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Abstract

Language models (LMs) are trained to excel001
at predicting the next word in the sequence002
given prior context, and humans also share003
this predictability in reading comprehension.004
Neuroscience research reveals that next-word005
predictability influences brain response, as006
recorded at millisecond resolution using elec-007
troencephalography (EEG). However, little is008
known about which measures of predictabil-009
ity successfully express the similarity between010
LMs and humans in the reading comprehension011
process. Here, we generate regressors for both012
humans and LMs based on two information013
measures, including top-1 prediction and sur-014
prisal, to predict event-related potential (ERP)015
elicited from EEG recordings. Our results indi-016
cate that while the more advanced LMs show017
a close correspondence to human performance018
in word prediction accuracy, only surprisal po-019
tentially correlates with language-processing020
ERPs, especially for open-class words with021
high semantic content. Moreover, our findings022
challenge the assumption that scaling LMs with023
increased parameters and computational bud-024
gets will consistently lead to improved conver-025
gence with human-like linguistic processing.026

1 Introduction027

Despite significant advances in Natural Language028

Processing (NLP), LMs still struggle to illustrate029

an adequate neurally-mechanistic picture of human030

language processing. This initiated a debate on031

whether LMs capture human intelligence or are032

simply called “thinking” in any human-like sense033

(Mitchell and Krakauer, 2023). Next-word pre-034

dictability is a fundamental aspect of human lan-035

guage processing, which importantly supports LMs036

to be cognitively plausible (Keller, 2010). When037

it comes to thought, we need to examine brain ac-038

tivity. This is because when people engage in lan-039

guage comprehension, their brains display particu-040

lar patterns of electrical activity (Fitz and Chang,041

2019). Therefore, rather than examining next-word 042

prediction performance across various LMs, we 043

should investigate the relationship between next- 044

word predictability and neural responses in natural 045

reading contexts, especially in longer narratives. 046

To investigate this, we run multiple experiments. 047

First, we calculate top-1 prediction and lexical sur- 048

prisal at the word level for content and function 049

words across three predictors: human subjects, n- 050

gram models, and GPT-family models (GPT-2 and 051

GPT-Neo), using the DERCO dataset - a language 052

resource combining EEG and next-word prediction 053

data (Quach et al., 2024). Next, we encode neu- 054

ral responses using regression-based deconvolution 055

to estimate predictability effects on neural activity. 056

We then compare the correlations between neural 057

response predictions derived from top-1 prediction 058

and surprisal estimates of language models and 059

those obtained from human cloze responses. The 060

purpose of this comparison is to identify which 061

model most closely mirrors human-like predictabil- 062

ity in reading behaviour. To provide deeper in- 063

sights, these correlations will be visualised within 064

significant time windows and across significant 065

electrode clusters. 066

2 Background 067

2.1 Linguistic Prediction at the 068

Computational Level 069

Word predictability effects fit into a broader picture 070

of human cognition, in which individuals contin- 071

uously integrate new input with context to make 072

predictions about upcoming events and test those 073

predictions against their perceptual input from the 074

utterances they hear or read (Bar, 2007). But what 075

cognitive processes underlie these predictability ef- 076

fects? One view is that predictability effects reflect 077

the cognitive costs associated with probabilistic in- 078

ference over sentence interpretations (Shain et al., 079

2024). This perspective, grounded in information 080
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theory (Shannon, 1948), frames prediction as an in-081

trinsic function of a generative, probabilistic mental082

processor. Under this framework, linguistic units083

convey quantifiable information, with measures084

such as surprisal (the unexpectedness of a word085

given its prior context). In general, surprisal serves086

as a useful metric for quantifying word-by-word087

predictability during incremental sentence process-088

ing (Hale, 2016).089

Research has indicated that surprisal is a reli-090

able predictor of neural responses during reading,091

particularly in relation to the N400 component.092

Michaelov and Bergen (Michaelov and Bergen,093

2020) found that surprisal effectively predicts vari-094

ations in N400 amplitude, a neural indicator of pro-095

cessing difficulty during language comprehension.096

Frank et al. (Frank et al., 2013) further supported097

these findings by analysing EEG data from partic-098

ipants reading identical sentences and examining099

four distinct ERP components. Their results high-100

lighted that surprisal estimates significantly predict101

N400 amplitude, with more surprising words elic-102

iting larger negative N400 responses. Lindborg et103

al. (Lindborg et al., 2023) provided additional ev-104

idence, indicating that semantic surprisal effects105

are specifically confined to the N400 time window106

(300-500 ms post-stimulus), and its effect topogra-107

phy closely aligns with conventional ERP analyses108

of expected versus unexpected words.109

2.2 Neural Responses Prediction under Cloze110

Estimates111

Unlike language models, determining the exact112

probability of the next word generated in the human113

mind remains unattainable due to the complexity114

and opacity of neural computations. Nevertheless,115

predictability in psycholinguistics is commonly116

studied using the cloze procedure (Taylor, 1953),117

a traditional approach that involves asking partici-118

pants to predict and complete unfinished sentences119

or passages based on the accumulated preceding120

context. This approach is widely regarded as the121

gold standard for estimating human lexical prob-122

abilities, with cloze probability emerging as the123

primary metric for contextual word predictability124

(Kutas and Hillyard, 1984; Van Petten and Luka,125

2012; Brothers and Kuperberg, 2021).126

The cloze procedure offers several advantages.127

First, it indirectly reflects human subjective prob-128

abilities, capturing how individuals perceive the129

likelihood of specific linguistic outcomes. Second,130

cloze-based estimates outperform corpus-derived 131

probabilities in predicting human reading patterns 132

(Smith and Levy, 2011). Empirical studies con- 133

sistently demonstrate that words with higher cloze 134

probabilities elicit smaller N400 responses than 135

words with lower cloze probabilities (Kutas and 136

Hillyard, 1984; Kutas and Federmeier, 2011; Ku- 137

perberg et al., 2020; Brothers and Kuperberg, 2021). 138

Furthermore, research has identified a strong linear 139

correlation between cloze probability and lexical 140

processing difficulty (Smith and Levy, 2013; Broth- 141

ers and Kuperberg, 2021). 142

2.3 Neural Responses Prediction under 143

Language Model’s Probability 144

Surprisal modelling from LMs has been commonly 145

applied to predict neural responses during language 146

comprehension. Surprisal, estimated using simple 147

and efficient trigram models, has been shown to cor- 148

relate positively with the N400 effect observed in 149

reading studies (Frank et al., 2015; Willems et al., 150

2016; Armeni et al., 2019). For more advanced 151

LMs, Heilbron et al. (Heilbron et al., 2019) found 152

that GPT-2’s word-by-word un(predictability) esti- 153

mates align with ERPs when participants listened 154

to audiobooks, revealing strong negative responses 155

at 400 ms. As further evidence, Michaelov et al. 156

(Michaelov et al., 2024) compared transformer- and 157

non-transformer-based LMs and found that GPT-3 158

surprisal best predicted N400 amplitude, suggest- 159

ing that effects of expectancy, plausibility, and con- 160

textual semantic similarity can all be explained by 161

variations in word predictability. 162

Within transformer-based LMs, Hao et al. (Hao 163

et al., 2020) showed GPT-2 as the most effective in 164

predicting psycholinguistic patterns, outperforming 165

both TransformerXL and XLNet in terms of psy- 166

cholinguistic predictive power. Their results high- 167

lighted that GPT-2 better captures lexical surprisal 168

aligned with human predictability, potentially mak- 169

ing it a strong candidate for psycholinguistic mod- 170

elling in comparison to more complex architectures. 171

Within the GPT family, Shain et al. (Shain et al., 172

2024) challenged claims that more advanced LMs 173

should exhibit stronger logarithmic relationships 174

between contextual predictability and processing 175

difficulty. They found that surprisal estimates from 176

GPT-3 were not more “super-logarithmic” than 177

those from smaller models like GPT-2, despite 178

GPT-3’s greater size and computational power. 179
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3 Methodology180

3.1 Stimuli and EEG Data Preparation181

We utilised the DERCo dataset (Quach et al., 2024),182

which contains EEG recordings from 22 native En-183

glish speakers while they were reading The Grimm184

Brothers’ Fairy Tales. Two participants (“QPF42”185

and “USQ95”) were excluded due to excessive186

eye movements. Additionally, word-by-word cloze187

probabilities were collected through a cloze proce-188

dure on Mechanical Turk crowdsourcing platform.189

High-density EEG data were recorded using a190

32-channel electrode scalp following the interna-191

tional 10–20 system (Klem, 1999). Since the analy-192

sis used the preprocessed data, the number of word-193

level EEG trials in the DERCo dataset’s transcript194

was reduced due to artifact removal. All remaining195

words, after preprocessing, served as stimuli for196

encoding brain signals. The Python library IPA197

was used to extract the parts of speech, which were198

then grouped into content and function words.199

3.2 Information-theoretic measures200

To investigate next-word predictability, we used201

two measures: top-1 prediction and surprisal.202

These measures serve as proxies for human and203

computational models’ expectations and process-204

ing effort in reading comprehension, capturing dif-205

ferent aspects of cognitive load associated with206

word prediction.207

3.2.1 Top-1 Prediction Estimation208

The objective of most LMs is to compute a prob-209

ability distribution over the model’s vocabulary,210

V , for the likely next-word wi ∈ V at position i,211

given the context w1, w2 . . . wi−1 containing the212

sequence of preceding words in text. The highest213

probability, also known as top-1 prediction, for the214

next token, is calculated as the following formula:215

Pwi = max
wi∈V

P (wi | w1, w2, . . . , wi−1) (1)216

3.2.2 Surprisal Estimation217

Surprisal is a measure of the unexpectedness of a218

target word. Hale (Hale, 2001) and Levy (Levy,219

2008) argued that the less expected a word is in a220

given context, the higher its surprisal. For example,221

“Peter won the championship. Afterward, he was222

in seventh ...”. If readers recognise the idiom, they223

can guess that the missing word is “heaven.” Since224

the word is highly predictable, it has low surprisal225

and conveys minimal new information.226

After the first t words of the sentence, w1...t, will 227

be processed, the identity of the upcoming word, 228

wt+1, is still unknown and can therefore be viewed 229

as a random variable. The surprisal is defined as 230

the negative log probability of the actual next word, 231

given its preceding context: 232

Surprisal Swt+1 = −logP (wt+1|w1...t) (2) 233

3.3 Predictors 234

3.3.1 Human Prediction 235

Top-1 prediction refers to the highest percentage of 236

participants who guessed the same next word. A 237

top-1 prediction value of 100% indicates that all 238

participants guessed the same next word, while a 239

value of 0% indicates that no participant predicted 240

that upcoming word. This can be simply defined as 241

the maximum cloze probability among the possible 242

words that could appear in the upcoming position. 243

Lexical surprisal, by contrast, is the cloze proba- 244

bility of the correct next word in the transcript. It 245

is important to note that the cloze value of the cor- 246

rect next word does not necessarily equal the top-1 247

prediction value. These values are equal only if the 248

word is exceptionally easy to predict, meaning that 249

the word predicted by all participants is also the 250

correct word in the transcript. 251

A major issue with cloze procedures is that zero- 252

probability predictions result in undefined surprisal 253

values. There are cases where the target word 254

wi is not predicted by any participant as a pos- 255

sible continuation of w1, w2, . . . , wi−1. With real- 256

istic sample sizes, words with P (wi|w1, w2, . . . , 257

wi−1) < 0.001 will be completely absent from the 258

participants’ responses. This highlights the need to 259

expand the probability distribution to include more 260

words. To address this, we followed the approach 261

used by Lowder et al. (Lowder et al., 2018), which 262

involved replacing these cloze values of zero with 263

half the value of the lowest nonzero cloze value 264

before converting them to surprisal values. 265

3.3.2 N-gram models 266

In this study, we trained bigram to quadgram mod- 267

els using the NLTK Python package 1. Unlike ad- 268

vanced language models such as transformer-based 269

LMs (Amaratunga, 2023; Desai et al., 2023), n- 270

gram models have a limitation in capturing very 271

long-range dependencies. To mitigate this, we 272

trained our n-gram models on the Fairy Tale Cor- 273

pus (Lobo and de Matos, 2010), a domain-aligned 274

1https://www.nltk.org/
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dataset to DERCo, comprising 453 fairy tales from275

Project Gutenberg (Klein and Manning, 2002).276

To avoid potential overfitting, we removed the277

five Grimm Brothers’ Fairy Tales included in the278

DERCo dataset’s transcript. All punctuation was279

removed, and the letters were converted to lower-280

case. To address data sparsity, we trained separate281

models using no smoothing, Laplace smoothing,282

and Kneser-Ney smoothing (see Appendix A for283

details). Each n-gram model then used a fixed-284

sized context window of n - 1 words, locating all285

matching windows within the problem instance and286

counting the number of occurrences of each possi-287

ble next token to calculate word probabilities for288

top1-prediction and surprisal estimations.289

3.3.3 GPT-2 and GPT-Neo Families290

Generative Pre-trained Transformer (GPT) (Rad-291

ford, 2018) is a transformer-based autoregressive292

language model that uses a multi-head “attention”293

mechanism based on an encoder-decoder architec-294

ture (Vaswani, 2017) (see Appendix C.1). We se-295

lected GPT-2 and GPT-Neo families for investiga-296

tion because they are trained to predict the upcom-297

ing tokens based on probability in a left-to-right298

manner, similar to the cloze procedure conducted299

in next-word prediction tasks (see Section 2.2).300

The transformer model’s input is a sequence of301

tokens — words, phonemes, or punctuation. The302

number of tokens per context window depends on303

the story length. If a story exceeds one context win-304

dow (e.g., 1024 tokens), probability estimates for305

the remaining tokens are conditioned on the second306

half of the previous window. Predictions were per-307

formed separately for each story in the transcript,308

with the entire preceding context restarted rather309

than carrying over the context from the previous310

story. Additionally, the story’s topic was included311

in the prediction, as it was disclosed to participants312

at the beginning of the Mechanical Turk experiment313

in the DERCo dataset.314

For words spanning multiple tokens, the word315

probability was calculated as the joint probability316

of the tokens using the chain rule. Regarding sur-317

prisal estimation, we summed the surprisal values318

of the joint tokens, as this approach aligned with319

the online experiment presentation to participants,320

which included both the word and related punctu-321

ation. In contrast, for top-1 prediction estimation,322

since the focus was only on correct word prediction,323

participants were instructed to type only the word324

(excluding punctuation). Therefore, the probability325

used for calculating top-1 prediction was averaged 326

over the joint tokens. 327

The models were implemented in PyTorch using 328

the transformer modules from the HuggingFace 329

Hub 2. The examined GPT family variants differed 330

primarily in their size, with the specific hyperpa- 331

rameters outlined in Appendix C.2. 332

3.4 Brain Encoding Models 333

Brain encoding models (Heilbron et al., 2019; Gold- 334

stein et al., 2022) entail fitting a regressor to predict 335

neural responses at each time point based on mea- 336

sures such as lexical surprisal and top-1 prediction, 337

as used in this study. However, running separate 338

mixed effects models for each time point, as in 339

prior studies (Frank et al., 2013; Hao et al., 2020; 340

Oh et al., 2024), would require estimating an ex- 341

cessive number of parameters, potentially leading 342

to model overfitting through the capture of noise 343

rather than meaningful patterns. To reduce this, we 344

use ridge regression, introduced by Hoerl and Ken- 345

nard (Hoerl and Kennard, 1970), which regularizes 346

the model to control its variability and improve 347

prediction reliability (Bishop and Nasrabadi, 2006). 348

For more details about the ridge regression using 349

for brain activity, please refer to Appendix E. 350

Figure 1 illustrates the procedure for predicting 351

EEG data using information-theoretic measures 352

computed by the cloze experiment and LMs. In 353

brief, the words from the DERCo dataset’s tran- 354

script were aligned with the EEG recordings from 355

the EEG-based reading experiment (serving as the 356

ground truth), with each word onset marked as time 357

point 0 ms to standardise timing across trials. The 358

two measures, top-1 prediction and surprisal, are 359

used separately as independent variables to build 360

regressors for predicting the EEG signal in a word- 361

by-word, time-resolved manner. After running re- 362

gressions for each measure, we estimated a series 363

of predicted EEG amplitudes from tmin (-100 ms) 364

to tmax (500 ms) for each subject per electrode. 365

To quantify the similarity between the predicted 366

and actual EEG responses, we compute the Pear- 367

son correlation coefficient (r) for each word. This 368

correlation-based evaluation produces a set of cor- 369

relation values that reflect the alignment between 370

model-predicted and observed EEG signals, vali- 371

dating the model’s effectiveness in capturing neural 372

representations during reading. Using 5-fold cross- 373

validation, we trained each regressor on 80% of the 374

2https://huggingface.co/
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Figure 1: Brain encoding model was used to predict the neural responses to each word in the context.

dataset to learn 600 coefficients for each combina-375

tion of time point and sensor, then predicted EEG376

activity for held-out words in the remaining 20%.377

To ensure consistent regression parameters378

across subjects, we determined the optimal hyper-379

parameter λ by fitting a single regression model380

to the data from all participants for each value of381

λ over a log-spaced interval [10−5, 10−4, . . . , 105].382

We then selected the λ value yielding the lowest383

generalisation error, as estimated via 5-fold cross-384

validation (with shuffling enabled) over trials, using385

the Scikit-learn library (Pedregosa et al., 2011).386

3.5 Significance Tests387

All statistical analyses used two-tailed tests with388

significance levels of α = 0.05, 0.01, or 0.001, de-389

pending on the desired confidence interval. Before390

conducting univariate tests, we ensured that our391

data met two main assumptions: (1) normality and392

(2) absence of outliers. Normality was assessed393

using the D’Agostino-Pearson test, while outlier394

detection was based on the 1.5 IQR (interquartile395

range) method. If both assumptions were met, a396

one-sample t-test was applied as the parametric397

test; otherwise, non-parametric alternatives (e.g., 398

Wilcoxon signed-rank tests) were used. This ap- 399

proach helps reduce the risk of misleading conclu- 400

sions and statistical errors. 401

In EEG research, conducting more statistical 402

tests increases the probability of getting a false 403

positive result due to random chance (Greenland 404

et al., 2016). In this study, the multiple compar- 405

isons problem is significantly more pronounced, 406

with 32 EEG sensors and 600-time points result- 407

ing in 19,200 t-values per subject. To address this, 408

we implemented cluster-based permutation tests 409

(Maris and Oostenveld, 2007), using 5,000 permu- 410

tations per test to identify significant time windows 411

for the encoding models. 412

A mass-univariate testing approach applies one- 413

sample t-tests with a “hat” variance adjustment 414

to compensate implausibly small variances (σ = 415

10−3) (Ridgway et al., 2012). The resulting t- 416

statistics were used to compute p-values, which 417

were then adjusted for multiple comparisons. Mul- 418

tiple comparisons were corrected using the false 419

discovery rate (FDR) (Genovese et al., 2002) for 420

each time point and electrode to ensure statistical 421
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consistency of the effects.422

4 Results423

4.1 Performance and Human Alignment in424

Different Language Models425

Previous studies quantified neural pattern similarity426

between word pairs using Pearson correlation (He427

et al., 2022; Goldstein et al., 2022), as it captures428

neural patterns similarity regardless of their ampli-429

tude. To strengthen our analysis, we also examined430

the Spearman correlation to provide more robust ev-431

idence for the observed relationships. Please refer432

to Appendix B for details about these correlations.433

Table 1 presents the correlation between LMs434

and human predictions in terms of top-1 predic-435

tion and surprisal, along with their performance436

in the next-word prediction task, as measured by437

accuracy. Figure 6 further visualises differences438

in accuracy and joint accuracy between LMs and439

human predictions. These results yield several im-440

portant observations.441

First, humans still outperformed these LMs,442

achieving the highest accuracy (45.17%), which443

underscores the existing gap between LMs and hu-444

man predictive capabilities. The results indicate445

that LMs predict the next words similarly to hu-446

mans in narrative contexts, with their performance447

gradually approaching that of humans; larger LMs448

are more accurate than smaller ones, but they have449

not surpassed human performance.450

Among n-gram models, quadgrams achieved the451

highest accuracy, but trigrams showed the strongest452

correlation with humans in top-1 predictions, while453

bigrams had the highest correlation in surprisal.454

Overall, correlations between n-gram models and455

human predictions were generally weak and incon-456

sistent. These results show that while historically457

important, n-gram models struggle to capture the458

complexity of human-like next-word prediction.459

GPT-Neo models outperformed GPT-2, with460

GPT-Neo 2.7B achieving the best accuracy461

(37.20%) and the highest percentage of joint cor-462

rect predictions (29.91%) among these transformer-463

based LMs. Both model families demonstrated464

strong correlations with human behaviour in top-1465

predictions and surprisal metrics, with performance466

improving as the model size increases. The consis-467

tent increasing patterns observed in both Pearson468

r and Spearman r correlations indicate a robust469

linear relationship independent of distributional as-470

sumptions, suggesting larger models better cap-471

ture human-like linguistic processing as evidenced 472

by improved predictive accuracy and joint perfor- 473

mance metrics (see Figure 6). 474

While advanced LMs improve significantly with 475

scale, the mechanisms underlying their correlation 476

with human behaviour remain unclear. Do these 477

models truly reflect human reading processes, or do 478

they just exhibit surface-level convergence in next- 479

word prediction? To investigate this, we analyse 480

and compare results from brain encoding models, 481

using information-theoretic measures estimated by 482

these LMs, as detailed in the following sections. 483

4.2 Neural Encoding Using Predictive Metrics 484

from Human Cloze 485

Figure 2 shows that lexical surprisal derived from 486

human cloze probabilities is a stronger predictor of 487

neural responses, particularly within the N400 time 488

window, compared to the top-1 prediction mea- 489

sure. These results align with the well-established 490

semantic effects on N400 amplitude (Frank et al., 491

2013; Michaelov and Bergen, 2020; Lindborg et al., 492

2023). Additionally, encoding correlations are 493

stronger for content words than function words, 494

suggesting that surprisal more effectively captures 495

neural processes associated with semantically rich 496

lexical words (Münte et al., 2001; He et al., 2022). 497

Therefore, we use human cloze results as the 498

baseline for quantifying LMs’ next-word pre- 499

dictability, lexical surprisal as the most informa- 500

tive metric, and mainly focus on content words to 501

maximise analytical sensitivity. 502

4.3 Encoding Performance Comparison 503

In Figure 3, transformer-based LMs significantly 504

outperform traditional statistical models (i.e., n- 505

grams) across all electrodes and subjects. GPT-2 506

Large achieves the highest performance, surpass- 507

ing all other LMs. Importantly, surprisal-based 508

regression estimates from the larger GPT-Neo 2.7B 509

model do not provide stronger prediction corre- 510

lations than those from the smaller, less accurate 511

models (e.g., GPT-2 variants), consistent with prior 512

research (Shain et al., 2024). 513

To further examine encoding performance by 514

individual subject, we selected Bigrams, GPT-2 515

Large, and GPT-Neo 2.7B as representatives for 516

each LM family, based on their top performance 517

within their respective groups (see Section 4.1). In 518

Figure 4, the GPT-2 Large regression model shows 519

the strongest correlations, with its mean and stan- 520

dard deviation values for individual subjects closely 521
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Model Variants Top-1 Prediction
(vs. Human)

Surprisal
(vs. Human)

Top-1 Prediction
(vs. Human)

Surprisal
(vs. Human)

Accuracy
(%)

Pearson r p Pearson r p Spearman r p Spearman r p

Bigrams (KN) 0.09 < p∗ 0.41 < p∗ 0.04 0.02 0.41 < p∗ 14.92
Trigrams (KN) 0.14 < p∗ 0.26 < p∗ 0.12 < p∗ 0.28 < p∗ 19.23
Quadgrams (KN) 0.05 0.01 0.15 < p∗ 0.02 0.22 0.15 < p∗ 19.36

GPT-2 Small 0.52 < p∗ 0.73 < p∗ 0.51 < p∗ 0.78 < p∗ 30.62
GPT-2 Medium 0.56 < p∗ 0.75 < p∗ 0.55 < p∗ 0.80 < p∗ 33.64
GPT-2 Large 0.59 < p∗ 0.77 < p∗ 0.57 < p∗ 0.82 < p∗ 34.59

GPT-Neo 125M 0.52 < p∗ 0.74 < p∗ 0.51 < p∗ 0.78 < p∗ 29.33
GPT-Neo 1.3B 0.59 < p∗ 0.77 < p∗ 0.58 < p∗ 0.82 < p∗ 35.77
GPT-Neo 2.7B 0.61 < p∗ 0.77 < p∗ 0.59 < p∗ 0.83 < p∗ 37.20

Human 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 45.17

Table 1: Correlation comparisons of various language model families against human benchmarks in a next-word
prediction task. Metrics include accuracy, Pearson and Spearman correlation coefficients r for top-1 prediction and
surprisal. Statistically significant correlations with p∗ = 0.001 are indicated in a two-sided test.

Figure 2: Correlations between regressor results from human cloze probabilities and neural responses for content
and function words over time, shown for lexical surprisal (left) and top-1 prediction (right). Encoding analysis was
conducted for each electrode and then averaged across electrodes. Asterisks indicate time windows at which the
value is significantly different (p < 0.001) based on cluster-based permutation tests. The shaded regions represent
the between-subject standard error of the mean (SEM) of the encoding models.

Figure 3: EEG encoding model comparison results us-
ing surprisal measure, averaged across all channels over
time (from -100 to 500 ms) for all participants. Sig-
nificance levels indicate statistical differences between
models, with p < 0.05 (*), < 0.01 (**), and < 0.001
(***) based on two-tailed paired t-tests or Wilcoxon
signed-rank tests. Error bars represent the SEM.

aligning with human predictive models. Both the 522

overall shape and the pattern of encoding corre- 523

lation variances (i.e., the increase or decrease in 524

values) are similar between GPT-2 Large and the 525

human regressor. Detailed results for LMs and 526

subject-wise performance are provided in Appen- 527

dices F and G, respectively. 528

4.4 Topographic EEG analysis 529

Significance levels of observed differences are re- 530

ported in Figure 5. The transformer-based LMs 531

can effectively track human neural signals using 532

surprisal metric, particularly in predicting the con- 533

tent words compared to n-grams. Additionally, 534

surprisal-based GPT-2 shows the best alignment 535

with the encoding results from the cloze procedure. 536

In the early time window (-100-100 ms), no sig- 537

nificant spatial pattern emerges, suggesting diffuse 538

neural processing. However, in the 200–300 ms 539
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Figure 4: Radar plots of the mean (top) and standard deviation (bottom) of cross-subject surprisal correlations for
content words, averaged over electrodes.

Figure 5: Full EEG Topographies of grand-averaged encoding correlations (Pearson r) for lexical surprisal, computed
by human predictive modelling and representative LMs over time.

window, changes in correlation are observed in the540

centro-frontal and parieto-occipital regions, in line541

with the view that the P200 component reflects the542

processing of unexpected or affectively salient lin-543

guistic information (Raney, 1993; Leuthold et al.,544

2015). In the 300–500 ms range, stronger encoding545

correlations are observed, aligning with the N400546

effect, which is associated with the “expectedness”547

level representation on the processing of upcom-548

ing words (Hoeks et al., 2004; Ye et al., 2022).549

For other LMs’ topography, please refer to Ap-550

pendix H.551

5 Conclusion552

This research investigated the correlation between553

LM predictions and neural responses during read-554

ing comprehension estimated by surprisal and top-555

1 prediction metrics and their alignment with hu- 556

man next-word predictability. The findings indi- 557

cated that surprisal-based predictors showed sig- 558

nificant differences in neural responses for these 559

two lexical categories, a distinction hardly captured 560

by top-1 prediction. Furthermore, although the 561

larger and more advanced language models typ- 562

ically showed a close correspondence to human 563

productions in next-word prediction in term of 564

information-theoretic measures, our results demon- 565

strated that larger model size and increased compu- 566

tational resources may not reliably produce more 567

human-like language processing. As shown in our 568

experiments, surprisal-based GPT-2 Large regres- 569

sion substantially outperformed larger and more 570

advanced language models in both overall and in- 571

dividual subject-level analyses. 572

8



Limitations573

Despite the valuable insights gained, several lim-574

itations must be acknowledged to guide future575

improvements and broader applicability. First,576

our analysis primarily focused on the GPT fam-577

ily of transformer-based language models. While578

GPT models are widely popular, the landscape of579

transformer-based LMs has rapidly evolved. Other580

open-source unidirectional LLMs, such as LLaMA581

(Touvron et al., 2023) and DeepSeekMoE (Dai582

et al., 2024), also leverage transformer architec-583

tures but introduce unique training objectives and584

capabilities. These differences may significantly585

impact cognitive modelling. To develop more com-586

prehensive insights into language model generation,587

future studies should broaden the scope to include588

a diverse set of transformer-based models.589

Secondly, we examined next-word predictability590

only through the lens of lexical groups. While our591

results provided valuable insights, they represent592

a limited aspect of human reading behaviour. Evi-593

dence suggests that human sensitivity to surprisal594

extends not only to highly predictable words (van595

Schijndel and Linzen, 2019; Michaelov and Bergen,596

2020) but also to frequent words (Xia et al., 2023;597

Oh et al., 2024). Consequently, this limited scope598

may affect the generalizability of the surprisal ef-599

fect across varying levels of word difficulty.600

Finally, we focused our experiments on top-601

down processes, specifically those related to se-602

mantic processing. However, estimates of word603

predictability costs derived from language models604

also includes contributions from bottom-up pro-605

cesses, particularly those driven by syntactic struc-606

tures (Qian and Levy, 2019; Wilcox et al., 2021;607

Arehalli et al., 2022). As ongoing research, we608

are incorporating syntactic processing to develop609

more cognitively plausible predictions of neural610

responses based on language models.611
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Appendices899

A Smoothing Techniques in N-Grams900

When dealing with n-gram models, smoothing901

refers to the practice of adjusting empirical proba-902

bility estimates to account for insufficient data.903

A.1 Laplace Smoothing904

Laplace smoothing, also known as add-one smooth-905

ing, assumes that each n-gram in a corpus occurs906

exactly one more time than it actually does. The907

simplest way to do this smoothing is to add one to908

all the n-gram counts, before we normalize them909

into probabilities. All the counts that used to be910

zero will now have a count of 1, the counts of 1911

will be 2, and so on. In the equation below, we use912

the notation wj
i , i < j, to denote the (j − i)-gram913

(wi, wi+1, . . . , wj).914

p(wi | wi−1
i−n+1) =

1 + c(wi
i−n+1)

|V |+
∑

wi
c(wi

i−n+1)
915

where c(a) denotes the empirical count of the916

n-gram a in the corpus, and |V | corresponds to the917

number of unique n-grams in the corpus.918

A.2 Kneser–Ney Smoothing919

Unlike Laplace smoothing, Kneser-Ney smoothing920

not only accounts for the frequency of observed921

n-grams but also considers the diversity of contexts922

the word w has appeared in. For example, a word923

like “the” will have a high raw frequency but occurs924

in many repetitive contexts (e.g., “the dog,” “the925

cat”). In contrast, a word like “Francisco” might926

appear less frequently but in more unique contexts927

i.e., “San Francisco”, making it more informative.928

This method is an extension of absolute discount-929

ing with a clever way of constructing the lower-930

order (backoff) model. The lower-order model is931

significant only when the count is small or zero in932

the higher-order model, and so it should be opti-933

mized for that purpose. The probability of word934

wi given its previous context wi−1
i−n+1 (the previ-935

ous n− 1 words) using Kneser-Ney smoothing is936

expressed as follows:937

PKN (wi | wi−1
i−n+1) =

max
(
cKN (wi

i−n+1)− d, 0
)

cKN (wi−1
i−n+1)

+ λ(wi−1
i−n+1)PKN (wi | wi−1

i−n+2)

(3)938

where, 939

cKN (wi−1
i−n+1): represents the count of the pre- 940

ceding context wi−1
i−n+1. The definition of the count 941

cKN depends on whether we are counting the 942

highest-order N -gram being interpolated (for ex- 943

ample, trigram if we are interpolating trigram, bi- 944

gram, and unigram) or one of the lower-order N - 945

grams (bigram or unigram if we are interpolating 946

trigram, bigram, and unigram): 947

cKN (·) =

{
count(·) for the highest order,
continuation count(·) for lower orders.

(4) 948

max
(
cKN (wi

i−n+1)− d, 0
)
: applies a discount 949

d of the observed count cKN (wi
i−n+1). If the dis- 950

counted value becomes negative, the max function 951

ensures it is clipped to zero. 952

λ(wi−1
i−n+1): is known as the back-off weight. It 953

is simply the amount of probability mass we left 954

for the next lower-order model. 955

PKN (wi | wi−1
i−n+2): represents the backoff 956

probability, calculated recursively for a lower-order 957

n− 1-gram model. 958

B Correlation 959

Various methods have been developed to quantify 960

relationships between time series, particularly in 961

EEG data analysis (Quiroga et al., 2002; Bonita 962

et al., 2014). The two most widely used corre- 963

lation techniques are Pearson correlation, which 964

measures linear relationships, and Spearman cor- 965

relation, which captures monotonic relationships 966

(Bonita et al., 2014). 967

B.1 Pearson Correlation 968

The Pearson r correlation is one of the most widely 969

used statistical measures to quantify the depen- 970

dence between pairs of time series, particularly 971

in the analysis of bio-signals (Bonett and Wright, 972

2000). For instance, if we aim to measure the 973

relationship between two signals, the Pearson r 974

correlation quantifies the degree of relationship be- 975

tween the two. The correlation coefficient ranges 976

from -1 to 1, where -1 indicates a perfect negative 977

linear correlation, 0 signifies no correlation, and +1 978

represents a perfect positive linear correlation. 979

A point-biserial correlation is conducted with the 980

Pearson correlation formula, except that one of the 981

variables is dichotomous. The Pearson correlation 982

coefficient, denoted as rxy, is defined as: 983
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rxy =
n
∑

xiyi −
∑

xi
∑

yi√
n
∑

x2i − (
∑

xi)2
√

n
∑

y2i − (
∑

yi)2
984

where:985

• rxy: Pearson correlation coefficient between986

x and y987

• n: number of observations988

• xi: value of x (for the i-th observation)989

• yi: value of y (for the i-th observation)990

B.2 Spearman Correlation991

Spearman rank correlation is a non-parametric test992

that is used to measure of the strength of a mono-993

tonic relationship between two independent vari-994

ables (Gauthier, 2001). Compared to the Pearson995

correlation coefficient, the Spearman correlation996

coefficient operates on the ranks of the data rather997

than the raw data, and it does not require the rela-998

tionship between variables to be linear. Since it is999

based on the ranks of the data, it can well represent1000

the similarity of the trend of the time series.1001

Spearman correlation analysis ranks each vari-1002

able separately from lowest to highest and records1003

the difference between the ranks of each data pair1004

(Ye et al., 2015). The sum of the square of the1005

difference between ranks denotes the strength of1006

the correlation between variables. If the data is1007

strongly correlated, then the sum will be small, and1008

vice versa. Besides, the magnitude of the sum is1009

related to the significance of the correlation. The1010

Spearman ranks correlation coefficient can be cal-1011

culated using the following equations:1012

rs = 1− 6
∑

d2i
N (N2 − 1)

(5)1013

where di is the difference between ranks for each1014

data pair, and N is the number of data pairs.1015

C Transformer-Based Approach1016

C.1 Explanation of Transformer Architecture1017

In the transformer-based architecture, input tokens1018

U = (ui−k, . . . , ui−1) are first mapped through a1019

token embedding matrix We. After that, a posi-1020

tion embedding Wp is added corresponding to each1021

word vector, resulting in the first hidden layer:1022

h0 = UWe +Wp. (6)1023

Activities are then passed through a stack of 1024

transformer blocks consisting of a multi-headed 1025

self-attention layer, a position-wise feedforward 1026

layer, and layer normalisation. This is repeated n 1027

times for each block b, after which (log) probabil- 1028

ities are obtained from a (log) softmax over the 1029

transposed token embedding of hn: 1030

hb = transformer block (hb−1) ∀i ∈ [1, n] (7) 1031

In Equation 7, each transformer block takes the 1032

output from the previous block hb−1 and produces 1033

a new hidden state hb. 1034

P (ui|U) = softmax
(
hnW

⊤
e

)
(8) 1035

As in Equation 8, the final hidden state hn is pro- 1036

jected back to the vocabulary space by multiplying 1037

it with the transposed token embedding matrix W⊤
e . 1038

A softmax function is then applied to obtain the 1039

probability distribution P (ui|U) over the vocabu- 1040

lary for the next token ui given the input sequence 1041

token U . 1042

C.2 Capabilities of GPT Families 1043

Model Name nlayers nhead dmodel nparams

GPT-2 Small 12 12 768 ∼124M
GPT-2 Medium 24 16 1024 ∼355M
GPT-2 Large 36 20 1280 ∼774M

GPT-Neo 125M 12 12 768 ∼125M
GPT-Neo 1.3B 24 16 2048 ∼1.3B
GPT-Neo 2.7B 32 16 2560 ∼2.7B

Table 2: Hyper-parameters of GPT-2, GPT-Neo families.
nlayers, nhead, dmodel, and nparams respectively refer to
the number of layers, number of attention heads per
layer, embedding size, and number of parameters.

D Accuracy Performance 1044
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Figure 6: Performance comparison of various language model families (N-grams, GPT-2, GPT-Neo) and human
benchmarks in a next-word prediction task, evaluated by per-model accuracy and joint prediction percentages “both
correct” (green line) and “both incorrect” (red line).

E Brain Encoding Models using Ridge1045

Regression1046

Compared to traditional least mean square regres-1047

sion, ridge regression provides better generalisa-1048

tion to unseen data by regularising the coefficient1049

estimates, particularly in the presence of a large1050

number of predictor variables. It is formulated as1051

the following optimization problem, solving for1052

the regression coefficients b∗ independently at each1053

electrode:1054

b∗ = arg min
b∈Rp

(
∥y −Xb∥22 + λ∥b∥22

)
, (9)1055

where X ∈ Rn×p represents the stimulus feature1056

matrix, where n corresponds to the number of time1057

samples and p to the number of features. The target1058

vector y ∈ Rn denotes EEG data with n time points1059

at a single electrode. The ℓ2 norm ∥ · ∥2 regularises1060

the model’s coefficients with the hyper-parameter λ1061

controlling the penalty weight in the loss function.1062

A low λ may lead to overfitting EEG data, while a1063

high λ may cause underfitting of the brain encoding1064

model (La Tour et al., 2022).1065

F Single-Subject Model Comparison1066
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Figure 7: Surprisal-based encoding model comparison results for content words across all channels for individual
participants. Significance levels indicate statistical differences between models, with p < 0.05(∗), p < 0.01(∗∗),
and p < 0.001(∗ ∗ ∗) based on two-tailed paired t-tests or Wilcoxon signed-rank tests. Error bars represent the
SEM.

G Cross-Subject Encoding Performance1067
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Figure 8: Radar plots of cross-subject surprisal correlations for content words across electrodes in all examined
LMs.

H Cross-Model Topography1068
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Figure 9: Full EEG Topographies of grand-averaged encoding correlations (Pearson r) for lexical surprisal, computed
by human predictive modelling and all examined LMs over time.
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