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Abstract

Language models (LMs) are trained to excel
at predicting the next word in the sequence
given prior context, and humans also share
this predictability in reading comprehension.
Neuroscience research reveals that next-word
predictability influences brain response, as
recorded at millisecond resolution using elec-
troencephalography (EEG). However, little is
known about which measures of predictabil-
ity successfully express the similarity between
LMs and humans in the reading comprehension
process. Here, we generate regressors for both
humans and LMs based on two information
measures, including top-1 prediction and sur-
prisal, to predict event-related potential (ERP)
elicited from EEG recordings. Our results indi-
cate that while the more advanced LMs show
a close correspondence to human performance
in word prediction accuracy, only surprisal po-
tentially correlates with language-processing
ERPs, especially for open-class words with
high semantic content. Moreover, our findings
challenge the assumption that scaling LMs with
increased parameters and computational bud-
gets will consistently lead to improved conver-
gence with human-like linguistic processing.

1 Introduction

Despite significant advances in Natural Language
Processing (NLP), LMs still struggle to illustrate
an adequate neurally-mechanistic picture of human
language processing. This initiated a debate on
whether LMs capture human intelligence or are
simply called “thinking” in any human-like sense
(Mitchell and Krakauer, 2023). Next-word pre-
dictability is a fundamental aspect of human lan-
guage processing, which importantly supports LMs
to be cognitively plausible (Keller, 2010). When
it comes to thought, we need to examine brain ac-
tivity. This is because when people engage in lan-
guage comprehension, their brains display particu-
lar patterns of electrical activity (Fitz and Chang,

2019). Therefore, rather than examining next-word
prediction performance across various LMs, we
should investigate the relationship between next-
word predictability and neural responses in natural
reading contexts, especially in longer narratives.

To investigate this, we run multiple experiments.
First, we calculate top-1 prediction and lexical sur-
prisal at the word level for content and function
words across three predictors: human subjects, n-
gram models, and GPT-family models (GPT-2 and
GPT-Neo), using the DERCO dataset - a language
resource combining EEG and next-word prediction
data (Quach et al., 2024). Next, we encode neu-
ral responses using regression-based deconvolution
to estimate predictability effects on neural activity.
We then compare the correlations between neural
response predictions derived from top-1 prediction
and surprisal estimates of language models and
those obtained from human cloze responses. The
purpose of this comparison is to identify which
model most closely mirrors human-like predictabil-
ity in reading behaviour. To provide deeper in-
sights, these correlations will be visualised within
significant time windows and across significant
electrode clusters.

2 Background

2.1 Linguistic Prediction at the
Computational Level

Word predictability effects fit into a broader picture
of human cognition, in which individuals contin-
uously integrate new input with context to make
predictions about upcoming events and test those
predictions against their perceptual input from the
utterances they hear or read (Bar, 2007). But what
cognitive processes underlie these predictability ef-
fects? One view is that predictability effects reflect
the cognitive costs associated with probabilistic in-
ference over sentence interpretations (Shain et al.,
2024). This perspective, grounded in information



theory (Shannon, 1948), frames prediction as an in-
trinsic function of a generative, probabilistic mental
processor. Under this framework, linguistic units
convey quantifiable information, with measures
such as surprisal (the unexpectedness of a word
given its prior context). In general, surprisal serves
as a useful metric for quantifying word-by-word
predictability during incremental sentence process-
ing (Hale, 2016).

Research has indicated that surprisal is a reli-
able predictor of neural responses during reading,
particularly in relation to the N400 component.
Michaelov and Bergen (Michaelov and Bergen,
2020) found that surprisal effectively predicts vari-
ations in N400 amplitude, a neural indicator of pro-
cessing difficulty during language comprehension.
Frank et al. (Frank et al., 2013) further supported
these findings by analysing EEG data from partic-
ipants reading identical sentences and examining
four distinct ERP components. Their results high-
lighted that surprisal estimates significantly predict
N400 amplitude, with more surprising words elic-
iting larger negative N400 responses. Lindborg et
al. (Lindborg et al., 2023) provided additional ev-
idence, indicating that semantic surprisal effects
are specifically confined to the N400 time window
(300-500 ms post-stimulus), and its effect topogra-
phy closely aligns with conventional ERP analyses
of expected versus unexpected words.

2.2 Neural Responses Prediction under Cloze
Estimates

Unlike language models, determining the exact
probability of the next word generated in the human
mind remains unattainable due to the complexity
and opacity of neural computations. Nevertheless,
predictability in psycholinguistics is commonly
studied using the cloze procedure (Taylor, 1953),
a traditional approach that involves asking partici-
pants to predict and complete unfinished sentences
or passages based on the accumulated preceding
context. This approach is widely regarded as the
gold standard for estimating human lexical prob-
abilities, with cloze probability emerging as the
primary metric for contextual word predictability
(Kutas and Hillyard, 1984; Van Petten and Luka,
2012; Brothers and Kuperberg, 2021).

The cloze procedure offers several advantages.
First, it indirectly reflects human subjective prob-
abilities, capturing how individuals perceive the
likelihood of specific linguistic outcomes. Second,

cloze-based estimates outperform corpus-derived
probabilities in predicting human reading patterns
(Smith and Levy, 2011). Empirical studies con-
sistently demonstrate that words with higher cloze
probabilities elicit smaller N40O responses than
words with lower cloze probabilities (Kutas and
Hillyard, 1984; Kutas and Federmeier, 2011; Ku-
perberg et al., 2020; Brothers and Kuperberg, 2021).
Furthermore, research has identified a strong linear
correlation between cloze probability and lexical
processing difficulty (Smith and Levy, 2013; Broth-
ers and Kuperberg, 2021).

2.3 Neural Responses Prediction under
Language Model’s Probability

Surprisal modelling from LMs has been commonly
applied to predict neural responses during language
comprehension. Surprisal, estimated using simple
and efficient trigram models, has been shown to cor-
relate positively with the N400 effect observed in
reading studies (Frank et al., 2015; Willems et al.,
2016; Armeni et al., 2019). For more advanced
LMs, Heilbron et al. (Heilbron et al., 2019) found
that GPT-2’s word-by-word un(predictability) esti-
mates align with ERPs when participants listened
to audiobooks, revealing strong negative responses
at 400 ms. As further evidence, Michaelov et al.
(Michaelov et al., 2024) compared transformer- and
non-transformer-based LMs and found that GPT-3
surprisal best predicted N400 amplitude, suggest-
ing that effects of expectancy, plausibility, and con-
textual semantic similarity can all be explained by
variations in word predictability.

Within transformer-based LMs, Hao et al. (Hao
et al., 2020) showed GPT-2 as the most effective in
predicting psycholinguistic patterns, outperforming
both TransformerXL and XLNet in terms of psy-
cholinguistic predictive power. Their results high-
lighted that GPT-2 better captures lexical surprisal
aligned with human predictability, potentially mak-
ing it a strong candidate for psycholinguistic mod-
elling in comparison to more complex architectures.
Within the GPT family, Shain et al. (Shain et al.,
2024) challenged claims that more advanced LMs
should exhibit stronger logarithmic relationships
between contextual predictability and processing
difficulty. They found that surprisal estimates from
GPT-3 were not more “‘super-logarithmic” than
those from smaller models like GPT-2, despite
GPT-3’s greater size and computational power.



3 Methodology

3.1 Stimuli and EEG Data Preparation

We utilised the DERCo dataset (Quach et al., 2024),
which contains EEG recordings from 22 native En-
glish speakers while they were reading The Grimm
Brothers’ Fairy Tales. Two participants (“QPF42”
and “USQ95”) were excluded due to excessive
eye movements. Additionally, word-by-word cloze
probabilities were collected through a cloze proce-
dure on Mechanical Turk crowdsourcing platform.
High-density EEG data were recorded using a
32-channel electrode scalp following the interna-
tional 10-20 system (Klem, 1999). Since the analy-
sis used the preprocessed data, the number of word-
level EEG trials in the DERCo dataset’s transcript
was reduced due to artifact removal. All remaining
words, after preprocessing, served as stimuli for
encoding brain signals. The Python library IPA
was used to extract the parts of speech, which were
then grouped into content and function words.

3.2 Information-theoretic measures

To investigate next-word predictability, we used
two measures: top-1 prediction and surprisal.
These measures serve as proxies for human and
computational models’ expectations and process-
ing effort in reading comprehension, capturing dif-
ferent aspects of cognitive load associated with
word prediction.

3.2.1 Top-1 Prediction Estimation

The objective of most LMs is to compute a prob-
ability distribution over the model’s vocabulary,
V, for the likely next-word w; € V at position ¢,
given the context wy,ws ... w;—1 containing the
sequence of preceding words in text. The highest
probability, also known as top-1 prediction, for the
next token, is calculated as the following formula:

P,, = max P(w; | wi,wa,...,wi—1) (1)

w; eV

3.2.2 Surprisal Estimation

Surprisal is a measure of the unexpectedness of a
target word. Hale (Hale, 2001) and Levy (Levy,
2008) argued that the less expected a word is in a
given context, the higher its surprisal. For example,
“Peter won the championship. Afterward, he was
in seventh ...”. If readers recognise the idiom, they
can guess that the missing word is “heaven.” Since
the word is highly predictable, it has low surprisal
and conveys minimal new information.

After the first t words of the sentence, wy_ ¢, will
be processed, the identity of the upcoming word,
We41, 1S still unknown and can therefore be viewed
as a random variable. The surprisal is defined as
the negative log probability of the actual next word,
given its preceding context:

Surprisal Sy,,, = —logP(wi1|wi.¢) (2)

3.3 Predictors

3.3.1 Human Prediction

Top-1 prediction refers to the highest percentage of
participants who guessed the same next word. A
top-1 prediction value of 100% indicates that all
participants guessed the same next word, while a
value of 0% indicates that no participant predicted
that upcoming word. This can be simply defined as
the maximum cloze probability among the possible
words that could appear in the upcoming position.

Lexical surprisal, by contrast, is the cloze proba-
bility of the correct next word in the transcript. It
is important to note that the cloze value of the cor-
rect next word does not necessarily equal the top-1
prediction value. These values are equal only if the
word is exceptionally easy to predict, meaning that
the word predicted by all participants is also the
correct word in the transcript.

A major issue with cloze procedures is that zero-
probability predictions result in undefined surprisal
values. There are cases where the target word
w; is not predicted by any participant as a pos-
sible continuation of w1y, wo, ..., w;_1. With real-
istic sample sizes, words with P(w;|wy,ws,. ..,
wi—1) < 0.001 will be completely absent from the
participants’ responses. This highlights the need to
expand the probability distribution to include more
words. To address this, we followed the approach
used by Lowder et al. (Lowder et al., 2018), which
involved replacing these cloze values of zero with
half the value of the lowest nonzero cloze value
before converting them to surprisal values.

3.3.2

In this study, we trained bigram to quadgram mod-
els using the NLTK Python package !. Unlike ad-
vanced language models such as transformer-based
LMs (Amaratunga, 2023; Desai et al., 2023), n-
gram models have a limitation in capturing very
long-range dependencies. To mitigate this, we
trained our n-gram models on the Fairy Tale Cor-
pus (Lobo and de Matos, 2010), a domain-aligned

N-gram models

1https: //www.nltk.org/
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dataset to DERCo, comprising 453 fairy tales from
Project Gutenberg (Klein and Manning, 2002).

To avoid potential overfitting, we removed the
five Grimm Brothers’ Fairy Tales included in the
DERCo dataset’s transcript. All punctuation was
removed, and the letters were converted to lower-
case. To address data sparsity, we trained separate
models using no smoothing, Laplace smoothing,
and Kneser-Ney smoothing (see Appendix A for
details). Each n-gram model then used a fixed-
sized context window of n - 1 words, locating all
matching windows within the problem instance and
counting the number of occurrences of each possi-
ble next token to calculate word probabilities for
topl-prediction and surprisal estimations.

3.3.3 GPT-2 and GPT-Neo Families

Generative Pre-trained Transformer (GPT) (Rad-
ford, 2018) is a transformer-based autoregressive
language model that uses a multi-head “attention”
mechanism based on an encoder-decoder architec-
ture (Vaswani, 2017) (see Appendix C.1). We se-
lected GPT-2 and GPT-Neo families for investiga-
tion because they are trained to predict the upcom-
ing tokens based on probability in a left-to-right
manner, similar to the cloze procedure conducted
in next-word prediction tasks (see Section 2.2).

The transformer model’s input is a sequence of
tokens — words, phonemes, or punctuation. The
number of tokens per context window depends on
the story length. If a story exceeds one context win-
dow (e.g., 1024 tokens), probability estimates for
the remaining tokens are conditioned on the second
half of the previous window. Predictions were per-
formed separately for each story in the transcript,
with the entire preceding context restarted rather
than carrying over the context from the previous
story. Additionally, the story’s topic was included
in the prediction, as it was disclosed to participants
at the beginning of the Mechanical Turk experiment
in the DERCo dataset.

For words spanning multiple tokens, the word
probability was calculated as the joint probability
of the tokens using the chain rule. Regarding sur-
prisal estimation, we summed the surprisal values
of the joint tokens, as this approach aligned with
the online experiment presentation to participants,
which included both the word and related punctu-
ation. In contrast, for top-1 prediction estimation,
since the focus was only on correct word prediction,
participants were instructed to type only the word
(excluding punctuation). Therefore, the probability

used for calculating top-1 prediction was averaged
over the joint tokens.

The models were implemented in PyTorch using
the transformer modules from the HuggingFace
Hub 2. The examined GPT family variants differed
primarily in their size, with the specific hyperpa-
rameters outlined in Appendix C.2.

3.4 Brain Encoding Models

Brain encoding models (Heilbron et al., 2019; Gold-
stein et al., 2022) entail fitting a regressor to predict
neural responses at each time point based on mea-
sures such as lexical surprisal and top-1 prediction,
as used in this study. However, running separate
mixed effects models for each time point, as in
prior studies (Frank et al., 2013; Hao et al., 2020;
Oh et al., 2024), would require estimating an ex-
cessive number of parameters, potentially leading
to model overfitting through the capture of noise
rather than meaningful patterns. To reduce this, we
use ridge regression, introduced by Hoerl and Ken-
nard (Hoerl and Kennard, 1970), which regularizes
the model to control its variability and improve
prediction reliability (Bishop and Nasrabadi, 2006).
For more details about the ridge regression using
for brain activity, please refer to Appendix E.
Figure 1 illustrates the procedure for predicting
EEG data using information-theoretic measures
computed by the cloze experiment and LMs. In
brief, the words from the DERCo dataset’s tran-
script were aligned with the EEG recordings from
the EEG-based reading experiment (serving as the
ground truth), with each word onset marked as time
point 0 ms to standardise timing across trials. The
two measures, top-1 prediction and surprisal, are
used separately as independent variables to build
regressors for predicting the EEG signal in a word-
by-word, time-resolved manner. After running re-
gressions for each measure, we estimated a series
of predicted EEG amplitudes from ¢,,;,, (-100 ms)
to timaz (500 ms) for each subject per electrode.
To quantify the similarity between the predicted
and actual EEG responses, we compute the Pear-
son correlation coefficient () for each word. This
correlation-based evaluation produces a set of cor-
relation values that reflect the alignment between
model-predicted and observed EEG signals, vali-
dating the model’s effectiveness in capturing neural
representations during reading. Using 5-fold cross-
validation, we trained each regressor on 80% of the

Zhttps://huggingface.co/
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Figure 1: Brain encoding model was used to predict the neural responses to each word in the context.

dataset to learn 600 coefficients for each combina-
tion of time point and sensor, then predicted EEG
activity for held-out words in the remaining 20%.
To ensure consistent regression parameters
across subjects, we determined the optimal hyper-
parameter A by fitting a single regression model
to the data from all participants for each value of
X over a log-spaced interval [107°, 1074, ..., 10].
We then selected the A value yielding the lowest
generalisation error, as estimated via 5-fold cross-
validation (with shuffling enabled) over trials, using
the Scikit-learn library (Pedregosa et al., 2011).

3.5 Significance Tests

All statistical analyses used two-tailed tests with
significance levels of a = 0.05,0.01, or 0.001, de-
pending on the desired confidence interval. Before
conducting univariate tests, we ensured that our
data met two main assumptions: (1) normality and
(2) absence of outliers. Normality was assessed
using the D’ Agostino-Pearson test, while outlier
detection was based on the 1.5 IQR (interquartile
range) method. If both assumptions were met, a
one-sample t-test was applied as the parametric

test; otherwise, non-parametric alternatives (e.g.,
Wilcoxon signed-rank tests) were used. This ap-
proach helps reduce the risk of misleading conclu-
sions and statistical errors.

In EEG research, conducting more statistical
tests increases the probability of getting a false
positive result due to random chance (Greenland
et al., 2016). In this study, the multiple compar-
isons problem is significantly more pronounced,
with 32 EEG sensors and 600-time points result-
ing in 19,200 t-values per subject. To address this,
we implemented cluster-based permutation tests
(Maris and Oostenveld, 2007), using 5,000 permu-
tations per test to identify significant time windows
for the encoding models.

A mass-univariate testing approach applies one-
sample t-tests with a “hat” variance adjustment
to compensate implausibly small variances (o0 =
10~3) (Ridgway et al., 2012). The resulting ¢-
statistics were used to compute p-values, which
were then adjusted for multiple comparisons. Mul-
tiple comparisons were corrected using the false
discovery rate (FDR) (Genovese et al., 2002) for
each time point and electrode to ensure statistical



consistency of the effects.

4 Results

4.1 Performance and Human Alignment in
Different Language Models

Previous studies quantified neural pattern similarity
between word pairs using Pearson correlation (He
et al., 2022; Goldstein et al., 2022), as it captures
neural patterns similarity regardless of their ampli-
tude. To strengthen our analysis, we also examined
the Spearman correlation to provide more robust ev-
idence for the observed relationships. Please refer
to Appendix B for details about these correlations.

Table 1 presents the correlation between LMs
and human predictions in terms of top-1 predic-
tion and surprisal, along with their performance
in the next-word prediction task, as measured by
accuracy. Figure 6 further visualises differences
in accuracy and joint accuracy between LMs and
human predictions. These results yield several im-
portant observations.

First, humans still outperformed these LMs,
achieving the highest accuracy (45.17%), which
underscores the existing gap between LMs and hu-
man predictive capabilities. The results indicate
that LMs predict the next words similarly to hu-
mans in narrative contexts, with their performance
gradually approaching that of humans; larger LMs
are more accurate than smaller ones, but they have
not surpassed human performance.

Among n-gram models, quadgrams achieved the
highest accuracy, but trigrams showed the strongest
correlation with humans in top-1 predictions, while
bigrams had the highest correlation in surprisal.
Overall, correlations between n-gram models and
human predictions were generally weak and incon-
sistent. These results show that while historically
important, n-gram models struggle to capture the
complexity of human-like next-word prediction.

GPT-Neo models outperformed GPT-2, with
GPT-Neo 2.7B achieving the best accuracy
(37.20%) and the highest percentage of joint cor-
rect predictions (29.91%) among these transformer-
based LMs. Both model families demonstrated
strong correlations with human behaviour in top-1
predictions and surprisal metrics, with performance
improving as the model size increases. The consis-
tent increasing patterns observed in both Pearson
r and Spearman r correlations indicate a robust
linear relationship independent of distributional as-
sumptions, suggesting larger models better cap-

ture human-like linguistic processing as evidenced
by improved predictive accuracy and joint perfor-
mance metrics (see Figure 6).

While advanced LMs improve significantly with
scale, the mechanisms underlying their correlation
with human behaviour remain unclear. Do these
models truly reflect human reading processes, or do
they just exhibit surface-level convergence in next-
word prediction? To investigate this, we analyse
and compare results from brain encoding models,
using information-theoretic measures estimated by
these LMs, as detailed in the following sections.

4.2 Neural Encoding Using Predictive Metrics
from Human Cloze

Figure 2 shows that lexical surprisal derived from
human cloze probabilities is a stronger predictor of
neural responses, particularly within the N400 time
window, compared to the top-1 prediction mea-
sure. These results align with the well-established
semantic effects on N400 amplitude (Frank et al.,
2013; Michaelov and Bergen, 2020; Lindborg et al.,
2023). Additionally, encoding correlations are
stronger for content words than function words,
suggesting that surprisal more effectively captures
neural processes associated with semantically rich
lexical words (Miinte et al., 2001; He et al., 2022).

Therefore, we use human cloze results as the
baseline for quantifying LMs’ next-word pre-
dictability, lexical surprisal as the most informa-
tive metric, and mainly focus on content words to
maximise analytical sensitivity.

4.3 Encoding Performance Comparison

In Figure 3, transformer-based LMs significantly
outperform traditional statistical models (i.e., n-
grams) across all electrodes and subjects. GPT-2
Large achieves the highest performance, surpass-
ing all other LMs. Importantly, surprisal-based
regression estimates from the larger GPT-Neo 2.7B
model do not provide stronger prediction corre-
lations than those from the smaller, less accurate
models (e.g., GPT-2 variants), consistent with prior
research (Shain et al., 2024).

To further examine encoding performance by
individual subject, we selected Bigrams, GPT-2
Large, and GPT-Neo 2.7B as representatives for
each LM family, based on their top performance
within their respective groups (see Section 4.1). In
Figure 4, the GPT-2 Large regression model shows
the strongest correlations, with its mean and stan-
dard deviation values for individual subjects closely



. Top-1 Prediction Surprisal Top-1 Prediction Surprisal Accuracy
Model Variants (vs. Human) (vs. Human) (vs. Human) (vs. Human) (%)
Pearsonr p  Pearsonr p  Spearmanr p  Spearmanr p
Bigrams (KN) 0.09 < p* 0.41 < p* 0.04 0.02 0.41 < p* 14.92
Trigrams (KN) 0.14 < p* 0.26 < p* 0.12 < p* 0.28 < p* 19.23
Quadgrams (KN) 0.05 0.01 0.15 < p* 0.02 0.22 0.15 <p* 19.36
GPT-2 Small 0.52 <p* 0.73 <p* 0.51 <p* 0.78 <p* 30.62
GPT-2 Medium 0.56 <p* 0.75 <p* 0.55 <p* 0.80 <p* 33.64
GPT-2 Large 0.59 < p* 0.77 < p* 0.57 < p* 0.82 < p* 34.59
GPT-Neo 125M 0.52 < p* 0.74 <p* 0.51 < p* 0.78 <p* 29.33
GPT-Neo 1.3B 0.59 <p* 0.77 <p* 0.58 <p* 0.82 <p* 35.77
GPT-Neo 2.7B 0.61 < p* 0.77 <p* 0.59 <p* 0.83 <p* 37.20
Human 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 45.17

Table 1: Correlation comparisons of various language model families against human benchmarks in a next-word
prediction task. Metrics include accuracy, Pearson and Spearman correlation coefficients 1 for top-1 prediction and

surprisal. Statistically significant correlations with p* = 0.001 are indicated in a two-sided test.

Encoding EEG using Lexical Surprisal

Encoding Correlation
o © o o o
o o (=] o o
N w S w o

o
o
b=

Encoding Correlation

Encoding EEG using Top-1 Prediction

0.07 —_——

4
o
>

Content Words
Function Words

4
o
o

4
o
=

o
o
@

4
o
R

o
o
-

=}
o
=}

0.2
Time (s)

0.3 0.4 0.5

-0.01

-0.01

°
o
1S

0.2
Time (s)

0.3 0.4 0.5

Figure 2: Correlations between regressor results from human cloze probabilities and neural responses for content
and function words over time, shown for lexical surprisal (left) and top-1 prediction (right). Encoding analysis was
conducted for each electrode and then averaged across electrodes. Asterisks indicate time windows at which the
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Figure 3: EEG encoding model comparison results us-
ing surprisal measure, averaged across all channels over
time (from -100 to 500 ms) for all participants. Sig-
nificance levels indicate statistical differences between
models, with p < 0.05 (*), < 0.01 (**), and < 0.001
(***) based on two-tailed paired t-tests or Wilcoxon
signed-rank tests. Error bars represent the SEM.

aligning with human predictive models. Both the
overall shape and the pattern of encoding corre-
lation variances (i.e., the increase or decrease in
values) are similar between GPT-2 Large and the
human regressor. Detailed results for LMs and
subject-wise performance are provided in Appen-
dices F and G, respectively.

4.4 Topographic EEG analysis

Significance levels of observed differences are re-
ported in Figure 5. The transformer-based LMs
can effectively track human neural signals using
surprisal metric, particularly in predicting the con-
tent words compared to n-grams. Additionally,
surprisal-based GPT-2 shows the best alignment
with the encoding results from the cloze procedure.

In the early time window (-100-100 ms), no sig-
nificant spatial pattern emerges, suggesting diffuse
neural processing. However, in the 200-300 ms
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Figure 5: Full EEG Topographies of grand-averaged encoding correlations (Pearson r) for lexical surprisal, computed
by human predictive modelling and representative LMs over time.

window, changes in correlation are observed in the
centro-frontal and parieto-occipital regions, in line
with the view that the P200 component reflects the
processing of unexpected or affectively salient lin-
guistic information (Raney, 1993; Leuthold et al.,
2015). In the 300-500 ms range, stronger encoding
correlations are observed, aligning with the N400
effect, which is associated with the “expectedness”
level representation on the processing of upcom-
ing words (Hoeks et al., 2004; Ye et al., 2022).
For other LMs’ topography, please refer to Ap-
pendix H.

5 Conclusion

This research investigated the correlation between
LM predictions and neural responses during read-
ing comprehension estimated by surprisal and top-

1 prediction metrics and their alignment with hu-
man next-word predictability. The findings indi-
cated that surprisal-based predictors showed sig-
nificant differences in neural responses for these
two lexical categories, a distinction hardly captured
by top-1 prediction. Furthermore, although the
larger and more advanced language models typ-
ically showed a close correspondence to human
productions in next-word prediction in term of
information-theoretic measures, our results demon-
strated that larger model size and increased compu-
tational resources may not reliably produce more
human-like language processing. As shown in our
experiments, surprisal-based GPT-2 Large regres-
sion substantially outperformed larger and more
advanced language models in both overall and in-
dividual subject-level analyses.



Limitations

Despite the valuable insights gained, several lim-
itations must be acknowledged to guide future
improvements and broader applicability. First,
our analysis primarily focused on the GPT fam-
ily of transformer-based language models. While
GPT models are widely popular, the landscape of
transformer-based LMs has rapidly evolved. Other
open-source unidirectional LLMs, such as LLaMA
(Touvron et al., 2023) and DeepSeekMoE (Dai
et al., 2024), also leverage transformer architec-
tures but introduce unique training objectives and
capabilities. These differences may significantly
impact cognitive modelling. To develop more com-
prehensive insights into language model generation,
future studies should broaden the scope to include
a diverse set of transformer-based models.

Secondly, we examined next-word predictability
only through the lens of lexical groups. While our
results provided valuable insights, they represent
a limited aspect of human reading behaviour. Evi-
dence suggests that human sensitivity to surprisal
extends not only to highly predictable words (van
Schijndel and Linzen, 2019; Michaelov and Bergen,
2020) but also to frequent words (Xia et al., 2023;
Oh et al., 2024). Consequently, this limited scope
may affect the generalizability of the surprisal ef-
fect across varying levels of word difficulty.

Finally, we focused our experiments on top-
down processes, specifically those related to se-
mantic processing. However, estimates of word
predictability costs derived from language models
also includes contributions from bottom-up pro-
cesses, particularly those driven by syntactic struc-
tures (Qian and Levy, 2019; Wilcox et al., 2021;
Arehalli et al., 2022). As ongoing research, we
are incorporating syntactic processing to develop
more cognitively plausible predictions of neural
responses based on language models.
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Appendices
A Smoothing Techniques in N-Grams

When dealing with n-gram models, smoothing
refers to the practice of adjusting empirical proba-
bility estimates to account for insufficient data.

A.1 Laplace Smoothing

Laplace smoothing, also known as add-one smooth-
ing, assumes that each n-gram in a corpus occurs
exactly one more time than it actually does. The
simplest way to do this smoothing is to add one to
all the n-gram counts, before we normalize them
into probabilities. All the counts that used to be
zero will now have a count of 1, the counts of 1
will be 2, and so on. In the equation below, we use
the notation w}, 7 < j, to denote the (j — )-gram
(wi,wiﬂ, ce ,wj).

_ 1+ C(wgfnJrl)
where c¢(a) denotes the empirical count of the

n-gram a in the corpus, and |V'| corresponds to the
number of unique n-grams in the corpus.

p(w; | U’f:rlzﬂ)

A.2 Kneser-Ney Smoothing

Unlike Laplace smoothing, Kneser-Ney smoothing
not only accounts for the frequency of observed
n-grams but also considers the diversity of contexts
the word w has appeared in. For example, a word
like “the” will have a high raw frequency but occurs
in many repetitive contexts (e.g., “the dog,” “the
cat”). In contrast, a word like “Francisco” might
appear less frequently but in more unique contexts
i.e., “San Francisco”, making it more informative.

This method is an extension of absolute discount-
ing with a clever way of constructing the lower-
order (backoff) model. The lower-order model is
significant only when the count is small or zero in
the higher-order model, and so it should be opti-
mized for that purpose. The probability of word
w; given its previous context w. } 41 (the previ-
ous n — 1 words) using Kneser-Ney smoothing is
expressed as follows:

max (cxn(wi_, ;) — d,0)

i—1
;7n+1)

PKN(U)' ‘ w, —
' CKN(wzl'—'rlL—}—l)

+ )\(wf:rle)PKN(wi ‘ wf:rlzw)
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where,

cxn(wiZ) 1): represents the count of the pre-
ceding context wﬁ:}L +1- The definition of the count
cxn depends on whether we are counting the
highest-order N-gram being interpolated (for ex-
ample, trigram if we are interpolating trigram, bi-
gram, and unigram) or one of the lower-order N-
grams (bigram or unigram if we are interpolating
trigram, bigram, and unigram):

for lower orders.

“

max (cxn(w!_, 1) — d,0): applies a discount
d of the observed count cx n (w;_,,, ). If the dis-
counted value becomes negative, the max function
ensures it is clipped to zero.

AMwi=} +1): is known as the back-off weight. It
is simply the amount of probability mass we left
for the next lower-order model.

Prn(w; | wi=} 4o): represents the backoff
probability, calculated recursively for a lower-order
n — 1-gram model.

count(-) for the highest order,

CKN( L
©) continuation count(-)

B Correlation

Various methods have been developed to quantify
relationships between time series, particularly in
EEG data analysis (Quiroga et al., 2002; Bonita
et al.,, 2014). The two most widely used corre-
lation techniques are Pearson correlation, which
measures linear relationships, and Spearman cor-
relation, which captures monotonic relationships
(Bonita et al., 2014).

B.1 Pearson Correlation

The Pearson 7 correlation is one of the most widely
used statistical measures to quantify the depen-
dence between pairs of time series, particularly
in the analysis of bio-signals (Bonett and Wright,
2000). For instance, if we aim to measure the
relationship between two signals, the Pearson r
correlation quantifies the degree of relationship be-
tween the two. The correlation coefficient ranges
from -1 to 1, where -1 indicates a perfect negative
linear correlation, O signifies no correlation, and +1
represents a perfect positive linear correlation.

A point-biserial correlation is conducted with the
Pearson correlation formula, except that one of the
variables is dichotomous. The Pearson correlation
coefficient, denoted as 7, is defined as:



Poy = Y TYi — D, Ti ), Yi
VSl = (o) /n Sk - (D u)?

where:

* r4y: Pearson correlation coefficient between
z and y

¢ n: number of observations
e x;: value of x (for the ¢-th observation)
e y;: value of y (for the ¢-th observation)

B.2 Spearman Correlation

Spearman rank correlation is a non-parametric test
that is used to measure of the strength of a mono-
tonic relationship between two independent vari-
ables (Gauthier, 2001). Compared to the Pearson
correlation coefficient, the Spearman correlation
coefficient operates on the ranks of the data rather
than the raw data, and it does not require the rela-
tionship between variables to be linear. Since it is
based on the ranks of the data, it can well represent
the similarity of the trend of the time series.

Spearman correlation analysis ranks each vari-
able separately from lowest to highest and records
the difference between the ranks of each data pair
(Ye et al., 2015). The sum of the square of the
difference between ranks denotes the strength of
the correlation between variables. If the data is
strongly correlated, then the sum will be small, and
vice versa. Besides, the magnitude of the sum is
related to the significance of the correlation. The
Spearman ranks correlation coefficient can be cal-
culated using the following equations:

6> d;
N(N2-1)

where d; is the difference between ranks for each
data pair, and N is the number of data pairs.

r¢=1—

(&)

C Transformer-Based Approach

C.1 Explanation of Transformer Architecture

In the transformer-based architecture, input tokens
U = (uj—k,...,u;—1) are first mapped through a
token embedding matrix W,. After that, a posi-
tion embedding W), is added corresponding to each
word vector, resulting in the first hidden layer:

ho = UW, + W, (6)
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Activities are then passed through a stack of
transformer blocks consisting of a multi-headed
self-attention layer, a position-wise feedforward
layer, and layer normalisation. This is repeated n
times for each block b, after which (log) probabil-
ities are obtained from a (log) softmax over the
transposed token embedding of h,,:

hy = transformer block (hy—1) Vi € [1,n] (7)

In Equation 7, each transformer block takes the
output from the previous block h;_; and produces
a new hidden state hy,.

(®)

As in Equation 8, the final hidden state h,, is pro-
jected back to the vocabulary space by multiplying
it with the transposed token embedding matrix TV, .
A softmax function is then applied to obtain the
probability distribution P(u;|U) over the vocabu-
lary for the next token u; given the input sequence
token U.

P(u;|U) = softmax (hnWJ>

C.2 Capabilities of GPT Families

Model Name Nayers  "'head Amodel Nparams
GPT-2 Small 12 12 768 ~124M
GPT-2 Medium 24 16 1024  ~355M
GPT-2 Large 36 20 1280 ~774M
GPT-Neo 125M 12 12 768 ~125M
GPT-Neo 1.3B 24 16 2048 ~1.3B
GPT-Neo 2.7B 32 16 2560 ~2.7B

Table 2: Hyper-parameters of GPT-2, GPT-Neo families.
Nilayerss Thead> @model> aNd Nparams Tespectively refer to
the number of layers, number of attention heads per
layer, embedding size, and number of parameters.

D Accuracy Performance
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Figure 6: Performance comparison of various language model families (N-grams, GPT-2, GPT-Neo) and human
benchmarks in a next-word prediction task, evaluated by per-model accuracy and joint prediction percentages “both
correct” (green line) and “both incorrect” (red line).

E Brain Encoding Models using Ridge
Regression

Compared to traditional least mean square regres-
sion, ridge regression provides better generalisa-
tion to unseen data by regularising the coefficient
estimates, particularly in the presence of a large
number of predictor variables. It is formulated as
the following optimization problem, solving for
the regression coefficients b* independently at each
electrode:

b = arg min (|ly — Xbll3 + AIbl3) . 9

where X € R™*P represents the stimulus feature
matrix, where n corresponds to the number of time
samples and p to the number of features. The target
vector y € R™ denotes EEG data with n time points
at a single electrode. The 2 norm || - || regularises
the model’s coefficients with the hyper-parameter A
controlling the penalty weight in the loss function.
A low A may lead to overfitting EEG data, while a
high A may cause underfitting of the brain encoding
model (La Tour et al., 2022).

F Single-Subject Model Comparison
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Figure 7: Surprisal-based encoding model comparison results for content words across all channels for individual
participants. Significance levels indicate statistical differences between models, with p < 0.05(x), p < 0.01(xx),

and p < 0.001(x * %) based on two-tailed paired t-tests or Wilcoxon signed-rank tests. Error bars represent the

SEM.
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Figure 8: Radar plots of cross-subject surprisal correlations for content words across electrodes in all examined

LMs.
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Figure 9: Full EEG Topographies of grand-averaged encoding correlations (Pearson ) for lexical surprisal, computed
by human predictive modelling and all examined LMs over time.
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