent space from the demonstration. The state observations (A) are modelled by a
GMM (B). The latent space (C) is built based on different combinations of mixture components.

Given the state distributions from the demonstrations p(s) as defined in Sec 3, we use a
Gaussian Mixture Model (GMM) of k mixture components to model the density as p(s) =∑K

i ϕiN (s|µi, σi), where ϕi is the mixture weight for each mixture component. This state density
p(s) models the state observations of all the demonstrations. Under the assumption of a continuous
state transition,i.e., states close in time will be in the same state region (see Sec 3), each mixture
component will cover a state region in the state space. The state distribution of each individual,
gi, belongs to a subset of the entire state distribution. As a mixture component can be seen as
a state region, different trajectories would have different state region visitations or assigned mix-
ture components. Given a fitted GMM model, we can estimate the state distribution of each gi(s)
given its observations by a subset of mixture components according to their corresponding posterior
probability or responsibilities p(k|s). That is, given the sequence of states, we can estimate the
responsibilities p(k|s) for these states using the fitted GMM, and use the corresponding mixtures to
approximate its state distribution. Given the assigned mixture components {kj}, and their assign-
ment frequencies fj

T (i.e., number of assignment for each component w.r.t the total number of states
T) for gi(s), we can approximately define the density of gi(s) using a new GMM model composed
of these mixture components as gi(s) ≈

∑ fj
T N (s|µkj

, σkj
), where the assigned mixture compo-

nents correspond to state region visitations, and the new mixture weight is readjusted based on their
assignment frequencies fi

T .

5

Under review as a conference paper at ICLR 2023

Now, we can define our projection function, or encoder function Enc : RT×ds → Rdz , dz ≪
(T × ds), based on the assignment of the mixture components. Given a set of states from a policy,
the GMM is used as an unsupervised clustering method to classify these states into different mixture
components. There are different ways to represent this information. For instance, we can have an
encoding of size K and give the frequency values of each component [f1, f2, . . . fk]. However,
to limit the size of the encoding, we choose to take the indices of the m most frequently assigned
components without explicit referring to the actual frequencies (detailed algorithm in Appx. Algo 1).
The precision of the mapping depends on our choice of m as we will have information loss with a
small value of m (further discussion in Appx. A.5.2 and A.4).

Implicitly, we are defining the feature vector of a trajectory as the mixture components that are
responsible for its states. The visitation frequency is explicitly taken into account by taking the top
dz most assigned mixture components in descending order. In addition, the use of GMM allows us
to evaluate the likelihood of a given trajectory according to the density distribution modelled from
demonstrations. For instance, given the example of Fig 4, we can evaluate whether these trajectories
belong to in-distribution data or out-of-distribution based on their likelihood (of the state sequence).

Average likelihood : 0.25 Average likelihood : 0.78

A B

Figure 4: Mixture components/clusters assignment (represented by coloured confidence ellipsoids of GMM)
for the state distributions of 2 trajectories τ1 ∈ R80 and τ2 ∈ R50. A. Out-of-distribution trajectory τi with low
average likelihood according to a fitted GMM. B. In-distribution trajectory τ2 with high average likelihood.

Solution matching We can measure the similarity of 2 trajectories by measuring their associated
mixture components. As we have the analytical form of each component (e.g., Gaussian with its
mean and variance), we can directly measure the distance between their distributions by using mea-
surement of our choice, such as Bhattacharyya distance or KL divergence.

4.2 MAP-ELITES (EA) AS DYNAMICS-AWARE CONDITIONAL GENERATIVE MODEL

Given Z as the latent space defined by the projection function, we aim to generate a solution archive
Pz parameterised by the latent encoding z, where each entry in this archive has a unique encoding
z. The goal is to generate policies and map them into this space according to encoding values for
their respective g(·). While the latent space contains all the possible state distributions defined by
the mixture components of the GMM, the solution space is constrained by the system’s dynamics,
as the possible solutions are subject to the system constraints that cannot generate certain state
distributions. Thus, Pz ⊂ Z . As the solution archive is the result of filling the latent space with
policies, we may use latent space interchangeably to refer to the empty solution space.

EA can be seen as an implicit state density model over states with high fitness/reward (Murphy,
2023). In our case, as EA optimises each instance of encoding, which is associated (deterministi-
cally) with a given mixture model, the generation of this space is equivalent to an implicit density
modelling conditioned on the latent encodings. Thus, we refer to our method as a conditional gen-
erative model that generates policies conditioned on different encodings. The workflow is shown in
Fig 5, and the detailed algorithm in Appx. 2.

As mentioned in Sec. 4, we use MAP-Elites as the algorithm of our choice. It starts with sampling
N random policy parameters from a uniform distribution: θi=0:N−1 ∼ U[a,b]. Then it evaluates the
policies in simulation using the reward function Rtask(·, ·), and at the same time generates the state
trajectories τi=0:N−1, and their corresponding encodings zi=0:N−1. Then the policies are inserted
into the closest cells in the solution archive P . If two policies compete for the same cell, the one
with a higher reward occupies the cell. Once this initialization is done, MAP-Elites randomly selects
a policy from the archive, adds a small random noise (mutation) to the parameters, and evaluates the
policy on the simulator for the reward, state trajectory, and the corresponding encoding. This new
policy is inserted into the archive if either the cell is empty or the new policy has a higher reward; the

6

Under review as a conference paper at ICLR 2023

Initial
random
sampling

1

2 Trajectory
generation

SIMULATOR
Projection
function

Parameter space

Policy

State space

3 Latent
encoding

4 Policy
insertion

Latent space
5 Policy selection

& random variation

Figure 5: Workflow of policy generation and allocation in the latent space. To initialise, the parameters of
the policy (here we use a neural network) are sampled uniformly, and then the policies are executed on the
simulator to get the corresponding trajectories (set of states), in order to allocate the policies into the latent
space according to their encoding. Then, in a loop, policies are selected from the archive, small variations are
added, and new encodings are obtained to insert them into the archive based on their reward.

policy is discarded otherwise. The selection, variation, and insertion continue until the maximum
assigned policy evaluation count is reached.

As the highest rewarding policies occupy the nearest cells in the archive, those policies produce
maximally rewarding behaviour staying close to the state distribution specified in the cell. In other
words, the policies in the archive essentially optimise the objective in Eq. 3 for different zi.

Post-hoc policy search Having a set of solutions parameterised by latent encodings allows us to
find solutions in a post-hoc manner that satisfy different constraints. For instance, a solution archive
G built for a 2D navigation environment with one obstacle contains solutions for an equivalent
environment J with two obstacles, as the latter space is more restricted, where J ⊂ G (see example
in Sec. 5). In addition, given a new demonstration, we can find the closest policy in our archive
by finding a policy with the closest distribution distance (see Sec. 4.1 and Alg. 3) according to the
encodings.

5 EXPERIMENTS

We present 3 experiments with continuous state and action spaces to show that our method is capable
of generating a solution archive that optimises implicitly the density distribution from demonstra-
tions. We propose 2 (motion) planning examples where the task is to generate a non-colliding path
from two points in an end-to-end manner. The first is a 2D toy path planning environment and
the second is a robotic arm motion planning environment using the Franka Emika robot with Py-
bullet (Coumans & Bai, 2016–2021) as the physic simulator. In both cases, we use only the XY
position coordinates as the state observation. For Franka, we fixed the Z axis, as the demonstrations
do not contain Z coordinates. Finally, we show a driving experiment modified on (Leurent, 2018)
as a close-loop control example, using neural networks for a step-wise decision-making policy. The
experiments are run 3 times. The average performance and further ablation study (time, number of
valid solutions vs encoding choices) can be found in Appx. A.4. The latent encoding is a vector
of 6 dimensions defined by the top 6 most frequent mixture components responsible for the state
sequence. A discussion of model selection and reproducibility is included in Appx. A.5.2 and A.3.

2D path planning We use 28 non-colliding trajectories with fixed lengths that are generated arti-
ficially using Bézier curves as shown in Fig 6A. We use B-spline as the policy function, which takes
5 control points in total to generate a flexible curve as parameters, where the first and last control
points are start and end coordinates, and the resulting points are the parameters of the policy, θ ∈ R6.
We use a GMM of 20 components for the multimodal distribution and 10 for the single-mode dis-
tributions. Under the exact same setup, we show that the control points are optimised towards state
distributions modelled by their respective GMM. As shown in Fig 6, the resulting control points
from the single-mode setup are scattered mainly in the region within single-mode state distribution.
While for the multi-modal setup, the control points are scattered in both regions of the state space.
This comparison is even more noticeable after filtering out the solutions with a higher likelihood
(according to their respective GMM models). We show that even though the demonstrations only

7

Under review as a conference paper at ICLR 2023

cover one solution mode, our method is still capable of discovering multimodal solutions, where the
unseen solutions from the demonstrations will have lower likelihood values.

Figure 6: Solution archives optimised for different GMM models fitted to single mode and multimodal demos.
A. Multimodal demonstration. B. Trajectories with GMM from multimodal demonstration with colour bar as
their corresponding average likelihood. C. Control points for policies from B shown with their colour and size
re-adjusted according to trajectories’s likelihood. D. Trajectories from solution space build for the single-mode
demonstrations (i.e., lower regions) with their average likelihood. E. Control points for the policies of Fig. D.

As VAE is commonly used as a feature encoding method as well as a (conditional) generative model,
we show its capability of feature encoding and generation ability in this setup. We use the same en-
coding size, and trained the model for 30000 iterations (details in Sec A.3.1). As shown in Fig 7, for
a small dataset, the generator suffers from partial collapse that only generates samples from certain
modes and fails to produce diverse samples. The same observation occurs for the encoder, it fails
to produce unique encoding values as shown in Fig. 7(B, D). While training the same model using
the data generated from our solution, both its capability of reconstruction and encoding improves
considerably. However, unlike our projection function, it does not provide an interpretable encoding
value. And it cannot take the advantage of the simulator that is available to interact with. Another
alternative method is GAN, but it does not work when a small amount of data is provided, and it
suffers from the mode collapse even though a large amount of data is available (see Sec 2.1). We
show this latter using trajectories from our archive in Appx. A.2).

Franka arm manipulation We use the same setup here as in the previous case, except the mixture
component to model the state density increases to 25 as more data is available. We collected 140
demonstrations in real life using a motion tracker to track the movement of a pointer to draw the
trajectories without considering the real dynamics of the robot. The length of demos spans between
240 and 726 time-steps. This 3D environment contains 3D obstacle, where the resulting trajectories
are plotted in 2D space for visualisation purpose in Fig 8.

Highway driving We demonstrate here that our method is capable of optimising high-dimensional
parameters of neural networks, where θ ∈ R201. We collected 40 demonstrations of 151 time-
steps using a manual controller from the simulator. Here the observations contain both the position
coordinates and the rotation angles of the vehicle, s ∈ R4, the action a ∈ R1 is the steering applied
to the vehicle to overtake the obstacle without going off the road as shown in Fig 9A. We show the
resulting behaviours when multimodal and single-mode demonstrations are used in Fig 9.

Post-hoc solution search In this case, we show that we can still find valid solutions when the
constraints in the environment change. Here, we add another obstacle to the 2D path planning

A

1 0 1
values

103

B
type
means
variances

C

1 0 1
values

101

102

103

D
type
means
variances

VAE

102

103

E
type

archive demos
original demos

Figure 7: VAE failed on the original demonstrations, but can be fully trained using trajectories from our method.
A. 1000 samples from VAE trained on the original demonstrations. B. Histogram of the predicted encodings for
the samples (i.e., mean and variance for the isotropic Gaussian). C. 1000 samples from VAE trained on trajecto-
ries generated from our solution. D Histogram of the predicted encodings for the corresponding demonstrations.
E. Histogram of the unique encodings from both VAEs.

8

Under review as a conference paper at ICLR 2023

Figure 8: A. Franka environment. B. Demonstrations of various lengths. C. Trajectories from the solution
archive. D. Trajectories with their corresponding likelihood visualised with a colour map.

A B C D0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Figure 9: Our method finds feasible driving styles that overtake the obstacle in different ways. A. Demonstra-
tion. B. Trajectories from the multimodal solution archive with the likelihood values. C/D. Trajectories from
the single-mode solution archives with their respective likelihood values.

environment. By simulating the policies in this modified environment, we obtained 1738 valid tra-
jectories as shown in Fig 10. Notice here that, we can observe more solution modes as results of
interpolation between the two existing solution modes from the demonstrations. It is also possible
to obtain a set of trajectories close to a given demonstration by matching the latent encodings (see
Sec. 4.1) in the solution archive (see Fig 10). Here we compare the result of encoding matching
using VAE trained on demonstrations generated by our method (see Fig 7C) and the result from
our proposed projection function (more details in Appx. A.3.2). The results show that our projec-
tion function enables better matches, as we can measure the distances between the underlying state
distributions based on the encoding values (see Sec. 4.1).

A. New constraints B. Our matching
closest policies
demo
demo's clusters

C. VAE matching

closest policies
demo

D. Our matching

closest policies
demo
demo's clusters

E. VAE matching

closest policies
demo

Figure 10: Post-hoc policy searching in the solution archive to find policies that satisfy different constraint
and to find policies for a given demonstration. A: 1738 valid solutions for a new obstacle in the solution
archive at Fig 6a. B/D: 5 closest policies to a given demo using our proposed projection function with GMM.
C/E: 5 closest policies using VAE encodings.

6 CONCLUSIONS

In this paper, we propose a novel framework that allows us to build a solution space where we gen-
erate a diverse range of behaviours from a small set of state-only observations. We show empirically
that our method optimises all the policies in the space towards different state density constraints
while optimising the task reward. With our proposed projection function that encodes state transi-
tions into meaningful statistical encoding, we can perform a post-hoc policy search in the projected
space searching for different policies. Our experimental results show that we are capable of generat-
ing multimodal solutions deterministically beyond the provided demonstrations. Further discussion
regarding its application use is included in Appex. A.8.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Martin Arjovsky and Léon Bottou. Towards principled methods for training generative adversarial
networks. arXiv preprint arXiv:1701.04862, 2017.

Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, meth-
ods and progress. Artificial Intelligence, 297:103500, 2021.

Monica Babes, Vukosi Marivate, Kaushik Subramanian, and Michael L Littman. Apprenticeship
learning about multiple intentions. In Proceedings of the 28th international conference on ma-
chine learning (ICML-11), pp. 897–904. Citeseer, 2011.

David Bau, Jun-Yan Zhu, Jonas Wulff, William Peebles, Hendrik Strobelt, Bolei Zhou, and Antonio
Torralba. Seeing what a gan cannot generate. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 4502–4511, 2019.

Konstantinos Chatzilygeroudis, Vassilis Vassiliades, and Jean-Baptiste Mouret. Reset-free trial-
and-error learning for robot damage recovery. Robotics and Autonomous Systems, 100:236–250,
2018.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Info-
gan: Interpretable representation learning by information maximizing generative adversarial nets.
Advances in neural information processing systems, 29, 2016.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. http://pybullet.org, 2016–2021.

Antoine Cully and Yiannis Demiris. Quality and diversity optimization: A unifying modular frame-
work. IEEE Transactions on Evolutionary Computation, 22(2):245–259, 2017.

Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. Robots that can adapt like
animals. Nature, 521(7553):503–507, 2015.

Ashley Edwards, Himanshu Sahni, Yannick Schroecker, and Charles Isbell. Imitating latent policies
from observation. In International conference on machine learning, pp. 1755–1763. PMLR, 2019.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse rein-
forcement learning. arXiv preprint arXiv:1710.11248, 2017.

Hidehito Fujiishi, Taisuke Kobayashi, and Kenji Sugimoto. Safe and efficient imitation learning by
clarification of experienced latent space. Advanced Robotics, 35(16):1012–1027, 2021.

Johannes Fürnkranz and Eyke Hüllermeier. Preference learning and ranking by pairwise compari-
son. In Preference learning, pp. 65–82. Springer, 2010.

Nathan Gavenski, Juarez Monteiro, Roger Granada, Felipe Meneguzzi, and Rodrigo C Barros. Imi-
tating unknown policies via exploration. arXiv preprint arXiv:2008.05660, 2020.

Seyed Kamyar Seyed Ghasemipour, Richard Zemel, and Shixiang Gu. A divergence minimization
perspective on imitation learning methods. In Conference on Robot Learning, pp. 1259–1277.
PMLR, 2020.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Rituraj Kaushik, Pierre Desreumaux, and Jean-Baptiste Mouret. Adaptive prior selection for
repertoire-based online adaptation in robotics. Frontiers in Robotics and AI, pp. 151, 2020.

Rituraj Kaushik, Karol Arndt, and Ville Kyrki. Safeapt: Safe simulation-to-real robot learning using
diverse policies learned in simulation. IEEE Robotics and Automation Letters, 2022.

10

http://pybullet.org

Under review as a conference paper at ICLR 2023

Liyiming Ke, Sanjiban Choudhury, Matt Barnes, Wen Sun, Gilwoo Lee, and Siddhartha Srinivasa.
Imitation learning as f-divergence minimization. In International Workshop on the Algorithmic
Foundations of Robotics, pp. 313–329. Springer, 2020.

Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric Xing, Sergey Levine, and Ruslan Salakhutdi-
nov. Efficient exploration via state marginal matching. arXiv preprint arXiv:1906.05274, 2019.

Edouard Leurent. An environment for autonomous driving decision-making. https://github.
com/eleurent/highway-env, 2018.

Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail: Interpretable imitation learning from visual
demonstrations. Advances in Neural Information Processing Systems, 30, 2017.

Fangchen Liu, Zhan Ling, Tongzhou Mu, and Hao Su. State alignment-based imitation learning.
arXiv preprint arXiv:1911.10947, 2019.

Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by mapping elites. arXiv preprint
arXiv:1504.04909, 2015.

Kevin P. Murphy. Probabilistic Machine Learning: Advanced Topics. MIT Press, 2023. URL
probml.ai.

Gergely Neu and Csaba Szepesvári. Training parsers by inverse reinforcement learning. Machine
learning, 77(2):303–337, 2009.

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In Icml, vol-
ume 1, pp. 2, 2000.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
using variational divergence minimization. Advances in neural information processing systems,
29, 2016.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Nathan D Ratliff, J Andrew Bagnell, and Martin A Zinkevich. Maximum margin planning. In
Proceedings of the 23rd international conference on Machine learning, pp. 729–736, 2006.

Allen Z Ren, Sushant Veer, and Anirudha Majumdar. Generalization guarantees for imitation learn-
ing. arXiv preprint arXiv:2008.01913, 2020.

Stefan Schaal. Learning from demonstration. Advances in neural information processing systems,
9, 1996.

Nur Muhammad Mahi Shafiullah, Zichen Jeff Cui, Ariuntuya Altanzaya, and Lerrel Pinto. Behavior
transformers: Cloning k modes with one stone. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id=agTr-vRQsa.

Akash Srivastava, Lazar Valkov, Chris Russell, Michael U Gutmann, and Charles Sutton. Veegan:
Reducing mode collapse in gans using implicit variational learning. Advances in neural informa-
tion processing systems, 30, 2017.

Wen Sun, Anirudh Vemula, Byron Boots, and Drew Bagnell. Provably efficient imitation learning
from observation alone. In International conference on machine learning, pp. 6036–6045. PMLR,
2019.

Ajay Kumar Tanwani, Andy Yan, Jonathan Lee, Sylvain Calinon, and Ken Goldberg. Sequential
robot imitation learning from observations. The International Journal of Robotics Research, 40
(10-11):1306–1325, 2021.

11

https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env
probml.ai
https://openreview.net/forum?id=agTr-vRQsa

Under review as a conference paper at ICLR 2023

Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative
models. arXiv preprint arXiv:1511.01844, 2015.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. arXiv preprint
arXiv:1805.01954, 2018.

Faraz Torabi, Garrett Warnell, and Peter Stone. Adversarial imitation learning from state-only
demonstrations. In Proceedings of the 18th International Conference on Autonomous Agents
and MultiAgent Systems, pp. 2229–2231, 2019.

Vassilis Vassiliades, Konstantinos Chatzilygeroudis, and Jean-Baptiste Mouret. Using centroidal
voronoi tessellations to scale up the multidimensional archive of phenotypic elites algorithm.
IEEE Transactions on Evolutionary Computation, 22(4):623–630, 2017.

Tianyu Wang, Nikhil Karnwal, and Nikolay Atanasov. Latent policies for adversarial imitation
learning. arXiv preprint arXiv:2206.11299, 2022a.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022b.

Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei Huang, and Xiaodong
He. Attngan: Fine-grained text to image generation with attentional generative adversarial net-
works. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
1316–1324, 2018.

Xin Zhang, Yanhua Li, Ziming Zhang, and Zhi-Li Zhang. f-gail: Learning f-divergence for gen-
erative adversarial imitation learning. Advances in neural information processing systems, 33:
12805–12815, 2020.

12

Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 ALGORITHMS

Algorithm 1 State region visitation frequency

1: function ENCODE(gmm model, state sequence, size descriptor)
2: list components=gmm model.predict(state sequences) # Predict the list of mixture compo-

nents responsible for each state
3: unique component, n counts = unique(list components)
4: comp indices = top k components(unique component, n counts, size descriptor)
5: return comp indices
6: end function

Algorithm 2 Solution archive generation

1: function ARCHIVE GENERATE(gmm model, size descriptor)
2: Initialise an instance of policy π, solution archive P , reward archiveR, number of iteration

N , number of initial random samples M
3: while i ≤M do
4: θ = uniform sampling(0,1) # sample the parameter vectors from uniform distribution.
5: πθ = policy.set parameter(π, θ)
6: τ , rtask = simulate(πθ)
7: z = encode(gmm model, τ , size descriptor)
8: P(z)← θ
9: R(z)← rtask

10: end while
11: while i ≤ N do
12: θ = ramdom solution select(P)
13: θ′ = mutate(θ) # Gaussian noise injection to the parameters.
14: τ , rtask = simulate(πθ′)
15: z = encode(gmm model, τ , size descriptor)
16: if P(z) = ∅ orR(z) < rtask then
17: P(z)← θ′

18: R(z)← rtask
19: end if
20: end while
21: return P,R
22: end function

A.2 KL DIVERGENCE MINIMISATION FOR MULTIMODAL DISTRIBUTION

As KL divergence is not symmetric, the reverse KL and forward KL exhibit very different be-
haviours. These are also known as Moment projection and Information projection respectively.

Given the state-action observations from the demonstrations from the expert’s policy πexp, M-
projection minimises the following forward KL:

π∗
θ = argmin

θ
DKL

(
pπexp

(s, a) || pπθ
(s, a)

)
,

DKL =

∫
pπexp(s, a) log

(
pπexp

(s, a)

pπθ
(s, a)

)
d(s, a) = Epπexp (s,a)

[
log

(
pπexp

(s, a)

pπθ
(s, a)

)]
.

(4)

While the I-projection minimises the following reverse KL:

13

Under review as a conference paper at ICLR 2023

π∗
θ = argmin

θ
DRKL

(
pπexp(s, a) || pπθ

(s, a)
)
,

DRKL =

∫
pπθ

(s, a) log

(
pπexp(s, a)

pπθ
(s, a)

)
d(s, a) = Epπθ

(s,a)

[
log

(
pπexp(s, a)

pπθ
(s, a)

)]
.

(5)

For M-projection, the difference between pπexp(s, a) and pπθ
(s, a) is weighted by pπexp(s, a).

Which means that when pπexp(s, a) = 0, the discrepancy of pπθ
(s, a) > 0 from pπexp(s, a) will

be ignored. Mathematically, this means that pπexp(s, a) will typically over-estimate the support
of pπθ

(s, a), due to pπexp
(s, a) > 0 whenever pπθ

> 0 to make sure KL divergence stays finite.
As result, the projecting exhibits a mean-seeking, also known as moment-matching, behaviour that
averages over several modes given a multimodal distribution. While it avoids the low probability
assignment of the region with data (e.g., the other mode of the distribution), it inevitably assigns
probability mass to non-data region (Theis et al., 2015) as shown in Fig 2.

For I-projection, as difference between pπexp(s, a) and pπθ
(s, a) is weighted by pπθ

(s, a). pπh
(s, a)

will typically under-estimate the support of pπθ
and concentrate on one of its modes that results

in a mode-seeking behaviour. This is due to pπexp
(s, a) = 0 whenever pπθ

(s, a) = 0 to make
sure KL divergence stays finite. Using this projection is not straightforward as we might only have
access to samples from the distribution rather than the data density itself (Murphy, 2023), where
M-projection can be done easily by maximising the average log-likelihood with respect to the given
training dataset as an equivalent way of minimising the KL.

A.2.1 EXPERIMENTAL ANALYSIS

Given the multi-mode and single-mode demonstrations of the 2D path planning environment, we
proposed in Sec. 5. We show the results of Gaussian Mixture Regression (GMR) model, build on
the same GMMs we used for our method (see A.4). While it performs well in the single-mode
demonstrations, the result from the multimodal distribution exhibits a mean-seeking behaviour as
shown in Fig 11.

prediction
95% confidence interval

prediction
95% confidence interval

prediction
95% confidence interval

Figure 11: Results of GMR on multimodal demonstrations and single-mode demonstrations. Left: Prediction
with 95% confidence interval from a GMR trained on multimodal demonstrations. Middle/Left: GMR predic-
tions on single-mode demonstrations.

Extending the discussion in Sec 2.1 about GAN in dealing with multimodal distribution. We show
experimentally the performance of GAN in generating trajectories for the 2D path planning environ-
ment. As GAN cannot deal with a small dataset, we trained it using the trajectories generated by our
archive, which contains 3881 trajectories. The results are shown in Fig 12. The discriminator takes
the entire trajectory as the input and has 3 hidden layers with 128, 32, and 8 neurons respectively.
The generator takes an input of a 7-dimensional vector and uses 3 hidden layers with 128, 64, and
32 neurons respectively to generate the trajectory of the same size. The model is trained for 23000
iterations. The results are consistent with mode-seeking behaviour where it converges to one of the
solution modes discussed in Sec 2.1.

A.3 EXPERIMENT SETUPS AND REPRODUCIBILITY

We train all the GMM models using sklearn library with a fixed random state to ensure reproducibil-
ity. The experiments were run 3 times per setup (e.g., multimode and single-mode demonstrations),
with 2 different types of encodings. We show the average result for single-mode demonstrations and

14

Under review as a conference paper at ICLR 2023

A B C 0 5000 10000 15000 20000

D
0

5

10

15

20

25

30

35

40 Generator loss
Discriminator loss

Figure 12: A: Samples from GAN after 3000 iterations. B. Samples from GAN after 15000 iterations. C.
Samples from GAN after finished training. D. Training loss of the discriminator and generator during training.

Experiments iterations Real time CPU time

Planning (multimodal) 105 3m49s ± 1m6s 13m1s ± 0m28s
Planning (upper) 105 2m33s ± 0m12s 11m51s ± 1m18s
Planning (lower) 105 2m27s ± 0m44s 12m3s ± 0m21s

Franka 105 6h49m ± 11m57s 6h49m ± 11m57s
Highway (multimodal) 5× 105. 2h46m ± 4m19s 13h29m ± 36m14s

Highway (upper) 5× 105. 1h54m ± 0m56s 12h35m ± 4m14s
Highway (lower) 5× 105. 1h26m ± 11m57s 12h36m ± 42m9s

Table 1: Training time

multimodal demonstrations. As most of the experiments allow us to run parallel threads. We record
both the average true elapsed time and the average CPU time, with their standard deviation. The re-
sults are shown in Table 1. For 2D path planning, we use Intel Core i7-6850K CPU @3.60GHz with
6 cores and trained our model using 12 parallel threads. For Franka, we use a single thread process
with 1 CPU core of Xeon Gold 6148 @2.40GHz, and 16GB of RAM without multi-threading due
to the high memory demand from the physical simulator. For the highway environment, we use 8
cores of Intel Xeon Gold 6248 @2.50GHz with 12 parallel threads and 8GB of RAM.

In the highway environment, we use neural networks with 2 hidden layers of 8 and 16 neurons
respectively as policy. The total number of parameters is 201 elements. The parameters of the
networks are purely optimised using random sampling and perturbation from EA without any back-
propagation. As we use the exact setup from 2D path planning in the Franka environment to show
the applicability of our methods in ”real” applications besides the 2D path planning experiment,
we only test the result in the multi-modal setup. To ensure maximum reproducibility, the solution
archive is initialised with 104 solutions with uniformly sampled parameters from a given parameter
space to minimise the advantage of a good initialisation. The parameter space for 2D path planning
is defined within the range of [−5, 5], while for Franka it is defined within [0, 1] and for highway
within [−1, 1].
As we tested 2 different types of encoding, we report the performance results in the ablation study
(see Appx. A.5), where we discuss the impact of the size of the encodings vs the size of the solution
archive, among the others.

A.3.1 SETUP FOR VAE

We use a VAE with 5 hidden layers with 256,128,64, 64,32 neurons correspondingly. Unlike our
projection function, the VAE cannot handle data of different sizes, instead, it receives the full tra-
jectory with a fixed length. Thus, it cannot deal with the demonstrations intended for Franka Arm
environment, as they have various sizes.

A.3.2 POLICY SEARCH USING ENCODING MATCHING

Given a demonstration, we search for the closest policy by finding the one with the minimal distance
in the encoding space. The algorithm can be found in Alg. 3.

To compare the result of VAE with our method, we use the samples generated by VAE (see Fig. 7C),

15

Under review as a conference paper at ICLR 2023

Algorithm 3 Policy searching

1: function POLICY SEARCH(archive policies, archive encodings, encoding demo, n matches)
2: Initialise an array of distances D
3: for encoding in archive encodings do
4: d = distance function(encoding, encoding demo)
5: D ← d
6: end for
7: closest policies = top n closest policies(archive policies, D, n matches)
8: return closest policies
9: end function

A.4 MODEL SECTION OF GMM

The model selection, i.e., the number of GMM components used to model the state density distri-
bution from the demonstration, is determined by Bayesian Information-theoretic criteria (BIC). We
choose the model with lower BIC as the common practice. The GMM used for the 2D path planning
environment is shown in Fig 13 using confidence ellipsoid. The GMM used for the Franka envi-
ronment is shown in Fig 14. We omit the visualisation for the highway environment, as we use 4D
Gaussian which cannot be visualised with confidence ellipsoid.

Figure 13: GMM models used for 2D path planning environment. Left: GMM confidence ellipsoid for the
multimodal demonstrations. Middle: GMM confidence ellipsoid for the single-mode demonstrations (upper
region). Right: GMM confidence ellipsoid for the single demonstrations (lower region).

Figure 14: GMM model for the multimodal demonstrations recorded using motion tracker.

A.5 ABLATION STUDIES AND NUMERICAL QUANTIFICATION OF SOLUTION ARCHIVE

In this section, we analyse the performance of our method by analysing the resulting solution archive
generated by our method. We include as the performance indicator the total number of policies
generated and the total valid solutions that reach the given task reward, i.e., reaching the goal while
preventing the collisions. We report the results under different setups.

A.5.1 COMPARISON OF DIFFERENT ENCODINGS

We compare 2 different type of encoding: 1) Encoding with the top 6 most frequently assigned
mixture component as discussed in Sec 4.1, shown in Table 2. 2) Same encoding but with an

16

Under review as a conference paper at ICLR 2023

additional likelihood value added. This latter is proposed to avoid the case of having two different
trajectories with the same encoding but with different likelihood values (i.e., out-of-distribution
trajectories that happened to be mapped to the same encoding), shown in Table 3. In the case of
the point environment, the inclusion of likelihood does not increase the size of the final solution
archive. We hypothesise that this is caused by the segmentation of the solution space, as the average
likelihood is low in general for all the trajectories (see the likelihood values for the trajectories in
Fig 6), it worsens the uniform segmentation of the space. In reality, while different trajectories
can have the assigned mixture components, their respective frequencies may rarely coincide. For
instance, in Fig 4, two trajectories can have the same assigned component with low and high average
likelihood respectively, but their resulting encodings are different due to the different frequency
values. Thus, these trajectories will not compete for the same niche in the solution space. While
in the case of highway environment, the inclusion of the likelihood does increase the size of the
descriptor as the average likelihood values are higher, which span within [0, 1] (see the colour map
for the trajectories in Fig 9), which allows a uniform segmentation of the archive space.

Experiments Demos’s size Encoding/GMM∗ Total solutions Valid

Planning (multimodal) 28 × 50 6/20 7703 ± 20 6584 ± 38
Planning (upper) 14 × 50 6/10 2329 ± 47 1999 ± 27
Planning (lower) 14× 50 6/10 3920 ± 29 3314 ± 34

Highway (multimodal) 40 × 151 6/20 3900 ± 59 1009 ± 42
Highway (upper) 20 × 151 6/10 1657 ± 33 464 ± 16
Highway (lower) 20 × 151 6/10 1187 ± 14 261 ± 9

Table 2: Number of demonstrations vs archive solutions with encoding without likelihood. ∗Number compo-
nents for the encoding / total number of mixture components.

Experiments Demos’s size Encoding/GMM+∗ Total solutions Valid

Planning (multimodal) 28 × 50 7/20 3810 ± 16 3554 ± 6
Planning (upper) 14 × 50 7/10 2685 ± 12 2415 ± 15
Planning (lower) 14× 50 7/10 3761 ± 27 3270 ± 7

Franka 140 × (various) 7/25 8581 ± 24 6948 ± 48
Highway (multimodal) 40 × 151 7/20 4781 ± 23 1116 ± 25

Highway (upper) 20 × 151 7/10 1919 ± 64 515 ± 25
Highway (lower) 20 × 151 7/10 1237 ± 40 260 ± 11

Table 3: Number of demonstrations vs archive solutions with encoding that has likelihood as an additional
dimension. +Here we have 6 mixture components plus one value for the average likelihood.

Approaches as Tanwani et al. (2021) has used Hidden semi-Markov Models to extract the temporal
sequence of the demonstration for imitation learning, which takes the transition probability between
different mixture models into account. Our encoding does not consider the transition probability
between different mixture components; the use of Hidden Markov Models (HMM) could be done as
a potential future work.

A.5.2 COMPARISON OF DIFFERENT CHOICES FOR GMM

Encoding space dimensionality. Given a GMM with dgmm components and an encoding size of
dz . The number of possible encodings is defined by different permutation of dgmm , its size has a
theoretical upper bound of dgmm!

(dgmm−dz)!
. In practice, its real upper bound depends on the system’s

dynamics, e.g., it may be impossible to have a state distribution with only 2 different state regions
that are far away from each other as the state transition is continuous.

As discussed, the size of the latent (encoding) space depends on the number of mixture components
that represent different state region visitation and the size of the descriptor to choose. Here we
show the result of using 2 different GMMs with 10 and 5 mixture components respectively that have
higher BIC scores compared to the GMM with 20 components (see model selection in A.4).

17

Under review as a conference paper at ICLR 2023

For the GMM with 10 components, we keep the size of descriptor unchanged, i.e., 7, while for the
GMM of 5 components, we reduced it to 4 as the total number of components is reduced. For the
former case, the number of total solutions is reduced to 1163 trajectories with 854 valid trajectories
on average for the former case. While for the latter case, the sizes reduces to 120 total trajectories and
105 valid trajectories respectively. This is due to the fact that a lower number of mixture components
will reduce the size of the latent space. The result is shown in Fig 15.

0.05

0.10

0.15

0.20

0.25

0.05

0.10

0.15

0.20

Figure 15: Comparison of solution archives optimised with different size of GMM mixture components in the
projection function. Left: Mixture component with 10 components, and the resulting solution archive with
valid trajectories shown with colour map that corresponds to their respective likelihood values. Right: Mixture
component with 5 components and the associated solution archive with valid trajectories with their respective
likelihoods.

A.6 POST-HOC SOLUTION SEARCH FOR CHANGING SIMULATOR

In this section, we show that the solution archive trained on the toy 2D path planning environment
with 2D obstacles contains valid solutions for the Franka arm environment with 3D obstacles. Where
the former does not have any physic engine or accurate collision detection mechanism; while the
latter is a high-fidelity simulator with a real physic simulator and sophisticated collision detection.
And the state space for the 2D environment is defined to be the same as the Franka environment.

We configure the toy environment to have the approximate location of the obstacle. In the case of
the Franka environment, the obstacle is a 3-dimensional cube instead of a 2D obstacle (see Fig 8A).
Thus, the collision detection of the toy environment is far from perfect compared to the Franka
environment. We use the same parameters set up as detailed in Sec 5 and Appx. A.3. The GMM
is fitted to the demonstrations recorded for the Franka arm (see Fig 14). Training on a simplified
simulator has its advantage such as faster convergence speed; it reduces the training time as the
simulation time is faster in the toy environment. As we can see from Table 1, the training time for
Franka (6h49m) is considerably longer than the 2D environment (3m49s) due to the slow physic
simulation. By allowing access to the simulator, we can filter out solutions by simulating the policies
from the trained solution archive in the environment to validate them under different constraints. In
this case, the constraints are different due to the change in the environment. The final solution
archive trained in the 2D toy environment contains 9076 solutions, with 5978 valid collision-free
solutions for the Franka environment that reach the goal location.

Figure 16: Solution archive trained using toy environment deployed in the 3D Franka Arm environment with
Pybullet engine. The resulting trajectories are plotted in 2D space for better visualisation. A: Valid solutions for
the toy environment with 2D obstacles without physic engine. B: Valid solutions for Franka Arm environment
with Pybullet as physic engine with 3D obstacle collision detection.

18

Under review as a conference paper at ICLR 2023

A.7 ADDITIONAL MULTIMODAL EXPERIMENT

In addition to bimodal demonstrations for the 2D path planning in Sec. 4.1, we include a new sce-
nario where more solution modes are present in the demonstrations to show that our method can
deal with more solution modes. Here we use a total of 12 demonstrations generated using sine and
cosine functions and used the same parameters’ setup as the previous experiment. The GMM takes
20 mixture components, and we use a 6-dimensional encoding value. The resulting solution archive
contains 6309 trajectories as shown in Fig 17. While the solution archive built from bimodal demon-
strations contains also multiple solution modes such as interpolation results, these demonstrations
present with lower likelihood values as shown by its colour map (see Fig 6, 10A). However, in
this four-mode solution case, we can observe clearly that the intersecting trajectories have higher
likelihood values due to the presence of data points in the demonstrations.

Figure 17: A: GMM fitted to demonstration B. 12 multimodal demonstrations with 4 solution modes. C. Valid
solution archive with trajectories colour with their respective trajectory likelihood.

A.8 POTENTIAL APPLICATIONS

We dedicate this section to discussing the applicability of our method. One of the potential applica-
tions is data augmentation. Given a small set of state-only demonstrations, our method is capable to
generate diverse state-action demonstrations. These can be used, for instance, to provide more data
input to other approaches. One example is shown in the performance analysis of VAE in Fig 7, VAE
suffers from mode collapse when it is trained using a small dataset. However, our method can gener-
ate a large set of demonstrations to train the VAE to produce more diverse samples. However, notice
here that in this case, VAE does not necessarily extrapolate beyond the provided demonstrations.

In practice, a more useful use case is the recollection of visual demonstrations in a high-fidelity
environment. For instance, as shown from our Franka Arm environment, we are capable to generate
a large set of demonstrations. While our approach currently does not support image-based input, it
can be used to generate training data for image-based methods by recording the resulting trajectories
in the simulator.

Another potential application is the search for policies that satisfy different constrains, such as con-
straints from different environments or policies that are capable of producing certain behaviours
using encoding matching, as shown in Appx. A.6 and Sec. 5.

19

	INTRODUCTION
	Background
	Imitation learning as divergence minimisation
	Imitation Learning from Observation only

	Problem setup
	Skill generation from behaviourally diverse demonstrations
	Latent space modelling from density estimation
	MAP-Elites (EA) as dynamics-aware conditional generative model

	Experiments
	CONCLUSIONS
	Appendix
	Algorithms
	KL Divergence minimisation for multimodal distribution
	Experimental analysis

	Experiment setups and reproducibility
	Setup for VAE
	Policy search using encoding matching

	Model section of GMM
	Ablation studies and numerical quantification of solution archive
	Comparison of different encodings
	Comparison of different choices for GMM

	Post-hoc solution search for changing simulator
	Additional multimodal experiment
	Potential applications

