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Abstract

Recent advances in mechanistic interpretability have revealed that large language1

models (LLMs) develop internal representations corresponding not only to concrete2

entities but also distinct, human-understandable abstract concepts and behaviour.3

Moreover, these hidden features can be directly manipulated to steer model be-4

haviour. However, it remains an open question whether this phenomenon is unique5

to models trained on inherently structured data (ie. language, images) or if it is a6

general property of foundation models. In this work, we investigate the internal rep-7

resentations of a large physics-focused foundation model. Inspired by recent work8

identifying single directions in activation space for complex behaviours in LLMs,9

we extract activation vectors from the model during forward passes over simulation10

datasets for different physical regimes. We then compute "delta" representations11

between the two regimes. These delta tensors act as concept directions in activation12

space, encoding specific physical features. By injecting these concept directions13

back into the model during inference, we can steer its predictions, demonstrating14

causal control over physical behaviours, such as inducing or removing some par-15

ticular physical feature from a simulation. These results suggest that scientific16

foundation models learn generalised representations of physical principles. They17

do not merely rely on superficial correlations and patterns in the simulations. Our18

findings open new avenues for understanding and controlling scientific foundation19

models and has implications for AI-enabled scientific discovery.20

1 Introduction21

Recent advances in the field of interpretability have enhanced our comprehension of how foundation22

models function. Methods such as probing [37, 38] and Sparse Autoencoders (SAEs) [4, 8], primarily23

designed for large language models (LLMs), have uncovered that these models often form internal24

representations, or hidden features, that closely resemble human concepts [9, 5, 14]. A wide range25

of features from descriptive nouns [11], to abstract meta-concepts, and more [34, 20] are well26

documented in the literature. Recent studies have even indicated that intricate behaviours such as27

refusal can be mediated by a single direction in activation space [1]. Importantly, these features are28

not merely correlational; interventions such as activation steering demonstrate that they have a causal29

influence on model behaviour [35, 39, 19].30

The scientific community is increasingly leveraging large-scale models developed on extensive31

datasets across diverse domains, including chemistry [7, 3], astronomy [24? , 29], climate science32

[25], and healthcare [18]. However, while there has been rapid progress in interpretability research33

for LLMs, the internal representations of foundation models trained on scientific data remain largely34

unexplored. A key open question is whether — in a manner similar to LLMs — simulation models35
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form interpretable representations which align with fundamental physical laws and principles, or if36

they depend on superficial correlations and patterns in the data.37

This paper begins to tackle these questions by applying interpretability techniques, adapted from38

LLM studies, to a state-of-the-art transformer model pretrained on The Well [26], a large and varied39

collection of PDE simulations. Our research aims to determine if this physics foundation model40

yields interpretable internal representations of physical phenomena and whether these representations41

can be causally manipulated. Inspired by the method of identifying single direction "concept vectors"42

described by [1, 39], we employ a modified version of the technique to determine directions in the43

model’s activation space which correspond to specific physical concepts. We inject these concept44

vectors during the model’s forward pass to achieve activation steering [35] and thereby assess their45

causal impact on the resulting simulations.46

Our contributions include:47

• A methodology for extracting interpretable physical concept features from transformer-based48

physics models.49

• We compute single-direction "delta" tensors between activations from contrasting physical50

regimes.51

• We show that intervention along these directions causally steers model predictions in52

interpretable ways.53

• We provide evidence that concept features a transferable between unrelated physical systems,54

suggesting that neural networks learn transferable abstract concepts across different physics55

domains.56

1.1 Background57

The Physics Foundation Model The model we investigate is a large vision transformer [36,58

17] based foundation model designed for spatiotemporal surrogate modelling of physical systems59

described by PDEs. This model has been pretrained on a large range of complex and diverse datasets60

present in the Well collection [26]. It builds upon similar physics foundation model approaches61

introduced by [13, 16, 6, 21]. In short, the model is trained autoregressively to predict the next state62

of a physical system given a sequence of previous states. A key aspect of this pretraining is aiming to63

learn broadly useful representations of physical dynamics and facilitate transfer learning.64

The Well [26] is a large-scale (15TB) benchmark dataset comprising 16 distinct numerical simula-65

tions curated in collaboration with domain experts. It spans diverse fields including fluid dynamics66

(e.g., Rayleigh-Bénard convection, Shear Flow, Magneto-hydrodynamics), astrophysics (e.g., Super-67

novae, Post-neutron star mergers), acoustic scattering, and even biological systems; amongst other68

things.69

The data is provided as sequences of snapshots on uniform grids, and for each simulation includes70

multiple trajectories with varying initial conditions or physical parameters. The Well provides the71

diverse, high-quality data necessary for the physics foundation model to learn representations that72

generalize across physical domains and provides a challenging benchmark for evaluating generaliza-73

tion and transfer in scientific ML [33]. The Well also serves as the testbed for our interpretability74

investigations.75

1.2 Interpretability76

Mechanistic interpretability aims to reverse engineer neural networks into human-understandable77

algorithms [27, 23]. Several key interpretability hypotheses underpin this work, these are briefly78

covered below.79

Linear representation hypothesis posits that features (i.e., concepts) are represented linearly as80

directions in a models activation space [10, 2, 28].81

Polysemanticity refers to the theory that deep learning models can represent more features than the82

dimensionality of their activation space would suggest. Models achieve this by assigning multiple,83
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potentially unrelated, features to a single neuron (polysemanticity) and representing features in84

non-orthogonal directions (superposition) [31, 10, 15, 2].85

An unfortunate side effect of polysemanticity is that it complicates interpretation, as individual86

polysemantic neurons are generally not easily interpretable. Various techniques (e.g. SAEs) aim to87

address this by creating new representations of internal activations where neurons and features have a88

1 to 1 relationship, resulting in monosemantic features [4, 34].89

It should be noted that a monosemantic feature is not necessarily a feature which makes sense to90

a human being. For instance, one can imagine an LLM learning a monosemantic feature based91

purely on complex correlations between tokens which bears no relationship whatsoever to any human92

concept. After all, a feature is just a reusable, statistically independent component of a dataset that a93

model happens to find useful. Yet recent interpretability research has demonstrated that LLMs (and94

vision transformers) do indeed learn a multitude of genuinely conceptual features [22, 38].95

Many in the field have argued that these concept-based features emerge as a side effect of structure96

which is intrinsic to the training data. Since language possesses inherent syntactic and semantic97

hierarchies which directly reflect human conceptual structures, it is therefore perhaps unsurprising98

that language data should lend itself to the formation of meaningful high-level abstractions and99

concept features in LLMs. In contrast, numerical physics data lacks the same kind of inherent100

concept-based organization and relational structure. Therefore for a foundation model which has101

been trained on physics data, there is less a priori reason to assume that its internal representations102

would correspond to human physics concepts.103

Activation steering. Beyond passive observation, interpretability aims to achieve causal understand-104

ing. Activation steering is a causal intervention technique where a precomputed vector, representing105

a concept, is added to the models activations at a specific layer during a forward pass. If the concept106

vector is meaningful and the intervention is successful, the models output will change in a manner107

which is consistent with the concept. This serves to test the causal link between activation directions108

and the models behaviour [35, 39, 19, 34]. Activation steering has been used to control stylistic109

attributes, factual recall, and more.110

Single Direction Steering. Our work draws on the approach outlined by [1], which showed that111

complex behaviours in LLMs, such as refusal behaviour, can be identified with a single direction in112

activation space. This direction can be found by the computation of concept deltas, that is, by finding113

differences between model activations for different inputs (e.g., toxic vs. non-toxic text), one can114

identify directions in activation space that correspond to specific concepts. These directions can then115

be added or subtracted from activations during inference to steer the model’s behaviour.116

2 Methodology117

Our methodology consists of four main steps: (1) selection of contrasting simulation files representing118

two distinct physical regimes; (2) extraction of activations from forward passes of the model across119

several examples from each regime; (3) calculation of "delta" concept directions; and (4) injection of120

concept directions to steer model outputs.121

We investigate whether single-direction activation interventions, termed "delta steering", can be used122

to understand and control the internal representations of physical phenomena within the physics123

foundation model, we therefore investigate the hypothesis that physical concepts are linearly rep-124

resented in the latent space of physics foundation models. Let a denote the activation tensor for a125

particular transformer block of a physics foundation model. We seek to identify direction ∆f in126

activation space such that the intervention a → a+α∆f for scalar α > 0 causally steers the model’s127

predictions toward a desired physical feature f . The methodology employed consists of four primary128

steps, adapted from techniques used in LLM interpretability.129

1. Selection of Contrasting Simulation Files: We create two groups of simulations taken from130

The Well such that the groups represent two distinct regimes of one physical system, with131

the difference between them being some physical feature which has visually distinguishable132

macro-scale effects, complex dynamics emerging from micro-dynamics, and the existence133

analogous structures across different phenomena to enable transferability studies. To meet134
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these criteria, we focused our initial investigations on vorticity within the Shear Flow dataset,135

chosen for its well-understood physics and distinct visual features.136

2. Activation Extraction: Activations were extracted from the model during forward passes137

over selected input segments from the simulation trajectories. PyTorch [30] hooks were138

used to capture the activations from a specific model layer. For this work, we chose the final139

transformer block, hypothesised to be the most likely to contain abstract representations140

of physical dynamics [12]. However, noting the observations in [32], we suspect that141

features in intermediate-to-late layers might achieve similar effects, and exploring this142

layer-dependence would be an interesting direction for future work. The model was run in143

rollout mode, processing windowed segments of consecutive timesteps. For each input, we144

extract the activation tensor a ∈ A ⊆ RT×C×W×H , where A is the activation space, T is145

the sequence length, C the channel/feature dimension, and W , H are spatial dimensions146

(width and height).147

3. Calculation of Concept Directions: The saved tensors were averaged across each group148

resulting in an average laminar flow tensor and an average vortex flow tensor. The "delta149

tensor", or concept direction, were then computed by taking the difference between the two150

averaged activation tensors.151

Let Df+ denote the dataset of activation tensors extracted from input segments that exhibit152

physical feature f , and let Df− denote the dataset from input segments that lack feature f153

or exhibit the opposite of feature f . To identify the direction corresponding to the physical154

feature f , we first normalize and then average the activations.155

For each activation position i = (t, w, h) ∈ I, where I is the set of all activation positions156

in the model’s representation and these positions correspond to spatiotemporal locations in157

the physical simulation, we normalize the activations:158

âi =
ai − āi

σi
(1)

where āi and σi are the mean and standard deviation across the training data at position i.159

We then compute the mean normalized activations for each dataset:160

µf,i :=
1

|Dtrain
f+ |

∑
a∈Dtrain

f+

âi, νf,i :=
1

|Dtrain
f− |

∑
a∈Dtrain

f−

âi (2)

and we compute the concept direction as the difference between averaged activations:161

∆f,i := µf,i − νf,i (3)

yielding the full concept direction tensor ∆f ∈ A. This direction is interpreted as encoding162

the concept of physical feature f in activation space.163

For cross-domain transfer experiments where spatial structures may not align between164

different physical systems, we also compute a spatially-averaged concept direction:165

∆f :=
1

|I|
∑
i∈I

∆f,i (4)

This spatially-averaged direction ∆f ∈ RC preserves only the channel-wise concept166

information.167

4. Activation Steering (Injection of Concept Directions): To test the causal influence of168

these concept directions, they were injected back into the model during inference. Using a169

forward hook at the same target layer, the original activations a were modified by addition170

of the concept direction. The modified activations a′ were calculated with steering function171

s : A×A× R → A where a,∆f ∈ A and α ∈ R:172

s(a,∆f , α) := a+ α∥a∥2 ∆f

∥∆f∥2
(5)

where α is a scaling factor. The output was then renormalised to preserve the original norm173

of a. This intervention was applied across all tokens and time steps.174
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3 Experiments175

3.1 Progressive Suppression of a Physical Feature176

The most straightforward method of testing the causal influence of the concept direction is to suppress177

the physical feature a in the output simulation by means of subtraction in eq. (5). However, for ease178

of interpretation, the choice of the physical feature a is crucial.179

Result. The effect of negative activation steering was visually striking. Whereas the unmodified180

simulation displayed two prominent vortical structures, the steered simulations showed a progressive181

suppression of these features with increasing α. The flow was instead transformed into a smooth,182

parallel state characteristic of a laminar regime. The successful laminarisation of the flow is an183

encouraging first sign that our method can precisely target and remove specific complex phenomena184

from a simulation.185

Figure 1: Negative ∆vortex injection into shear flow vortex regime, for α values of 0, 0.3, 0.5 and 1.0. Frame: 64.

3.2 Continuous induction of a Physical Feature186

A natural subsequent question to ask is whether the opposite intervention will be similarly effective —187

can the addition of the same concept vector to the activations at layer l give rise to the associated188

physical feature in the output simulation?189

Successful inducement of a feature is a notably higher bar to pass than simple suppression because190

the model predicts the token deltas at each time step, rather than the entire state of tokens, so it is191

conceivable that the feature suppression intervention may not truly be targeting a feature representing192

a physical characteristic. It may instead be setting the prediction deltas to zero for a range of tokens,193

thereby resulting in the initial simulation state (i.e., laminar flow), persisting throughout the model194

rollout window.195

To address this concern we repeated the suppression procedure but with the sign reversed in eq. (5).196

Result. Positive injection of the learned vortex direction during inference on shear-flow simulations197

in the laminar regime reliably induced vortical structures, with the effect scaling with the steering198

strength α: small injections (α ≈ 0.1 to 0.4) produced subtle perturbations and incipient rotation,199

while moderate injections (α ≈ 0.4 to 0.5) yielded well-formed vortices.200

This result further validates the physical interpretation of the vortex direction and suggests that the201

extracted direction may encode a meaningful, controllable physical feature capable of introducing202

vortex formation into an otherwise laminar regime.203

Figure 2: Positive ∆vortex injection into shear flow laminar regime, for α values of 0, 0.2, 0.3 and 0.4. Frame:
64.
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The success of the concept induction experiment raises a question: given that vortices are being204

introduced to a simulation in which they would not normally arise, by what mechanism does the205

model transform a nominally laminar flow to produce a vortex? Is it applying a physically valid initial206

perturbation and then correctly simulating the ongoing natural evolution? Is it simulating a modified207

but self-consistent version of the physics? Or is it cosmetically shifting the output to look more like208

the target concept?209

3.3 Additional Physical Features210

Given the success of both suppression and induction of the vorticity concept direction we next211

asked whether an alternative, very different concept can be found? Where a vortex is a localised212

phenomenon which is defined by its structure, we now aim to isolate a concept direction that represents213

process-based phenomenon, which is not defined by a specific structure or confined to a particular214

location:215

Figure 3: On the left tracer fields for ∆diffusion injection into Shear Flow vortex
regime with (top) α = 0.1 and (bottom) α = −0.1. On the right tracer fields for
∆speed injection into Shear Flow vortex regime with (top) α = 0 .1 and (bottom)
α = −0 .1 . Frame(left): 30, Frame(right): 24.

3.3.1 Diffusion216

Using the same Shear Flow simulation and the same extraction and injection methodology we217

computed the diffusion delta direction as the difference between the averaged activations for several218

high molecular diffusion and low molecular diffusion Shear Flow data files – that is, two groups of219

Shear Flow simulations with identical Reynolds numbers but different sets of Schmidt numbers.220

Result. We discover analogous results for diffusion phenomena, with the diffusion direction221

encoding meaningful information about diffusion processes which can be manipulated causally. In222

fig. 3 addition of the diffusion direction presented itself as a more diffuse looking fluid interface,223

while subtraction led to a more sharply defined interface. In appendix fig. 8 addition also leads to224

larger, more spread out core pressure minima and y-velocity high/low zones, plus smoother x-velocity225

gradients; subtraction on the other hand leads to a reduction in the size of the same regions, along226

with sharper x-velocity gradients.227

3.3.2 Temporal228

After isolating a structural feature (vorticity) and a process-based one (diffusion), we investigated229

whether a more fundamental simulation property – its temporal progression – could be similarly230

controlled. To create a "speed" feature, we used the same extraction and injection methodology on231

two Shear Flow simulations that were physically identical but sampled at different frame rates. The232

delta direction was computed as the difference between the mean activations of a high-frame-rate233

(fast) simulation and a low-frame-rate (slow) one.234

Result. Injecting the "speed" direction with a positive steering coefficient caused the vortex to form235

much earlier in the rollout window. Conversely, subtracting the direction delayed the formation of236

the vortex. This can seen by the fact that the vortex in the top right of fig. 3 is larger and more well237
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developed compared to the lower right image where the vortex has barely formed by the same video238

frame.239

3.4 Feature Transfer Between Physical Systems240

A final important question arises regarding the nature and usefulness of the discovered concept241

directions: Are these concept directions specific to the Shear Flow dataset which was used to derive242

them, or do they represent a more general physical understanding learned by the physics foundation243

model?244

We thus tested the transferability of the vorticity and speed features by applying the delta concept245

injection derived from the Shear Flow datasets to three alternative Well datasets, ordered by increasing246

dissimilarity from the Shear Flow dataset.247

1. Rayleigh-Bénard Convection: An alternative fluid dynamics dataset which models fluid248

heated from below and cooled from above, creating convection patterns.249

2. Euler Quadrant: A second alternative fluid dynamics dataset which seeks to simulate two250

compressible, inviscid gas species governed by the Euler equations.251

3. Gray-Scott Reaction-Diffusion: An entirely unrelated system outside the field of fluid252

dynamics. This dataset contains simulations of a chemical reaction-diffusion system which253

produces various pattern formations, including gliders, spots, spirals, and mazes depending254

on parameter settings.255

For within-domain steering (e.g., shear flow to shear flow), we use the full concept direction tensor256

∆f that preserves spatial structure. However, when transferring concept directions between different257

physical systems, the activation tensors may have different spatial dimensions. To address this, we258

employ two strategies:259

• Spatial averaging: Using the spatially-averaged concept direction ∆f defined in Equation260

(5), which preserves only channel-wise information. This approach assumes that the physical261

concept is encoded primarily in the channel dimensions rather than specific spatial patterns.262

• Spatial alignment: When spatial dimensions are similar (differing by at most one element),263

we pad or interpolate to match dimensions, preserving spatial structure. Interpolation and264

padding produced nearly identical results, so we describe the results below in terms of the265

inclusion or non-inclusion of spatial dimensions.266

Our experiments show that spatial averaging generally produces more interpretable and physically267

consistent results for cross-domain transfer, as it extracts the abstract concept independent of system-268

specific spatial configurations.269

Rayleigh-Bénard Vorticity Transfer. In the first concept transfer experiment we see a clear270

illustration of the impact which the presence of spatial dimensions in the steering tensor can have.271

Across each of the Rayleigh-Bénard results we see that the intervention appears to manifest as272

moderate changes to convection in the buoyancy field, in addition to comparatively extreme shifts273

in the pressure field. Two primary observations jump out to the viewer: Firstly, when the spatial274

dimensions are not included there is an increase in convection (that is, convection patterns appear275

earlier and are larger) with positive steering, and a corresponding decrease with negative steering.276

Secondly, when the spatial dimensions are included the simple positive direction = increase and277

negative direction = decrease relationship disappears. Instead both directions produce an increase in278

convection in the buoyancy field, along with large high and low pressure zones which appear to be279

inverted between the two results.280

Euler Vorticity Transfer. Here we see a more straightforward result: an increase in the size and281

number of rotational flow features in the positive steering direction, especially at shock interfaces.282

Conversely, in the negative direction we see a decrease in size and number of rotational flow features.283

It is interesting to note that the shock interfaces are precisely where one would expect vortices to284

show up in a physically real scenario.285
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Euler Speed Transfer. In the second Euler transfer result it is immediately apparent that the shock286

fronts move faster with positive steering and slower with negative steering. In fig. 5 the effect can287

most readily be observed by comparing the position of the vertical shock line along the bottom of288

each of the three images. In the positive (top) image it is further along than the unmodified (middle)289

image, which in turn is further along than the negative (bottom) image. Another notable observation290

is that the addition of the speed direction has led to the creation of rotational features along both sides291

of the thick yellow shock front in the top right of the image.292

Gray-Scott Vorticity Transfer. Of all our results, the most surprising was vorticity steering in293

the Gray-Scott "gliders" simulation, a physical system which is defined by interactions between two294

chemical species ("A" and "B") and where the concept of a fluid vortex does not apply. Despite295

this, we find that positive vortex steering induced the transformation of gliders in the chemical296

concentration fields into spiral patterns very reminiscent of those normally found in a "spirals" type297

Gray-Scott Reaction Diffusion system.298

Figure 4: Transfer of ∆vortex concept injection to Rayleigh-Bénard simulations. Pressure and buoyancy fields
for (top) averaging over spatial dimensions: (left) α = −0.1, (centre) α = 0.0, (right) α = 0.1; (bottom)
including spatial dimensions (no averaging): (left) α = −0.1, (centre) α = 0.0, (right) α = 0.1. Frame(top):
40, Frame(bottom): 50.

4 Discussion299

These experiments show that these concept directions are not merely correlational but have a causal300

effect on the simulation. Within the Shear Flow dataset, adding the vortex direction induced vortical301

structures in a laminar flow, while subtracting it suppressed existing vortices. Diffusion steering302

Interestingly, these concept directions appear to generalise across different physical systems. The vor-303

tex direction, derived entirely from Shear Flow simulations, introduced broadly analogous rotational304

structures when transferred to other fluid dynamics datasets like Rayleigh-Bénard convection and305

Euler quadrant flows. Most remarkably, when applied to the Gray-Scott reaction-diffusion system—a306

chemical system where fluid vortices are not physically defined—the same intervention produced307

spiral patterns. Results which suggest that the model may have learned an abstract representation of308

"rotation" or "spiralling" that transcends any specific physical domain.309

A key open problem — and a limitation of this work — is the question of the physicality of the310

steered results. As a general rule we find that inclusion of spatial dimensions in a transfer steering311

tensor results in more physically unrealistic results in the secondary visualisation fields, but when312

those dimensions are averaged over and dropped the results often appear physically plausible. Having313

said that, it is hard to define what a "reasonable" and "physically plausible" result should actually314

look like in this context since by its very nature we are aiming to introduce a physical feature into315

a system where that feature should not naturally be present. Further work is needed to definitively316

answer the question; for now, we have noted some encouraging observations:317

1. Steering modifies all fields in the simulation in a physically self-consistent manner.318
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Figure 5: (Left) Density field for ∆vortex injection into Euler quadrants. (Middle) Density field for ∆speed injection
into Euler quadrants. (Right) Chemical species B for ∆vortex injection into Gray-Scott reaction diffusion. All
computed by averaging over spatial dimensions, with α = 0.1 (top), α = 0.0 (middle), and α = −0.1 (bottom).
Frames: 50 (left), 28 (middle), 48 (right).

2. The effects of steering tend to show up in physically expected places (e.g. vortices appearing319

along shock fronts in Euler, gliders transforming into spirals in Gray-Scott; plus more diffuse320

flow and smoother gradients in the diffusion steering experiment.).321

We have also observed that the distance of the simulation’s initial conditions from the desired physical322

regime is important. For example, when performing positive vorticity steering on laminar shear flow323

with varying Reynolds and Schmidt numbers, we find that the further the initial conditions are from324

the vortex regime, the harder it will be (i.e. the higher alpha will need to be) to finally force a vortex325

into the simulation. By the time you succeed (if you do at all), the high alpha will have caused the y326

velocity and pressure fields to become completely distorted and unphysical. Conversely, if the initial327

conditions are such that the simulation is on the brink of the vortex regime, only a small nudge will328

be required, leaving all of the fields looking far more reasonable.329

5 Conclusion330

Our work demonstrates that interpretability techniques from LLMs can be successfully adapted to331

scientific foundation models. By calculating the difference in mean activations between contrasting332

physical regimes—a method we term "delta steering"—we isolate single directions in the latent space333

of the physics foundation model that correspond to specific physical concepts like vorticity, diffusion,334

and simulation speed. Injecting these directions during inference provides direct, causal control over335

the model’s predictions, allowing us to manipulate physical behaviours in silico.336

These findings provide early evidence that scientific foundation models, much like LLMs, develop337

abstract, domain-general representations of fundamental concepts. The success of our simple338

difference-of-means approach suggests that these core physical concepts are represented strongly and339

linearly in the model’s activation space, aligning with the linear representation hypothesis.340

The emergence of steerable, interpretable features in scientific models has significant implications.341

It increases our confidence that these models are learning genuine physical principles rather than342

superficial correlations. It opens new avenues for interacting with simulations: we can perform343

counterfactual exploration ("what if this flow were more diffuse?"), correct simulation errors in real-344

time, and audit a model’s understanding of physics by testing its response to targeted interventions.345
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A Additional Plots346

A.1 Spatial Dimensions for Within-Domain Steering347

Figure 6: Trace, pressure, x velocity and y velocity for ∆vortex injection into shear flow laminar regime with (top)
α = 0 .2 , (middle) α = 0 .0 and (bottom) α = −0 .2 . Frame: 64.

Figure 7: Trace, pressure, x velocity and y velocity for ∆vortex injection into shear flow laminar regime with (top)
α = 0 .7 , (middle) α = 0 .0 and (bottom) α = −0 .5 . Frame: 64.

In fig. 6 we visualise the effect of shear flow vorticity steering with spatial dimensions on related348

physical fields beyond the primary tracer field. It is clear that the activation steering does not merely349

alter the tracer output, but introduces coordinated changes across the pressure and velocity fields350

that on the surface seem consistent with real vortex dynamics. Coordinated changes which evolve351

and persist throughout the rollout window (frame 64 being the final frame of the rollout window).352

These modifications are bidirectional, with positive and negative steering causing opposite changes353

to the pressure and y velocity fields. It should be noted that this result is not consistent with the354

interpretation of a linear steering response, where positive steering amplifies the concept feature and355

negative steering suppresses it. This is because while the positive steering result looks as one might356

expect, the negative steering result does not, since if the negative steering was causing a decrease in357

vorticity we would expect a flattening of the pressure field, not an inversion.358

In fig. 7 we visualise the effect of shear flow vorticity steering without spatial dimensions. Two key359

differences can be see with the previous fig. 6. Firstly, the primary tracer displays a smaller, less360

well-formed vortex in the positive direction (despite a higher value of α than fig. 6) and the negative361

direction displays a more natural-looking laminar flow. Secondly, the changes to the secondary fields362

are more subtle in the positive direction and no longer inverted in the negative direction. A result363

which is consistent with the interpretation of a linear steering response.364

These results are comparable to the Rayleigh-Bénard results in fig. 4, and other experiments we have365

performed:366

• When spatial dimensions are averaged (∆f ) over results are consistent with the interpretation367

of a linear steering response.368

• When this does not occur and spatial dimensions are left in place (∆f ) steering has a369

tendency to induce mirrored field changes in positive and negative steering.370

• ∆f steering usually produces more natural-looking results.371

• ∆f steering, on the other hand, has the capability to produce more extreme changes, such372

as the creation of large, intricate vorticities, but at the expense of a less natural-looking final373

result across all fields.374
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A.2 Shear Flow Diffusion Steering – Additional Fields375

Figure 8: Trace, pressure, x velocity and y velocity for ∆diffusion injection into shear flow vortex regime with (top)
α = 0 .2 , (middle) α = 0 .0 and (bottom) α = −0 .2 . Frame: 28.

B Data Files376

B.1 Simulations377

Table 1: Simulation Data Files

Simulation Datafile

fig. 1 (all) shear_flow_Reynolds_5e4_Schmidt_2e-1
fig. 2 (all) shear_flow_Reynolds_5e5_Schmidt_1e0
fig. 3 (left) shear_flow_Reynolds_5e4_Schmidt_2e-1

fig. 3 (right) shear_flow_Reynolds_5e4_Schmidt_5e-1
fig. 4 (all) rayleigh_bernard_rayleigh_1e9_prandtl_10
fig. 5 (left) euler_multi_quadrants_openBC_gamma_1.33_H2O_20

fig. 5 (middle) euler_multi_quadrants_openBC_gamma_1.404_H2_100_Dry_air_-15
fig. 5 (right) gray_scott_reaction_diffusion_gliders_F_0.014_k_0.054
fig. 6 (all) shear_flow_Reynolds_1e5_Schmidt_2e-1
fig. 7 (all) shear_flow_Reynolds_1e5_Schmidt_2e-1
fig. 8 (all) shear_flow_Reynolds_5e4_Schmidt_2e-1
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B.2 Steering Tensors378

Table 2: Vortex Regime Simulations

Name Reynolds Schmidt

Shear Flow 1e4 1e-1
Shear Flow 1e4 2e-1
Shear Flow 1e4 2e0
Shear Flow 1e4 5e-1
Shear Flow 1e4 5e0
Shear Flow 1e5 1e-1
Shear Flow 1e5 1e0
Shear Flow 1e5 2e0
Shear Flow 1e5 5e-1
Shear Flow 5e4 1e-1
Shear Flow 5e4 1e0
Shear Flow 5e4 1e1
Shear Flow 5e4 2e0
Shear Flow 5e4 5e-1
Shear Flow 5e4 5e0
Shear Flow 5e5 1e0
Shear Flow 5e5 2e-1
Shear Flow 5e5 5e0

Table 3: Laminar Regime Simulations

Name Reynolds Schmidt

Shear Flow 1e4 1e0
Shear Flow 1e4 1e1
Shear Flow 1e5 1e1
Shear Flow 1e5 2e-1
Shear Flow 1e5 5e0
Shear Flow 5e4 2e-1
Shear Flow 5e5 1e-1
Shear Flow 5e5 1e1
Shear Flow 5e5 2e0
Shear Flow 5e5 5e-1

Table 4: High Diffusion Simulation

Name Regime Reynolds Schmidt Viscosity Diffusion

Shear Flow single vortex 5e4 2e-1 2.00e-05 1.00e-04

Table 5: Low Diffusion Simulation

Name Regime Reynolds Schmidt Viscosity Diffusion

Shear Flow single vortex 5e4 1e1 2.00e-05 2.00e-06

Table 6: High Speed Simulations

Name Reynolds Schmidt dt_stride

Shear Flow 1e4 1e0 2
Shear Flow 1e4 1e1 2
Shear Flow 1e5 1e1 2
Shear Flow 1e5 2e-1 2
Shear Flow 1e5 5e0 2
Shear Flow 5e4 2e-1 2
Shear Flow 5e5 1e-1 2
Shear Flow 5e5 1e1 2
Shear Flow 5e5 2e0 2
Shear Flow 5e5 5e-1 2
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Table 7: Low Speed Simulations

Name Reynolds Schmidt dt_stride

Shear Flow 1e4 1e0 1
Shear Flow 1e4 1e1 1
Shear Flow 1e5 1e1 1
Shear Flow 1e5 2e-1 1
Shear Flow 1e5 5e0 1
Shear Flow 5e4 2e-1 1
Shear Flow 5e5 1e-1 1
Shear Flow 5e5 1e1 1
Shear Flow 5e5 2e0 1
Shear Flow 5e5 5e-1 1
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