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Abstract

Social biases in text-to-image models have drawn increasing at-

tention, yet existing debiasing efforts often focus solely on either

the textual (e.g., CLIP) or visual (e.g., U-Net) space. This unimodal

perspective introduces two major challenges: (i) Debiasing only the

textual space fails to control visual outputs, often leading to pseudo-

or over-corrections due to unaddressed visual biases during denois-

ing; (ii)Debiasing only the visual space can cause modality conflicts

when biases in textual and vision are misaligned, degrading the

quality and consistency of generated images.

To address these issues, we propose aBimodalADaptiveGuidance

DEbiasingwithin Textual andVisual Spaces (BADGE). First, BADGE-

quantifies attribute-level bias inclination in both modalities, provid-

ing precise guidance for subsequent mitigation. Second, to avoid

pseudo/over-correction and modality conflicts, the quantified bias

degree is used as the debiasing strength for adaptive guidance, en-

abling fine-grained correction tailored to discrete attribute concepts.

Extensive experiments demonstrate that BADGE significantly en-

hances fairness across intra- and inter-category attributes (e.g., gen-

der, skin tone, age, and their interaction) while preserving high im-

age fidelity. *Our project page is at https://badgediffusion.github.io/

CCS Concepts

• Security and privacy→ Social aspects of security and pri-

vacy; • Social and professional topics → User characteristics.
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1 Introduction

The growing interest in vision-language models, such as CLIP [41]

and diffusion models (DMs) [23, 35, 42, 47, 71] has heralded the era

of AI-generated content [9, 27, 28, 70], enabling the application of

text-to-images across a diverse range of fields [12, 13, 25, 37, 50, 54].

However, these models often replicate and amplify social biases

present in their training data [2, 4, 5, 36, 43, 63–65], disproportion-

ately representing certain groups and marginalizing others. For

instance, when prompted with “A photo of a doctor”, over 90% of

generated images depict men, revealing a strong gender bias (1a).

Substantial progress has been made in debiasing text-to-image

models. (1) One approach [18, 19, 66] debiases the textual embedding
solely. Take the projection method VL-Debias [18] as an example,

while it ensures the balanced distribution across attributes, its syn-

thesized images (in Fig. 1b) exhibit the over-correction deficits

, where previously underrepresented groups become overrepre-

sented. (2) Another line of work [20, 40] focuses solely on applying
the guidance in the latent visual space (Fig. 1c), if the biases in the

textual and visual spaces are misaligned, the guidance process may

lead to conflicts, potentially degrading the quality and consistency

of synthesized images. For example, in text embedding from CLIP,

the “doctor” is semantically close to “female”, and attempting at-

tribute guidance for “male” in U-Net can lead to failed guidance

and showing a low-quality image that is neither clearly male nor

female (gender-ambiguous, synthesizing a woman with a beard).

In response to these challenges, we argue that debiasing solely in

textual or visual space is insufficient for fair generation and propose

that group diversity needs to simultaneously satisfy unbiasedness

11249
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Figure 1: Given a prompt with a neutral profession (“A

photo of a doctor”): (a) Original DMs [44] produce biased

outputs. (b) Textual-only debiasing [18] leads to pseudo/over-

correction. (c) Vision-only debiasing [20] synthesizes low-

quality, attribute-ambiguous images. (d) Our bimodal adap-

tive guidance produce balanced and high-quality results.

in both text and visual spaces, in Fig. (1d). Observing that neither

method specifically addresses the biases within themodel internally,

we raise the question: can we locate and quantify the biases in both
text and visual space, and then use them as guidance?

To achieve this goal, we introduce (BADGE) Bimodal ADaptive

Guidance DEbiasing that manipulates biases in both textual and

visual spaces for fair text-to-image generation. Concretely, BADGE

follows a two-stage pipeline: (i) it first locate and quantify bias incli-
nation towards various professions within eachmodal space, respec-

tively. (ii) during inference, BADGE applies adaptive guidance in

bimodal space based on the degree of bias inclination as a debiasing

strength, controlling the generation towards our desired attribute

direction. This process allows for fine-grained control over intra-
and inter- category attribute correction and offers unbiased text

embedding and visual noisy state, avoiding pseudo/over-correction

or cross-modal conflicts. The extensive experiments demonstrate

that the consideration of bimodal bias facilitates comprehensive

bias mitigation throughout the generation process, and achieves

considerable group diversity and fidelity across multiple biases.

In summary, our work offers three contributions:

• To the best of our knowledge, BADGE is the first work to

address the conflict of biases between textual and visual

spaces for fair text-to-image generation.

• We propose adaptive guidance for debiasing based on the

quantified degree of bias inclination, which is to steer at-

tributes towards our desired balanced direction.

• Our BADGE is simple and efficient, requiring no extra train-

ing costs or corpora, which only directly manipulate the

textual and visual spaces during the inference process.

2 Related Works

Text-onlyDebiasing inText-to-ImageGeneration.Manyworks

in this direction [6, 7, 18, 19, 39, 55, 58, 66, 69] mitigate the unfair

biases from solely text embedding in CLIP. Some try to add a soft

prompt outside the backbone [21, 32, 46], which includes a lin-

ear projection layer that covers diversity [51] or adds inclusive

tokens [66]. The drawback is that they require training based on

external corpora and designing balanced sampling strategies. An-

other needs no training but applies uniform debiasing toward any

profession without distinguishing different attributes. Take VL-

Debias [18] as a typical method. It achieves debiasing by projecting

the prompt embedding into the orthogonal space of , making the

embedding orthogonal to the binary-sensitive attributes. However,

the generated images sometimes display pseudo- or over-correction

(cf. Fig. 1 (b)), as fair text condition fails to control visual space.

Vision-only Debiasing in Text-to-Image Generation. This line

of work [1, 3, 14, 22, 29, 40, 48, 56, 57, 60] enhances diversity by

directly applying balance guidance in the latent diffusion space,

without considering text conditions or measuring bias inclination

in both spaces. For example, Balanced Act [40] correct bias from

the ℎ-space [33] in U-Net, while Fair Diffusion [20] uses seman-

tic guidance within U-Net. They provide effective guidance even

when text conditions are insufficient [17, 38, 59, 62]. However, a

significant drawback is that biases in visual space can conflict with

implicit biases in the text conditions, leading to modality conflicts

and degraded image quality [26, 61], as shown in Fig. 1(c).

Although existing methods show promising results, they often

fail to fully address the inherent biases in text-to-image models, as

they focus only on CLIP or U-Net. A recent work [49] fine-tunes

both components for debiasing, but it requires additional training.

We address these limitations by jointly considering bias in both

textual and visual spaces. In particular, our proposed BADGE frame-

work does not require additional data or parameter updates.

3 Our Debiasing Framework BADGE

Problem Statement: Let a set A denote𝑀 inter-categories of sen-
sitive attributes (e.g., gender, age, skin tone), each intra-category
contains binary or multiple attributes (i.e., (female, male)). Let 𝑎𝑚,𝑘
represent the k-th specific-attribute in them-th category (e.g.,𝑚 = 1

is the gender case; 𝑎1,1 = male, 𝑎1,2 = female): A = {A𝑚 | 1 ≤ 𝑚 ≤
𝑀};A𝑚 = {𝑎𝑚,𝑘 | 1 ≤ 𝑘 ≤ 𝐾𝑚}, 𝐾𝑚 denotes attributes number

in A𝑚 . When given a textual user-input prompt 𝑐𝑖 including the

neutral profession word 𝑖 , the diffusion model [24, 45] aims to learn

a conditional distribution:

𝒆 𝒊 = 𝑓 (𝑐𝑖 ) (1)

𝑃

(
z𝑖 | 𝒆𝑖

)
=

𝑇∏
𝑡=1

𝑃

(
z𝑖𝑡−1 | z𝑖𝑡 , 𝑡, 𝒆𝑖

)
(2)
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Figure 2: The overall framework of BADGE. (1) We firstly obtain the quantified bias inclination in bimodal spaces (Insight.1 and

Insight.2); (2) BADGE employs adaptive guidance based on quantified CLIP bias degree for obtaining a debiased text embedding

(Insight.3); (3) Based on quantified U-Net bias degree, BADGE adaptively guide the samples with ambiguous attribute for

obtaining a unbiased noise (Insight.4); (4) Fair image generation is achieved by removing the estimated noise from the latent

noisy state based on unbiased textual embedding.

where 𝒆𝑖 is the embedding of user-input prompt 𝑐𝑖 from the CLIP

text encoder, and z𝑖𝑡 is the visual representation of U-Net at time

step 𝑡 . The inherent bias in the training datasets of the CLIP and U-

Net models can distort the distribution 𝑃 , leading to a pronounced

bias toward specific sensitive attributes. Prior works only consider

bias encoded in the text semantic space in Eq. (1) or only in the

latent diffusion space in Eq. (2). However, our work highlights that

biases arise in both bimodal spaces, and that these biases constrain

each other, leading to suboptimal debiasing results. Exploring the

synergistic debiasing in bimodal spaces is an important issue.

Task Objective: Given a diffusion model M with potential social

bias and a human-written neutral prompt 𝑐𝑖 (e.g., “a photo of a

doctor”), we aim to obtain a fair generativemodelM′
that generates

diverse images ensuring each sensitive attribute 𝑎𝑖
𝑚,𝑘

∈ A𝑚 has an

equal probability. Alternatively, fair prediction can be formalized

as approaching a discrete uniform distribution:

𝑃M′ ∼ U{0, 1

|A𝑚 | } (3)

Next, we proceed to our methodology. For each component, we

initiate our analysis by formulating a fundamental Research Ques-

tion (RQ), followed by presenting our key theoretical insights (de-

noted as Insight 1-4) that address the question, which subsequently
guide the corresponding technical details. Note that BADGE is

generic to various biases and professions, with the gender bias and
doctor profession serving as just our example in this section.

The overall framework of BADGE is shown in Fig. 2.

3.1 Quantifying Bias in Bimodal Space

RQ1: How can we systematically locate and quantify biases embed-

ded in both textual and visual spaces? This foundational inquiry is

critical as precise bias measurement establishes the basis for analyz-

ing cross-modal bias conflicts, and informs the design of targeted

joint debiasing strategies.

Insight.1 Attribute-specific prompts help measure bias inclination
in textual space (i.e., CLIP). Removing CLIP’s bias from synthesized
image distribution exposes biases in the visual space (i.e., U-Net).
Bias Quantification from the Textual Space. Let 𝑖 denote the

index of 𝑖-th professional word, for a given user-input original

prompt 𝑐𝑖 (e.g., “a photo of a doctor”) with a neutral professional

word𝑤𝑖 (“doctor”) and the sensitive attribute set A, we execute a
pre-processing step to obtain the attribute-specific prompt via:

𝑐𝑖
𝑚,𝑘

= Φ(𝑎𝑚,𝑘 ,𝑤𝑖 | 𝑐𝑖 )

where Φ denotes the enumeration function – “a photo of a [𝑎𝑚,𝑘 ]

[𝑤𝑖 ]”. For example, 𝑐1
1,1

is “a photo of a [male] [doctor]” and 𝑐1
1,2

is “a photo of a [female] [doctor]” when given 𝑐1 as “a photo of a

doctor”. All attribute-specific prompts are formed as a set:

C = {C𝑚 | 1 ≤ 𝑚 ≤ 𝑀};C𝑚 = {𝑐𝑖
𝑚,𝑘

| 1 ≤ 𝑘 ≤ 𝐾𝑚}.

Accordingly, we obtain all attribute-specific text embeddings E from

the CLIP text encoder:

E = {E𝑚 | 1 ≤ 𝑚 ≤ 𝑀}; E𝑚 = {𝒆𝑖
𝑚,𝑘

| 1 ≤ 𝑘 ≤ 𝐾𝑚}.

Then, we quantify the bias inclination of a particular profession

𝑤𝑖 within the textual space. This is achieved by computing the

embedding similarity between the neutral prompt 𝒆𝑖 and attribute-

specific prompts 𝒆𝑖
𝑚,𝑘

:

𝑠𝑖
𝑚,𝑘

=
exp(sim(𝒆𝑖

𝑚,𝑘
, 𝒆𝑖 ))∑𝐾𝑚

𝑗=1
exp(sim(𝒆𝑖

𝑚,𝑗
, 𝒆𝑖 ))

(4)

sim(𝒗1, 𝒗2) =
𝒗1 · 𝒗2

∥𝒗1∥∥𝒗2∥
(5)
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where the sim(·) ∈ [−1, 1], closer to 1 indicating a higher similarity,

and 𝑠𝑖
𝑚,𝑘

∈ [0, 1], where values approaching 1 indicate that the

particular profession𝑤𝑖 has a stronger inclination toward attribute

𝑘 . Finally, the attribute-specific biases of profession 𝑤𝑖 from the

CLIP text encoder are quantified as follows:

B𝑖,CLIP𝑚 = {𝑠𝑖
𝑚,𝑘

| 1 ≤ 𝑘 ≤ 𝐾𝑚} (6)

where B𝑖,CLIP𝑚 denotes the set of biases on𝑚-th inter-category at-

tribute for the 𝑖-th profession word in CLIP space.

Bias Quantification from the Visual Space. As proposed in

Insight 1, subtracting the bias present in CLIP from the distribution

of synthesized images can reveal the biases within the U-Net model.

The straight way to obtain the distribution of synthesized images is

using an attribute classifier [18, 67]. However, it requires (a) training

dedicated attribute classifiers, and (b) generating large-scale image

batches – both imposing computational costs.

RQ2: How can we develop an efficient bias quantification frame-

work that circumvents the computational overhead?

Insight.2 The semantic trajectory of predicted noise during diffusion
denoising enables early attribute prediction, bypassing the need
for complete image generation and explicit classification models.

Thanks to semantics inherent in U-Net latent space [8] , we pro-

pose early attributes prediction to accelerate attribute acquisition at

an iterative denoising step without fully generating images. Specif-

ically, the training objective of the diffusion model on conditioned

on 𝒆𝑖 from CLIP text encoder is:

E𝒆𝑖 ,𝜖∼N(0,I),𝑡
[
∥𝜖 − 𝜖𝜃 (z𝑖𝑡 , 𝑡, 𝒆𝑖 )∥22

]
(7)

where z𝑖𝑡 is the latent noisy state at each time step 𝑡 . To determine

the most likely attribute during the denoising process, we compare

the neutral prompt noisy state z𝑖𝑡 with the attribute-specific noisy

state z𝑖,𝑎𝑚,𝑘

𝑡 via:

ℎ(z𝑖𝑡 ) =
{
𝑎𝑚,𝑝 , if sim(z𝑖𝑡 , z

𝑖,𝑎𝑚,𝑝

𝑡 ) > 𝜏 > sim(z𝑖𝑡 , z
𝑖,𝑎𝑚,𝑞

𝑡 )
∅, Otherwise

(8)

where 𝜏 is the pre-defined threshold, and 0 < 𝑝 < 𝑞 < 𝑘 . This

attribute decision process in Eq. (8) is repeated for each time step 𝑡

from 𝑇 to 0. Once the attribute’s similarity exceeds 𝜏 the decision

process is terminated, and the attribute of the current image is

extracted. Based on the predictable attributes determined above,

we obtain the real bias from the conditional DM via:

Bi,Real𝑚 = {𝑃𝑚,𝑘 |1 ≤ 𝑘 ≤ 𝐾𝑚} (9)

𝑃𝑚,𝑘 = Ez𝑖𝑡∼𝑃M

[
1ℎ (z𝑖𝑡 )=𝑎𝑚,𝑘

]
where 𝑃𝑚,𝑘 is estimated by calculating the proportion of each pre-

dictable attribute 𝑎𝑚,𝑘 . Finally, the discrepancy of bias inclination

between the synthesizing image and the CLIP text encoder is con-

sidered as bias from the U-Net model:

B𝑖,Unet𝑚 = B𝑖,Real𝑚 − Bi,CLIP𝑚 (10)

where if B𝑖,Unet𝑚 → 0, indicating that the bias distribution of synthe-

sizing images on 𝑖-th profession matches that from the text encoder,

signifying that bias arises from the CLIP model. Conversely, if

Bi,Unet𝑚 deviates significantly from 0, it suggests the presence of

external bias in the U-Net model of 𝑖-th profession.

3.2 Adaptive Guidance Debiasing in Bimodal

Space

Adaptive Debiasing in Textual Space. Different professions have

different attribute bias inclination in textual space, such as “doctor”

tending towards males and “nurses” tending towards females. Prior
textual-only debiasing strategies [18, 19] that do not distinguish the

bias inclination during projection, but only blur sensitive attributes

by applying a uniform debiasing strength towards different profes-

sions. However, an inappropriate choice of correction strength can

lead to pseudo-debiasing or over-correction (see Fig. (1 b)).

RQ3: Based on the located and quantified bias in the above, how

can we effectively mitigate the bias in the textual space?

Insight.3 Adaptive guidance based on quantified bias degree avoids
bias inclination towards specific attributes.

By comparing the quantified bias with a fair distribution, we can

determine the bias inclination via:

ΔBi,CLIP𝑚 = Bi,CLIP𝑚 − 1/|A𝑚 | (11)

where Bi,CLIP𝑚 is the quantified bias in Eq. (6), and 1/|A𝑚 | denotes
uniform distributions on𝑚-th inter-category. Eq. (11) is the debias-

ing strength for subsequent adaptive guidance.

A fair textual space should satisfy the criterion that the em-

bedding of the debiased input prompts 𝒆̂𝑖 maintain an equivalent

similarity to each attribute-specific prompt 𝒆𝑖
𝑚,𝑘

. Instead of the lim-

ited addressing biases in binary attributes [18], our BADGE extends

to handle biases across multiple attributes. The adaptive guidance

optimum for obtaining a debiased text embedding 𝒆̂𝑖 is:

L
bias

=
H(ΔBi,CLIP𝑚 )∑𝑀
𝑚=1 |𝐴𝑚 |

𝑀∑︁
𝑚=1

∑︁
0<𝑝<𝑞<𝐾𝑚

(𝒆𝑖𝑇 𝒆𝑖𝑚,𝑝 − 𝒆𝑖
𝑇
𝒆𝑖𝑚,𝑞)2

− 𝜆(𝒆𝑖𝑇 𝒆𝑖𝑚,𝑝 + 𝒆𝑖
𝑇
𝒆𝑖𝑚,𝑞) (12)

H(ΔBi,CLIP𝑚 ) := max{ΔBi,CLIP𝑚 } × 1000 × 𝛼

whereH(·) controls the debiasing strength of adaptive guidance,

and 𝛼 is a pre-defined hyper-parameters.L
bias

enables the combina-

tion of attributes across𝑀 inter-categories, and each intra-category

contains 𝐾𝑚 attributes, encompassing binary or multiple attributes.

The overall optimization goal of the CLIP model is as follows:

Li,CLIP = L
bias

+ Lsem (13)

Lsem = ∥𝒆̂𝑖 − 𝒆𝑖 ∥2

where Lsem used to preserve the similarity between the debiased

text embedding 𝒆̂𝑖 and original embedding 𝒆𝑖 , thus maintaining the

original semantic information. Finally, we derive the closed-form

solution for Eq. (13):

𝒆̂𝑖 =
(
𝐼 + H (ΔBi,CLIP𝑚 )∑𝑀

𝑚=1 |𝐴𝑚 |

𝑀∑︁
𝑚=1

∑︁
0<𝑝<𝑞<𝐾𝑚

𝒆𝑖
diff

𝒆𝑖
𝑇
diff

)−1
× (𝜆𝒆𝑖

same
+ 𝒆𝑖 ) (14)

where 𝐼 is the identity matrix, and 𝒆𝑖
diff

= 𝒆𝑖𝑚,𝑝 − 𝒆𝑖𝑚,𝑞 , 𝒆
𝑖
same

=

𝒆𝑖𝑚,𝑝 + 𝒆𝑖𝑚,𝑞 for brevity.

AdaptiveDebiasing theVisual Space.While textual space achieves

a balance across sensitive attributes, this manipulation is primarily

restricted to the static textual space. In contrast, the dynamic visual
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space presents additional challenges, as the random noise at dif-

ferent denoising steps encodes distinct attribute-related concepts.

Consequently, despite achieving fairness in the text-conditioned

setting, this balance does not necessarily translate to the final syn-

thesized images due to the uncertain attributes. Therefore, it is

crucial to jointly consider the visual space even under a balanced

textual condition.

However, (a) not all samples are suitable for guidance, and (b)

the success rate of guidance is not high at any time steps. Existing

method [20] overlook the semantics inherently embedded in the

noise, which can lead to ineffective or even contradictory guidance.

For instance, if the initial noise distribution exhibits a bias toward

female attributes, applying guidance to enforce a male attribute
may result in gender ambiguity (as illustrated in Fig. (1c)).

RQ4: Which samples are suitable for adaptive guidance, and when

is it effective to conduct the guidance? Insight.4 Images with am-
biguous attribute tendencies during the early stage are easier to guide
toward a specified attribute in the visual space, whereas those with
obvious attributes do not require guidance and should be generated
naturally.

Specifically, based on the debiased CLIP text embedding 𝒆̂𝑖 as a
condition, the objective of DM can be rewritten as:

E𝒆̂𝑖 ,𝜖∼N(0,I),𝑡

[
∥𝜖 − 𝜖𝑖

𝜃
(z𝑖𝑡 , 𝑡, 𝒆̂𝑖 )∥22

]
(15)

where 𝜖 ∼ N(0,I) sampled from a Gaussian distribution. The DM

takes unbiased prompt vectors 𝒆̂𝑖 , the time step 𝑡 , and the latent

noisy state z𝑖𝑡 as input to predict the noise 𝜖𝑖
𝜃
. During the training

process, the condition 𝒆̂𝑖 is randomly replaced with null values with

a fixed probability, resulting in a joint model that accommodates

both conditional and unconditional scenarios. The semantic and

arithmetic principles [8] of noise space enable us to extract the

attribute concept of synthesizing images via:

𝜖𝑖
𝑚,𝑘

= 𝜖𝑖
𝜃

(
z𝑖𝑡 , 𝒆

𝑖
𝑚,𝑘

)
− 𝜖𝑖

𝜃
(z̃𝑖𝑡 ) (16)

To apply the adaptive guidance in the visual space using attribute

concepts 𝜖𝑖
𝑚,𝑘

, we offer attribute prominence analysis based on

noisy latent:

𝜇𝑚,𝑘 = max

𝑘

∫ 𝑡2

𝑡1

sim(z𝑡 , z
𝑖,𝑎𝑚,𝑝

𝑡 ) 𝑑𝑡

−min

𝑘

∫ 𝑡2

𝑡1

sim(z𝑡 , z
𝑖,𝑎𝑚,𝑞

𝑡 ) 𝑑𝑡 (17)

where the larger 𝜇𝑚,𝑘 is, the higher the prominence of the attribute.

Next, based on the measured bias inclination ΔBi,UNet𝑚 and attribute

prominence 𝜇𝑚,𝑘 , we distinguish the predicted time-varying noise

with attribute concept into obvious and ambiguous two types via:

ΔBi,UNet𝑚 = Bi,UNet𝑚 − 1/|A𝑚 | (18)

𝜖𝑖
𝑚,𝑘

=

{
G(ΔBi,UNet

𝑚,𝑘
) · 𝜖𝑖

𝑚,𝑘
, 𝜇𝑚,𝑘 ≤ 𝜂

0, 𝜇𝑚,𝑘 > 𝜂
(19)

where𝜂 is the pre-set threshold. The adaptive functionG(ΔBi,UNet𝑚 ) :=
max

{
|ΔBi,UNet𝑚 |

}
× 𝛽 enables fine-grained debiasing over discrete

attributes, meaning it can modulate the debiasing strength 𝛽 pro-

portionally to the measured bias degree, rather than applying a

fixed correction. If 𝜇𝑚,𝑘 > 𝜂, denote noises with obvious attributes,
which are difficult to guide toward other attributes. In this case,

the guidance condition is set to 0 , indicating that no guidance is
applied, and the generation proceeds naturally. If 𝜇𝑚,𝑘 ≤ 𝜂, noises
with ambiguous attributes, which are more easily guided toward

any attribute. We primarily focus on guiding this type of samples,

and the unbiased noise 𝜖𝑖
𝑚,𝑘

is used to synthesize images via:

𝜖𝑖
𝜃

(
z𝑖𝑡 , 𝒆̂

𝑖
)
= 𝜖𝜃

(
z̃𝑖𝑡
)
+ 𝛾 (𝜖𝜃 (z𝑖𝑡 , 𝒆̂𝑖 ) +

𝑀∑︁
𝑚=1

𝜖𝑖
𝑚,𝑘

) (20)

where 𝛾 is the guidance scale. Finally, by removing the estimated

noise from the latent noisy state, we obtain the final debiased syn-

thesized image:

z𝑖𝑡−1 = SchedulerStep

(
z𝑖𝑡 , 𝜖

𝑖
𝜃

(
z𝑖𝑡 , 𝒆̂

𝑖
)
, 𝑡

)
x𝑖 = Decoder(z𝑖

0
) (21)

where SchedulerStep(·) denotes a generic update rule for the dif-
fusion process, and the conditional debiased embedding 𝒆̂𝑖 from
CLIP exhibits reduced bias towards specific attributes, resulting in

fewer conflicts during the guidance process, thereby enhancing the

diversity and quality of the generated images.

4 Experiments

4.1 Experimental Setup

Attribute Sets.Referring to FairFace [30], we construct the attribute-

specific prompt using following sets: 𝑎1 ∈ {Male, Female} for gender

case; 𝑎2 ∈ {East Asian, Indian, Middle Eastern, White, Black, South-

east Asian} for the source of skin tone; and 𝑎3 ∈ {0-9, 10-19, 20-29,

30-39, 40-49, 50-59, 60-69, 70+} for the age case.

Quantitative Metrics. Following [16, 40, 53], we quantify image

distribution diversity and image quality using: (1) Fairness Discrep-
ancy (FD) measures image diversity via L2 norm distance between

the attribute distribution of the generated images and a uniform

distribution. (2) Fréchet Inception Distance (FID) score is computed

by comparing our generated images to the FFHQ [31] dataset to

assess the image quality. The lower both values, the better.

Experimental Setting. We use Stable Diffusion v2.1 [44] as the

backbone for all methods. We set the generated images with the

resolution of 768 by 768 pixels and employ DDIM [52] noise sched-

uler. We use OpenCLIP as the CLIP model, which is included within

Stable Diffusion v2.1. We use the CLIP text encoder and set the

dimension of the text embeddings as 1024, 𝛼 = 0.5, 𝛽 = 2, and

𝜂 = 0.75. The default value of 𝛾 is 7.5.

4.2 Baselines

Stable Diffusion (SD) [44] is the baseline model. We split our

comparison methods into three categories: (1) Debiasing in CLIP
space:VL-Debias [18] uses an orthogonal projection matrix to elim-

inate the gender bias in text embedding from CLIP; ITI-GEN [66]

trains a series of inclusive tokens adding after CLIP embedding

to control sensitive attributes. (2) Debiasing in U-Net space: Fair
Diffusion (FairDiff) [20] employs Semantic Guidance (SEGA) [8]

to enhance diversity in image generation. InterpretDiff [34] in-

troduces semantic vectors into the U-Net to enable attribute-level
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Table 1: The FD score comparisons with benchmarks on (a) intra-categories attribute and (b) inter-categories attributes. The

lower ↓ the FD value, the better. We use CLIP [41] and pre-trained classifiers [30] as attribute classifier [15, 18]. † denotes

evaluation on binary classes, as its strategy does not support multi-class classification or report inter-category results (-). ∗
indicates they only support 4 “Skin” classes and 3 “Age” classes.

Methods

(a) Intra-categories Attribute (b) Inter-categories Attributes

Gender

(2 classes)

Age

(8 classes)

Skin

(6 classes)

Gender × Skin

(2 × 6 classes)

Gender × Age

(2 × 8 classes)

Gender × Age × Skin

(2 × 6 × 8 classes)

SD [44] 0.281 0.528 0.547 0.432 0.406 0.315

VL-Debias
†
[18] 0.321 0.473 0.703 – – –

Balancing Act
∗
[40] 0.109 0.789 0.224 – – –

InterpretDiff
∗
[34] 0.017 0.198 0.327 – – –

Finetuning
∗
[49] 0.204 - 0.119 0.224 – –

FairDiff [20] 0.087 0.111 0.219 0.168 0.141 0.171

ITI-GEN [66] 0 0.264 0.104 0.140 0.217 0.091

BADGE w/o CLIP 5 × 10
−5

0.160 0.101 0.156 0.145 0.162

BADGE w/o U-Net 0.305 0.423 0.576 0.675 0.661 0.634

BADGE (FULL) 0 0.107 0.051 0.114 0.138 0.166

Figure 3: Qualitative results of inter-categories Gender × Age × Skin in Table 1 (“a headshot of a person”). BADGE achieves

precise fine-grained control via bimodal adaptive guidance, showing 36 variations of one person, a total of two people.

control. Balancing Act [40] performs distribution guidance in h-

space to achieve debiasing. (3) Debiasing in CLIP and U-Net spaces:
Finetuning [49], a training-required model, supports simultaneous

fine-tuning in both spaces.

4.3 Main Results

Intra-categoriesAttribute.To show that BADGE canmitigate var-

ious types of biases, we perform adaptive guidance on multiple sin-

gle attributes. As observed the FD score in Table 1, BADGE achieves

superior diversity compared to debiasing-only in the CLIP or U-

Net methods. Compared to the current CLIP-only debiasing SOTA

model ITI-GEN, BADGE improves gender and skin tone diversity by

59.4% and 50.9%, respectively. Visual-only methods like Balancing

Act and InterpretDiff perform poorly due to representation conflicts

caused by indiscriminate attribute guidance in the U-Net. Although

Finetuning[49] targets both modalities, its results are suboptimal.

Its original paper also notes that fine-tuning the U-Net leads to

classifier overfitting and quality degradation. VL-Debias shows the

worst performance as the fair text condition fails to control visual
space to synthesize balanced images as bias also exists in U-Net.

This verifies our motivation: considering biases in both textual and

visual spaces, which is conducive to mitigating bias throughout the

generation process, thereby increasing image diversity. Moreover,

the bias location and quantification are general across different

attributes, thus ensuring robustness.

Inter-categories Attributes.When given multiple attributes, can
BADGE’s intersection of these attributes vary continuously and lin-
early like single attributes? BADGE provides an affirmative answer,

as shown in Table 1 (b). BADGE improves diversity in Gender×Age
and Gender×Skin Tone intersections by 18.6% and 36.4%, respec-

tively, compared to ITI-GEN, while keeping good image fidelity in

almost all cases. The performance of ITI-GEN falls short of ours

due to its reliance on external corpora for discrete training, which

prevents it from including attributes not present in the dataset.

However, this kind of training is also good in some situations,

for Gender×Age×Skin Tone case, ITI-Gen slightly outperforms
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Figure 4: Inter-category distribution with “a headshot of a

person”. The images generated by BADGE are distributed

more uniformly across various sub-groups compared to the

original Stable Diffusion. Qualitative results cf. Fig. 5.

Figure 5: Results of BADGE on inter-category attributes for

Gender × Age (Fig. 4 (a)) and Gender × Skin Tone (Fig. 4 (b)).

Examples are randomly pickedwith “a headshot of a person”.

BADGE in diversity, as well as in the fidelity of Gender×Skin Tone

in Table 2, mainly due to its better attribute representations learned

from a dataset. In contrast, our adaptive guidance is without train-

ing. We also visualize the inter-category distribution under two

settings in Fig. 4: (a) Gender × Age, and (b) Gender × Skin Tone. In-

terestingly, we observe that the original SD model generated more

proportion of Type 5 examples featuring Black individuals. We

speculate that the model includes an internal debiasing mechanism,

but it may be prone to over-correction. BADGE achieves inclusive-

ness across all setups, particularly in extremely underrepresented

categories for ages (<10 and > 50 years old), skin tone for Type

1 (East Asian) and Type 6 (Southeast Asian). This inclusiveness is

attributed to the integrated effect of the reduced bias impact in text

embedding and the adaptive guidance in visual space.

Beyond Specific Domains. In addition to demographic biases

related to gender, age, and skin tone, since BADGE does not require

training on specific attributes, it can be easily extended to any other

domains. For instance, the natural scenery in Fig. 6 demonstrates

our generalizability across different domains.

Fine-Grained Visualization from BADGE. As shown in Fig. 8,

the synthesized images regarding intra-categories gender and age

cases, BADGE linearly and gradually increases male and age charac-

teristics. The arithmetic benefit of the noisy state within the U-Net,

enabling the linear attribute changes and control a much broader

fine-grained by several discrete prompts. Moreover, BADGE not

only demonstrates fine-grained control within a single intra-category

Figure 6: Fine-grained control of natural scenery.

Figure 7: The trade-off between image fidelity and diversity

of attribute guidance strength 𝛾 in Gender×Age case.

Table 2: The balance between image quality and diversity.

Method

Gender×Skin Gender×Age Gender×Skin×Age
FD ↓ FID ↓ FD ↓ FID ↓ FD ↓ FID ↓

SD 0.432 76.18 0.355 70.11 0.315 71.86

FairDiff [20] 0.168 74.22 0.141 74.37 0.171 68.33

ITI-Gen [67] 0.140 60.68 0.217 57.76 0.091 62.68

BADGE (ours) 0.114 68.88 0.015 56.65 0.166 62.61

but also achieves comparable performance across inter-category

scenarios. Intuitive examples over Gender × Age , and Gender ×
Skin in Fig. 5, Fig. 9, and the more complex inter-categories Gender

× Age × Skin case in Fig. 3 illustrate its precise fine-grained control.

4.4 Ablations and Applications

To verify the necessity of considering biases both from textual and

visual space, we design two ablation versions and the experimental

results are reported in Table 1:

• BADGE w/o CLIP: We observe that removing CLIP module leads

to a decrease in both diversity and quality compared to the full

version. This suggests that while text-space bias has a smaller

impact on the final image, conflicts with the visual space signifi-

cantly reduce image quality and complicate guidance in U-Net.

• BADGE w/o U-Net: Notably, when removing the U-Net debi-

asing module, we observe a significant decrease in both image

quality and diversity. This highlights the critical role of adaptive

attribute guidance within the U-Net model (Eq. (20)) in debiasing,

as it affects the predicted noise to control the image attribute.
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Figure 8: Visualization of fine-grained control over Gender from female to male (top), and Age from young to old (bottom).

Figure 9: Fine-grained control over intersectional attributes.

Additionally, we conduct an ablation study on the attribute guidance

strength 𝛾 (Eq. (20)) in visual space. The trend reported by FID

and FD in Fig. 7 illustrates that as 𝛾 increases, diversity improves

significantly, while image fidelity first improves and then declines.

This highlights the appropriate selection of the guidance strength,

which our quantified bias degree can adaptively determine. Table 2

reports the FD and FID scores for inter-category attributes. Without

requiring any finetuning or additional training, BADGE achieves

superior performance in both image fidelity and diversity compared

to existing SOTA approaches.

Compatibility with ControlNet [68]. BADGE enhances diversity

without additional training or modifications to the original text-to-

image model, thereby supporting a variety of downstream visual

tasks. In Fig. 10 and Fig. 11, we illustrate BADGE’s compatibility

with ControlNet, allowing for the manipulation of inputs beyond

text prompts. The latent-based guidance may introduce another

type of inherent bias, such as clothing style preferences, which

are beyond the scope of this work. However, we focus on adaptive

guidance to mitigate biases that pose risks to social well-being.

5 Conclusion and Future Works

In this paper, we present BADGE, a simple yet effective adaptive

guidance framework for mitigating social biases in text-to-image

generation. Unlike prior methods that require retraining or operate

Figure 10: Compatibility with pose [11] condition. BADGE en-

hances the diversity of ControlNet [68] by adaptive guidance.

Figure 11: Compatibility with Canny [10] condition. BADGE-

controls the season’s transition by adaptive guidance.

in a single modality, BADGE manipulates biases in both textual

and visual spaces, enabling training-free, bimodal debiasing. Our

key insights include: (1) the first use of quantified bias inclination

as debiasing strength for adaptive correction across attributes and

professions; (2) early attribute prediction to efficiently estimate vi-

sual bias without full image generation; and (3) the use of attribute

prominence to determine whether guidance is necessary or genera-

tion should proceed naturally. Extensive experiments demonstrate

that BADGE achieves robust fairness across individual and inter-

sectional attributes, and generalizes well beyond human-centric

prompts to domains such as animals and landscapes.

We believe our approach offers a practical step toward building

fair, accountable, and responsible generative AI systems. In our

future work, we plan to enhance the interpretability of debiasing

decisions and establishing standardized, large-scale benchmarks for

evaluating fairness in diffusion models, or extend BADGE to more

complex tri-modal setting debiasing (e.g., audio or 3D context).
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