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Abstract
We present a new model-free causal reinforce-
ment learning approach that utilizes the structure
of causal diagrams, which could be learned dur-
ing causal representation learning and causal dis-
covery. Unlike the majority of approaches in
causal reinforcement learning that focus on model-
based approaches and off-policy evaluations, we
explore another direction: online model-free meth-
ods. We achieve this by extending a causal se-
quential decision-making formulation with fac-
tored Markov decision process (FMDP) and MDP
with unobserved confounders (MDPUC), and by
incorporating the concept of action as intervention.
The choice of extending MDPUC addresses the
issue of bidirectional arcs in learned causal dia-
grams. The action as intervention idea allows for
the incorporation of high-level action models into
the action space in an RL environment as a vector
of interventions to the causal variables. We also
present a value decomposition method and utilize
the value decomposition network architecture pop-
ular in multi-agent reinforcement learning, show-
ing encouraging preliminary evaluation results.

1 Introduction
Deep reinforcement learning (RL) has shown remarkable
achievements in various sequential decision making prob-
lems, sometimes reaching super-human levels of perfor-
mance [Mnih et al., 2015; Silver et al., 2017]. Deep RL
utilizes powerful neural networks for solving challenging
problems such as those involving a high-dimensional feature
space or complex non-linear control. Although such meth-
ods perform well in simulated environments, it has also been
pointed out that methods relying on deep neural networks
have significant scope for improvement, particularly with re-
gard to robustness and reusability for wider acceptance and
deployment in real-world applications. For instance, causal
graphical models [Pearl, 2009; Schölkopf, 2022] have re-
cently emerged as a means of achieving out-of-distribution
generalization in sequential decision problems, when lever-
aged using rapid advances in causal representation learning
[Schölkopf et al., 2021].

The burgeoning field of causal reinforcement learning
combines ideas from causal inference/discovery and rein-
forcement learning to tackle several challenges, such as learn-
ing world models [Kipf et al., 2020; Locatello et al., 2020;
Ke et al., 2019; Brehmer et al., 2022; Zhao et al., 2022], de-
confounding the influence of hidden variables [Bareinboim et
al., 2015; Zhang and Bareinboim, 2016], off-policy evalua-
tion or imitation learning under missing variables [Buesing
et al., 2019; Namkoong et al., 2020; Kumor et al., 2021;
Ruan et al., 2023], and improving sample efficiency [Latti-
more et al., 2016; Wang et al., 2021; Pitis et al., 2020].

Causal graphical models can offer high-level inductive bi-
ases for deep reinforcement learning. In particular, one can
view the low-dimensional feature space extracted by causal
representation learning as causal state variables and assume
discovered causal diagrams may capture the structure of
causal mechanisms. When the learned causal diagrams are
faithful or ground truth graphs are provided, causal diagrams
have been utilized to identify irrelevant state variables by ap-
plying graph separation criteria, resulting in improved sam-
ple efficiency in model-based reinforcement learning [Wang
et al., 2022; Zhang et al., 2019; Huang et al., 2022]. Fur-
thermore, when causal discovery successfully learns not only
the structure but also the parameters, applying dynamic pro-
gramming on a learned transition model directly solves the
problem and shows promising results in simple environments
[Kipf et al., 2020; Ke et al., 2021].

From a sequential decision-making perspective, it is nat-
ural to handle causal variables as state variables, as in a
factored state Markov decision process (FMDP) [Boutilier
et al., 1999; Guestrin et al., 2003] which uses a dynamic
Bayesian network (DBN) [Dean and Kanazawa, 1989; Mur-
phy, 2002] to describe underlying state transitions. Follow-
ing this perspective, we focus on the usage of causal dia-
grams for online model-free reinforcement learning agents
while assuming that causal diagrams can be learned during
the pre-training stages in causal representation learning or
causal discovery. Rather than treat an action as a passive la-
bel of an unknown state transition function embedded inside
the environment, we assume that the agent makes a deliberate
choice among available actions and knows the direct effect of
performing an action in the factored causal state representa-
tion, following the common assumption that the state space is
known to the agent. In other words, the agent knows in ad-



(a) Causal Graph (b) Dynamic Structural Causal Model (c) Factored MDP

Figure 1: Example of Graphs with 5 State Variables. Figure 1a shows a causal graph with five variables x1, x2, x3, x4, and y. The red dotted
bi-directed arc indicates that there exists an unobserved confounding variable between x1 and x2. Figure 1b shows a dynamic structural
causal model between time steps t and t ` 1. The blue arcs represent the influence from the previous time step t, and we assume that
causal diagrams over the variables at two time steps have a restricted structure where unobserved confounders do not involve state transitions.
However, we allow arcs within the same time steps. Figure 1c shows a popular factored MDP template that encodes equivalent information
with three additional action variables at

1, at
2, and at

3. We also added ct that encodes deterministic constraints over the action variables. The
green arcs are introduced to encode the scope of policy functions and auxiliary constraints over the action variables.

vance how any of its actions would intervene in the causal
states and replace default causal mechanisms in the envi-
ronment, although directly modifying state transitions them-
selves is out of reach. This allows for not only reducing the
size of the action space relative to the number of all possible
combinations of changes but also makes an explicit connec-
tion to action models in high-level representations, effectively
capturing the causal structure in formal or natural languages.

We make the following contributions in this work: (1)
We extend a causal sequential decision-making paradigm –
FMDP and MDP with unobserved confounders (MDPUC)
[Zhang and Bareinboim, 2022] – to accommodate the concept
of action as intervention. The choice of extending MDPUC
addresses the issue around bi-directed arcs in learned causal
diagrams due to imperfectness in graph learning techniques
that cannot detect all the causal directions, or causal vari-
able discovery that fails to identify all the necessary causal
variables. (2) We propose how formal high-level action mod-
els can be mapped to the action space in an RL environment
as a vector of interventions to the causal state variables, and
demonstrate that such a causal action space, mapped from
high-level action models, factors out implicit inference tasks
embedded in the environment, such as determining whether
the agent action is executable in the environment by checking
the precondition of the action. (3) We show how to decom-
pose the value function of factored state MDPUC, one per in-
tervention variable, under the action as intervention idea, and
utilize a value decomposition network architecture [Sunehag
et al., 2018] for reducing the size of the action space, with
encouraging preliminary evaluation results.

2 Background
2.1 Causal Graphical Models
In this section, we introduce notation and review basic defini-
tions of the causal graphical model framework [Pearl, 2009].

We use an uppercase letter to denote a random variable (X),
a lowercase letter to denote a value (X “ x) from its do-
main dompXq, and a set of variables in boldface (X) and a
set of value assignments is also in lowercase boldface x. The
cardinality of a set X is denoted by |X|, and the scope of a
function f is denoted by scpfq.

Structural Causal Model
A structural causal model (SCM) M is a tuple xV,U,F , P y,
where V is a set of endogenous variables, U is a set of ex-
ogenous variables, F is a set of functions or structural assign-
ments tfV | V P Vu such that V Ð fV pPAV ,UV q where
PAV Ď V and UV Ď U, and P pUq is a joint probability
function for the mutually independent exogenous variables.
The exogenous variables U are also called hidden variables
or background variables that are not accessible to the agent.
Then, an SCM induces a joint distribution P pVq over en-
dogenous variables V as

P pVq “
ÿ

UPU

”

ź

V PV

P pV | PAV ,UV q

ı

¨ P pUq. (1)

A causal diagram G associated with M is a directed
acyclic graph (DAG) defined over the nodes associated with
variables V and U. For a node X in G, papXq and anpXq

denotes a set of parent nodes and a set of ancestor nodes, re-
spectively. For a set of nodes X, we take the union of sets
associated with individual variables, for example, papXq “

YXPXpapXq. For each fV P F , we introduce directed edges
from the scope of fV to V , namely, papV q “ PAV Y UV .
Given G, a path from X to Y is a sequence of edges without
revisiting the same node. We say two sets of nodes X and Y
are d-separated by Z in G if every path from nodes in X to
nodes Y is blocked by nodes in Z, denoted by pX |ù Y | ZqG .

Interventions in Structural Causal Model
A causal graphical model is a collection of modular and inde-
pendent mechanisms fV , and we may intervene on a variable



(a) Action Language A (b) STRIPS Action Operator (c) Structural Assignments

Figure 2: Examples of High-Level Action Description. Three examples show the description of high-level action pickup block b1 on table.
Figure 2a shows an informal action expression in action language A, Figure 2b shows a STRIPS operator encoding the same information,
and Figure 2c shows a collection of structural assignments equivalent to the previous action descriptions.

X P V such that the mechanism fX follows a different one
denoted by a regime indicator σX that specifies the change
of the conditional probability P

`

X | papXq;σX

˘

[Didelez et
al., 2006]. An atomic intervention fixes the value of X to x
by using the do-operator, and a conditional intervention fixes
the value of X according to the previously observed values of
Z,

P
`

X |papXq;σX “ dopX “ gpZqq
˘

“ I
`

X “ gpZq
˘

, (2)

where I is the indicator function returning 1 if the argument
evaluates true and 0 otherwise. We define a strategy σσσX as
a set of regime indicators tσX | X P Xu. We will often
abuse the notation of the do-operator such that dopX “ σσσXq

denotes the intervention following a strategyσσσX. We also use
a subscript notation for interventions, PσX

`

X | papXq
˘

for
P
`

X | papXq; dopX “ σXq
˘

, which can be written by

PσσσX

`

V
˘

“
ÿ

U

”

ź

V PVzX

P
`

V | papV q
˘

ı

¨

”

ź

XPX

PσX

`

X | papXq
˘

ı

¨ P pUq. (3)

Identifiability of Causal Effects

For any arbitrary DAG G associated with an SCM M, we
can reduce the graph topology of G via latent projection such
that exogenous variables U P U introduce a bi-directed edge
between endogenous variables Vi, Vj P V if the direction to-
ward Vi and Vj are opposite and there is no converging arrows
between an exogenous node along the path [Pearl and Verma,
1995]. Figures 1a and 1b show such reduced diagrams. In
the presence of bi-directed edges in G, V can be partitioned
into sets, called c-components, each c-component is a set of
nodes that are connected only through bi-directed edges [Tian
and Pearl, 2002]. We also define c-factor as a collection of
functions in the same c-component. Then, P pVq can be fac-

torized over the c-factors denoted by Q
“

S
‰

as

P pVq “
ź

ViPS0

P
`

Vi|papViq
˘

ź

iPt1..ku

Q
“

Si

‰

pVq,

Q
“

Si

‰

pVq “
ź

V PSi

P pV |papV qq
ÿ

UPAnUpSiq

P pU |papUqq, (4)

where a sequence of numbers from 1 to K is denoted by
t1..Ku, Si is a c-component, Q

“

Si

‰

is a c-factor, AnU
pSjq is

a set of exogenous ancestor nodes
`

U X AnpSjq
˘

. Finally, a
causal effect on outcome variables Y Ă V subject to an inter-
vention X Ă V under condition variables Z can be written
as PX

`

Y | Z
˘

. Informally, we say a causal effect is iden-
tifiable if we can express the causal effect only in terms of
endogenous variables V. The importance of c-components
in causal graphical models is due to the fact that the iden-
tifiable causal effects can be expressed by c-factors using
complete identification algorithms [Tian and Pearl, 2002;
Shpitser and Pearl, 2006; Huang and Valtorta, 2006; Tian,
2008].

2.2 Action Models
High-Level Action Models
In a real-world environment, especially in a multi-task RL
setting, an agent may have a class of tasks that share the same
state space but have varying action spaces, or it could ac-
quire or lose skills along the way while solving tasks. Such
multi-task action spaces show more complex action structures
than flat action labels, and if we ignore inherent structures
in the action space, the number of action labels may grow
combinatorially due to the compositional nature; this is com-
monly observed in popular robotics domains or text-based in-
teractive environments, where an action can be composed of
more elementary actions or elements [Kootbally et al., 2015;
Correa and Bareinboim, 2020]. Note that we could still define
state transition probability per action labels as done in usual
MDP formulations, but incorporating causal models handles
individual mechanisms in a more explicit manner.

High-level description of such tasks or skills either in natu-
ral language or in formal languages often captures the causal



structure, namely the changes in the states as a consequence
of applying an action. Figure 2 shows a typical action de-
scription of pickup block on table in the blocks world do-
main, where Figure 2a shows a description 1 following the
action language A [Gelfond and Lifschitz, 1998] and Figure
2b shows an equivalent STRIPS action operator [Fikes and
Nilsson, 1971].

Structural Assignments from Action Model
Although those action descriptions are not expressed in terms
of structural assignments in causal graphical models, it is not
difficult to see that action in formal action description lan-
guages can be translated into structural assignments. In ac-
tion language A, action A is a collection of expressions in the
form “A causes X if Z”, where X is an effect literal and Z is
a conjunction literal for the precondition 2. Given an action A
in action language A, we collect effect literals X and a pre-
condition expression Z. Then, structural assignments σσσpA,Xq

can be written as a collection of conditional interventions,
σpA,Xiq “ do

`

Xi “ πXi
pZq

˘

, where Xi P X is a Boolean
variable associated with effect literals (effpÃqq, Z is a set
of Boolean variables associated with a precondition expres-
sion (prepÃq) for an effect literal Xi, and πXi

is a Boolean
function. Although we only show the simplest translations,
other expressions in richer action languages [Gelfond and Lif-
schitz, 1998], or action operators in planning domain defi-
nition languages [Fikes and Nilsson, 1971; Pednault, 1989;
McDermott et al., 1998] can also be translated into structural
assignments in a similar manner 3.

Note that variable binding between a structural causal
model and a high-level formal action model was performed
in a syntactic manner. When such high-level action descrip-
tion is given in informal natural language texts, we may ex-
tract and bind causal variables and statements using natural
language techniques, which could be a potential direction for
future work around causal action representation learning.

3 Causal Factored Markov Decision Processes
In this section, we extend a factored state Markov deci-
sion process (FMDP) following prior work on a structural
causal model framework in the presence of unobserved con-
founders [Zhang and Bareinboim, 2016; Zhang and Barein-
boim, 2022].

3.1 Dynamic Structural Causal Models
Similar to dynamic Bayesian networks (DBN) [Dean and
Kanazawa, 1989; Murphy, 2002] and (dynamic) influence
diagrams [Howard and Matheson, 2005] that replicate a
graphical model over unrolled time steps, we define a dy-
namic structural causal model (DSCM) as a pair of SCMs

1We show informal textual descriptions and skip defining all log-
ical foundations behind formal languages, hoping that this example
is intuitive enough to understand the basic idea.

2In propositional logic, a literal is either a positive or negative
atom, where an atom is a single proposition. Atoms can be viewed
as Boolean random variables.

3A translation from a STRIPS operator to structural assignments
is provided in [Pearl, 2009].

xM0,MÑy, where M0 is an SCM inducing the probabil-
ity distribution at time t “ 0 and MÑ induces the transition
probability from time step t to t ` 1. M0 and MÑ share the
same set of variables V and U, and they are unrolled over
time steps, Vt and Ut.

It is known that an arbitrary choice of the transition proba-
bility P pVt`1,Ut`1 | Vt,Utq may result in a c-component
that spreads over all time steps [Zhang and Bareinboim, 2016;
Srinivasan et al., 2021; Bruns-Smith, 2021]. Following the
standard assumptions in MDPs with unobserved confounders
(MDPUC) [Zhang and Bareinboim, 2016; Zhang and Barein-
boim, 2022], we restrict the causal structure in DSCM such
that exogenous variables can only influence variables within
the same time step, and transition probabilities do not depend
on exogenous variables. Namely,

P pVt`1,Ut`1 | Vt,Utq “ P pVt`1 | Vt,Ut`1qP pUt`1q,

P pV0,U0q “ P pV0 | U0q ¨ P pU0q. (5)

3.2 Causal FMDP with Unobserved Confounders
Next, we define a factored state MDPUC with unobserved
confounders (FMDPUC) as a tuple xS,A, P 0, PÑ,R, γy rel-
ative to a DSCM xM0,MÑy. The state space S is the prod-
uct space of all variables, p

Ś

ViPV Viq
Ś

p
Ś

UiPU Uiq, and
the action space A is the product space of all intervention
variables X Ď V, p

Ś

XiPX Xiq.
Before defining the state transition probability function

PÑ, let us consider a strategy σσσXt`1 in MÑ and its asso-
ciated causal diagram GÑ. For a set of intervention variables
Xt`1 at time t ` 1, a partial order OÑ over the variables
in MÑ consistent with the topological order in GÑ can be
written as

OÑ :“ Zt`1
0 ă Xt`1

1 ă ¨ ¨ ¨ ă Zt`1
K´1 ă Xt`1

K ă Zt`1
K ,

(6)
where Vt Ď Zt`1

0 and Zt`1
i Ď

`

Vt Y Vt`1
˘

zXt`1. Given
an intervention strategy σσσXt`1 comprised of a sequence of
conditional interventions

`

σXt`1
1

, σXt`1
2

, . . . , σXt`1
K

˘

, which
also follows the topological order OÑ, we define σXt`1

i
as a

function over the variables that precede Xt`1
i in OÑ,

σXt`1
i

“ πXt`1
i

`

Zt`1
0 Y p

i´1
ď

j“1

Zt`1
j Y Xt`1

j q
˘

. (7)

We define a policy of FMDPUC as a collection of func-
tions associated with σσσXt`1 , πππXt`1 “ tπXt`1

i
| Xt`1

i P

Xt`1u, and denote the set of all possible policies by Π. We
define policy scope [Lee and Bareinboim, 2020] of πππXt`1

or σσσXt`1 by SCπππXt`1 “ tpXt`1
i , scpπXt`1

i
qq | Xt`1

i P

Xt`1u, and denote a set of intervention variables and a set
of condition variables by XπππXt`1 “ Xt`1, and CπππXt`1 “
Ť

Xt`1
i PXt`1 scpπXt`1

i
q. Note that not every realization of

the intervention strategy is feasible in the actual environment,
as there could be constraints imposed on the combinations of
intervention variables, or a certain condition in some states
may prevent changing the value of some intervention vari-
ables. In practice, such invalid interventions are often han-
dled implicitly by an environment as invalid actions, resulting



in no change in the environment. Since we define FMDPUCs
through DSCM and actions are interventions on the environ-
ment states, which is not merely an action label that indirectly
relates to some underlying intervention, it is more natural for
the agent to restrict the action space such that it only defines
feasible interventions4.

In this paper, we focus on stationary policies, and there-
fore we drop superscripts indicating time steps in σσσXt`1 and
πππXt`1 if it is clear from the context. The state transition prob-
ability PÑ is induced by the interventional distribution sub-
ject to πππX in MÑ,

PÑ
Xt`1

`

Vt`1,Ut`1 | Vt,Ut
˘

“
ź

V t`1RXt`1

P
`

V t`1 | papV t`1q
˘

ź

Xt`1
i PXt`1

πXi

`

Xt`1
i | scpπXt`1

i
q
˘

ź

Ut`1PUt`1

P
`

U t`1
˘

, (8)

where papV tqĎVtYVt`1YUt`1, and scpπXi
qĎVtYVt`1.

P 0 is an initial state distribution induced by M0,

P 0
`

V0,U0
˘

“
ź

V 0PV0

P
`

V 0 | papV 0q
˘

¨
ź

U0PU0

P
`

U0
˘

, (9)

where papV 0q Ď V0 Y U0. R is a set of reward functions
defined over the endogenous variables V,

R “
␣

Rt`1
i pVt

i ,X
t`1
i q |Vt

i Ď Vt,Xt`1
i ĎXt`1, iPt1..|R|u

(

,
(10)

and γ is a discount factor between 0 and 1.

3.3 Dynamic Programming with Action Models
Next, we generalize the actions in FMDPUC with the inter-
vention strategies derived from high-level action description
models. Given a high-level action model, each high-level ac-
tion A in a collection A can be translated into an interven-
tion strategy σσσpA,XAq, where XA denotes the effect variables
(effpAq) of the high-level action A. Then, decisions made by
an agent at each time involve selecting a high-level action A
in each state. A decision rule ∆ is a mapping from endoge-
nous variables V to the high-level action space A, where each
action A translates into a strategy σσσpA,XAq that intervenes on
XA, and we denote a space of all decision rules by ∆∆∆. Recall
that in the previous FMDPUC formulation, we derived a pol-
icyπππX from a single strategyσσσX. With an action model, each
action A induces σσσpA,XAq associated with a set of determin-
istic functions πππpA,XAq “ tπpA,Xq | X P XAu that intervene
on effect variables XA. In this setting, an agent maximizes
the discounted sum of rewards,

max
∆P∆∆∆

ÿ

Vt0..8u

ÿ

Ut0..8u

“

8
ź

t“0

Pσσσ∆

`

Vt`1|Vt,Ut`1
˘

P
`

Ut`1
˘‰

¨
“

P
`

V0,U0
˘‰

¨
“

8
ÿ

t“0

γtRtpVt,Xt`1qq
‰

, (11)

4Action spaces in factored MDP [Boutilier et al., 1999; Guestrin
et al., 2003] as potentially represented by influence diagrams
[Howard and Matheson, 2005] are also defined by introducing fac-
tored action variables; in this work, these are intervention variables
in a causal graphical model.

where we abused notations: RtpVt,Xt`1q is the total sum of
local rewards over local scopes Vt

i ĎVt and Xt`1
i ĎXt`1,

namely,
ř|R|

i“1 R
t
ipV

t
i ,X

t`1
i q, and σσσ∆ is an intervention strat-

egy determined by ∆, namely, σσσ∆pVtq. Xπππ∆
denotes the set

of intervention variables subject to ∆ applied in the current
state, Xπππ∆pVtq

Ď Xt`1. Note that the state transition proba-
bility remains Markovian regardless of the presence of unob-
served variables Ut`1, and the value function of a stationary
decision rule ∆ can be written by

V∆pvq “ Eσσσ∆

“

8
ÿ

h“0

γhR
`

Vh`t,Xπππ
∆pVh`tq

˘

|Vt“v
‰

“
ÿ

Vt`1,Ut`1

PÑ
Xπππ∆pvq

`

Vt`1,Ut`1|vqrRpv,Xπππ∆pvq
q ` γV∆pVt`1qqs,

(12)

and the Q-function can also be written by

Q∆pv, Aq “
ÿ

Vt`1,Ut`1

PÑ
XπππA

`

Vt`1,Ut`1|vq¨

rRpv,XπππA
q ` γV∆pVt`1qqs. (13)

Then, we can write the Dynamic Programming operator T∆∆∆
for a stationary decision rule ∆∆∆ by

T∆∆∆Vpvq“
ÿ

V1,U1

Pσσσ∆

`

V1,U1|v
˘“

R
`

v,Xπππ∆pvq

˘

V̀pV1q
‰

. (14)

The above equation shows that evaluating decision rule ∆ de-
pends on the identification of the causal effects on the reward
outcomes. To see this, we introduce an outcome variable Y
that takes all the values of the function Rpv,Xπππ∆pvq

q`VpV1q

as its domain, and rewrite conditional expectations by

Eσσσ∆
rY |V“vs “

ÿ

Y

Y
ÿ

V1

ÿ

U1

“

Pσσσ∆

`

Y,V1,U1 |V“v
˘‰

.

(15)
Eσσσ∆rY |V“vs can be estimated without confounding bias if
and only if the causal effect Pσσσ∆pY |V“vq is identifiable.

In Figure 1b, an agent could apply conditional interven-
tions on variables Xt`1

1 , Xt`1
2 , and Xt`1

3 by conditioning on
the parent variables drawn with blue edges. We can check
that the conditional interventions on a single variable X1

or two variables (X1, X2) are not identifiable. When all
the causal effects of actions are identifiable, we could solve
FMDPUC as a dynamic influence diagram if model parame-
ters are known. In typical model-based reinforcement learn-
ing approaches, we learn identifiable model parameters to
optimize the policy. In the following part, we introduce in-
ductive bias for a model-free reinforcement learning agent to
leverage the causal structure of the environment and the ac-
tion model.

4 Decomposing Value Functions
In this section, we show a relaxation scheme that decom-
poses the value function defined over the joint of all vari-
ables into a collection of functions defined per each variable.
Then, we utilize the existing value decomposition network
[Sunehag et al., 2018] for implementing multiple online deep



Q-learning (DQN) subagents for solving decomposed FMD-
PUC. We also show a preliminary result of applying a decom-
position scheme.

4.1 Decomposing Value with Lower Bounds
We observe that Q∆pv, Aq in Eq. (13) can be rewritten as

Q∆pv, Aq“
ÿ

V1,U1

PÑ
XπππA

pV1,U1|vq
“

Rpv, Aq`γVpV1q
‰

, (16)

and we can rewrite PÑ
XπππA

pV1,U1 | vq by

P pU1q
ź

V 1
i PV1

P
`

V 1
i |papV 1

i q
˘

qpV 1
i , papV 1

i qq, (17)

with each qpV 1
i , papV 1

i qq can be expressed by

qpV 1
i , papV 1

i qq “

„ I
`

V 1
i “ πpA,V 1

i qpvq
˘

P
`

V 1
i | papV 1

i q
˘

ȷI
`

V 1
i PeffpAq

˘

, (18)

where I
`

V 1
i P effpAq

˘

denotes an indicator function that re-
turns 1 if V 1

i is in the effect variables of action A (effpAq)
and 0 otherwise, and I

`

V 1
i “πpA,V 1

i qpvq
˘

denotes an indica-
tor function for fixing the value of V 1

i to the outcome of ac-
tion A depending on its precondition values in v. Note that
Q∆pv, Aq is an action-value function defined over the inter-
vention distribution PÑ

XπππA
pV1,U1|vq subject to action A.

Next, we will decompose Q∆pv, Aq as a weighted sum of
action value functions Q∆pv, A;V 1

j q subject to a single vari-
able intervention V 1

j for all V 1
j P V1. Observing that the indi-

cator functions in q
`

V 1
i , papV 1

i q
˘

can be extended by
“

I
`

V 1
i “ πpA,V 1

i qpvq
˘‰I

`

V 1
i PeffpAq

˘

“
“

I
`

V 1
i “ πpA,V 1

i qpvq
˘‰I

`

V 1
i PeffpAq

˘

`I
`

V 1
i PeffpAqXtV 1

j u

˘

,

(19)

we can find a lower bound of PÑ
XπππA

pV1,U1 |vq in terms of
PÑ
V 1
j

pV1,U1|vq as

PÑ
XπππA

pV1,U1|vq ě

„

PÑ
V 1
j

pV1,U1|vqIpV 1
j P effpAqq

`PÑpV1,U1|vqIpV 1
j R effpAqq

ȷ

¨
ź

V 1
i PV1

„

I
`

V 1
i “ πpA,V 1

i qpvq
˘

ȷI
`

V 1
i PeffpAq

˘

. (20)

Introducing a positive weight wj per V 1
j that sums to 1 over

all variables in V1, the global Q-function Q∆pv, Aq can be
bounded below by the following weighted sum of the local
Q-functions Q∆pv, A;V 1

j q over all V 1
j P V1,

Q∆pv, Aq ě

|V1
|

ÿ

j“1

wjQ∆pv, A;V 1
j q

¨
ź

V 1
i PV1

„

I
`

V 1
i “ πpA,V 1

i qpvq
˘

ȷI
`

V 1
i PeffpAq

˘

, (21)

where Q∆pv, A;V 1
j q is

ÿ

V1,U1

„

PÑ
V 1
j

pV1,U1|vq ¨ IpV 1
j P effpAqq ` PÑpV1,U1|vq¨

IpV 1
j R effpAqq

ȷ

¨
“

Rpv, Aq ` γVpV1q
‰

. (22)

Indicator functions ensure the consistency of the value of
Q∆pv, A;V 1

j q with respect to the interventions subject to ac-
tion A. In Eq. (21), if any value assignment to V 1

i is not con-
sistent with the effect of the action, the overall value becomes
zero. In Eq. (22), indicator functions switch the probabil-
ity between the intervention distribution and the observation
distribution depending whether V 1

j is an effect variable of A
or not. Namely, Q∆pv, A;V 1

j q computes the value using the
intervention distribution PÑ

V 1
j

pV1 | vq if V 1
j is in the effect

variables of action A. Otherwise, Q∆pv, A;V 1
j q uses the ob-

servation distribution PÑpV1 | vq and When the intervention
distribution PÑ

V 1
j

pV1 | vq is not identifiable, we may generate
lower bounds in Eq. (20) using an alternative set of local Q-
functions that are defined only over identifiable intervention
distributions.

4.2 Value Decomposition Network
In multi-agent reinforcement learning, one popular approach
is training each agent in a centralized manner and executing
individual agents independently. Although our problem is a
single agent FMDPUC, we can reformulate the problem as a
decentralized MDP problem based on Eq. (21). Namely, we
learn individual local Q-functions, Q∆pv, A;V 1

j q, in a cen-
tralized manner by maximizing the lower bound by utilizing
the value decomposition network (VDN) architecture [Sune-
hag et al., 2018]. Figure 3 shows a value decomposition net-

Figure 3: Examples of Value Decomposition Network. The network
architecture follows the decomposition shown in Eq. (21) There are
two variables V1 and V2, where Q∆pv, A;V 1

1q corresponds to the
DQN subagent associated with the local value function subject to
the intervention on V 1

1 and Q∆pv, A;V 1
1q corresponds to the sub-

agent associated with the intervention on V 1
2 . The last subagent

Q∆pv,v1;ϕq is associated with the local value function defined over
the observational distribution in the absence of intervention vari-
ables, and therefore, it learns the value given endogenous state vari-
ables v and v1 in two consecutive time steps.



Figure 4: Comparison of Discounted Sum of Returns. The x-axis is
the total number of training steps, and the y-axis is the discounted
accumulated rewards. In the experiment, the discounting factor, the
maximum episode length, and the highest accumulated discounted
return was 0.99, 1000, and 400, respectively. The blue curve cor-
responds to VDN with the action space with at most 1 intervention
variable. The orange curve vdn-lb shows the lower bounds shown
in Eq. (21). The following three curves are associated with DQNs,
varying the maximum number of intervention variables from 1 to 3.

work in a small example with two endogenous variables V1

and V2.
In model-free causal reinforcement learning, there are

mainly two different aspects compared with multi-agent re-
inforcement learning. The first difference is that FMDPUC
is not a partially observable environment, and therefore all
subagents share the observed state variables v. In Figure 3,
we see that all subagents receive v as input to the local DQN
subagent, and the subagent Q∆pv,v1;ϕq receives additional
state variables v1. In the absence of a dynamics model for
predicting v1, we generate the next state v1 using the action
model by applying action A in v. The second difference is
the action space. The action space of FMDPUC is defined
relative to the high-level action model A, and we cannot exe-
cute arbitrary combinations of the individual decisions made
by each subagent as done in the multi-agent setting. Such
a restriction is, in part, already reflected in the decomposi-
tion lower bound by indicator functions in Eq. (21). To select
the best action given local Q-functions during the training or
testing phase, there are two possible approaches: either we
iterate over all applicable actions in A and evaluate the value
for each action A and select the best one, or we project the
intervention vector collected from subagents to a set of valid
actions that are consistent with the intervention strategy and
achieve a higher value. When we implement a model-free
reinforcement learning agent using DQN, this choice of uti-
lizing VDN greatly reduces the action space since the original
DQN agent must enumerate all possible combinations of in-
terventions. In the decomposed architecture, the action space
remains bounded per individual subagent.

4.3 Preliminary Results
We evaluated a modification of the chemistry environment
[Ke et al., 2021] in sprites world [Watters et al., 2019]. We
used a causal graph similar to the one shown in Fig 1b, with

four objects, each having 2 colors, say black and white. The
reward was given by matching the colors of two pairs, (x1,
x2) and (x3, x4). Specifically, if both colors are black, the
reward is 2, and if both are white, the reward is 1. Although
this is a small toy environment, flattening the action space re-
sults in a total of 9, 33, and 65 action labels for the flat DQN
agent when we increase the number of objects that the agent
can select from 1 to 3 in a single step. However, our approach
bounds the number of intervention variables to 1 and fixes the
size of the action space to 2 per subagent regardless of such
variations in the action space. Figure 4 compares the dis-
counted sum of the rewards from two architectures: (1) DQN
with 4 hidden layers, each in dimension 64 by 64, followed by
RELU activation function, and (2) VDN with 4 DQNs, each
only has 1 hidden layer. We averaged over 10 trials, and we
see that VDN shows comparable performance or outperforms
DQN. Next, we also observe that VDN trained on the action
space that only allows changing at most one variable at each
step can be transferred to other environments in the out-of-
distribution action spaces. For the environment constrained
to select precisely two and three variables at each step, the
average over 20 episodic discounted accumulated returns is
357.68 and 350.03, respectively. Lastly, the zero-shot trans-
fer performance in the action spaces identical to DQN-2vars
and DQN-3vars is 355.24 and 349.0, respectively.

5 Conclusion
We presented a model-free, online, causal reinforcement
learning approach, focusing on an extension of Q-learning-
based methods. The main idea is to utilize causal diagrams
with unobserved confounders, which are often ignored in re-
lated prior work, to extend the factored Markov decision pro-
cess formulation. Unlike the traditional approach of intro-
ducing action variables and policy functions into the MDP
template, we directly extend the action space as interventions
originated from agent action models. Such a mapping from
agent actions to interventions could also be learned during
causal discovery since causal graph learning requires inter-
vention data from the agent, or we could directly map the
high-level action into interventions in the structural causal
models, as demonstrated in this paper. One advantage of
the presented formulation is that we can decompose the value
function of FMDPUC with a set of local value functions using
causal diagrams, which may mitigate the confounding bias
during policy learning if the local intervention distributions
are all identifiable. Additionally, we show problem decompo-
sition by using the lower bounds of the Q-function such that
we reformulate a single-agent learning problem into a multi-
agent learning formulation. Although it is approximate, this
reformulation reduces the action space exponentially, result-
ing in encouraging preliminary evaluation results compared
to a monolithic DQN agent. We tested our approach utilizing
the value decomposition network, the most basic multi-agent
reinforcement learning architecture. Given the close connec-
tion with solving FMDPUC problems with causal diagrams,
it could be fruitful for future work to explore more powerful
neural architectures that are popular in the multi-agent rein-
forcement learning literature.



References
[Bareinboim et al., 2015] Elias Bareinboim, Andrew Forney,

and Judea Pearl. Bandits with unobserved confounders:
A causal approach. In Advances in Neural Information
Processing Systems, 2015.

[Boutilier et al., 1999] Craig Boutilier, Thomas Dean, and
Steve Hanks. Decision-theoretic planning: Structural as-
sumptions and computational leverage. Journal of Artifi-
cial Intelligence Research, 11:1–94, 1999.

[Brehmer et al., 2022] Johann Brehmer, Pim De Haan,
Phillip Lippe, and Taco S Cohen. Weakly supervised
causal representation learning. In Advances in Neural In-
formation Processing Systems, 2022.

[Bruns-Smith, 2021] David A Bruns-Smith. Model-free and
model-based policy evaluation when causality is uncertain.
In International Conference on Machine Learning, 2021.

[Buesing et al., 2019] Lars Buesing, Theophane Weber, Yori
Zwols, Sebastien Racaniere, Arthur Guez, Jean-Baptiste
Lespiau, and Nicolas Heess. Woulda, coulda, shoulda:
Counterfactually-guided policy search. In International
Conference on Learning Representation, 2019.

[Correa and Bareinboim, 2020] Juan Correa and Elias
Bareinboim. A calculus for stochastic interventions:
Causal effect identification and surrogate experiments. In
Uncertainty in Artificial Intelligence, 2020.

[Dean and Kanazawa, 1989] Thomas Dean and Keiji
Kanazawa. A model for reasoning about persistence and
causation. Computational intelligence, 5(2):142–150,
1989.

[Didelez et al., 2006] Vanessa Didelez, Philip Dawid, and
Sara Geneletti. Direct and indirect effects of sequential
treatments. In Uncertainty in Artificial Intelligence, 2006.

[Fikes and Nilsson, 1971] Richard E Fikes and Nils J Nils-
son. Strips: A new approach to the application of theorem
proving to problem solving. Artificial intelligence, 2(3-
4):189–208, 1971.

[Gelfond and Lifschitz, 1998] Michael Gelfond and
Vladimir Lifschitz. Action languages. Linköping
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