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ABSTRACT

Being able to harness the power of large datasets for developing cooperative multi-
agent controllers promises to unlock enormous value for real-world applications.
Many important industrial systems are multi-agent in nature and are difficult to
model using bespoke simulators. However, in industry, distributed processes can
often be recorded during operation, and large quantities of demonstrative data
stored. Offline multi-agent reinforcement learning (MARL) provides a promis-
ing paradigm for building effective decentralised controllers from such datasets.
However, offline MARL is still in its infancy and therefore lacks standardised
benchmark datasets and baselines typically found in more mature subfields of
reinforcement learning (RL). These deficiencies make it difficult for the community
to sensibly measure progress. In this work, we aim to fill this gap by releasing
off-the-grid MARL (OG-MARL): a growing repository of high-quality datasets with
baselines for cooperative offline MARL research. Our datasets provide settings
that are characteristic of real-world systems, including complex environment dy-
namics, heterogeneous agents, non-stationarity, many agents, partial observability,
suboptimality, sparse rewards and demonstrated coordination. For each setting,
we provide a range of different dataset types (e.g. Good, Medium, Poor, and
Replay) and profile the composition of experiences for each dataset. We hope
that OG-MARL will serve the community as a reliable source of datasets and
help drive progress, while also providing an accessible entry point for researchers
new to the field. The anonymised repository for OG-MARL can be found at:
https://sites.google.com/view/og-marl

1 INTRODUCTION

RL algorithms typically require extensive online interactions with an environment to be able to learn
robust policies (Yu, 2018). This limits the extent to which previously-recorded experience may be
leveraged for RL applications, forcing practitioners to instead rely heavily on optimised environment
simulators that are able to run quickly and in parallel on modern compute hardware.

In a simulation, it is not atypical to be able to generate years of operating behaviour of a specific
system (Berner et al., 2019; Vinyals et al., 2019). However, achieving this level of online data
generation throughput in real-world systems, where a realistic simulator is not readily available, can
be challenging or near impossible. More recently, the field of offline RL has offered a solution to
this challenge by bridging the gap between RL and supervised learning. In offline RL, the aim is to
develop algorithms that are able to leverage large existing datasets of sequential decision-making to
learn optimal control strategies that can be deployed online (Levine et al., 2020). Many researchers
believe that offline RL could help unlock the full potential of RL when applied to the real world,
where success has been limited (Dulac-Arnold et al., 2021).

Although the field of offline RL has experienced a surge in research interest in recent years (Prudencio
et al., 2023), the focus on offline approaches specific to the multi-agent setting has remained relatively
neglected, despite the fact that many real-world problems are naturally formulated as multi-agent
systems (e.g. traffic management (Zhang et al., 2019), a fleet of ride-sharing vehicles (Sykora et al.,
2020), a network of trains (Mohanty et al., 2020) or electricity grid management (Khattar & Jin,

1



Under review as a conference paper at ICLR 2023

Multi-Agent
Offline Dataset

Offline Training

. . .

Data Collection

. . .

Deployment

. . .

Transitions

Figure 1: Top: an illustration of offline MARL. Behaviour policies
collect experiences and store them in an offline dataset. New policies
are trained from the offline data without any online environment
interactions. At the end of training, the policies are deployed in the
environment. Right: a code snippet demonstrating how to record
new datasets, as well as load existing ones, using OG-MARL.

from og_marl import SMAC
from og_marl import QMIX
from og_marl import

OfflineLogger↪→

# Instantiate environment
env = SMAC("3m")

# Wrap env in offline logger
env = OfflineLogger(env)

# Make multi-agent system
system = QMIX(env)

# Collect data
system.run_online()

# Load dataset
dataset =

env.get_dataset("Good")↪→

# Train offline
system.run_offline(dataset)

2022)). Moreover, systems that require multiple agents (programmed and/or human) to execute
coordinated strategies to perform optimally, arguably have a higher barrier to entry when it comes to
creating bespoke simulators to model their online operating behaviour.

Offline RL research in the single agent setting has benefited greatly from publicly available datasets
and benchmarks such as D4RL (Fu et al., 2020) and RL Unplugged (Gulcehre et al., 2020). Without
such offerings in the multi-agent setting to help standardise research efforts and evaluation, it remains
challenging to gauge the state of the field and reproduce results from previous work. Ultimately, to
develop new ideas that drive the field forward, standardised sets of tasks and baselines are required.

In this paper, we present OG-MARL, a rich set of datasets specifically curated for cooperative offline
MARL. We generated diverse datasets on a range of popular cooperative MARL environments. For
each environment, we provide different types of behaviour resulting in Good, Medium and Poor
datasets as well as Replay datasets (a mixture of the previous three). We developed and applied a
quality assurance methodology to validate our datasets to ensure that they contain a diverse spread
of experiences. Together with our datasets, we provide initial baseline results using state-of-the-art
offline MARL algorithms.

The OG-MARL code and datasets are publicly available through our anonymised website.1 Ad-
ditionally, we invite the community to contribute their own datasets to the growing repository on
OG-MARL and use our website as a platform for storing and distributing datasets for the benefit
of the research community. We hope the lessons contained in our methodology for generating and
validating datasets help future researchers to produce high-quality offline MARL datasets and help
drive progress.

2 RELATED WORK

Datasets. In the single-agent RL setting, D4RL (Fu et al., 2020) and RL Unplugged (Gulcehre
et al., 2020) have been important contributions, providing a comprehensive set of offline datasets for
benchmarking offline RL algorithms. While not originally included, D4RL was later extended by Lu
et al. (2022) to incorporate datasets with pixel-based observations, which they highlight as a notable
deficiency of other datasets. The ease of access to high-quality datasets provided by D4RL and RL
Unplugged has enabled the field of offline RL to make rapid progress over the past years (Kostrikov
et al., 2021; Ghasemipour et al., 2022; Nakamoto et al., 2023). However, these repositories lack
datasets for MARL, which we believe, alongside additional technical difficulties such as large joint
action spaces (Yang et al., 2021), has resulted in slower progress in the field.

Offline Multi-Agent Reinforcement Learning. To date, there has been a limited number of papers
published on cooperative offline MARL, resulting in benchmarks, datasets and algorithms that do
not adhere to any unified standard, making comparisons between works difficult. In brief, Zhang

1https://sites.google.com/view/og-marl
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et al. (2021) carried out an in-depth theoretical analysis of finite-sample offline MARL. Jiang &
Lu (2021) proposed a decentralised multi-agent version of the popular offline RL algorithm BCQ
(Fujimoto et al., 2019) and evaluated it on their own datasets of a multi-agent version of MuJoCo
(MAMuJoCo) (Peng et al., 2021). Yang et al. (2021) highlighted how extrapolation error accumulates
rapidly in the number of agents and propose a new method they call Implicit Constraint Q-Learning
(ICQ) to address this. The authors evaluate their method on their own datasets collected using the
popular StarCraft Mulit-Agent Challenge (SMAC) (Samvelyan et al., 2019). Pan et al. (2022) showed
that Conservative Q-Learning (CQL) (Kumar et al., 2020), a very successful offline RL method,
does not transfer well to the multi-agent setting since the multi-agent policy gradients are prone to
uncoordinated local optima. To overcome this, the authors proposed a zeroth-order optimization
method to better optimize the conservative value functions, and evaluate their method on their own
datasets of a handful of SMAC scenarios, the two agent HalfCheetah scenario from MAMuJoCo and
some simple Multi Particle Environments (MPE) (Lowe et al., 2017). Meng et al. (2021) propose a
multi-agent decision transformer (MADT) architecture, which builds on the decision transformer
(DT) (Chen et al., 2021), and demonstrated how it can be used for offline pre-training and online
fine-tuning in MARL by evaluating their method on their own SMAC datasets. Barde et al. (2023)
explored a model-based approach for offline MARL and evaluated their method on MAMuJoCo.

Datasets and baselines for Offline MARL. In all of the aforementioned works, the authors generate
their own datasets for their experiments and provide only a limited amount of information about the
composition of their datasets (e.g. spread of episode returns and/or visualisations of the behaviour
policy). Furthermore, each paper proposes a novel algorithm and typically compares their proposal to
a set of baselines specifically implemented for their work. The lack of commonly shared benchmark
datasets and baselines among previous papers has made it difficult to compare the relative strengths
and weaknesses of these contributions and is one of the key motivations for our work.

Finally, we note works that have already made use of the pre-release version of OG-MARL. Formanek
et al. (2023) investigated selective “reincarnation” in the multi-agent setting and Zhu et al. (2023)
explored using diffusion models to learn policies in offline MARL. Both these works made use of
OG-MARL datasets for their experiments, which allows for easier reproducibility and more sound
comparison with future work using OG-MARL.

3 PRELIMINARIES

Multi-Agent Reinforcement Learning. There are three main formulations of MARL tasks: com-
petitive, cooperative and mixed. The focus of this work is on the cooperative setting. Cooperative
MARL can be formulated as a decentralised partially observable Markov decision process (Dec-
POMDP) (Bernstein et al., 2002). A Dec-POMDP consists of a tuple M = (N ,S, {Ai}, {Oi}, P ,
E, ρ0, r, γ), where N ≡ {1, . . . , n} is the set of n agents in the system and s ∈ S describes the full
state of the system. The initial state distribution is given by ρ0. Each agent i ∈ N receives only partial
information from the environment in the form of a local observation oit, given according to an emission
function E(ot|st, i). At each timestep t, each agent chooses an action ait ∈ Ai to form a joint action
at ∈ A ≡

∏N
i Ai. Due to partial observability, each agent typically maintains an observation history

oi0:t = (oi0, . . . , o
i
t), or implicit memory, on which it conditions its policy µi(ait|oi0:t), when choosing

an action. The environment then transitions to a new state in response to the joint action selected in
the current state, according to the state transition function P (st+1|st,at) and provides a shared scalar
reward to each agent according to a reward function r(s, a) : S×A → R. We define an agent’s return
as its discounted cumulative rewards over the T episode timesteps, G =

∑T
t=0 γ

trt, where γ ∈ (0, 1]
is the discount factor. The goal of MARL in a Dec-POMDP is to find a joint policy (π1, . . . , πn) ≡ π
such that the return of each agent i, following πi, is maximised with respect to the other agents’
policies, π−i ≡ (π\πi). That is, we aim to find π such that ∀i : πi ∈ argmaxπ̂iE

[
G | π̂i, π−i

]
Offline Reinforcement Learning. An offline RL algorithm is trained on a static, previously collected
dataset Dβ of transitions (ot, at, rt, ot+1) from some (potentially unknown) behaviour policy πβ ,
without any further online interactions. There are several well-known challenges in the offline RL
setting which have been explored, predominantly in the single-agent literature. The primary issues
are related to different manifestations of data distribution mismatch between the offline data and the
induced online data. Levine et al. (2020) provide a detailed survey of the problems and solutions in
offline RL.
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Offline Multi-Agent Reinforcement Learning. In the multi-agent setting, offline MARL algorithms
are designed to learn an optimal joint policy (π1, . . . , πn) ≡ π, from a static dataset DN

β of previously
collected multi-agent transitions ({o1t , . . . , ont }, {a1t , . . . , ant }, {r1t , . . . , rnt }, {o1t+1, . . . , o

n
t+1}), gen-

erated by a set of interacting behaviour policies (π1
β , . . . , π

n
β ) ≡ πβ .

4 TASK PROPERTIES

In order to design an offline MARL benchmark which is maximally useful to the community, we
carefully considered the properties that the environments and datasets in our benchmark should
satisfy. A major drawback in most prior work has been the limited diversity in the tasks that the
algorithms were evaluated on. Meng et al. (2021) for example only evaluated their algorithm on
SMAC datasets and Jiang & Lu (2021) only evaluated on MAMuJoCo datasets. This makes it difficult
to draw strong conclusions about the generalisability of offline MARL algorithms. Moreover, these
environments fail to test the algorithms along dimensions which may be important for real-world
applications. In this section, we outline the properties we believe are important for evaluating offline
MARL algorithms.

Centralised and Independent Training. The environments supported in OG-MARL are designed
to test algorithms that use decentralised execution, i.e. at execution time, agents need to choose
actions based on their local observation histories only. However, during training, centralisation (i.e.
sharing information between agents) is permissible, although not required. Centralised training with
decentralised execution (CTDE) (Kraemer & Banerjee, 2016) is one of the most popular MARL
paradigms and is well-suited for many real-world applications. Being able to test both centralised
and independent training algorithms is important because it has been shown that neither paradigm is
consistently better than the other (Lyu et al., 2021). As such, both types of algorithms can be evaluated
using OG-MARL datasets and we also provide baselines for both centralised and independent training.

Different types of Behaviour Policies. We generated datasets with several different types of
behaviour policies including policies trained using online MARL with fully independent learners (e.g.
independent DQN and independent TD3), as well as CTDE algorithms (e.g. QMIX and MATD3).
Furthermore, some datasets generated with CTDE algorithms used a state-based critic while others
used a joint-observation critic. It was important for us to consider both of these critic setups as they
are known to result in qualitatively different policies (Lyu et al., 2022). More specific details of which
algorithms were used to generate which datasets can be found in Table B.1 in the appendix.

Partial Information. It is common for agents to receive only local information about their envi-
ronment, especially in real-world systems that rely on decentralised components. Thus, some of
the environments in OG-MARL test an algorithm’s ability to leverage agents’ memory in order to
choose optimal actions based only on partial information from local observations. This is in contrast
to settings such as MAMuJoCo where prior methods (Jiang & Lu, 2021; Pan et al., 2022) achieved
reasonable results without instilling agents with any form of memory.

Different Observation Modalities. In the real world, agent observations come in many different
forms. For example, observations may be in the form of a feature vector or a matrix representing a
pixel-based visual observation. Lu et al. (2022) highlighted that prior single-agent offline RL datasets
failed to test algorithms on high-dimensional pixel-based observations. OG-MARL tests algorithms
on a diverse set of observation modalities, including feature vectors and pixel matrices of different
sizes.

Continuous and Discrete Action Spaces. The actions an agent is expected to take can be either
discrete or continuous across a diverse range of applications. Moreover, continuous action spaces
can often be more challenging for offline MARL algorithms as the larger action spaces make them
more prone to extrapolation errors, due to out-of-distribution actions . OG-MARL supports a range
of environments with both discrete and continuous actions.

Homogeneous and Heterogeneous Agents. Real-world systems can either be homogeneous or
heterogeneous in terms of the types of agents that comprise the system. In a homogeneous system,
it may be significantly simpler to train a single policy and copy it to all agents in the system. On
the other hand, in a heterogenous system, where agents may have significantly different roles and
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responsibilities, this approach is unlikely to succeed. OG-MARL provides datasets from environments
that represent both homogeneous and heterogeneous systems.

Number of Agents. Practical MARL systems may have a large number of agents. Most prior works
to date have evaluated their algorithms on environments with typically fewer than 8 agents (Pan et al.,
2022; Yang et al., 2021; Jiang & Lu, 2021). In OG-MARL, we provide datasets with between 2 and
27 agents, to better evaluate large-scale offline MARL (see Table B.1).

Sparse Rewards. Sparse rewards are challenging in the single-agent setting, but in the multi-agent
setting, it can be even more challenging due to the multi-agent credit assignment problem (Zhou
et al., 2020). Prior works focused exclusively on dense reward settings (Pan et al., 2022; Yang et al.,
2021). To overcome this, OG-MARL also provides datasets with sparse rewards.

Team and Individual Rewards. Some environments have team rewards while others can have an
additional local reward component. Team rewards exacerbate the multi-agent credit assignment
problem, and having a local reward component can help mitigate this. However, local rewards may
result in sub-optimality, where agents behave too greedily with respect to their local reward and as a
result jeopardize achieving the overall team objective. OG-MARL includes tasks to test algorithms
along both of these dimensions.

Procedurally Generated and Stochastic Environments. Some popular MARL benchmark environ-
ments are known to be highly deterministic (Ellis et al., 2022). This limits the extent to which the
generalisation capabilities of algorithms can be evaluated. Procedurally generated environments have
proved to be a useful tool for evaluating generalisation in single-agent RL (Cobbe et al., 2020). In
order to better evaluate generalisation in offline MARL, OG-MARL includes stochastic tasks that
make use of procedural generation.

Realistic Multi-Agent Domains. Almost all prior offline MARL works have evaluated their al-
gorithms exclusively on game-like environments such as StarCraft (Yang et al., 2021) and particle
simulators (Pan et al., 2022). Although a large subset of open research questions may still be readily
investigated in such simulated environments, we argue that in order for offline MARL to become
more practically relevant, benchmarks in the research community should begin to closer reflect real-
world problems of interest. Therefore, in addition to common game-like benchmark environments,
OG-MARL also supports environments which simulate more real-world like problems including
energy management and control (Vazquez-Canteli et al., 2020; Wang et al., 2021). While there
remains a large gap between these environments and truly real-world settings, it is a step in the right
direction to keep pushing the field forward and enable useful contributions in the development of new
algorithms and improving our understanding of key difficulties and failure modes.

Human Behaviour Policies. The current standard practice in the offline MARL literature is to
use policies trained using RL as the behaviour policies for offline MARL datasets. However, for
real-world applications, behaviour policies are likely to be non-RL policies such as human operators
or hand-crafted controllers. In order to encourage the offline MARL community to move beyond RL
behaviour policies, we provide a dataset of humans playing the Knights, Archers and Zombies game
from PettingZoo. It is our hope that this contribution will catalyse more research on offline MARL
from human-generated data.

Competitive Scenarios. Competitive offline MARL is an under researched area with only a handful
of existing works in the field (Cui & Du, 2022). Moreover, all of the existing works have almost
exclusively focused on tabular two-player zero-sum Markov games (Cui & Yang, 2021; Zhong
et al., 2022). In order to encourage the offline MARL research community to make advances in the
competitive offline setting, we provide a dataset on the popular competitive MPE environment, Simple
Adversary. Furthermore, the offline data recorder in OG-MARL can readily be used by researchers to
generate their own competitive offline datasets on novel environments.

5 ENVIRONMENTS

SMAC v1 (hetero- and homogeneous agents, local observations). SMAC is the most popular
cooperative offline MARL environment used in the literature(Gorsane et al., 2022). SMAC focuses
on the micromanagement challenge in StarCraft 2 where each unit is controlled by an independent
agent that must learn to cooperate and coordinate based on local (partial) observations. SMAC played

5



Under review as a conference paper at ICLR 2023

(a) SMAC v1 & v2

(b) MAMuJoCo

(c) Flatland

(d) CityLearn

(e) Pistonball

(f) Co-op Pong

(g) Pursuit

(h) Voltage Control

(i) KAZ

(j) MPE

Figure 2: MARL environments for which we provide datasets in OG-MARL.

an important role in moving the MARL research community beyond grid-world problems and has
also been very popular in the offline MARL literature (Yang et al., 2021; Meng et al., 2021; Pan et al.,
2022). Thus, it was important for OG-MARL to support a range of SMAC scenarios.

SMAC v2 (procedural generation, local observations). Recently some deficiencies in SMAC have
been brought to light. Most importantly, SMAC is highly deterministic, and agents can therefore
learn to memorise the best policy by conditioning on the environment timestep only. To address this,
SMACv2 (Ellis et al., 2022) was recently released and includes non-deterministic scenarios, thus
providing a more challenging benchmark for MARL algorithms. In OG-MARL, we publicly release
the first set of SMACv2 datasets.

MAMuJoCo (hetero- and homogeneous agents, continuous actions). The MuJoCo environment
(Todorov et al., 2012) has been an important benchmark that helped drive research in continuous con-
trol. More recently, MuJoCo has been adapted for the multi-agent setting by introducing independent
agents that control different subsets of the whole MuJoCo robot (MAMuJoCo) (Peng et al., 2021).
MAMuJoCo is an important benchmark because there are a limited number of continuous action
space environments available to the MARL research community. MAMuJoCo has also been widely
adopted in the offline MARL literature (Jiang & Lu, 2021; Pan et al., 2022). Thus, in OG-MARL we
provide the largest openly available collection of offline datasets on scenarios in MAMuJoCo (Pan
et al. (2022), for example, only provided a single dataset on 2-Agent HalfCheetah).

PettingZoo (pixel observations, discrete and continuous actions). OpenAI’s Gym (Brockman
et al., 2016) has been widely used as a benchmark for single agent RL. PettingZoo is a gym-like
environment-suite for MARL (Terry et al., 2021) and provides a diverse collection of environments.
In OG-MARL, we provide a general-purpose environment wrapper which can be used to generate
new datasets for any PettingZoo environment. Additionally, we provide initial datasets on three
PettingZoo environments including PistonBall, Co-op Pong and Pursuit (Gupta et al., 2017). We
chose these environments because they have visual (pixel-based) observations of varying sizes; an
important dimension along which prior works have failed to evaluate their algorithms.

Flatland (real-world problem, procedural generation, sparse local rewards). The train scheduling
problem is a real-world challenge with significant practical relevance. Flatland (Mohanty et al., 2020)
is a simplified 2D simulation of the train scheduling problem that is an appealing benchmark for
cooperative MARL for several reasons. Firstly, it randomly generates a new train track layout and
timetable at the start of each episode, thus testing the generalisation capabilities of MARL algorithms
to a greater degree than many other environments. Secondly, Flatland has a very sparse and noisy
reward signal, as agents only receive a reward on the final timestep of the episode. Finally, agents
have access to a local reward component. These properties make the Flatland environment a novel,
challenging and realistic benchmark for offline MARL.

Voltage Control and CityLearn (real-world problem, continuous actions). Energy management (Yu
et al., 2021) is another appealing real-world application for MARL, especially given the large potential
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(a) SMAC 27m_vs_30m (b) PettingZoo Co-op Pong (c) PettingZoo Pursuit

Figure 3: Violin plots of the probability distribution of episode returns for selected datasets in OG-
MARL. In blue the Poor datasets, in orange the Medium datasets and in green the Good datasets.
Wider sections of the violin plot represent a higher probability of sampling a trajectory with a given
episode return, while the thinner sections correspond to a lower probability. The violin plots also
include the median, interquartile range and min/max episode return for the datasets.

efficiency gains and corresponding positive effects on climate change that could be had (Rolnick
et al., 2022). As such, we provide datasets for two challenging MARL environments related to energy
management. Firstly, we provide datasets for the Active Voltage Control on Power Distribution Net-
works environment (Wang et al., 2021). Secondly, we provide datasets for the CityLearn environment
(Vazquez-Canteli et al., 2020) where the goal is to develop agents for distributed energy resource
management and demand response between a network of buildings with batteries and photovoltaics.

Knights, Archers & Zombies (human behaviour policies). In Knights, Archers and Zombies (Terry
et al., 2021) (KAZ) zombies walk from the top border of the screen down to the bottom border in
unpredictable paths. The agents controlled are a knight and an archer which can each move around
and attack the zombies. The game ends when all agents die (collide with a zombie) or a zombie
reaches the bottom screen border. We collected experience of several different combinations of
human players. The players where given no instruction on how to play the game and had to learn
through trial and error.

MPE (competitive). MPE is a popular suite of multi-agent environments, first introduced by (Lowe
et al., 2017). We provide a dataset with baselines on the popular Simple Adversary environment
(Terry et al., 2021).

6 DATASETS

To generate the transitions in the datasets, we recorded environment interactions of partially trained
online algorithms, as has been common in prior works for both single-agent (Gulcehre et al., 2020)
and multi-agent settings (Yang et al., 2021; Pan et al., 2022). For discrete action environments, we
used QMIX (Rashid et al., 2018) and independent DQN and for continuous action environments,
we used independent TD3 (Fujimoto et al., 2018) and MATD3 (Lowe et al., 2017; Ackermann et al.,
2019). Additional details about how each dataset was generated are included in Appendix C.

Diverse Data Distributions. It is well known from the single-agent offline RL literature that the
quality of experience in offline datasets can play a large role in the final performance of offline RL
algorithms (Fu et al., 2020). In OG-MARL, we include a range of dataset distributions including
Good, Medium, Poor and Replay datasets in order to benchmark offline MARL algorithms on
a range of different dataset qualities. The dataset types are characterised by the quality of the joint
policy that generated the trajectories in the dataset, which is the same approach taken in previous
works (Meng et al., 2021; Yang et al., 2021; Pan et al., 2022). To ensure that all of our datasets have
sufficient coverage of the state and action spaces, while also containing minimal repetition i.e. not
being too narrowly focused around a single strategy, we used 3 independently trained joint policies
to generate each dataset, and additionally added a small amount of exploration noise to the policies.
The boundaries for the different categories were assigned independently for each environment and
were related to the maximum attainable return in the environment. Additional details about how the
different datasets were curated can be found in Appendix C.
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Table 1: Results on the Pursuit and Co-op Pong datasets. The mean episode return with one standard
deviation across all seeds is given. In each row the best mean episode return is in bold.

Scenario Dataset BC QMIX QMIX+BCQ QMIX+CQL MAICQ

Co-op Pong
Good 31.2±3.5 0.6±3.5 1.9±1.1 90.0±4.7 75.4±3.9

Medium 21.6±4.8 10.6±17.6 20.3±12.2 64.9±15.0 84.6±0.9
Poor 1.0±0.9 14.4±16.0 30.2±20.7 52.7±8.5 74.8±7.8

Pursuit
Good 78.3±1.8 6.7±19.0 66.9±14.0 54.4±6.3 92.7±3.7

Medium 15.0±1.6 -24.4±20.2 16.6±10.7 20.6±10.3 35.3±3.0
Poor -18.5±1.6 -43.7±5.6 -0.7±4.0 -19.6±3.3 -4.1±0.7

Statistical characterisation of datasets. It is common in both the single-agent and multi-agent
offline RL literature for researchers to curate offline datasets by unrolling episodes using an RL policy
that was trained to a desired mean episode return. However, authors seldom report the distribution
of episode returns induced by the policy. Reporting only the mean episode return of the behaviour
policy can be misleading (Agarwal et al., 2021). To address this, we provide violin plots to visualise
the distribution of expected episode returns. A violin plot is a powerful tool for visualising numerical
distributions as they visualise the density of the distribution as well as several summary statistics
such as the minimum, maximum and interquartile range of the data. These properties make the violin
plot very useful for understanding the distribution of episode returns in the offline datasets, assisting
with interpreting offline MARL results. Figure 3 provides a sample of the violin plots for different
scenarios (the remainder of the plots can be found in the appendix). In each figure, the difference
in shape and position of the three violins illustrates the difference in the datasets with respect to the
expected episode return. Additionally, we provide a table with the mean and standard deviation of the
episode returns for each of the datasets in Table C.1, similar to Meng et al. (2021).

7 BASELINES

In this section, we present the initial baselines that we provide with OG-MARL. This serves two
purposes: i) to validate the quality of our datasets and ii) to enable the community to use these initial
results for development and performance comparisons in future work. In the main text, we present
results on two PettingZoo environments (Pursuit and Co-op Pong), since these environments and
their corresponding datasets are a novel benchmark for offline MARL. Furthermore, it is the first set
of environments with pixel-based observations to be used to evaluate offline MARL algorithms. We
include all additional baseline results (including on MPE and KAZ) in Appendix D.

Baseline Algorithms. State-of-the-art algorithms were implemented from seminal offline MARL
work. For discrete action environments we implemented Behaviour Cloning (BC), QMIX (Rashid
et al., 2018), QMIX with Batch Constrained Q-Learning (Fujimoto et al., 2019) (QMIX+BCQ),
QMIX with Conservative Q-Learning (Kumar et al., 2020) (QMIX+CQL) and MAICQ (Yang et al.,
2021). For continuous action environments, Behaviour Cloning (BC), Independent TD3 (ITD3), ITD3
with Behaviour Cloning regularisation (Fujimoto & Gu, 2021) (ITD3+BC), ITD3 with Conservative
Q-Learning (ITD3+CQL) and OMAR (Pan et al., 2022) were implemented. Appendix D provides
additional implementation details on the baseline algorithms.

Experimental Setup. On Pursuit and Co-op Pong, all of the algorithms were trained offline for 50000
training steps with a fixed batch size of 32. At the end of training, we evaluated the performance of
the algorithms by unrolling the final joint policy in the environment for 100 episodes and recording
the mean episode return over the episodes. We repeated this procedure for 10 independent seeds as
per the recommendation by Gorsane et al. (2022). We kept the online evaluation budget (Kurenkov
& Kolesnikov, 2022) fixed for all algorithms by only tuning hyper-parameters on Co-op Pong and
keeping them fixed for Pursuit. Controlling for the online evaluation budget is important when
comparing offline algorithms because online evaluation may be expensive, slow or dangerous in
real-world problems, making online hyper-parameter fine-tuning infeasible. See Appendix D for a
further discussion on hyper-parameter tuning in OG-MARL.

Results. In Table 1 we provide the unnormalised mean episode returns for each of the discrete action
algorithms on the different datasets for Pursuit and Co-op Pong.
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(a) Good (b) Medium (c) Poor

Figure 4: Performance profiles (Agarwal et al., 2021) aggregated across all seeds on Pursuit and
Co-op Pong. Shaded regions show pointwise 95% confidence bands based on percentile bootstrap
with stratified sampling.

Aggregated Results. In addition to the tabulated results we also provide aggregated results as per
the recommendation by Gorsane et al. (2022). In Figure 4 we plot the performance profiles (Agarwal
et al., 2021) of the discrete action algorithms by aggregating across all seeds and the two environments,
Pursuit and Co-op Pong. To facilitate aggregation across environments, where the possible episode
returns can be very different, we adopt the normalisation procedure from Fu et al. (2020). On the
Good datasets, we found that MAICQ and QMIX+CQL both outperformed behaviour cloning (BC).
QMIX+BCQ did not outperform BC and vanilla QMIX performed very poorly. On the Medium
datasets, MAICQ and QMIX+CQL once again performed the best, significantly outperforming BC.
QMIX+BCQ marginally outperformed BC and vanilla QMIX failed. Finally, on the Poor datasets,
MAICQ, QMIX+CQL and QMIX+BCQ all outperformed BC but MAICQ was the best by some
margin. These results on PettingZoo environments, with pixel observations, further substantiate that
MAICQ is the current state-of-the-art offline MARL algorithm in discrete action settings.

Reproducibility Statement. Scripts for easily reproducing all baseline results are provided in our
open-sourced code and can be downloaded from the anonymised OG-MARL website.

8 DISCUSSION

Limitations and future work. An exciting research direction considers the offline RL problem as a
sequence modeling task (Chen et al., 2021; Meng et al., 2021), and in future iterations of OG-MARL
we aim to incorporate such models as additional baselines. Additionally, some works have explored
using diffusion models for offline MARL (Li et al., 2023; Zhu et al., 2023), which presents another
avenue for leveraging OG-MARL in future work.

Potential Negative Societal Impacts. While the potential positive impacts of efficient decentralized
controllers powered by offline MARL are promising, it is essential to acknowledge and address the
potential negative societal impacts (Whittlestone et al., 2021). Deploying a model trained using
offline MARL in real-world applications requires careful consideration of safety measures (Gu et al.,
2022; Xu et al., 2022). Practitioners should exercise caution to ensure the implementation of such
models is safe and responsible.

Conclusion. In this work, we highlighted the importance of offline MARL as a research direction
for applying RL to real-world problems. We specifically focused on the lack of a standard set of
benchmark datasets, which currently poses a significant obstacle to measuring meaningful progress
across different works. To address this issue, we presented a set of relevant and diverse datasets for
offline MARL. We profiled our datasets by visualising the distribution of episode returns in violin
plots and tabulated mean and standard deviations. We validated our datasets by providing a set of
initial baseline results with state-of-the-art offline MARL algorithms. Finally, we open-sourced all
of our software tooling for generating new datasets and provided a website for hosting and sharing
datasets. We hope that the research community will adopt and contribute towards OG-MARL as a
framework for offline MARL research and that it helps to drive progress in the field.
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