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Abstract

Building temperature prediction is critical for energy-efficient control in smart
cities. We propose a novel hybrid framework that synergizes machine learning
(ML) with operations research (OR) principles, combining XGBoost with physics-
informed neural networks (PINNs) in a multi-stage optimization-driven approach.
Starting from single-zone, single-day forecasts, we scale to multi-zone, multi-year
predictions using Google’s Smart Building Simulator data. Our method optimizes
physics-enhanced features, temporal encodings, and inter-zone interactions to
mitigate uncertainty from noisy sensor data, achieving mean absolute errors (MAE)
as low as 0.169°F for weekly multi-zone predictions. For long-term horizons, we
employ OR-inspired ensemble strategies, maintaining robust performance up to 2.5
years. This work advances by enabling uncertainty-aware, energy-efficient building
control for sustainable smart cities.

1 Introduction and Related Work

Urban buildings consume over 70% of city energy, necessitating accurate temperature prediction
for energy-efficient control [Wang and Ma| [2008|]. Forecasting thermal dynamics is challenging
due to complex inter-zone interactions, seasonal variations, and data uncertainties |[Saha and Shindel
We propose a hybrid ML-OR framework that integrates XGBoost with physics-informed neural
networks (PINNs) to address these challenges, leveraging OR-driven optimization for robust, scalable
predictions.

Traditional physics-based models like EnergyPlus Crawley et al.| [2001] rely on detailed simulations
but struggle with real-time adaptability. Machine learning approaches, including LSTMs and Trans-
formers Reza et al.|[2022], excel in short-term predictions but falter in long-term extrapolation due to
data drift. PINNs embed physical laws (e.g., energy conservation) into neural networks, improving
generalization |Goldfeder et al.|[2024]]. Hybrid methods combining tree-based models like XGBoost
with physics-informed features offer interpretability and robustness [Sahin|[2020].

Our optimization-driven framework extends these advances through a multi-stage scaling approach,
progressively addressing short-term to ultra-long-term forecasts. By formulating feature engineering
and ensemble strategies as optimization problems, we mitigate cumulative errors and data uncertain-
ties, ensuring physically consistent predictions. We incorporate building metadata, physics-informed
lag features, and spatial encodings to capture inter-zone dependencies and temporal patterns.

Our Contributions:

* An ML-OR framework with sequential scaling, optimizing predictions from single-day,
single-zone to 2.5-year, multi-zone forecasts.
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 Physics-enhanced features, including adjacency matrices and cyclical encodings, optimized
to capture spatial-temporal dynamics and mitigate sensor noise.

* OR-inspired horizon-specific ensembles, ensuring robust long-term predictions for energy-
efficient urban control.

This work advances sustainable Al by enabling energy-efficient building management, supporting
real-time control and long-term planning.

2 Method

We propose an optimization-driven hybrid XGBoost-PINN framework with a multi-stage scaling
strategy that incrementally increases temporal and spatial complexity. This approach mitigates
uncertainty and ensures scalability by optimizing feature selection and model ensembles, providing
robust predictions for building control.

2.1 Data Preparation

We use the Smart Building dataset |Goldfeder et al.| [2024]], comprising time-series data (51,852
timesteps, Jan—Jun 2022) for training and validation (53,292 timesteps, Jul-Dec 2022). Temperature
targets are extracted from zone air sensors, with exogenous features (weather, setpoints) and metadata
(floorplans, device layouts) enriching the feature space. Missing values are imputed via median, and
dimensional mismatches are resolved through truncation, optimizing data consistency.

2.2 Physics-Enhanced Feature Engineering

We design features capturing spatial and temporal dynamics, formulated as an OR optimization
problem to maximize predictive fidelity under uncertainty. Spatial interactions are modeled via an
adjacency matrix:

Aij = exp(—ad;j), (H

where d;; is the Euclidean distance between zones 7 and j, and « controls decay. This optimizes
heat transfer modeling by prioritizing nearby zones, reflecting Fourier’s law. Temporal dynamics use

cyclical encodings:
t t
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where T is the period (e.g., 24 hours). This ensures smooth modeling of diurnal/seasonal patterns,
reducing overfitting to noisy data. Lag features (z,(t — 7), 7 € {1, 3,6}) and inter-zone differences
(AT;;(t) = T;(t)—1T;(t)) capture thermal inertia and gradients. A PINN refines long-term predictions
by enforcing heat transfer constraints, minimizing uncertainty via a physics-informed loss.

2.3 Multi-Stage Scaling

The framework scales predictions across seven stages (see Table[I]), optimizing resource allocation
and robustness: Stage 1: Single-zone, one-day prediction, minimizing MAE:
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MAE measures prediction error in °F, optimizing control accuracy. Stages 2—7: Progress to multi-
zone, multi-year predictions, incorporating inter-zone features, seasonal indicators, and aging effects.

Long-term stages use PINNs with a combined loss:
L = |[Tyrea = Tirue |3 + MIF (Tirea) I3, @)

where F enforces heat transfer constraints, and \ balances data and physics. This optimizes predic-
tions under uncertainty, ensuring physical consistency.
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3 Experiments and Results

The framework is implemented in Python, utilizing libraries such as XGBoost for core modeling,
scikit-learn for preprocessing and metrics, and NumPy for efficient array operations, ensuring
reproducibility through fixed random seeds and version-controlled dependencies. Experiments are
conducted in a Kaggle/Colab environment with standard CPU/GPU resources, simulating accessible
computational settings for broader applicability. Training times are meticulously recorded for
each stage to assess scalability, while a simple mean prediction baseline, computed from training
temperatures, is used throughout for relative performance benchmarking, highlighting the framework’s
added value over trivial approaches.

Evaluation Metrics. The primary metric employed is the Mean Absolute Error (MAE) for tem-
perature predictions, selected for its direct interpretability in degrees Fahrenheit and sensitivity to
prediction deviations that impact control decisions. Secondary metrics include Root Mean Squared
Error (RMSE) to emphasize larger errors that could signify model instability, and R? to quantify
explained variance, providing insight into how well the framework captures underlying dynamics
relative to a naive mean baseline. These metrics are computed per stage, aggregated across zones for
multi-zone evaluations, and reported with distributions to highlight consistency and outliers.

Results. We evaluate the proposed multi-stage XGBoost framework across increasing temporal hori-
zons and spatial complexities. Table[T] summarizes the mean absolute error (MAE) across all stages,
illustrating a clear progression: Stage 1 (single-zone, one-day) yields an MAE of 0.424°F, which
decreases to 0.101°F at Stage 5 (two-week, multi-zone) before increasing for longer horizons due
to accumulating uncertainties in extended forecasts, highlighting the effectiveness of the sequential
hybrid ML-physics approach in capturing weekly dynamics.

Figure 2] provides a performance overview across stages, demonstrating the framework’s ability to
maintain excellent scores for early and mid-term horizons while gradually declining for ultra-long-
term predictions. The MAE trends over prediction horizons for all zones indicate that, short-term
stages (Stages 2—4) show consistent low errors, with 78.9% of zones in Stage 4 below 0.2°F, while
Stages 6—7 exhibit larger deviations, peaking at 2.826°F in Stage 7. These results indicate that the
ensemble strategies mitigate error accumulation to some extent, but the inherent limitations of the
dataset and long-term dependencies remain.

Computational Time Analysis. Training complexity scales with horizon length, from 0.16 seconds
in Stage 1 to 10,857 seconds in Stage 7 (see Figure 2)), reflecting increased data volume and model
complexity. Nevertheless, the offline training remains practical for realistic deployment scenarios.

Comparison with existing works. Table [T| benchmarks our approach against classical statistical
models, deep learning baselines, and recent ensembles. Traditional models such as ARIMA and linear
regression perform poorly (MAE > 1.8°F), while deep learning methods like LSTMs and Trans-
formers achieve moderate accuracy (1.2°F and 2.45°F, respectively). Gradient boosting (XGBoost)
provides a strong baseline (0.523°F) with low training cost. However, our hybrid XGBoost+PINN
framework significantly outperforms all baselines, achieving an MAE of 0.101°F, a five-fold reduc-
tion over XGBoost alone and more than an order-of-magnitude improvement over recent ensembles.
Although training time is higher (1529.9s), the gains in predictive precision demonstrate the value
of embedding physical priors into scalable ML frameworks, especially for safety-critical building
management and energy optimization applications.
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Figure 3: Prediction performance across stages: (a) Stage 5 shows high accuracy and minimal
deviation from ground truth, representing optimal performance of the framework. (b) Stage 7
exhibits significant prediction errors and instability over extended temporal horizons, demonstrating
limitations in long-term forecasting.

Table 1: Model comparison for building temperature prediction across 123 zones over 2-week period.

Model Training Time (s) MAE (°F)
ARIMA He and Guo, - 3.153
SOFT-MOE|He and Guo| - 1.183
Linear Regression|Saha and Shinde; - 1.800
LSTM |Saha and Shinde! - 1.200
XGBoost|Saha and Shinde; 345 0.523
NaiveMean |Arisaka et al. - 1.880
TiDE |Arisaka et al. - 1.410
Sun et al. - 4.200
Transformer 55.8 2.448
GNN 212.8 17.858
Ensemble (XGBoost+NN+Rigde Reg.) 319.3 12.501
Ours (XGBoost+PINN) 1529.9 0.101

Discussion. The short-term prediction stages (1-4) provide sub-0.2°F MAE, suitable for real-time
building control and proactive HVAC adjustments (Figure |3| (a)). Longer horizons (Figure E| (b))
exhibit elevated errors due to compounding uncertainties, such as unmodeled occupant behavior,
equipment drift, and external weather variations. Despite these limitations, predictions remain
informative for strategic planning and maintenance scheduling. Incorporating physics-informed
features, including inter-zone interactions through adjacency matrices and temperature gradients,
significantly improves generalization and enforces physical plausibility, reducing dependence on
data-driven learning alone. The sequential design enables systematic analysis and debugging of errors
across stages, and the hybrid framework offers a pathway for integrating ML and physics-based
modeling for building Al applications.

4 Conclusion

We present an optimization-driven hybrid XGBoost-PINN framework for building temperature predic-
tion, achieving MAE as low as 0.101°F for multi-zone, two-week forecasts and robust performance
up to 2.5 years. By integrating OR-inspired feature optimization and ensemble strategies, we mitigate
data uncertainties, enabling energy-efficient urban control. Limitations include sensitivity to unmod-
eled factors (e.g., occupant behavior) in long-term forecasts. Future work will explore full PINN loss
functions and multi-modal datasets to enhance robustness, advancing sustainable smart city solutions.
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