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Abstract

Recent advances in mechanistic interpretability have revealed that large language
models (LLMs) develop internal representations corresponding not only to concrete
entities but also distinct, human-understandable abstract concepts and behaviour.
Moreover, these hidden features can be directly manipulated to steer model be-
haviour. However, it remains an open question whether this phenomenon is unique
to models trained on inherently structured data (ie. language, images) or if it is a
general property of foundation models. In this work, we investigate the internal rep-
resentations of a large physics-focused foundation model. Inspired by recent work
identifying single directions in activation space for complex behaviours in LLMs,
we extract activation vectors from the model during forward passes over simulation
datasets for different physical regimes. We then compute "delta" representations
between the two regimes. These delta tensors act as concept directions in activation
space, encoding specific physical features. By injecting these concept directions
back into the model during inference, we can steer its predictions, demonstrating
causal control over physical behaviours, such as inducing or removing some par-
ticular physical feature from a simulation. These results suggest that scientific
foundation models learn generalised representations of physical principles. They
do not merely rely on superficial correlations and patterns in the simulations. Our
findings open new avenues for understanding and controlling scientific foundation
models and has implications for AI-enabled scientific discovery.

1 Introduction

Recent advances in the field of interpretability have enhanced our comprehension of how foundation
models function. Methods such as probing [38, 39] and Sparse Autoencoders (SAEs) [4, 8], primarily
designed for large language models (LLMs), have uncovered that these models often form internal
representations, or hidden features, that closely resemble human concepts [9, 5, 14]. A wide range
of features from descriptive nouns [11], to abstract meta-concepts, and more [35, 21] are well
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documented in the literature. Recent studies have even indicated that intricate behaviours such as
refusal can be mediated by a single direction in activation space [1]. Importantly, these features are
not merely correlational; interventions such as activation steering demonstrate that they have a causal
influence on model behaviour [36, 40, 20].

The scientific community is increasingly leveraging large-scale models developed on extensive
datasets across diverse domains, including chemistry [7, 3], astronomy [25, 19, 30], climate science
[26], and healthcare [18]. However, while there has been rapid progress in interpretability research
for LLMs, the internal representations of foundation models trained on scientific data remain largely
unexplored. A key open question is whether — in a manner similar to LLMs — simulation models
form interpretable representations which align with fundamental physical laws and principles, or if
they depend on superficial correlations and patterns in the data.

This paper begins to tackle these questions by applying interpretability techniques, adapted from
LLM studies, to a state-of-the-art transformer model pretrained on The Well [27], a large and varied
collection of PDE simulations. Our research aims to determine if this physics foundation model
yields interpretable internal representations of physical phenomena and whether these representations
can be causally manipulated. Inspired by the method of identifying single direction "concept vectors"
described by [1, 40], we employ a modified version of the technique to determine directions in the
model’s activation space which correspond to specific physical concepts. We inject these concept
vectors during the model’s forward pass to achieve activation steering [36] and thereby assess their
causal impact on the resulting simulations.

Our contributions include:

• A methodology for extracting interpretable physical concept features from transformer-based
physics models.

• We compute single-direction "delta" tensors between activations from contrasting physical
regimes.

• We show that intervention along these directions causally steers model predictions in
interpretable ways.

• We provide evidence that concept features a transferable between unrelated physical systems,
suggesting that neural networks learn transferable abstract concepts across different physics
domains.

1.1 Background

The Physics Foundation Model The model we investigate is a large vision transformer [37,
17] based foundation model designed for spatiotemporal surrogate modelling of physical systems
described by PDEs. This model has been pretrained on a large range of complex and diverse datasets
present in the Well collection [27]. It builds upon similar physics foundation model approaches
introduced by [13, 16, 6, 22]. In short, the model is trained autoregressively to predict the next state
of a physical system given a sequence of previous states. A key aspect of this pretraining is aiming to
learn broadly useful representations of physical dynamics and facilitate transfer learning.

The Well [27] is a large-scale (15TB) benchmark dataset comprising 16 distinct numerical simula-
tions curated in collaboration with domain experts. It spans diverse fields including fluid dynamics
(e.g., Rayleigh-Bénard convection, Shear Flow, Magneto-hydrodynamics), astrophysics (e.g., Super-
novae, Post-neutron star mergers), acoustic scattering, and even biological systems; amongst other
things.

The data is provided as sequences of snapshots on uniform grids, and for each simulation includes
multiple trajectories with varying initial conditions or physical parameters. The Well provides the
diverse, high-quality data necessary for the physics foundation model to learn representations that
generalize across physical domains and provides a challenging benchmark for evaluating generaliza-
tion and transfer in scientific ML [34]. The Well also serves as the testbed for our interpretability
investigations.
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1.2 Interpretability

Mechanistic interpretability aims to reverse engineer neural networks into human-understandable
algorithms [28, 24]. Several key interpretability hypotheses underpin this work, these are briefly
covered below.

Linear representation hypothesis posits that features (i.e., concepts) are represented linearly as
directions in a models activation space [10, 2, 29].

Polysemanticity refers to the theory that deep learning models can represent more features than the
dimensionality of their activation space would suggest. Models achieve this by assigning multiple,
potentially unrelated, features to a single neuron (polysemanticity) and representing features in
non-orthogonal directions (superposition) [32, 10, 15, 2].

An unfortunate side effect of polysemanticity is that it complicates interpretation, as individual
polysemantic neurons are generally not easily interpretable. Various techniques (e.g. SAEs) aim to
address this by creating new representations of internal activations where neurons and features have a
1 to 1 relationship, resulting in monosemantic features [4, 35].

It should be noted that a monosemantic feature is not necessarily a feature which makes sense to
a human being. For instance, one can imagine an LLM learning a monosemantic feature based
purely on complex correlations between tokens which bears no relationship whatsoever to any human
concept. After all, a feature is just a reusable, statistically independent component of a dataset that a
model happens to find useful. Yet recent interpretability research has demonstrated that LLMs (and
vision transformers) do indeed learn a multitude of human-interpretable features. [23, 39].

Many researchers argue that concept-based features emerge as a side effect of structure which is
intrinsic to the training data. Language possesses inherent syntactic and semantic hierarchies that
reflect human concepts, therefore text data provides a rich, human-understandable symbolic structure
that models can pick up directly from the text. It is thus perhaps unsurprising that language data
should lend itself to the formation of meaningful high-level abstractions and concept features in
LLMs.

Numerical physics data, on the other hand, lacks an explicit concept structure. Instead, this structure
can only arise indirectly through the abstraction of underlying governing rules, which a model must
first infer. Therefore, for a foundation model trained on physics data, there is less a priori reason to
assume its internal representations will correspond to human concepts

Activation steering. Beyond passive observation, interpretability aims to achieve causal understand-
ing. Activation steering is a causal intervention technique where a precomputed vector, representing
a concept, is added to the models activations at a specific layer during a forward pass. If the concept
vector is meaningful and the intervention is successful, the models output will change in a manner
which is consistent with the concept. This serves to test the causal link between activation directions
and the models behaviour [36, 40, 20, 35]. Activation steering has been used to control stylistic
attributes, factual recall, and more.

Single Direction Steering. Our work draws on the approach outlined by [1], which showed that
complex behaviours in LLMs, such as refusal behaviour, can be identified with a single direction in
activation space. This direction can be found by the computation of concept deltas, that is, by finding
differences between model activations for different inputs (e.g., toxic vs. non-toxic text), one can
identify directions in activation space that correspond to specific concepts. These directions can then
be added or subtracted from activations during inference to steer the model’s behaviour.

2 Methodology

Our methodology consists of four main steps: (1) selection of contrasting simulation files representing
two distinct physical regimes; (2) extraction of activations from forward passes of the model across
several examples from each regime; (3) calculation of "delta" concept directions; and (4) injection of
concept directions to steer model outputs.
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Figure 1: Schematic illustration of methodology. Activations are first extracted from the physics model during
forward passes over input segments that exhibit physical feature f , yielding activations µf,i, and from segments
lacking the feature, f¬, yielding νf,i. The difference between these activations, ∆f , is then injected back into
the model during inference to steer future results.

We investigate whether single-direction activation interventions, termed "delta steering", can be used
to understand and control the internal representations of physical phenomena within the physics
foundation model, we therefore investigate the hypothesis that physical concepts are linearly rep-
resented in the latent space of physics foundation models. Let a denote the activation tensor for a
particular transformer block of a physics foundation model. We seek to identify direction ∆f in
activation space such that the intervention a → a+α∆f for scalar α > 0 causally steers the model’s
predictions toward a desired physical feature f . The methodology employed consists of four primary
steps, adapted from techniques used in LLM interpretability.

1. Selection of Contrasting Simulation Files: We create two groups of simulations taken from
The Well such that the groups represent two distinct regimes of one physical system, with
the difference between them being some physical feature which has visually distinguishable
macro-scale effects, complex dynamics emerging from micro-dynamics, and the existence
analogous structures across different phenomena to enable transferability studies. To meet
these criteria, we focused our initial investigations on vorticity within the Shear Flow dataset,
chosen for its well-understood physics and distinct visual features.

2. Activation Extraction: Activations were extracted from the model during forward passes
over selected input segments from the simulation trajectories. PyTorch [31] hooks were
used to capture the activations from a specific model layer. For this work, we chose the final
transformer block, hypothesised to be the most likely to contain abstract representations
of physical dynamics [12]. However, noting the observations in [33], we suspect that
features in intermediate-to-late layers might achieve similar effects, and exploring this
layer-dependence would be an interesting direction for future work. The model was run in
rollout mode, processing windowed segments of consecutive timesteps. For each input, we
extract the activation tensor a ∈ A ⊆ RT×C×W×H , where A is the activation space, T is
the sequence length, C the channel/feature dimension, and W , H are spatial dimensions
(width and height).

3. Calculation of Concept Directions: The saved tensors were averaged across each group
resulting in an average laminar flow tensor and an average vortex flow tensor. The "delta
tensor", or concept direction, were then computed by taking the difference between the two
averaged activation tensors.
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Let Df denote the dataset of activation tensors extracted from input segments that exhibit
physical feature f , and let Df¬ denote the dataset from input segments that lack feature f
or exhibit the opposite of feature f . To identify the direction corresponding to the physical
feature f , we first normalize and then average the activations.
For each activation position i = (t, w, h) ∈ I, where I is the set of all activation positions
in the model’s representation and these positions correspond to spatiotemporal locations in
the physical simulation, we normalize the activations:

âi =
ai − āi

σi
(1)

where āi and σi are the mean and standard deviation across the training data at position i.
We then compute the mean normalized activations for each dataset:

µf,i :=
1

|Dtrain
f |

∑
a∈Dtrain

f

âi, νf,i :=
1

|Dtrain
f¬ |

∑
a∈Dtrain

f¬

âi (2)

and we compute the concept direction as the difference between averaged activations:

∆f,i := µf,i − νf,i (3)

yielding the full concept direction tensor ∆f ∈ A. This direction is interpreted as encoding
the concept of physical feature f in activation space.
For cross-domain transfer experiments where spatial structures may not align between
different physical systems, we also compute a spatially-averaged concept direction:

∆f :=
1

|I|
∑
i∈I

∆f,i (4)

This spatially-averaged direction ∆f ∈ RC preserves only the channel-wise concept
information.

4. Activation Steering (Injection of Concept Directions): To test the causal influence of
these concept directions, they were injected back into the model during inference. Using a
forward hook at the same target layer, the original activations a were modified by addition
of the concept direction. The modified activations a′ were calculated with steering function
s : A×A× R → A where a,∆f ∈ A and α ∈ R:

s(a,∆f , α) := a+ α∥a∥2 ∆f

∥∆f∥2
(5)

where α is a scaling factor. The output was then renormalised to preserve the original norm
of a. This intervention was applied across all tokens and time steps.

3 Experiments

3.1 Progressive Suppression of a Physical Feature

The most straightforward method of testing the causal influence of the concept direction is to suppress
the physical feature a in the output simulation by means of subtraction in eq. (5). However, for ease
of interpretation, the choice of the physical feature a is crucial.

Result. The effect of negative activation steering was visually striking. Whereas the unmodified
simulation displayed two prominent vortical structures, the steered simulations showed a progressive
suppression of these features with increasing α. The flow was instead transformed into a smooth,
parallel state characteristic of a laminar regime. The successful laminarisation of the flow is an
encouraging first sign that our method can precisely target and remove specific complex phenomena
from a simulation.
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Figure 2: Negative ∆vortex injection into shear flow vortex regime, for α values of 0, 0.3, 0.5 and 1.0. Frame: 64.

3.2 Continuous induction of a Physical Feature

A natural subsequent question to ask is whether the opposite intervention will be similarly effective —
can the addition of the same concept vector to the activations at layer l give rise to the associated
physical feature in the output simulation?

Successful inducement of a feature is a notably higher bar to pass than simple suppression because
the model predicts the token deltas at each time step, rather than the entire state of tokens, so it is
conceivable that the feature suppression intervention may not truly be targeting a feature representing
a physical characteristic. It may instead be setting the prediction deltas to zero for a range of tokens,
thereby resulting in the initial simulation state (i.e., laminar flow), persisting throughout the model
rollout window.

To address this concern we repeated the suppression procedure but with the sign reversed in eq. (5).

Result. Positive injection of the learned vortex direction during inference on shear-flow simulations
in the laminar regime reliably induced vortical structures, with the effect scaling with the steering
strength α: small injections (α ≈ 0.1 to 0.4) produced subtle perturbations and incipient rotation,
while moderate injections (α ≈ 0.4 to 0.5) yielded well-formed vortices.

This result further validates the physical interpretation of the vortex direction and suggests that the
extracted direction may encode a meaningful, controllable physical feature capable of introducing
vortex formation into an otherwise laminar regime.

Figure 3: Positive ∆vortex injection into shear flow laminar regime, for α values of 0, 0.2, 0.3 and 0.4. Frame:
64.

The success of the concept induction experiment raises a question: given that vortices are being
introduced to a simulation in which they would not normally arise, by what mechanism does the
model transform a nominally laminar flow to produce a vortex? Is it applying a physically valid initial
perturbation and then correctly simulating the ongoing natural evolution? Is it simulating a modified
but self-consistent version of the physics? Or is it cosmetically shifting the output to look more like
the target concept?

3.3 Additional Physical Features

Given the success of both suppression and induction of the vorticity concept direction we next
asked whether an alternative, very different concept can be found? Where a vortex is a localised
phenomenon which is defined by its structure, we now aim to isolate a concept direction that represents
process-based phenomenon, which is not defined by a specific structure or confined to a particular
location:
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Figure 4: On the left tracer fields for ∆diffusion injection into Shear Flow vortex
regime with (top) α = 0.1 and (bottom) α = −0.1. On the right tracer fields for
∆speed injection into Shear Flow vortex regime with (top) α = 0 .1 and (bottom)
α = −0 .1 . Frame(left): 30, Frame(right): 24.

3.3.1 Diffusion

Using the same Shear Flow simulation and the same extraction and injection methodology we
computed the diffusion delta direction as the difference between the averaged activations for several
high molecular diffusion and low molecular diffusion Shear Flow data files – that is, two groups of
Shear Flow simulations with identical Reynolds numbers but different sets of Schmidt numbers.

Result. We discover analogous results for diffusion phenomena, with the diffusion direction
encoding meaningful information about diffusion processes which can be manipulated causally. In
fig. 4 addition of the diffusion direction presented itself as a more diffuse looking fluid interface,
while subtraction led to a more sharply defined interface. In appendix fig. 9 addition also leads to
larger, more spread out core pressure minima and y-velocity high/low zones, plus smoother x-velocity
gradients; subtraction on the other hand leads to a reduction in the size of the same regions, along
with sharper x-velocity gradients.

3.3.2 Temporal

After isolating a structural feature (vorticity) and a process-based one (diffusion), we investigated
whether a more fundamental simulation property – its temporal progression – could be similarly
controlled. To create a "speed" feature, we used the same extraction and injection methodology on
two Shear Flow simulations that were physically identical but sampled at different frame rates. The
delta direction was computed as the difference between the mean activations of a high-frame-rate
(fast) simulation and a low-frame-rate (slow) one.

Result. Injecting the "speed" direction with a positive steering coefficient caused the vortex to form
much earlier in the rollout window. Conversely, subtracting the direction delayed the formation of
the vortex. This can seen by the fact that the vortex in the top right of fig. 4 is larger and more well
developed compared to the lower right image where the vortex has barely formed by the same video
frame.

3.4 Feature Transfer Between Physical Systems

A final important question arises regarding the nature and usefulness of the discovered concept
directions: Are these concept directions specific to the Shear Flow dataset which was used to derive
them, or do they represent a more general physical understanding learned by the physics foundation
model?

We thus tested the transferability of the vorticity and speed features by applying the delta concept
injection derived from the Shear Flow datasets to three alternative Well datasets, ordered by increasing
dissimilarity from the Shear Flow dataset.
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1. Rayleigh-Bénard Convection: An alternative fluid dynamics dataset which models fluid
heated from below and cooled from above, creating convection patterns.

2. Euler Quadrant: A second alternative fluid dynamics dataset which seeks to simulate two
compressible, inviscid gas species governed by the Euler equations.

3. Gray-Scott Reaction-Diffusion: An entirely unrelated system outside the field of fluid
dynamics. This dataset contains simulations of a chemical reaction-diffusion system which
produces various pattern formations, including gliders, spots, spirals, and mazes depending
on parameter settings.

For within-domain steering (e.g., shear flow to shear flow), we use the full concept direction tensor
∆f that preserves spatial structure. However, when transferring concept directions between different
physical systems, the activation tensors may have different spatial dimensions. To address this, we
employ two strategies:

• Spatial averaging: Using the spatially-averaged concept direction ∆f defined in Equation
(5), which preserves only channel-wise information. This approach assumes that the physical
concept is encoded primarily in the channel dimensions rather than specific spatial patterns.

• Spatial alignment: When spatial dimensions are similar (differing by at most one element),
we pad or interpolate to match dimensions, preserving spatial structure. Interpolation and
padding produced nearly identical results, so we describe the results below in terms of the
inclusion or non-inclusion of spatial dimensions.

Our experiments show that spatial averaging generally produces more interpretable and physically
consistent results for cross-domain transfer, as it extracts the abstract concept independent of system-
specific spatial configurations.

Rayleigh-Bénard Vorticity Transfer. In the first concept transfer experiment we see a clear
illustration of the impact which the presence of spatial dimensions in the steering tensor can have.
Across each of the Rayleigh-Bénard results we see that the intervention appears to manifest as
moderate changes to convection in the buoyancy field, in addition to comparatively extreme shifts
in the pressure field. Two primary observations jump out to the viewer: Firstly, when the spatial
dimensions are not included there is an increase in convection (that is, convection patterns appear
earlier and are larger) with positive steering, and a corresponding decrease with negative steering.
Secondly, when the spatial dimensions are included the simple positive direction = increase and
negative direction = decrease relationship disappears. Instead both directions produce an increase in
convection in the buoyancy field, along with large high and low pressure zones which appear to be
inverted between the two results.

Euler Vorticity Transfer. Here we see a more straightforward result: an increase in the size and
number of rotational flow features in the positive steering direction, especially at shock interfaces.
Conversely, in the negative direction we see a decrease in size and number of rotational flow features.
It is interesting to note that the shock interfaces are precisely where one would expect vortices to
show up in a physically real scenario.

Euler Speed Transfer. In the second Euler transfer result it is immediately apparent that the shock
fronts move faster with positive steering and slower with negative steering. In fig. 6 the effect can
most readily be observed by comparing the position of the vertical shock line along the bottom of
each of the three images. In the positive (top) image it is further along than the unmodified (middle)
image, which in turn is further along than the negative (bottom) image. Another notable observation
is that the addition of the speed direction has led to the creation of rotational features along both sides
of the thick yellow shock front in the top right of the image.

Gray-Scott Vorticity Transfer. Of all our results, the most surprising was vorticity steering in
the Gray-Scott "gliders" simulation, a physical system which is defined by interactions between two
chemical species ("A" and "B") and where the concept of a fluid vortex does not apply. Despite
this, we find that positive vortex steering induced the transformation of gliders in the chemical
concentration fields into spiral patterns very reminiscent of those normally found in a "spirals" type
Gray-Scott Reaction Diffusion system.
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Figure 5: Transfer of ∆vortex concept injection to Rayleigh-Bénard simulations. Pressure and buoyancy fields
for (top) averaging over spatial dimensions: (left) α = −0.1, (centre) α = 0.0, (right) α = 0.1; (bottom)
including spatial dimensions (no averaging): (left) α = −0.1, (centre) α = 0.0, (right) α = 0.1. Frame(top):
40, Frame(bottom): 50.

Figure 6: (Left) Density field for ∆vortex injection into Euler quadrants. (Middle) Density field for ∆speed injection
into Euler quadrants. (Right) Chemical species B for ∆vortex injection into Gray-Scott reaction diffusion. All
computed by averaging over spatial dimensions, with α = 0.1 (top), α = 0.0 (middle), and α = −0.1 (bottom).
Frames: 50 (left), 28 (middle), 48 (right).

4 Discussion

These experiments show that these concept directions are not merely correlational but have a causal
effect on the simulation. Within the Shear Flow dataset, adding the vortex direction induced vortical
structures in a laminar flow, while subtracting it suppressed existing vortices.

Interestingly, these concept directions appear to generalise across different physical systems. The vor-
tex direction, derived entirely from Shear Flow simulations, introduced broadly analogous rotational
structures when transferred to other fluid dynamics datasets like Rayleigh-Bénard convection and
Euler quadrant flows. Most remarkably, when applied to the Gray-Scott reaction-diffusion system—a
chemical system where fluid vortices are not physically defined—the same intervention produced

9



spiral patterns. Results which suggest that the model may have learned an abstract representation of
"rotation" or "spiralling" that transcends any specific physical domain.

A key open problem — and a limitation of this work — is the question of the physicality of the
steered results. As a general rule we find that inclusion of spatial dimensions in a transfer steering
tensor results in more physically unrealistic results in the secondary visualisation fields, but when
those dimensions are averaged over and dropped the results often appear physically plausible. Having
said that, it is hard to define what a "reasonable" and "physically plausible" result should actually
look like in this context since by its very nature we are aiming to introduce a physical feature into
a system where that feature should not naturally be present. Further work is needed to definitively
answer the question; for now, we have noted some encouraging observations:

1. Steering modifies all fields in the simulation in a physically self-consistent manner.
2. The effects of steering tend to show up in physically expected places (e.g. vortices appearing

along shock fronts in Euler, gliders transforming into spirals in Gray-Scott; plus more diffuse
flow and smoother gradients in the diffusion steering experiment.).

We have also observed that the distance of the simulation’s initial conditions from the desired physical
regime is important. For example, when performing positive vorticity steering on laminar shear flow
with varying Reynolds and Schmidt numbers, we find that the further the initial conditions are from
the vortex regime, the harder it will be (i.e. the higher alpha will need to be) to finally force a vortex
into the simulation. By the time you succeed (if you do at all), the high alpha will have caused the y
velocity and pressure fields to become completely distorted and unphysical. Conversely, if the initial
conditions are such that the simulation is on the brink of the vortex regime, only a small nudge will
be required, leaving all of the fields looking far more reasonable.

5 Conclusion

Our work demonstrates that interpretability techniques from LLMs can be successfully adapted to
scientific foundation models. By calculating the difference in mean activations between contrasting
physical regimes—a method we term "delta steering"—we isolate single directions in the latent space
of the physics foundation model that correspond to specific physical concepts like vorticity, diffusion,
and simulation speed. Injecting these directions during inference provides direct, causal control over
the model’s predictions, allowing us to manipulate physical behaviours in silico.

These findings provide early evidence that scientific foundation models, much like LLMs, develop
abstract, domain-general representations of fundamental concepts. The success of our simple
difference-of-means approach suggests that these core physical concepts are represented strongly and
linearly in the model’s activation space, aligning with the linear representation hypothesis.

The emergence of steerable, interpretable features in scientific models has significant implications.
It increases our confidence that these models are learning genuine physical principles rather than
superficial correlations. It opens new avenues for interacting with simulations: we can perform
counterfactual exploration ("what if this flow were more diffuse?"), correct simulation errors in real-
time, and audit a model’s understanding of physics by testing its response to targeted interventions.
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A Additional Plots

A.1 Spatial Dimensions for Within-Domain Steering

Figure 7: Trace, pressure, x velocity and y velocity for ∆vortex injection into shear flow laminar regime with (top)
α = 0 .2 , (middle) α = 0 .0 and (bottom) α = −0 .2 . Frame: 64.

Figure 8: Trace, pressure, x velocity and y velocity for ∆vortex injection into shear flow laminar regime with (top)
α = 0 .7 , (middle) α = 0 .0 and (bottom) α = −0 .5 . Frame: 64.

In fig. 7 we visualise the effect of shear flow vorticity steering with spatial dimensions on related
physical fields beyond the primary tracer field. It is clear that the activation steering does not merely
alter the tracer output, but introduces coordinated changes across the pressure and velocity fields
that on the surface seem consistent with real vortex dynamics. Coordinated changes which evolve
and persist throughout the rollout window (frame 64 being the final frame of the rollout window).
These modifications are bidirectional, with positive and negative steering causing opposite changes
to the pressure and y velocity fields. It should be noted that this result is not consistent with the
interpretation of a linear steering response, where positive steering amplifies the concept feature and
negative steering suppresses it. This is because while the positive steering result looks as one might
expect, the negative steering result does not, since if the negative steering was causing a decrease in
vorticity we would expect a flattening of the pressure field, not an inversion.

In fig. 8 we visualise the effect of shear flow vorticity steering without spatial dimensions. Two key
differences can be see with the previous fig. 7. Firstly, the primary tracer displays a smaller, less
well-formed vortex in the positive direction (despite a higher value of α than fig. 7) and the negative
direction displays a more natural-looking laminar flow. Secondly, the changes to the secondary fields
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are more subtle in the positive direction and no longer inverted in the negative direction. A result
which is consistent with the interpretation of a linear steering response.

These results are comparable to the Rayleigh-Bénard results in fig. 5, and other experiments we have
performed:

• When spatial dimensions are averaged (∆f ) over results are consistent with the interpretation
of a linear steering response.

• When this does not occur and spatial dimensions are left in place (∆f ) steering has a
tendency to induce mirrored field changes in positive and negative steering.

• ∆f steering usually produces more natural-looking results.

• ∆f steering, on the other hand, has the capability to produce more extreme changes, such
as the creation of large, intricate vorticities, but at the expense of a less natural-looking final
result across all fields.

A.2 Shear Flow Diffusion Steering – Additional Fields

Figure 9: Trace, pressure, x velocity and y velocity for ∆diffusion injection into shear flow vortex regime with (top)
α = 0 .2 , (middle) α = 0 .0 and (bottom) α = −0 .2 . Frame: 28.

B Data Files

B.1 Simulations

Table 1: Simulation Data Files

Simulation Datafile

fig. 2 (all) shear_flow_Reynolds_5e4_Schmidt_2e-1
fig. 3 (all) shear_flow_Reynolds_5e5_Schmidt_1e0
fig. 4 (left) shear_flow_Reynolds_5e4_Schmidt_2e-1

fig. 4 (right) shear_flow_Reynolds_5e4_Schmidt_5e-1
fig. 5 (all) rayleigh_bernard_rayleigh_1e9_prandtl_10
fig. 6 (left) euler_multi_quadrants_openBC_gamma_1.33_H2O_20

fig. 6 (middle) euler_multi_quadrants_openBC_gamma_1.404_H2_100_Dry_air_-15
fig. 6 (right) gray_scott_reaction_diffusion_gliders_F_0.014_k_0.054
fig. 7 (all) shear_flow_Reynolds_1e5_Schmidt_2e-1
fig. 8 (all) shear_flow_Reynolds_1e5_Schmidt_2e-1
fig. 9 (all) shear_flow_Reynolds_5e4_Schmidt_2e-1
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B.2 Steering Tensors

Table 2: Vortex Regime Simulations

Name Reynolds Schmidt

Shear Flow 1e4 1e-1
Shear Flow 1e4 2e-1
Shear Flow 1e4 2e0
Shear Flow 1e4 5e-1
Shear Flow 1e4 5e0
Shear Flow 1e5 1e-1
Shear Flow 1e5 1e0
Shear Flow 1e5 2e0
Shear Flow 1e5 5e-1
Shear Flow 5e4 1e-1
Shear Flow 5e4 1e0
Shear Flow 5e4 1e1
Shear Flow 5e4 2e0
Shear Flow 5e4 5e-1
Shear Flow 5e4 5e0
Shear Flow 5e5 1e0
Shear Flow 5e5 2e-1
Shear Flow 5e5 5e0

Table 3: Laminar Regime Simulations

Name Reynolds Schmidt

Shear Flow 1e4 1e0
Shear Flow 1e4 1e1
Shear Flow 1e5 1e1
Shear Flow 1e5 2e-1
Shear Flow 1e5 5e0
Shear Flow 5e4 2e-1
Shear Flow 5e5 1e-1
Shear Flow 5e5 1e1
Shear Flow 5e5 2e0
Shear Flow 5e5 5e-1

Table 4: High Diffusion Simulation

Name Regime Reynolds Schmidt Viscosity Diffusion

Shear Flow single vortex 5e4 2e-1 2.00e-05 1.00e-04

Table 5: Low Diffusion Simulation

Name Regime Reynolds Schmidt Viscosity Diffusion

Shear Flow single vortex 5e4 1e1 2.00e-05 2.00e-06

Table 6: High Speed Simulations

Name Reynolds Schmidt dt_stride

Shear Flow 1e4 1e0 2
Shear Flow 1e4 1e1 2
Shear Flow 1e5 1e1 2
Shear Flow 1e5 2e-1 2
Shear Flow 1e5 5e0 2
Shear Flow 5e4 2e-1 2
Shear Flow 5e5 1e-1 2
Shear Flow 5e5 1e1 2
Shear Flow 5e5 2e0 2
Shear Flow 5e5 5e-1 2
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Table 7: Low Speed Simulations

Name Reynolds Schmidt dt_stride

Shear Flow 1e4 1e0 1
Shear Flow 1e4 1e1 1
Shear Flow 1e5 1e1 1
Shear Flow 1e5 2e-1 1
Shear Flow 1e5 5e0 1
Shear Flow 5e4 2e-1 1
Shear Flow 5e5 1e-1 1
Shear Flow 5e5 1e1 1
Shear Flow 5e5 2e0 1
Shear Flow 5e5 5e-1 1

16


	Introduction
	Background
	Interpretability

	Methodology
	Experiments
	Progressive Suppression of a Physical Feature
	Continuous induction of a Physical Feature
	Additional Physical Features
	Diffusion
	Temporal

	Feature Transfer Between Physical Systems

	Discussion
	Conclusion
	Additional Plots
	Spatial Dimensions for Within-Domain Steering
	Shear Flow Diffusion Steering – Additional Fields

	Data Files
	Simulations
	Steering Tensors


