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Abstract

We introduce OpenVLThinker, one of the first open-source large vision–language
models (LVLMs) to exhibit sophisticated chain-of-thought reasoning, achieving
notable performance gains on challenging visual reasoning tasks. While text-based
reasoning models show promising results in text-only tasks, distilling their rea-
soning into LVLMs via supervised fine-tuning (SFT) often results in performance
degradation due to imprecise visual grounding. Conversely, purely reinforcement
learning (RL)-based methods face a large search space, hindering the emergence
of reflective behaviors in smaller models. Surprisingly, alternating between SFT
and RL ultimately results in significant performance improvements after a few
iterations. Our analysis reveals that the base model rarely exhibits reasoning be-
haviors initially, but SFT effectively surfaces these latent actions and narrows the
RL search space, accelerating the development of reasoning capabilities. Each
subsequent RL stage further refines the model’s reasoning skills, producing higher-
quality SFT data for continued self-improvement. OpenVLThinker-7B consistently
advances performance across six benchmarks demanding mathematical and general
reasoning.

1 Introduction
Proprietary large language models (LLMs), notably OpenAI’s o-series [29] and Google’s Gemini-2.5
Pro [17], have demonstrated impressive multi-step reasoning abilities of planning, reflection, and
verification. Recent open-weight models [27, 46, 51, 80, 81] (e.g., DeepSeek-R1 [19] and smaller
LLMs like S1 [48] and QwQ-32B [61]) show that reinforcement learning (RL) with verifiable rewards
effectively reproduces these advanced capabilities, significantly boosting performance on challenging
mathematical and logical tasks. Unlike text-only LLMs, it remains unclear whether open-source large
vision-language models (LVLMs) can effectively adopt similar sophisticated reasoning strategies.
Moreover, it is known that reasoning capabilities can generally be distilled from larger LLMs to
smaller ones through supervised fine-tuning (SFT) on chain-of-thought demonstrations [31, 35] for
text-only tasks. This recipe has been recently applied in distills demonstrations from DeepSeek-R1
[48, 60, 75]. However, adapting this method to LVLMs does not work. Proprietary LVLMs, such as
OpenAI’s o1/o3, do not expose their internal reasoning paths, making their outputs unsuitable for
distillation. Therefore, most recent attempts are focusing on improving LVLMs through distillation
from text-only R1 reasoning models. Unfortunately, our experiments show that naively fine-tuning
LVLMs on reasoning paths generated from text-based DeepSeek-R1 with image captions leads to
a non-trivial performance drop (see Figure 3), primarily due to a lack of precise visual grounding.
Similar observations can be found in [6, 73].
In this paper, we present OpenVLThinker-7B, one of the first open-weight LVLMs that exhibit
complex reasoning capabilities in complex vision-language tasks. Specifically, it is trained by
iterating between the following two steps:
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Figure 1: Illustration of OpenVLThinker-7B’s training process. We iteratively apply SFT and GRPO
to refine the LVLM using reasoning data generated from previous iterations.

1. Lightweight SFT . In the first iterations, we distill CoTs using a text-only Deep-Seek R1 given
the task question and the corresponding generated image caption. These CoT traces provide
demonstrations of reasoning actions, although they do not immediately improve LVLM’s accuracy.
For later iterations, we use the LVLM from the previous iteration to produce CoTs on 3,000 data
points. This small dataset is sufficient to progressively enhance the model’s reasoning depth.

2. Curriculum RL. In subsequent iterations, we further enhance the LVLM’s reasoning through RL
exploration with Group Relative Policy Optimization (GRPO) [54], which splits training into two
rounds to form a smooth curriculum.

We found that while the initial step of SFT leads to a performance drop, iteratively alternating between
SFT and RL eventually gradually yields a significant performance gain on both reasoning depth and
answer accuracy (Figure 1). Our further analysis shows that the inference-time reasoning behaviors
are often triggered by specific tokens (e.g., "wait"). SFT serves as an inductive prior that highlights
these reasoning actions, where tokens such as “wait” trigger the model’s planning, reflection, and
verification behaviors. Without this SFT step, launching RL from scratch forces the model to search
through a prohibitively large space, making reflective behaviors slow to emerge, if they emerge at
all. On the other hand, RL plays the critical role in learning the reasoning behaviors, generalizing
from training data, and offering a better foundation for the next SFT iteration. The iterative cycle
between SFT and RL collaboratively optimizes LVLM’s performance. We highlight our contributions
as follows:
• We introduce OpenVLThinker-7B, one of the first open-source LVLMs to demonstrate reliable

self-reflection, planning, and correction in visual contexts.
• We present a simple yet effective iterative SFT-RL loop that enables R1-style reasoning into

multimodal domains and steadily self-improves without requiring massive datasets.
• On six challenging benchmarks, including MathVista and MathVerse, OpenVLThinker presents

remarkable improvements while reducing hallucination on HallusionBench.

2 OpenVLThinker: Iterative Self-improvement on Curriculum Data
2.1 The Role of SFT and RL

The initial SFT data. The standard distillation approach used for text-only reasoning cannot be
directly applied because the R1 model does not support visual input, and other proprietary LVLMs,
such as OpenAI’s o1/o3, do not expose their internal reasoning paths. To learn reasoning behaviors
from R1, we instead use the target model as a captioning model, prompting it to generate detailed
textual descriptions for each image. Subsequently, these captions serve as proxies for the images
when input into a text-based R1 reasoning model, QwQ-32B [61], which then generates k candidate
reasoning chains. Among these candidates, we select the shortest reasoning chain that correctly
arrives at the final answer to avoid excessive reasoning length after SFT.
Impact of SFT and RL on Model Reasoning Actions. Complex reasoning behaviors in LLMs
have been described using various terms, including long CoT [76] and aha moments [19]. At their
core, these behaviors reflect autonomous planning, reflection, and verification steps that occur during
inference. We refer to them as inference-time actions, which are often triggered by specific tokens
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Figure 2: Occurrences of reasoning keywords when solving MathVista with the base model, SFT-Iter1
model, and GRPO-Iter1 model. The most significant distribution shift occurs after SFT, while the
scale remains largely unchanged after GRPO, despite notable performance improvements.

such as “wait”. To examine how SFT and RL influence these reasoning actions, we identify eight
representative keywords corresponding to perception, question comprehension, planning, reflection,
and seeking alternatives. As illustrated in Figure 2, the base model seldom exhibits planning,
reflection, or alternative-solution actions. However, SFT guided by text-based R1-like reasoning
traces effectively surfaces these behaviors. As shown in the third and fourth subplots of Figure 2,
subsequent GRPO-based RL training following SFT-Iter1 substantially enhances model performance
on MathVista by 5.2%, yet largely maintains the initial reasoning action distribution, with minor
refinements such as reduced repetitive reflections.
Conversely, direct RL training without prior SFT struggles to efficiently induce reasoning behaviors,
exemplified by the absence of reflection keywords (e.g., “wait”) even after an equivalent training
volume. Concurrent research by [65], which solely relies on RL, addresses this by explicitly appending
relevant keywords during training rollouts. These observations support our argument that SFT plays a
critical role in highlighting desirable reasoning actions, providing an efficient and effective foundation
for RL to build upon. In contrast, RL primarily serves to further refine and enhance performance.

2.2 Iterative Improvement
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Figure 3: Iterative performance improvement of our
model on MathVista. We note that Iter(i) is always
fine-tuned from the base model Qwen2.5-VL-7B,
with its training data generated from Iter(i-1).

The model obtained after the first iteration
(GRPO-Iter1) demonstrates enhanced com-
plex reasoning capabilities and improved reli-
ability in processing visual inputs compared
to methods based on image-to-text conversion.
This advancement positions GRPO-Iter1 as an
effective source for generating higher-quality
reasoning demonstrations. Consequently, we
propose an iterative self-improvement strat-
egy, inspired by established methodologies
such as iterative SFT in ReST-EM [57] and
iterative direct preference optimization (DPO)
schemes [50, 78], both of which have shown
substantial effectiveness in iterative training
processes and fall under the Expectation-
Maximization framework [57].
Specifically, in each iteration, we sample a
new set of enhanced reasoning traces using
the model trained in the preceding iteration. These refined demonstrations are then utilized to retrain
the base model1, thereby progressively elevating its reasoning performance. The overall iterative
pipeline is illustrated in Figure 1, and the consistent incremental performance gains achieved through
successive iterations are depicted in Figure 3. We defer further method details to Appendix C

3 Experiments
Training setup. We take Qwen2.5-VL-7B [3] as the base model and perform three iterations of the
SFT-RL cycle as illustrated in Section 2, applying full fine-tuning for both SFT and RL. Our training

1To maintain stability, we retrain the model from scratch at each iteration with the newly generated dataset,
as similar to some iterative approaches in text-only domain [23, 57].
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Table 1: Evaluation results across visual math reasoning benchmarks (MathVista, MathVerse, MathVi-
sion), general visual reasoning benchmarks (MMMU-Pro, EMMA), and perception (HallusionBench).
*Performance of the base model Qwen2.5-VL-7B and concurrent reasoning models are evaluated by
us under the same setting and hardware as OpenVLThinker.

Math Reasoning General Reasoning Visual

Model Data Math-
Vista

Math-
Verse

Math-
Vision

MMMU-
Pro EMMA

Hallu-
Bench

Avg

Proprietary Model

GPT-4o - 63.8 50.2 30.4 51.9 32.7 55.0 47.3
Claude-3.5-Sonnet - 67.7 47.8 33.5 51.5 35.1 55.0 48.4

Open-source Vision-Language Model

Mulberry-7B - 63.1 39.6 - - - 54.1 -
InternVL2.5-8B - 64.4 39.5 19.7 34.3 - - -
Kimi-VL-16B - 68.7 44.9 21.4 - - - -
Qwen2-VL-7B - 58.2 32.5 16.3 30.5 20.2 50.6 34.7
Qwen2.5-VL-7B* - 68.5 46.8 24.0 42.3 24.4 67.5 45.6

Concurrent Vision-Language Reasoning Models

R1-VL-7B 270K 63.5 40.0 24.7 7.8 8.3 54.7 33.2
R1-Onevision-7B 165K 64.1 46.4 29.9 21.6 20.8 65.6 41.4
VLAA-Thinker-7B* 150K 70.0 48.6 24.9 42.0 25.5 68.4 46.6

OpenVLThinker-7B* 12K 72.3 50.3 25.9 42.9 26.8 69.1 47.9

framework is based on LLaMA-Factory2 for SFT and EasyR13 for RL. We source our training
data from the established LLaVA-OneVision [33] and specifically consider the 14 data sources in
overlap with MathV360K [56] (Table 7). We defer the detailed descriptions of evaluation benchmarks,
baselines, data and training hyperparameters to Appendix D.

3.1 Main Results

We present our main results in Table 1. As illustrated, OpenVLThinker-7B consistently achieves
either the best or second-best scores among open-source LVLMs of comparable scale across all six
benchmarks, including concurrent reasoning models. On average, OpenVLThinker attains an accuracy
of 46.6%, representing a 2% improvement over the base model and performance comparable to
proprietary models such as GPT-4o. Notably, OpenVLThinker exhibits fewer hallucinations and more
precise perception than its base model on HallusionBench, improving accuracy by 2.7%. Compared
to concurrent reasoning methods that utilize substantially larger datasets for single-iteration SFT and
RL, our iterative approach achieves superior results while utilizing only 1/10 of the data scale as used
in concurrent works with a single-iteration SFT-RL pipeline.

Table 2: Performance of 3B models on
MathVista.

Model Accuracy (%)
R1-VL-2B 52.1
InternVL2.5-4B 60.5
Qwen2.5-VL-3B 62.3
VLAA-Thinker-3B 61.0

OpenVLThinker-3B 63.4

OpenVLThinker-3B. We additionally train a 3B model
using a single iteration of the SFT-RL pipeline, where
the training process distills from our 7B model. In
Table 2, we compare the performance of our 3B
model against current representative models at the
same scale, including our base model, Qwen2.5-VL-3B,
and the reasoning model VLAA-Thinker-3B, which
is trained from the same initial checkpoint as ours.
OpenVLThinker-3B achieves the best performance on
MathVista and outperforms state-of-the-art 3B reason-
ing models.

2https://github.com/hiyouga/LLaMA-Factory
3https://github.com/hiyouga/EasyR1

4

https://github.com/hiyouga/LLaMA-Factory
https://github.com/hiyouga/EasyR1


References
[1] Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier

Pietquin, Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization
for learning from human feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

[2] AI Anthropic. The claude 3 model family: Opus, sonnet, haiku. claude-3 model card. 2024.

[3] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

[4] Shuaichen Chang, David Palzer, Jialin Li, Eric Fosler-Lussier, and Ningchuan Xiao. Mapqa: A
dataset for question answering on choropleth maps. arXiv preprint arXiv:2211.08545, 2022.

[5] Hardy Chen, Haoqin Tu, Hui Liu, Xianfeng Tang, Xinya Du, Yuyin Zhou, and Cihang Xie.
Vl-thinking: An r1-derived visual instruction tuning dataset for thinkable lvlms. https:
//github.com/UCSC-VLAA/VL-Thinking, 2025.

[6] Hardy Chen, Haoqin Tu, Fali Wang, Hui Liu, Xianfeng Tang, Xinya Du, Yuyin Zhou, and
Cihang Xie. Sft or rl? an early investigation into training r1-like reasoning large vision-language
models. arXiv preprint arXiv:2504.11468, 2025.

[7] Jiaqi Chen, Jianheng Tang, Jinghui Qin, Xiaodan Liang, Lingbo Liu, Eric P Xing, and Liang Lin.
Geoqa: A geometric question answering benchmark towards multimodal numerical reasoning.
arXiv preprint arXiv:2105.14517, 2021.

[8] Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shen-
glong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source
multimodal models with model, data, and test-time scaling. arXiv preprint arXiv:2412.05271,
2024.

[9] Zhipeng Chen, Yingqian Min, Beichen Zhang, Jie Chen, Jinhao Jiang, Daixuan Cheng,
Wayne Xin Zhao, Zheng Liu, Xu Miao, Yang Lu, Lei Fang, Zhongyuan Wang, and Ji-Rong
Wen. An empirical study on eliciting and improving r1-like reasoning models, 2025. URL
https://arxiv.org/abs/2503.04548.

[10] Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng
Wang, Boyang Li, Pascale N Fung, and Steven Hoi. Instructblip: Towards general-purpose
vision-language models with instruction tuning. Advances in Neural Information Processing
Systems, 36, 2024.

[11] Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf.
arXiv preprint arXiv:2405.07863, 2024.

[12] Yifan Du, Zikang Liu, Yifan Li, Wayne Xin Zhao, Yuqi Huo, Bingning Wang, Weipeng
Chen, Zheng Liu, Zhongyuan Wang, and Ji-Rong Wen. Virgo: A preliminary exploration on
reproducing o1-like mllm. arXiv preprint arXiv:2501.01904, 2025.

[13] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

[14] Peng Gao, Jiaming Han, Renrui Zhang, Ziyi Lin, Shijie Geng, Aojun Zhou, Wei Zhang, Pan Lu,
Conghui He, Xiangyu Yue, Hongsheng Li, and Yu Qiao. Llama-adapter v2: Parameter-efficient
visual instruction model. arXiv preprint arXiv:2304.15010, 2023.

[15] Peng Gao, Renrui Zhang, Chris Liu, Longtian Qiu, Siyuan Huang, Weifeng Lin, Shitian Zhao,
Shijie Geng, Ziyi Lin, Peng Jin, Kaipeng Zhang, Wenqi Shao, Chao Xu, Conghui He, Junjun
He, Hao Shao, Pan Lu, Hongsheng Li, and Yu Qiao. Sphinx-x: Scaling data and parameters
for a family of multi-modal large language models. In International Conference on Machine
Learning (ICML), 2024.

5

https://github.com/UCSC-VLAA/VL-Thinking
https://github.com/UCSC-VLAA/VL-Thinking
https://arxiv.org/abs/2503.04548


[16] Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R.
Bartoldson, Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-
time compute with latent reasoning: A recurrent depth approach, 2025. URL https:
//arxiv.org/abs/2502.05171.

[17] Google. Gemini 2.5 pro, May 2025. URL https://deepmind.google/technologies/
gemini/.

[18] Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang,
Lichang Chen, Furong Huang, Yaser Yacoob, et al. Hallusionbench: an advanced diagnostic
suite for entangled language hallucination and visual illusion in large vision-language models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 14375–14385, 2024.

[19] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[20] Jarvis Guo, Tuney Zheng, Yuelin Bai, Bo Li, Yubo Wang, King Zhu, Yizhi Li, Graham Neubig,
Wenhu Chen, and Xiang Yue. Mammoth-vl: Eliciting multimodal reasoning with instruction
tuning at scale. arXiv preprint arXiv:2412.05237, 2024.

[21] Yunzhuo Hao, Jiawei Gu, Huichen Will Wang, Linjie Li, Zhengyuan Yang, Lijuan Wang, and
Yu Cheng. Can mllms reason in multimodality? emma: An enhanced multimodal reasoning
benchmark. arXiv preprint arXiv:2501.05444, 2025.

[22] Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song,
Dian Yu, Zhenwen Liang, Wenxuan Wang, et al. Deepmath-103k: A large-scale, challenging,
decontaminated, and verifiable mathematical dataset for advancing reasoning. arXiv preprint
arXiv:2504.11456, 2025.

[23] Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and
Rishabh Agarwal. V-star: Training verifiers for self-taught reasoners. arXiv preprint
arXiv:2402.06457, 2024.

[24] Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, and Heung-Yeung Shum Xiangyu Zhang.
Open-reasoner-zero: An open source approach to scaling reinforcement learning on the base
model, 2025.

[25] Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Ostendorf, Luke Zettlemoyer, Noah A Smith,
and Ranjay Krishna. Visual sketchpad: Sketching as a visual chain of thought for multimodal
language models. arXiv preprint arXiv:2406.09403, 2024.

[26] Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu,
and Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language
models, 2025. URL https://arxiv.org/abs/2503.06749.

[27] Zhen Huang, Haoyang Zou, Xuefeng Li, Yixiu Liu, Yuxiang Zheng, Ethan Chern, Shijie
Xia, Yiwei Qin, Weizhe Yuan, and Pengfei Liu. O1 replication journey – part 2: Surpassing
o1-preview through simple distillation, big progress or bitter lesson?, 2024. URL https:
//arxiv.org/abs/2411.16489.

[28] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv
preprint arXiv:2410.21276, 2024.

[29] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

[30] Samira Ebrahimi Kahou, Vincent Michalski, Adam Atkinson, Ákos Kádár, Adam Trischler,
and Yoshua Bengio. Figureqa: An annotated figure dataset for visual reasoning. arXiv preprint
arXiv:1710.07300, 2017.

6

https://arxiv.org/abs/2502.05171
https://arxiv.org/abs/2502.05171
https://deepmind.google/technologies/gemini/
https://deepmind.google/technologies/gemini/
https://arxiv.org/abs/2503.06749
https://arxiv.org/abs/2411.16489
https://arxiv.org/abs/2411.16489


[31] Seungone Kim, Se Joo, Doyoung Kim, Joel Jang, Seonghyeon Ye, Jamin Shin, and Minjoon Seo.
The CoT collection: Improving zero-shot and few-shot learning of language models via chain-of-
thought fine-tuning. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, pages 12685–12708,
Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
emnlp-main.782. URL https://aclanthology.org/2023.emnlp-main.782/.

[32] Sicong Leng, Jing Wang, Jiaxi Li, Hao Zhang, Zhiqiang Hu, Boqiang Zhang, Hang Zhang,
Yuming Jiang, Xin Li, Deli Zhao, Fan Wang, Yu Rong, Aixin Sun†, and Shijian Lu†. Mmr1:
Advancing the frontiers of multimodal reasoning. https://github.com/LengSicong/MMR1,
2025.

[33] Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326, 2024.

[34] Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu
Zhong, Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al. Grounded language-image
pre-training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10965–10975, 2022.

[35] Liunian Harold Li, Jack Hessel, Youngjae Yu, Xiang Ren, Kai-Wei Chang, and Yejin Choi.
Symbolic chain-of-thought distillation: Small models can also "think" step-by-step. In ACL,
2023.

[36] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in Neural Information Processing Systems (NeurIPS), 36, 2023.

[37] Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae
Lee. Llava-next: Improved reasoning, ocr, and world knowledge, January 2024. URL https:
//llava-vl.github.io/blog/2024-01-30-llava-next/.

[38] Runze Liu, Junqi Gao, Jian Zhao, Kaiyan Zhang, Xiu Li, Biqing Qi, Wanli Ouyang, and Bowen
Zhou. Can 1b llm surpass 405b llm? rethinking compute-optimal test-time scaling, 2025. URL
https://arxiv.org/abs/2502.06703.

[39] Xiangyan Liu, Jinjie Ni, Zijian Wu, Chao Du, Longxu Dou, Haonan Wang, Tianyu Pang, and
Michael Qizhe Shieh. Noisyrollout: Reinforcing visual reasoning with data augmentation.
arXiv preprint arXiv:2504.13055, 2025.

[40] Zichen Liu, Changyu Chen, Wenjun Li, Tianyu Pang, Chao Du, and Min Lin. There may not be
aha moment in r1-zero-like training — a pilot study, 2025. Notion Blog.

[41] Zichen Liu, Changyu Chen, Wenjun Li, Tianyu Pang, Chao Du, and Min Lin. There may not
be aha moment in r1-zero-like training — a pilot study. https://oatllm.notion.site/
oat-zero, 2025. Notion Blog.

[42] Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and
Jiaqi Wang. Visual-rft: Visual reinforcement fine-tuning. arXiv preprint arXiv:2503.01785,
2025.

[43] Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao
Cheng, Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical
reasoning of foundation models in visual contexts. arXiv preprint arXiv:2310.02255, 2023.

[44] Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin
Cai, Jeffrey Luo, Tianjun Zhang, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler:
Surpassing o1-preview with a 1.5b model by scaling rl, 2025. Notion Blog.

[45] Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Botian
Shi, Wenhai Wang, Junjun He, Kaipeng Zhang, et al. Mm-eureka: Exploring visual aha moment
with rule-based large-scale reinforcement learning. arXiv preprint arXiv:2503.07365, 2025.

7

https://aclanthology.org/2023.emnlp-main.782/
https://github.com/LengSicong/MMR1
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://arxiv.org/abs/2502.06703
https://oatllm.notion.site/oat-zero
https://oatllm.notion.site/oat-zero


[46] Yingqian Min, Zhipeng Chen, Jinhao Jiang, Jie Chen, Jia Deng, Yiwen Hu, Yiru Tang, Jiapeng
Wang, Xiaoxue Cheng, Huatong Song, Wayne Xin Zhao, Zheng Liu, Zhongyuan Wang, and
Ji-Rong Wen. Imitate, explore, and self-improve: A reproduction report on slow-thinking
reasoning systems, 2024. URL https://arxiv.org/abs/2412.09413.

[47] Debjyoti Mondal, Suraj Modi, Subhadarshi Panda, Rituraj Singh, and Godawari Sudhakar Rao.
Kam-cot: Knowledge augmented multimodal chain-of-thoughts reasoning. In Proceedings of
the AAAI conference on artificial intelligence, volume 38, pages 18798–18806, 2024.

[48] Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi,
Luke Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple
test-time scaling, 2025. URL https://arxiv.org/abs/2501.19393.

[49] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in neural information processing systems,
35:27730–27744, 2022.

[50] Richard Yuanzhe Pang, Weizhe Yuan, He He, Kyunghyun Cho, Sainbayar Sukhbaatar, and
Jason Weston. Iterative reasoning preference optimization. Advances in Neural Information
Processing Systems, 37:116617–116637, 2024.

[51] Yiwei Qin, Xuefeng Li, Haoyang Zou, Yixiu Liu, Shijie Xia, Zhen Huang, Yixin Ye, Weizhe
Yuan, Hector Liu, Yuanzhi Li, and Pengfei Liu. O1 replication journey: A strategic progress
report – part 1, 2024. URL https://arxiv.org/abs/2410.18982.

[52] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning
(ICML), pages 8748–8763. PMLR, 2021.

[53] Amrith Setlur, Nived Rajaraman, Sergey Levine, and Aviral Kumar. Scaling test-time compute
without verification or rl is suboptimal, 2025. URL https://arxiv.org/abs/2502.12118.

[54] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li,
Yu Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300, 2024.

[55] Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
Zhang, Kangjia Zhao, Qianqian Zhang, et al. Vlm-r1: A stable and generalizable r1-style large
vision-language model. arXiv preprint arXiv:2504.07615, 2025.

[56] Wenhao Shi, Zhiqiang Hu, Yi Bin, Junhua Liu, Yang Yang, See-Kiong Ng, Lidong Bing, and
Roy Ka-Wei Lee. Math-llava: Bootstrapping mathematical reasoning for multimodal large
language models. arXiv preprint arXiv:2406.17294, 2024.

[57] Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia,
Peter J Liu, James Harrison, Jaehoon Lee, Kelvin Xu, et al. Beyond human data: Scaling
self-training for problem-solving with language models. arXiv preprint arXiv:2312.06585,
2023.

[58] Nishad Singhi, Hritik Bansal, Arian Hosseini, Aditya Grover, Kai-Wei Chang, Marcus Rohrbach,
and Anna Rohrbach. When to solve, when to verify: Compute-optimal problem solving and
generative verification for llm reasoning. arXiv preprint arXiv:2504.01005, 2025.

[59] Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen,
Chenlin Zhang, Chenzhuang Du, Chu Wei, et al. Kimi-vl technical report. arXiv preprint
arXiv:2504.07491, 2025.

[60] OpenThoughts Team. Open Thoughts. https://open-thoughts.ai, January 2025.

[61] Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
https://qwenlm.github.io/blog/qwq-32b/.

8

https://arxiv.org/abs/2412.09413
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2410.18982
https://arxiv.org/abs/2502.12118
https://qwenlm.github.io/blog/qwq-32b/


[62] Omkar Thawakar, Dinura Dissanayake, Ketan More, Ritesh Thawkar, Ahmed Heakl, Noor
Ahsan, Yuhao Li, Mohammed Zumri, Jean Lahoud, Rao Muhammad Anwer, et al. Llamav-o1:
Rethinking step-by-step visual reasoning in llms. arXiv preprint arXiv:2501.06186, 2025.

[63] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[64] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[65] Haozhe Wang, Chao Qu, Zuming Huang, Wei Chu, Fangzhen Lin, and Wenhu Chen. Vl-
rethinker: Incentivizing self-reflection of vision-language models with reinforcement learning.
arXiv preprint arXiv:2504.08837, 2025.

[66] Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing Ren, Aojun Zhou, Mingjie Zhan,
and Hongsheng Li. Measuring multimodal mathematical reasoning with math-vision dataset.
Advances in Neural Information Processing Systems, 37:95095–95169, 2024.

[67] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing
Liu, Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception
of the world at any resolution. arXiv preprint arXiv:2409.12191, 2024.

[68] Weiyun Wang, Zhangwei Gao, Lianjie Chen, Zhe Chen, Jinguo Zhu, Xiangyu Zhao, Yangzhou
Liu, Yue Cao, Shenglong Ye, Xizhou Zhu, et al. Visualprm: An effective process reward model
for multimodal reasoning. arXiv preprint arXiv:2503.10291, 2025.

[69] Xiyao Wang, Zhengyuan Yang, Chao Feng, Hongjin Lu, Linjie Li, Chung-Ching Lin, Kevin Lin,
Furong Huang, and Lijuan Wang. Sota with less: Mcts-guided sample selection for data-efficient
visual reasoning self-improvement. arXiv preprint arXiv:2504.07934, 2025.

[70] Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou,
Kai Qiu, Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based
reinforcement learning, 2025.

[71] Guowei Xu, Peng Jin, Li Hao, Yibing Song, Lichao Sun, and Li Yuan. Llava-o1: Let vision
language models reason step-by-step. arXiv preprint arXiv:2411.10440, 2024.

[72] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

[73] Yi Yang, Xiaoxuan He, Hongkun Pan, Xiyan Jiang, Yan Deng, Xingtao Yang, Haoyu Lu,
Dacheng Yin, Fengyun Rao, Minfeng Zhu, Bo Zhang, and Wei Chen. R1-onevision: Advancing
generalized multimodal reasoning through cross-modal formalization, 2025. URL https:
//arxiv.org/abs/2503.10615.

[74] Huanjin Yao, Jiaxing Huang, Wenhao Wu, Jingyi Zhang, Yibo Wang, Shunyu Liu, Yingjie
Wang, Yuxin Song, Haocheng Feng, Li Shen, et al. Mulberry: Empowering mllm with o1-like
reasoning and reflection via collective monte carlo tree search. arXiv preprint arXiv:2412.18319,
2024.

[75] Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is
more for reasoning, 2025.

[76] Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long
chain-of-thought reasoning in llms, 2025.

[77] Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan,
Gaohong Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning
system at scale. arXiv preprint arXiv:2503.14476, 2025.

9

https://arxiv.org/abs/2503.10615
https://arxiv.org/abs/2503.10615


[78] Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing
Xu, and Jason Weston. Self-rewarding language models, 2024. URL https://arxiv.org/
abs/2401.10020.

[79] Xiang Yue, Tianyu Zheng, Yuansheng Ni, Yubo Wang, Kai Zhang, Shengbang Tong, Yuxuan
Sun, Botao Yu, Ge Zhang, Huan Sun, et al. Mmmu-pro: A more robust multi-discipline
multimodal understanding benchmark. arXiv preprint arXiv:2409.02813, 2024.

[80] Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*:
Llm self-training via process reward guided tree search. Advances in Neural Information
Processing Systems, 37:64735–64772, 2025.

[81] Di Zhang, Jianbo Wu, Jingdi Lei, Tong Che, Jiatong Li, Tong Xie, Xiaoshui Huang, Shufei
Zhang, Marco Pavone, Yuqiang Li, et al. Llama-berry: Pairwise optimization for o1-like
olympiad-level mathematical reasoning. arXiv preprint arXiv:2410.02884, 2024.

[82] Hanning Zhang, Jiarui Yao, Chenlu Ye, Wei Xiong, and Tong Zhang. Online-dpo-r1: Unlocking
effective reasoning without the ppo overhead, 2025. Notion Blog.

[83] Jingyi Zhang, Jiaxing Huang, Huanjin Yao, Shunyu Liu, Xikun Zhang, Shijian Lu, and Dacheng
Tao. R1-vl: Learning to reason with multimodal large language models via step-wise group
relative policy optimization. arXiv preprint arXiv:2503.12937, 2025.

[84] Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh
Agarwal. Generative verifiers: Reward modeling as next-token prediction. arXiv preprint
arXiv:2408.15240, 2024.

[85] Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun
Zhou, Pan Lu, Kai-Wei Chang, Yu Qiao, et al. Mathverse: Does your multi-modal llm truly see
the diagrams in visual math problems? In European Conference on Computer Vision, pages
169–186. Springer, 2024.

[86] Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alex Smola. Mul-
timodal chain-of-thought reasoning in language models. arXiv preprint arXiv:2302.00923,
2023.

[87] Ge Zheng, Bin Yang, Jiajin Tang, Hong-Yu Zhou, and Sibei Yang. Ddcot: Duty-distinct
chain-of-thought prompting for multimodal reasoning in language models. Advances in Neural
Information Processing Systems, 36:5168–5191, 2023.

[88] Hengguang Zhou, Xirui Li, Ruochen Wang, Minhao Cheng, Tianyi Zhou, and Cho-Jui
Hsieh. R1-zero’s" aha moment" in visual reasoning on a 2b non-sft model. arXiv preprint
arXiv:2503.05132, 2025.

10

https://arxiv.org/abs/2401.10020
https://arxiv.org/abs/2401.10020


A Related Work

A.1 Complex Chain-of-Thought Reasoning

Since the introduction of OpenAI’s O1 model [29], researchers have shown strong interest in
reproducing and enhancing the complex reasoning capabilities of LLMs [27, 46, 51, 80, 81], partly due
to its superior performance on mathematical benchmarks. [19] introduce the open-source DeepSeek-
R1 model and investigate how RL with verifiable rewards can promote advanced chain-of-thought
reasoning and reflective behaviors. This development inspired a line of research focused on open-
source reproduction [24, 40, 44, 60, 82] and the analysis of such complex reasoning in mathematical
problem solving [9, 70, 75, 76]. In parallel, several recent studies have similarly explored the effects
of test-time scaling on encouraging more complex model reasoning behaviors [16, 38, 48, 53, 58, 84].
However, the majority of research have significantly advanced text-based reasoning, and development
of vision-language reasoning is much more initial.

A.2 Vision-Language Reasoning Model

Recent advancements in large vision-language models (LVLMs) stem from open-source LLMs [13,
63, 64, 72] and text-aligned image encoders [34, 52]. Integrating these components has enabled
LVLMs to follow diverse visual instructions and generate meaningful responses [3, 10, 14, 15, 36, 37].
Parallel to the model development, researchers have also been interested in eliciting CoT reasoning
chains from LVLMs via prompting [25, 47, 86, 87] or fine-tuning [12, 20, 62, 71]. These reasoning
models remain mostly on a shallow level of common step-by-step prompting, without self-reflections
or self-verifications.
Concurrent work. Very recently, many studies have started exploring how to equip LVLMs with
R1-like reasoning capabilities through distillation from text-only reasoning models [5, 26, 32, 73] or
directly rely on RL [42, 88] for self-exploration. Further advancements [6, 39, 45, 55, 65, 68, 69, 83]
have focused on improving performance in visual math reasoning, which marks the transition from
early-stage exploration to more effective complex vision-language reasoning. Please note that most of
these works are within the two months before the submission date, and some of them do not even have
associated technical reports available yet. Our work aligns with these studies and contributes unique
insights into the role of SFT for complex reasoning, along with an iterative SFT-RL framework to
further advance research in this direction.

B Preliminaries
An LLM is defined by a probability distribution pθ, parameterized by model weights θ. Given a
prompt sequence x = [x1, . . . , xn], the model generates a response sequence y = [y1, . . . , ym],
where xi and yj represent individual tokens. The response y is sampled from the conditional
distribution pθ(·|x), factorized as pθ(y|x) =

∏m
j=1 pθ(yj |x, y1, . . . , yj−1).

Supervised Fine-Tuning (SFT). SFT is typically applied to specialize LLMs for a particular task or
domain. This process updates the model parameters θ by providing example responses of desired
behavior to the input instructions. Concretely, Given a dataset D = {(x(i),y(i))}Ni=1, where x(i)

is the prompt sequence and y(i) is the desired response sequence. We update θ to maximize the
likelihood of producing y(i) given x(i). Formally, LSFT(θ) = −

∑N
i=1 log pθ

(
y(i)

∣∣x(i)
)
. By

minimizing the loss, the model learns to produce responses more aligned with the labeled examples.
Reinforcement Learning (RL). RL approaches fine-tune LLMs via human preferences modeled
under the Bradley-Terry model [1, 11, 49, 54]: p(yw ≻ yl | x) = σ

(
r(x,yw) − r(x,yl)

)
, where

yw and yl denote preferred and dispreferred responses, respectively, and σ(t) = 1/(1 + e−t) is the
sigmoid function. The common RL objective under the Bradley-Terry assumption of the reward
model r(x,y) is thus

max
θ

[
Ex,y∼pθ

[r(x,y)]− β Ex

[
KL(pθ(·|x)∥pref(·|x))

]]
,

where β > 0 is the KL penalty coefficient. Under this framework, [54] introduced Group Relative
Policy Optimization (GRPO) by sampling a group of response trajectories {oi}Gi=1 from the old
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policy model θold for each query x, with the objective as maximizing:

E
[1
G

G∑
i=1

1

|oi|

|oi|∑
t=1

min
( pθ(oi,t | x, oi,<t)

pθold
(oi,t | x, oi,<t)

Âi,t,clip
( pθ(oi,t | x, oi,<t)

pθold
(oi,t | x, oi,<t)

, 1− ϵ, 1 + ϵ
)
Âi,t

)]
− β DKL

[
pθ

∥∥ pθref

]
, (1)

where ϵ > 0 is a hyperparameter bounding the clipping range, β > 0 balances the KL-penalty term
DKL

[
πθ

∥∥πref

]
against the advantage-weighted policy update, and θold is the old policy model. Here,

the advantage Âi,t = r̃i = (ri − mean(r))/std(r) is set as the normalized reward at group level.

C Additional Method Details
C.1 Two-Stage Source-Based Curriculum RL

To ensure effective exploration during reinforcement learning (RL), we assess the difficulty of data
sources, aiming to provide data that is challenging yet appropriate for the model’s proficiency level.
Specifically, we utilize GPT-4o to rate the difficulty of five representative examples drawn from
various data sources such as FigureQA [30], MapQA [4], and GeoQA [7], in a similar fashion
to the text-based evaluation in DeepMath-103K [22]. Additionally, we employ the base model,
Qwen2.5-VL-7B4, to obtain its error rates as a complementary difficulty indicator. We standardize
independently using z-score normalization for both the GPT-4o rating and base model error rates
and compute the average of the two. Based on this composite score, we categorize the data sources
into Easy, Medium, and Hard groups via k-means clustering in 1d space. With these categories, we
construct two difficulty-specific datasets: DRL(Medium) and DRL(Hard). Our curriculum training thus
proceeds in two stages within one iteration, sequentially training on DRL(Medium) and DRL(Hard).

D Experiment Settings
Training data. Based on our preliminary experiments, we equally draw 500 examples from each
source to form the SFT seed dataset of 7K examples, where for each iteration we collect distillation
data via rejection sampling, resulting in a final 3K SFT data. We then classify the data sources into
easy, medium and hard (as detailed in Table 7). We construct the 3K medium-level RL training data
from the 5 sources that we identified as medium difficulty. Finally, we construct 6K hard-level RL
training data from the 3 most difficult sources, summing up to 12K data in total for each iteration that
trains from the base model.
Evaluation. Our evaluation employs exact matching and a grader function from MathRuler5. We
use the same inference hyperparameter as suggested by Qwen and recovered Qwen2.5-VL-7B’s
reported results on MathVista at 68.5%. The hyperparameters are detailed in Table 3. We employ six
established benchmarks to examine model’s ability thoroughly:
• Math reasoning: MathVista [43], MathVerse [85] and MathVision [66]. The three benchmarks

evaluate how LVLMs interpret and reason with diagrams in visual math problems through both
multiple-choice and free-form questions.

• General reasoning: MMMU-Pro [79] and EMMA [21]. MMMU-Pro spans 30 subjects across
183 subfields, including business, medicine, and science. EMMA evaluates in physics, chemistry,
coding, and math.

• Perception: HallusionBench [18], designed to evaluate LVLMs’ susceptibility to language halluci-
nation and visual illusion.

Baselines. We evaluate the non-reasoning base model Qwen2.5-VL-7B as a primary baseline to
demonstrate the improvements introduced by our method. Additionally, we include the reported
performance of proprietary models, including GPT-4o [28] and Claude-3.5-Sonnet [2], alongside
open-source LVLMs such as Mulberry-7B [74], InternVL2.5-8B [8], Kimi-VL-16B [59], and Qwen2-
VL-7B [67], as reference points. Crucially, to highlight the effectiveness of our iterative SFT-RL
training strategy, we compare our model with concurrent approaches employing a single round of
SFT distillation and RL at the same model scale (7B), yet utilizing significantly larger training

4In alignment with previous R1 reasoning research [75, 76], we choose the base model from Qwen2.5 family
for their strong general capability obtained in pre-training.

5https://github.com/hiyouga/MathRuler
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datasets. These concurrent models include R1-VL-7B [83], R1-Onevision-7B [73], and VLAA-
Thinker-Qwen2.5VL-7B [6]. Notably, R1-Onevision and VLAA-Thinker-Qwen2.5VL-7B also start
from the same base model (Qwen2.5-VL-7B) as ours, using 165K and 150K total data, respectively.
In contrast, our model achieves better performance with only 12K training samples from the base
model.
Hyperparameters. We thank LLaMA-Factory6 and EasyR17 for open-sourcing the training frame-
work that we used for SFT and GRPO. In Table 4 and 5, we detail the hyperparameters that we
used for SFT, GRPO and inference. We further lay out the prompts we used for generating image
captions. Experiments were conducted on GPU clusters to the similar level of NVIDIA H100 80GB
GPU. SFT/Distillation requires 30 minutes and RL requires 20 hours for each iteration. In addition,
distillation data generation with verification requires about 8 hours.

Table 3: Inference hyperparameters.
max_new_tokens 2048

top_p 0.001
top_k 1

temperature 0.01
repetition_penalty 1.0

Table 4: Supervised fine-tuning hyperparameters.
Data type bf16

Learning rate 5e-7
Global batch size 32

Scheduler Cosine
Warmup ratio 0.1

Num train epochs 1
Image max pixels 262144

Table 5: GRPO hyperparameters.
Rollout batch size 512
Global batch size 128
Max grad norm 1.0

Data type bf16
Learning rate 1e-6
Weight decay 1e-2
Warmup ratio 0.0

Rollout temperature 1.0

Prompt for image description generation

Please provide a detailed description of this image that could help another AI model un-
derstand it completely. Be specific and comprehensive while maintaining natural language
flow.

E Additional Experiments
Distillation at iteration 1. At SFT-Iter1, we utilized the base model Qwen2.5-VL-7B to generate
image descriptions and obtained R1-like reasoning from QwQ-32B through rejection sampling. A
common problem for distillation observed in text-only math reasoning is the overly long reasoning
length coupled with unnecessary repetitions of reflections [41, 76]. We observed similarly that
these initial reasoning traces were often excessively verbose, partly due to information loss during

6https://github.com/hiyouga/LLaMA-Factory
7https://github.com/hiyouga/EasyR1
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Table 6: Performance on the MathVista benchmark
comparing different SFT data-filtering strategies.
Removing the most repetitive keywords in data can
mitigate repetitive reflections after SFT.

Model Variant Accuracy (%)
Qwen2.5-VL-7B 68.5
Vanilla 57.5
Filtered 58.7
Truncated (SFT-Iter1) 63.4

Table 7: Categorization of data sources by com-
posite difficulty score using k-means with k=3.
The geometry question sources all fall into the
hard category.

Easy Medium Hard
ChartQA FigureQA UniGeo
IconQA CLEVR GEOS
VizWiz A-OKVQA Geometry3K
TabMWP SuperCLEVR GeoQA
DVQA MapQA
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Figure 4: Data source difficulty based on base model
accuracy and GPT-4o rating.

40 50 60 70

SFT-Iter1

GRPO-Iter1
(Medium+Easy)

GRPO-Iter1
(Medium)

MathVista

10 15 20 25

SFT-Iter1

GRPO-Iter1
(Medium+Easy)

GRPO-Iter1
(Medium)

MathVision-Mini

Figure 5: Performance at GRPO-Iter1
using data from different difficulty
sources, at the same scale of 3K.

image-to-caption conversion. Consequently, post-SFT reasoning became increasingly repetitive with
unproductive self-reflections (see Appendix F for an illustration). To address this, we evaluated
two filtering strategies: (1) discarding samples with reasoning traces exceeding 500 words, and (2)
truncating reflections by splitting traces of at specific keywords that were overly repetitive in data (
“Wait,” “But wait,” and “But the question”) and discarding subsequent segments while preserving
the final answer. The latter approach was ultimately adopted to prevent the model from internalizing
reflection loops, while preserving the reasoning action at a reasonable frequency. Table 6 compares
models trained on original versus processed data.

Data source difficulty. We conducted a quantitative analysis to categorize the data sources based
on difficulty. Applying k-means clustering (with k = 3) to our composite difficulty score as described
in Section 2 allowed us to clearly identify three distinct difficulty pools, as shown in Table 7. We
visualize the difficulty scores for each source in Figure 4. In Figure 5, we show the performance
of GRPO-Iter1 when drawing 3K data from either (1) 10 data sources classified as either Easy or
Medium, or (2) 5 data sources classified as Medium. We observe that RL training with easy-level
data results in ineffective performance gain as compared to sourcing from medium-level data only.
This finding aligns with concurrent algorithmic efforts such as DAPO [77] in the text-only domain
for improving GRPO by dynamically filtering out overly-easy examples.

Curriculum RL to maximize utilization of challenging data. Figure 6 investigates the impact
of incorporating challenging training data (e.g., geometry datasets) at iteration 1. On the left panel,
we illustrate the absolute performance gains transitioning from SFT-Iter1 to GRPO-Iter1 (medium
difficulty), and subsequently from GRPO-Iter1 (medium) to GRPO-Iter1 (hard). Training on these
harder datasets yields substantial improvements on more difficult benchmarks, such as MathVision,
while not significantly affecting performance on easier benchmarks like MathVista. On the right panel,
we further compare our two-stage, source-based curriculum RL approach against training solely on
hard data. The results indicate that initiating RL with moderately challenging (medium difficulty)
data and subsequently progressing to harder datasets provides optimal performance improvements.

Iterative progression. Building upon the performance improvements shown in Figure 3, we further
analyze changes in reasoning length across iterations, as illustrated in Figure 7. Our results indicate
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that the reasoning model consistently utilizes more words at inference time compared to the base
non-reasoning model, without becoming excessively repetitive. Notably, the largest increase in
reasoning length occurs at Iteration 1, with subsequent iterations gradually adopting more concise
reasoning. This progression suggests an increasingly efficient utilization of reflective reasoning,
engaging reflections primarily when beneficial. In Appendix F (Figure 8 and 9), we show reasoning
examples that our SFT-ed model was incorrect while our RL-ed model was correct.
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Figure 7: Distribution of reasoning length (number of words) across iterations of training. While
our trained reasoning model across iterations all tend to reason longer than the base model, iterative
training resulted in gradually more concise length, possibly due to reduced repetitive reflections.
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F Output Examples

Repetitive reasoning example after SFT without filtering

But the question is asking for the route and endpoint. So, the route would be the highway
number, and the endpoint would be the destination.

Wait, but the signs are arranged vertically. So, the top signs are the routes, and the bottom
ones are the destinations. So, if you’re at the junction and you’re facing the signs, you can
see both. So, the route is the highway number, and the endpoint is the destination.

But the question is phrased as "the route and endpoint reached by continuing in a straight
line." So, if you’re at the junction and you’re facing the signs, you can see both the routes and
the destinations. So, the route would be the highway number, and the endpoint would be the
destination.

Wait, but the instruction is a bit ambiguous. It says "continuing in a straight line," which
might mean following the route indicated by the sign. So, if you’re at the junction and you’re
facing the signs, you can see both the routes and the destinations. So, the route is the highway
number, and the endpoint is the destination.

But the question is asking for the route and endpoint. So, the route would be the highway
number, and the endpoint would be the destination.

Wait, but the signs are arranged vertically. So, the top signs are the routes, and the bottom
ones are the destinations. So, if you’re at the junction and you’re facing the signs, you can
see both. So, the route is the highway number, and the endpoint is the destination.

But the question is phrased as "the route and endpoint reached by continuing in a straight
line." So, if you’re at the junction and you’re facing the signs, you can see both the routes and
the destinations. So, the route would be the highway number, and the endpoint would be the
destination.

Figure 8: The image to the visual reasoning task that we show for SFT-Iter3 and GRPO-Iter3 output.
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Example of SFT-Iter3 incorrect output and GRPO-Iter3 Correct output to the same question

Question: The derivative of f(x) at x=2 is ____ that at x=5
Choices: (A) larger than (B) equal to (C) smaller than

SFT-Iter3
<think>
Okay, let me see. The question is asking about the derivative of the function f(x) = |2x - 3| + 1
at x=2 compared to x=5. First, I need to recall what the derivative represents. The derivative
gives the slope of the tangent line at a point on the function. So I need to look at the slopes at
those two points.
</think>

The function ( f(x) = |2x - 3| + 1 ) is an absolute value function, which means it has a V-shape.
The vertex of this V-shape occurs where the expression inside the absolute value is zero, i.e., (
2x - 3 = 0 ), which gives ( x = 3

2 ). The derivative of ( f(x) ) will be zero at the vertex because
the function changes direction there. For ( x < 3

2 ), the function is decreasing, and for (
x > 3

2 ), it is increasing. The slopes on either side of the vertex are negative and positive,
respectively. At ( x = 2 ) (which is to the right of the vertex), the function is increasing, so the
derivative is positive. At ( x = 5 ) (which is further to the right), the function is also increasing,
so the derivative is positive but steeper because the function is increasing faster. Since the
function is increasing faster at ( x = 5 ) than at ( x = 2 ), the derivative at ( x = 5 ) is larger.
<answer>(C)</answer>
==================
GRPO-Iter3
<think>
Okay, let’s see. The question is asking about the derivative of the function f(x) = |2x - 3| + 1
at x=2 compared to x=5. First, I need to recall what the derivative represents. The derivative
at a point gives the slope of the tangent line at that point. So I need to look at the slopes at
x=2 and x=5.
</think>

The function ( f(x) = |2x - 3| + 1 ) is an absolute value function shifted up by 1. The absolute
value function ( |2x - 3| ) has a V-shape with a vertex at ( x = 3

2 ). The derivative of ( |2x - 3|
) is ( 2 ) for ( x > 3

2 ) and ( -2 ) for ( x < 3
2 ). Adding 1 to the function doesn’t affect the

derivative’s magnitude but shifts the y-values up. At ( x = 2 ), which is greater than ( 3
2 ), the

derivative is ( 2 ). At ( x = 5 ), which is also greater than ( 3
2 ), the derivative is also ( 2 ).

Since the derivative is the same at both points, the slopes are equal.
<answer>(B)</answer>

Ground truth: (B)

Figure 9: The image to the task that we show for SFT-Iter3 and GRPO-Iter3 output below.
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Example of SFT-Iter3 incorrect output and GRPO-Iter3 Correct output to the same question

Question: Find m∠3.
Choices: (A) 28 (B) 38 (C) 52 (D) 62

SFT-Iter3
<think>
Okay, let me see. The problem is asking for the measure of angle 3 in the given quadrilateral.
The hint suggests looking at the angles provided, which are 52 degrees and 38 degrees. Hmm,
the quadrilateral is a rectangle, so all angles should be 90 degrees. But the hint is confusing
me. Let me check the options again. The angles 52 and 38 are given, but they’re not the
ones I need to find. The question is about angle 3, which is opposite angle 1. Since opposite
angles in a rectangle are equal, angle 3 should be the same as angle 1. But angle 1 is not
given directly. Let me see, the hint is saying to look at the angles provided. The 52 and
38 are supplementary angles, which means they add up to 180 degrees. But angle 3 is not
supplementary to 52 or 38. It’s the opposite angle, so it should be the same as angle 1. Since
angle 1 is not given, I need to use the options. The only angle that could be the same as angle
1 is the one that’s not given directly. The options are A, B, C, D. The only one that’s not
supplementary to 52 or 38 is 62. So angle 3 must be 62 degrees.
</think>

The problem states that the quadrilateral is a rectangle, and all angles in a rectangle are 90
degrees. The hint provided the angles 52° and 38°, which are supplementary angles (52° +
38° = 90°). However, angle 3 is the opposite angle to angle 1, which means they are equal
because opposite angles in a rectangle are congruent. Since angle 1 is not given directly, we
need to look at the options provided. The only angle that fits the properties of opposite angles
in a rectangle is the one that is not supplementary to the given angles. The options are A (28),
B (38), C (52), and D (62). Since angle 1 is not given, the only angle that could be the same
as angle 3 is the one that is not supplementary to 52° or 38°. The only angle that fits this
criterion is 62°, as it is the only one not listed as supplementary to the given angles.
<answer>(D)</answer>
==================
GRPO-Iter3
<think>
Okay, let’s see. The question is asking for the measure of angle 3. The image provided is a
rectangle with some angles labeled. The hint suggests looking at the angles given, which
are 52 degrees and 38 degrees. Hmm, the rectangle has right angles, so each angle should
be 90 degrees. The angles 52 and 38 are supplementary because they add up to 90 degrees
(90 - 52 = 38). But angle 3 is not one of those. It’s the angle opposite the 38-degree angle,
so it should be the same. Wait, the question is about angle 3, which is the one opposite the
38-degree angle. So it should be 38 degrees too, right?
</think>

The problem states that angle 3 is opposite the 38-degree angle. In a rectangle, opposite
angles are equal. Since angle 3 is opposite the 38-degree angle, angle 3 must also be 38
degrees.
<answer>(B)</answer>

Ground truth: (B)

G Impact Statement

Our work introduces OpenVLThinker, an open-source large vision–language model (LVLM) designed
explicitly for complex reasoning tasks through a novel iterative self-improvement process integrating
supervised fine-tuning (SFT) and reinforcement learning (RL).
Positive societal impacts include significant improvements in multimodal reasoning, beneficial for
applications in education, assistive technologies, accessibility, and content moderation, potentially
enhancing decision-making processes involving visual and textual data.
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However, improved generative capabilities inherently pose potential negative societal impacts, such
as misuse for creating deceptive or manipulative content or misinformation. There are also fairness
and privacy considerations, as biases in training data or misinterpretation of visual information could
unfairly affect specific groups.
To mitigate these risks, responsible deployment practices such as gated model releases, comprehensive
documentation, usage guidelines, and continuous monitoring for misuse and biases are essential.
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