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ABSTRACT

The representation of objects is the building block of higher-level concepts. In-
fants develop the notion of objects without supervision, for which the prediction
error of future sensory input is likely a major teaching signal. We assume that the
goal of representing objects distinctly is to allow the prediction of the coherent
motion of all parts of an object independently from the background while keeping
track of relatively fewer parameters of the object’s motion. To realize this, we pro-
pose a framework to extract object-centric representations from single 2D images
by learning to predict future scenes containing moving objects. The model learns
to explicitly infer objects’ locations in a 3D environment, generate 2D segmenta-
tion masks of objects, and perceive depth. Importantly, the model requires no su-
pervision or pre-training but assumes rigid-body motion and only needs observer’s
self-motion at training time. Further, by evaluating on a new synthetic dataset with
more complex textures of objects and background, we found our model overcomes
the reliance on clustering colors for segmenting objects, which is a limitation for
previous models not using motion information. Our work demonstrates a new
approach to learning symbolic representation grounded in sensation and action.

1 INTRODUCTION

Visual scenes are composed of various objects in front of backgrounds. Discovering objects from
2D images and inferring their 3D locations is crucial for planning actions in robotics (Devin et al.,
2018; Wang et al., 2019) and this can potentially provide better abstraction of the environment for
reinforcement learning (RL), e.g. Veerapaneni et al. (2020). The appearance and spatial arrangement
of objects, together with the lighting and the viewing angle, determine the 2D images formed on the
retina or a camera. Therefore, objects are latent causes of 2D images, and discovering objects is
a process of inferring latent causes (Kersten et al., 2004). The predominant approach in computer
vision for identifying and localizing objects rely on supervised learning to infer bounding boxes
(Ren et al., 2015; Redmon et al., 2016) or pixel-level segmentation of objects (Chen et al., 2017).
However, the supervised approach requires expensive human labeling. It is also difficult to label
every possible category of objects. Therefore, an increasing interest has developed recently in the
domain of object-centric representation learning (OCRL) to build unsupervised or self-supervised
models to infer objects from images, such as MONet (Burgess et al., 2019), IODINE (Greff et al.,
2019) slot-attention (Locatello et al., 2020), GENESIS (Engelcke et al., 2019; 2021), C-SWM (Kipf
et al., 2019), mulMON (Nanbo et al., 2020) and SAVi++(Elsayed et al., 2022).

The majority of the early OCRL works are demonstrated on relatively simple scenes with objects
of pure colors and background lacking complex textures. As recently pointed out, the success of
several recent models based on a variational auto-encoder (VAE) architecture (Kingma & Welling,
2013; Rezende et al., 2014) depends on a capacity bottleneck that needs to be intricately balanced
against a reconstruction loss(Engelcke et al., 2020). Potentially due to the lack of sufficient inductive
bias existing in real-world environments, such methods often fail in scenes with complex textures on
objects and background (Greff et al., 2019). To overcome this limitation, recent works utilized opti-
cal flow (either ground truth or estimated) as prediction target (Kipf et al., 2021) because optical flow
is often coherent within objects and distinct from the background. Similarly, depth often exhibits
sharp changes across object boundaries. When used as an additional prediction target, it further
improves segmentation performance of the slot-attention model (Elsayed et al., 2022). Although
these new prediction targets allow models to perform better in unsupervised object segmentation in
realistic environments with complex textures, these models still pose sharp contrast to the learning

1



Under review as a conference paper at ICLR 2023

ability of the brain: neither depth nor optical flow are available as external input to the brain, yet
infants can learn to understand the concept of object by 8 months old (Piaget & Cook, 1952; Flavell,
1963), with other evidence suggesting this may be achieved as early as 3.5-4.5 months (Baillargeon,
1987). The fact that this ability develops before they can name objects (around 12 months old)
without supervision confirms the importance of learning object-centric representation for develop-
ing higher-level concepts and the gap of current models from the brain. To narrow this gap, this
paper starts with considering the constraints faced by the brain and proposes a new architecture and
learning objective using signals similar to what the brain has access to.

As the brain lacks direct external supervision for object segmentation, the most likely learning signal
is from the error of predicting the future. In the brain, a copy of the motor command (efference copy)
is sent from the motor cortex simultaneously to the sensory cortex, which is hypothesized to facilitate
the prediction of changes in sensory input due to self-generated motion (Feinberg, 1978). What
remains to be predicted are changes in visual input due to the motion of external objects. Therefore,
we assume that the functional purpose of grouping pixels into objects is to allow the prediction of
the motion of the constituting pixels in an object in a coherent way by tracking very few parameters
(e.g., the location, pose, and speed of an object). Driven by this hypothesis, our contribution in
this paper is: (1) we combine predictive learning and explicit 3D motion prediction to learn 3D-
aware object-centric representation from RGB image input without any supervision or pre-training,
which we call Object Perception by Predictive LEarning (OPPLE); (2) we provide a new dataset1
with complex surface texture and motion by both the camera and objects to evaluate object-centric
representation models; we confirm that several previous models overly rely on clustering colors to
segment objects on this dataset; (3) although our model leverages image prediction as a learning
objective, the architecture generalizes the ability of object segmentation and spatial localization to
single-frame images.

2 METHOD

Here, we outline our problem statement then explain details of our model parts, the prediction ap-
proach, and the learning objective. Pseudocode for our algorithm and the details of implementation
are provided in the appendix (A.1, A.2).

2.1 PROBLEM FORMULATION

We denote a scene as a set of distinct objects and a background S = {O1, O2, . . . , OK , B}, where
K is the number of objects in scene. At any moment t, we denote two state variables, the location
and pose of each object from the perspective of an observer (camera), as x(t)

1:K and ϕ
(t)
1:K , where x(t)

k

is the 3-d coordinate of the k-th object and ϕ
(t)
k is its yaw angle from a canonical pose, as viewed

from the reference frame of the camera (for simplicity, we do not consider pitch and roll here and
leave it for future work to extend to 3D pose). At time t, given the location of the camera o(t) ∈ R3

and its facing direction α(t), S renders a 2D image on the camera as I(t) ∈ Rw×h×3, where w×h is
the size of the image. Our goal is to develop a neural network that infers properties of objects given
only a single image I(t) as the sole input without external supervision and with only the information
of the intrinsics and ego-motion of the camera:

{z(t)
1:K ,π

(t)
1:K+1, x̂

(t)
1:K ,p

(t)
ϕ1:K
} = fobj(I

(t)) (1)

Here, z(t)
1:K is a set of view-invariant vectors representing the identity of each object k. “View-

invariant” is loosely defined as |z(t)
k − z

(t+∆t)
k | < |z(t)

k − z
(t)
l | for k ̸= l and ∆t > 0 in most cases,

i.e., the vector codes are more similar for the same object across views than they are for different
objects. π(t)

1:K+1 ∈ R(K+1)×w×h are the probabilities that each pixel belongs to any of the objects or
the background (

∑
k πkij = 1 for any pixel at i, j), which achieves object segmentation. To localize

objects, x̂(t)
1:K are the estimated 3D locations of each object relative to the observer and p

(t)
ϕ1:K

are

the estimated probability distributions of the poses of each object. Each p
(t)
ϕk
∈ Rb is a probability

distribution over b equally-spaced bins of yaw angles in (0, 2π).
1We will release upon publication of the paper
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2.2 PRINCIPLE BEHIND LEARNING OBJECT REPRESENTATION FROM PREDICTION

Our hypothesis is that the notion of object emerges to meet the need of efficiently predicting the
future fates of all parts of an object. With the (to be learned) ability to infer an object’s pose and
location from each frame, the object’s speed of translation and rotation can be estimated from con-
secutive frames, assuming the camera’s self-motion is known. If depth is further inferred for each
pixel belonging to an object, then the optical flow of each pixel can be predicted based on the ob-
ject’s speed and the position of each pixel relative to the object’s center. The pixel-segmentation of
an object essentially prescribes which pixels should move together with the object. With the pre-
dicted optical flow, one can further predict part of the next image by warping the current image. The
parts of the next image unpredictable by warping include surfaces of objects or the background that
are currently occluded but will become visible, and the region of a scene newly entering the view
due to self- or object-motion. These portions can only be predicted based on the learned statistics of
the appearance of objects and background, which we call ”imagination”. In this work, we will show
that with the information of self-motion, knowledge of geometry (rule of rigid-body movement) and
the assumption of smooth object movement, the object representations captured by function fobj and
depth perception can be learned by minimizing the prediction error of the next scene in environments
with motion of both the camera and objects, without supervision.

2.3 NETWORK ARCHITECTURE

To demonstrate the hypothesized principle above, we build our OPPLE networks as illustrated in
Figure 1, which process two consecutive images separately and make prediction for the next image
with the information extracted from them.
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Figure 1: Architecture for the Object Perception by Predictive LEarning (OPPLE) network: Our
method uses three ordered frames. (a) At time t − 1, we only extract the object information which
gives us the object location and pose. At time frame t, we extract depth using a UNet and extract
object information using a modified UNet. (b) Motion information of each object is estimated from
the spatial information extracted for each object at t − 1 and t. Objects between frames are soft-
matched by a score depending on the distance between their latent codes. Self- and object motion
information are used together with object segmentation and depth map to predict the next image by
warping the current image. (c) The segmented object images and depth, together with their motion
information and the observer’s motion, are used by the imagination network to imagine the next
time frame and fill the gap not predictable by warping. (d) The error between the final combined
prediction and the ground truth of the time frame provides teaching signals for all three networks.
Depth perception network. We use a standard U-Net for depth perception function hθdepth that
processes images I(t) and output a single-channel depth map D(t).
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Object extraction network. We build an object extraction network fθobj by modificaiton of a U-Net
(Ronneberger et al., 2015) to extract representation for each object, the pixels it occupies and its
spatial location and pose. A basic U-Net is composed of a convolutional encoder and a transposed
convolutional decoder, while each encoder layer sends a skip connection to the corresponding de-
coder layer, so that the decoder can combine both global and local information. Inside our fθobj , an
image I(t) first passes through the encoder. Additional Atrous spatial pyramid pooling layer (Chen
et al., 2017) is inserted between the middle two convolutional layers of the encoder to expand the
receptive field. The top layer of the encoder outputs a feature vector et capturing the global informa-
tion of the scene. A Long-Short Term Memory (LSTM) network further repeatedly reads in e(t) and
sequentially outputs one vector for an object at a time. Each object vector is then mapped through a
one-layer fully connected network to predict object code z

(t)
k , object location x̂

(t)
k and object pose

probability p
ϕ
(t)
k

, k = 1, 2, · · · ,K. The inferred location is restricted within a viewing angle of 1.2
times the field of view and a bounded distance from the camera. The pose prediction is represented
as log p

ϕ
(t)
k

for numerical stability. Each object code z
(t)
k is then independently fed through the

decoder with shared skip connection from the encoder. The decoder outputs one channel for each
pixel, representing an un-normalized log probability that the pixel belongs to the object k (a logit
map). The unnormalized logit maps for all objects are concatenated with a map of all zero (for the
background), and they compete through a softmax function to output the probabilistic segmentation
map π

(t)
k for the probability that each pixel belongs to any of the objects or the background.

Object-based imagination network. We build an imagination network gθimag also with a modified
U-Net. For each object and the background, the input is concatenated image I(t) and log of depth
log(D(t)) inferred by the depth perception network, both multiplied element-wise by one proba-
bilistic mask from π

(t)
k . The output of the encoder part of the network is concatenated with a vector

composed of the observer’s moving velocity v
(t)
obs and rotational speed ω

(t)
obs, and the estimated ob-

ject location x̂
(t)
k , velocity v̂

(t)
k and rotational speed ω̂

(t)
k before entering the decoder. The decoder

outputs five channels for each pixel: three for predicting RGB colors, one for depth and one for the
probability of the pixel belonging to any object k or background. Each predicted RGB and depth
image are weighted by the probability image and summed to form the final ”imagination”. The
imagined RGB and depth image for the next frame is further combined with the prediction of the
next frame to form the final prediction, detailed in the next section.

2.4 PREDICTING OBJECTS’ SPATIAL STATES

We start with predicting the spatial states, namely 3D location and pose, of each object for t + 1.
If the kth object at t − 1 is the same as the kth object at twe can use the inferred current and
previous locations x̂

(t)
k and x̂

(t−1)
k for that object to estimate its instantaneous velocity (treating

the interval between consecutive frames as the time unit) v̂(t)
k = x̂

(t)
k − x̂

(t−1)
k . Similarly, with

the inferred current and previous pose probabilities of the object, p(t)
ϕk

and p
(t−1)
ϕk

, we can calculate

the likelihood function of its angular velocity ω
(t)
k as p(ϕ

(t)
k , ϕ

(t−1)
k | ω(t)

k = ω). Combining with
a Von Mises prior distribution, we can calculate the posterior distribution of the angular velocity
p(ω

(t)
k | ϕ

(t)
k , ϕ

(t−1)
k ). The location of object k at t+1 can be predicted as x′(t+1)

k = M
(t)
−ωobs

(x̂
(t)
k +

v̂
(t)
k −v

(t)
obs), where v(t)

obs is the velocity of the observer relative to its own reference frame and M
(t)
−ωobs

is the rotational matrices due the observer’s self rotation. Its new probability for pose being equal
to each possible discrete yaw angle bin γ2 can be predicted through p′(ϕ

(t+1)
k + ωobs = γ2) =∑

γ1,ω,γ2−γ1∈
{ω−2π,ω,ω+2π}

p(ω
(t)
k = ω)p(ϕ

(t)
k = γ1), where ωobs is the angular velocity of the observer. Since

we model ϕ(t)
k and ω

(t)
k as probability distributions on discrete bins of angle while ωobs can take

continuous values, we convert p′(ϕ(t+1)
k + ωobs) to p′(ϕ

(t+1)
k ) on the same set of bins as ϕ

(t)
k by

interpolation.

However, there is one important issue: in order to predict the spatial state of each object at t + 1
based on the views at t and t − 1, the network needs to match the representation of an object at
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t from the representation of the same object at t − 1. As the dimensions of features (e.g., shape,
surface texture, size, etc.) grows, the number of possible objects grows exponentially. Therefore, we
cannot simply assume that the kth objects extracted by LSTM from consecutive scenes correspond
to the same object, as this requires learning a consistent order over enormous amount of objects.
Instead, we take a soft-matching approach: we take a subset (10 dimensions) of the object code
in z

(t)
k extracted by f as an identity code for each object. For object k at time t, we calculate the

distance between its identity code and those of all objects at t− 1, and pass the distances through a
radial basis function to serve as a matching score rkl indicating how closely the object k at t matches
each of the objects l at t− 1. The scores are used to weight all the translational and angular velocity
for object k estimated with the equations above, each assuming a different object l were the true
object k at t − 1, to yield the final estimated translational and angular velocity for object k at t.
We additionally introduce a fixed identity code zK+1 = 0 for the background and set the predicted
motion of background to zero.

2.4.1 PREDICTING IMAGE BY WARPING

The next image I(t+1) can be partially predicted by warping the current image I(t) based on the
predicted optical flow of each pixel in I(t). To predict the optical flow, we need to combine inferred
depth of each pixel, inferred probabilities that it belongs to each object and the background, the
estimated motion of each object and the knowledge of the camera’s self-motion. The model assumes
all objects are rigid.

We now consider the fates of all visible pixels belonging to an object. With depth D(t) ∈ Rw×h =
hθ(I

(t)) of all pixels in a view inferred by the Depth Perception network based on visual features
in the image I(t), the 3D location relative to the camera of any pixel m̂(t)

(i,j) at coordinate (i, j)

in the image can be calculated given the focal length d of the camera. Assuming a pixel (i, j)
belongs to object k, the estimated motion information v̂

(t)
k and p(ω

(t)
k | ϕ(t)

k , ϕ
(t−1)
k ) of the object,

together with the current location and pose of the object and the current 3D location m̂
(t)
(i,j) of the

pixel, the 3D location m′(t+1)
k,(i,j) of the pixel at the next moment can be predicted as m′(t+1)

k,(i,j) =

M
(t)
−ωobs

[M
(t)
ω̂k

(m̂
(t)
(i,j)− x̂

(t)
k ) + x̂

(t)
k + v̂

(t)
k − v

(t)
obs], where M (t)

−ωobs
and M

(t)
ω̂k

are rotational matrices

due to the rotation of the observer and the object, respectively, and v
(t)
obs is the velocity of the observer

(relative to its own reference frame at t). In this way, assuming objects move smoothly most of the
time, if the observer’s self motion information is known, the 3D location of each visible pixel can
be predicted. If a pixel belongs to the background, ωK+1 = 0 and vK+1 = 0 (K + 1 is the
background’s index). Given the predicted 3D location, the target coordinate (i′, j′)(t+1)

k of the pixel
on the image and its new depth D′

k(i, j)
(t+1) can be calculated. This prediction of pixel movement

allows predicting the image I ′(t+1) and depth D′(t+1) by weighting the colors and depth of all pixels
predicted to land near each discrete pixel grid of frame t+ 1.

We use the weights of bilinear interpolation to decide how much each source pixel at t contributes to
drawing the four pixel grids surrounding the predicted landing location of that pixel in frame t+ 1,
assuming the pixel fully belongs to one object or the background. Because each pixel may belong
to any of the K object and the background, it has K + 1 potential landing point at t+ 1 each with a
probability prescribed by the segmentation output for that pixel. Therefore, the contribution weight
is further multiplied by the segmentation probability that attributes the source pixel to the object or
the background which would bring the source pixel to the target location at t + 1 (more details in
appendix). The sum of all contribution weights a target pixel receives indicates how much that pixel
can be predicted by warping. When the sum is smaller than 1, the final prediction for the pixel will
be a weighted average of the prediction by warping and by imagination.

2.4.2 IMAGINATION

For the pixels not fully predictable by warping current image, we mix the prediction based on warp-
ing with a prediction learned from the statistical regularity of scenes which we call ”imagination”.
To do so, We learn a function g that “imagines” the appearance I ′(t+1)

kImag ∈ Rw×h×3 and the pixel-
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wise depth D′(t+1)
kImag ∈ Rw×h of each object k or background in the next frame, and weight them with

predicted probabilities that each pixel in the next frame belongs to each object or the background
π′(t+1)

kImag ∈ Rw×h. The function takes as input portion of the current image corresponding to each

object I(t) ⊙ π
(t)
k and logarithm of the inferred depth log(D(t))⊙ π

(t)
k , both extracted by element-

wise multiplying with the probabilistic segmentation mask π
(t)
k , the information of the camera’s self

motion, and the inferred location and motion of that object:

{I ′(t+1)
kImag ,D

′(t+1)
kImag ,π

′(t+1)
kImag} = g(I

(t)
i ⊙ π

(t)
k , log(D(t))⊙ π

(t)
k , x̂

(t)
k , v̂

(t)
k , ω̂

(t)
k , ω

(t)
obs) (2)

The “imagination” specific for each object and the background can then be merged using the weights
prescribed by π′(t+1)

1:KImag: I ′(t+1)
Imag =

∑
k I

′(t+1)
kImag ⊙ π′(t+1)

kImag , and D′(t+1)
Imag =

∑
k D

′(t+1)
kImag ⊙ π′(t+1)

kImag .
This is similar to the way several other OCRL methods (Burgess et al., 2019; Locatello et al., 2020)
reconstruct the current image without using geometric knowledge, except that our ”imagination”
predicts the next image by additionally conditioning on the motion information of the observer and
objects.

2.4.3 COMBINING WARPING AND IMAGINATION

The final predicted image or depth map are weighted average of the prediction made by warping the
current image or inferred depth map and the corresponding predictions by Imagination network:

I ′(t+1)
= I ′(t+1)

Warp ⊙WWarp + I ′(t+1)
Imag ⊙ (1−WWarp) (3)

Here, each element of the weight map for the prediction based on warping WWarp ∈ Rw×h is
WWarp(p, q) = max{

∑
k,i,j w(i, j, p, q), 1} and w(i, j, p, q) is the contribution weight of pixel (i, j)

at t for drawing pixel (p, q) at t + 1 (more details in appendix). The intuition is that imagination
is only needed when not enough pixels from t will land near (p, q) at t + 1 based on the predicted
optical flow. The same weighting applies for generating the final predicted depth D′(t+1).

2.4.4 LEARNING OBJECTIVE

Above, we have explained how to predict the spatial states of each object, x′(t+1)
k and p′

(t+1)
ϕk

, the

next image I ′(t+1) and depth map D′(t+1) based on object-centric representation extracted by a
function f from the current and previous images I

(t)
i and I

(t−1)
i , the depth D′(t) extracted by a

function h, combined with the prediction from object-based imagination function g that are all to be
learned. Among the three prediction targets, only the ground truth of visual input I(t+1) is available,
while the other can only be inferred by f and h from I(t+1). Therefore, for the prediction targets
other than I(t+1), we use the self-consistent loss between the predicted value based on t and t − 1
and the inferred value based on t+ 1 as additional regularization terms to learn f and g.

To learn the functions f , g and h, we approximate them with deep neural networks with parameters
θ and optimize θ to minimize the following loss function:

L = Limage + λdepthLdepth + λspatialLspatial + λmapLmap (4)

Here, Limage = MSE(I ′(t+1)
, I(t+1)) is the image prediction error. Ldepth =

MSE(log(D′(t+1)
), log(D̂(t+1))) is the error between the predicted and inferred depth. These pro-

vide major teaching signals. Lspatial =
∑K

k=1 |
∑K+1

l=1 rklx
′(t+1)
kl − x̂

(t+1)
k |2 −

∑K
k=1 min{|x̂(t)

rand −
x̂
(t)
k |, δ} +

∑K
k=1 |x̂

(t)
k −

∑
i,j m̂

(t)
i,jπkij |2 +

∑K
k=1 DKL(p̂

(t+1)
ϕk
||
∑K+1

l=1 rklp
′(t+1)
ϕl

) is the self-
consistent loss on spatial information prediction. The first term is the error between inferred and
predicted location of each object, while the calculation of the predicted location incorporates soft
matching between objects in consecutive frames (rkl is the matching probability between any ob-
jects in two frames). The second term is the negative term of contrastive loss, which we found
empirically helpful to prevent the network from reaching a local minimum where all objects are
inferred at the same location relative to the camera (and covering minimal regions of the picture).
x̂rand is the inferred object location from a random sample within the same batch. The third term
penalizes the discrepancy between the inferred object location and the average location of pixels in
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its segmentation mask. The last term is the KL-divergence between the predicted and inferred pose
for each object at t+ 1. Lmap = ReLu(10−4 − π1:K) +

∑K
k=1 ReLu(π̄k − 0.1) + πk · πl, for k ̸= l

avoids loss of gradient due to zero probability of object belonging and discourages overlap between
maps of different objects.

2.5 DATASET

We procedurally generated a dataset composed of 306K triplets of images captured by a virtual
camera with a field of view of 90 degrees in a square room. The camera translates horizontally
and pans with random small steps between consecutive frames to facilitate the learning of depth
perception. 3 objects with random shape, size, surface color or textures are spawned at random
locations in the room and each moves with a randomly selected constant velocity and panning speed.
The translation and panning of the the camera relative to its own reference frame and its intrinsic are
known to the networks. No other ground truth information is provided. The first two frames serve as
data and the last frame serves as the prediction target at t+ 1. An important difference between this
dataset and other commonly used synthetic datasets for OCRL, such as CLEVRset (Johnson et al.,
2017) and GQN data (Eslami et al., 2018) is that more complex and diverse textures are used on
both the objects and the background. We further evaluated on a richer version of the Traffic dataset
(Henderson & Lampert, 2020) in A.4.

2.6 COMPARISON WITH OTHER WORKS

To compare our work with the state-of-the-art models of unsupervised object-centric representation
learning, we trained MONet (Burgess et al., 2019), slot-attention (Locatello et al., 2020) and GEN-
ESIS2 (Engelcke et al., 2021) on the same dataset. Although these models are trained on single
images, all images of each triplets are used for training.

MODEL ARI-FG IOU

MONET 0.31 0.08
MONET-128 0.33 0.22
MONET-128-BIGGER 0.36 0.20
SLOT-ATTENTION 0.40 0.34
SLOT-ATTENTION-128 0.34 0.38
OUR MODEL (OPPLE) 0.46 0.35

Table 1: Performance of different models
on object segmentation.

To address the concern that the original configura-
tions of the models are not optimized for more difficult
dataset, we additionally trained variants of some of the
models with large network size. For MONet, we tested
channel numbers of [32, 64, 128, 128] (MONet-128)
and [32, 64, 128, 256, 256] (MONet-128-bigger) for
the hidden layers of encoder of the component VAE
(while the original paper used [32, 32, 64, 64]) and ad-
justed decoder layers’ sizes accordingly, and increased
the base channel from 64 to 128 for its attention net-
work. For slot attention, we tested a variant which in-
creased the number of features in the attention compo-
nent from 64 to 128 (slot-attention-128). Slot numbers
were chosen as 4 except for GENESIS.

3 RESULTS

After training the networks, we evaluate them on 4000 test images unused during training but gen-
erated randomly with the same procedure, thus coming from the same distribution. We compare
the performance of different models mainly on their segmentation performance. Additionally, we
demonstrate the ability unique to our model: inferring locations of objects in 3D space and the depth
of the scene. The performance of depth perception is illustrated in the appendix.

3.1 OBJECT SEGMENTATION

Following prior works (Greff et al., 2019; Engelcke et al., 2019; 2021), we evaluated segmentation
with the Adjusted Rand Index of foreground objects (ARI). In addition, for each image, we matched

2We failed to obtain reasonable result by training GENESIS V2 on our dataset, thus we adopted a GENESIS
network pre-trained on GQN dataset and retrained on our dataset with K=7. The result is included in the
appendix as we are not confident that we have exhausted hyper-parameter tuning for this model
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ground-true objects and background with each of the segmented class by ranking their Intersection
over Union (IoU) and quantified the average IoU over all foreground objects. The performance is
summarized in table 2.6 .

Original images

Ground truth 
segmentation

MONet-128 

Slot-attention-
128

Our model 
(OPPLE)

Figure 2: Example of object segmentation by different models

Our model outperforms all com-
pared models on ARI and is
second to a slot-attention-128
in IoU. As shown in Figure 2,
MONet appear to heavily rely
on color to group pixels into
the same masks. Even though
some of these models almost
fully designate pixels of an ob-
ject to a mask, the masks lack
specificity in that they often in-
clude pixels with similar col-
ors from other objects or back-
ground. Patterns on the back-
grounds are often treated as ob-
jects as well. We postulate there may be fundamental limitation in the approach that learns purely
from static discrete images. Patches in the background with coherent color offer room to compress
information similarly as objects with coherent colors do, and their shapes re-occur across images
just as other objects. Our model is able to learn object-specific masks because these masks are used
to predict optical flow specific to each object. A wrong segmentation would generate large predic-
tion error even if the motion of an object is estimated correctly. Such prediction error forces the
masks to concentrate on object surface. They emerge first at object boundaries where the prediction
error is the largest and gradually grow inwards during training. Figure 3A-C further compares the
distribution of IoU across models. Only OPPLE and slot-attention-128 show bi-modal distributions
while MONet is skewed towards 0. Figure 3G plots each object’s distance and size on the picture
with colors corresponding to their IoUs in our model. Objects with poor segmentation (blue dots)
are mostly far away from the camera and occupy few pixels. This is because motion of farther ob-
jects causes less shift on the images and thus provides weaker teaching signal. For other models,
blue dots are more spread even for near objects (See appendix).

3.2 OBJECT LOCALIZATION

The Object Extraction Network infers object location relative to the camera. We convert the inferred
locations to angles and distance in polar coordinate relative to the camera. Figure 3E-F plot the true
and inferred angles and distance, color coded by objects’ IoUs. For objects well segmented (red
dots), their angles are estimated with high accuracy (concentrated on the diagonal in E). Distance
estimation is negatively biased for farther objects, potentially because the regularization term on the
distance between the predicted and inferred object location at frame t + 1 favors shorter distance
when estimation is noisy. Note that the ability to explicitly infer object’s location is not available in
other models compared.

3.3 MEANINGFUL LATENT CODE

Because a subset of the latent code (10 dimensions) was used to calculate object matching scores
between frames in order to soft-match objects, this should force the object embedding z to be similar
for the same objects. We explored the geometry of the latent code by examining whether the nearest
neighbours of each of the object in the test data with IoU > 0.5 are more likely to have the same
property as themselves. 772 out of 3244 objects’ nearest neighbour had the same shape (out of
11 shapes) and 660 objects’ nearest neighbour had the same color or texture (out of 15). These
numbers are 28 to 29 times the standard deviation away from the means of the distribution expected
if the nearest neighbour were random (Figure 3H). This suggests the latent code reflects meaningful
features of objects. However, texture and shape are not the only factors determining latent code, as
we found the variance of code of all objects with the same shape and texture to still be big.
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IoU

1

0

Our model 

(OPPLE)
A B

E F G

null distribution
observation

DMONet-128 Slot Attention-128

IoU IoU IoU

C

Figure 3: A-C: distribution of IoU. All models have IoU < 0.01 for about 1/4 of objects. Only
OPPLE shows a bi-modal distribution while other models’ IoU are more skewed towards 0. D
The numbers of objects sharing the same shape or texture with their nearest neighbour objects in
latent space are significantly above chance. E-F: object localization accuracy of OPPLE for object’s
polar angle and distance relative to the camera. Each dot is a valid object with color representing
its segmentation IoU. Angle estimation is highly accurate for well segmented objects (red dots).
Distance is under-estimated for farther objects. G: objects with failed segmentation (blue dots) are
mostly far away and occupying few pixels.

4 RELATED WORK

Our work is on the same tracks as two recent trends in machine learning: object-centric represen-
tation (Locatello et al., 2020) and self-supervised learning (Chen et al., 2020). We follow the same
logic as self-supervised learning: learning to predict part of the data based on another part forces
a neural network to learn important structures in the data. However, most of the existing works in
self-supervised learning do not focus on object-based representation, but instead encode the entire
scene as one vector. Other works on object-centric representations overcome this by assigning one
representation to each object, as we do. Although works such as MONet (Burgess et al., 2019),
IODINE (Greff et al., 2019), slot-attention (Locatello et al., 2020), GENESIS (Engelcke et al.,
2019) and PSGNet (Bear et al., 2020) can also segment objects and some of them can ”imagine”
complete objects based on codes extracted from occluded objects or draw objects in the correct or-
der consistent with occlusion, few works explicitly infer an object’s location in 3D space together
with segmentation purely by self-supervised learning, with the exception of a closely related work
O3V (Henderson & Lampert, 2020). Both our works learn from videos. One major distinction
is that O3V interleaves spatial and temporal convolution, thus it still require video as input at test
time. In contrast, our three major networks process each image independently. Therefore, once
trained, our network can generalize to single images. Another distinction from Henderson & Lam-
pert (2020) and many other works is that our model learns from prediction instead of reconstruction.
Contrastive-learning of a structured world model (Kipf et al., 2019) also learns object masks and
predicts their future states by linking each object mask with a node in a Graphic Neural Network
(GNN). The order of mapping object slot to nodes of GNN is fixed through time. This arrangement
may become infeasible with combinatorial number of possible objects as the order of assigning dif-
ferent objects to a limited number of nodes may not be consistent across scenes. We solve this by a
soft matching of object representation between different time points. On the neuroscience side, our
work is highly motivated by recent works on predictive learning (O’Reilly et al., 2021) which also
yields view-invariance representation while self-motion signal is available. O’Reilly et al. (2021)
used biologically plausible but less efficient learning and applied their model to an easier dataset
with objects without background, and did not learn object localization. We should note that explicit
spatial localization and depth perception were not pursued in previous works on self-supervised
object-centric learning, and the images in our dataset have significantly richer texture information
than those demonstrated in previous works (Burgess et al., 2019; Kipf et al., 2019), making the task
more challenging. SAVi++(Elsayed et al., 2022) is closely related to our work but as it requires ex-
ternal information of optical flow, we cannot make a fair comparison here. Although view synthesis
is not our central goal, the principle illustrated here can be combined with recent advancement in
3D-aware image synthesis (Wiles et al., 2020).
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A APPENDIX

A.1 PSEUDO CODE OF THE OPPLE FRAMEWORK

Algorithm 1 Developing object-centric representation by predicting future scene

Input: images I(t−1), I(t) ∈ Rw×h×3, self-motion v
(t−1)
obs , ω

(t−1)
obs ,v

(t)
obs, ω

(t)
obs

Output: prediction I ′(t+1), segmentation π
(t−1)
1:K+1, π(t)

1:K+1, objects’ codes z
(t−1)
1:K , z(t)

1:K , objects’

locations and poses x̂(t−1)
1:K ,p

(t−1)
ϕ1:K

, x̂
(t)
1:K ,p

(t)
ϕ1:K

for τ = {t− 1, t} do
scene code e(τ) ← U-NetEncoderfθ (I

(τ))

object code z
(τ)
1:K , location x̂

(τ)
1:K , pose p

(τ)
ϕ1:K

← LSTMfθ (e
(τ))

background code zK+1 = 0
depth D(τ) ← hθ(I

(τ))

segmentation mask π
(τ)
1:K+1 ← Softmax (U-NetDecoderfθ (I

(τ), z
(τ)
1:K), 0)

end for
object matching scores rkl ← RBF(z(t)

k , z
(t−1)
l ), k, l ∈ 1 : K + 1

for k ← 1 to K do
object motion v̂1:K ,ω1:K ← rk,l, x̂

(t)
k , x̂

(t−1)
l ,p

(t)
ϕk
,p

(t−1)
ϕl

, l = 1 : K + 1

onject-specific optical flowk ← v̂1:K ,ω1:K ,vobs, ωobs,D
(t)

end for
I ′(t+1)

warp ←Warp(I(t), optical flow1:K+1)

I ′(t+1)
imagine ← gθ(I

(t) ⊙ π
(t)
1:K+1, log(D

(t))⊙ π
(t)
1:K+1,vobs, ωobs, v̂1:K+1, x̂1:K)

final image prediction: I ′(t+1) ← I ′(t+1)
warp , I ′(t+1)

imagine,warping weights

update parameters: θ ← θ − γ∇θ[|I ′(t+1) − I(t+1)|2 + regularization loss]

A.2 NETWORK TRAINING AND DATASET

We trained the three networks jointly using ADAM optimization Kingma & Ba (2014) with a learn-
ing rate of 3e−4, ϵ = 1e−6 and other default setting in PyTorch, with a batch size of 24. 40 epochs
were trained on the dataset. We set λspatial = 1.0, λdepth = 0.1 and Lmap = 0.005.

Images in the dataset are rendered in a custom Unity environment at a resolution of 512 × 512 and
downsampled to 128 × 128 resolution for training. Images are rendered in sequence of 7 time steps
for each scene. In each scene, a room with newly selected textures and objects is created, then the
objects and camera are placed randomly in the room and checked for possible colliding trajectories,
once a configuration of locations and movement direction of objects and camera are found where
they don’t collide, we start recording the scene. We do this pre-check to reduce the redundancy of
getting bad datasets in our recordings. Camera moves with random steps and sways with random
rotations between consecutive frames. All possible sequential triplets out of the recorded 7 frames
(including frames equally spaced by 0, 1, and 2 frames) form our training samples. For our dataset
we use 200,000 scenes which give us 2,400,000 datapoints.

The model was implemented in PyTorch and trained on NVidia RTX 6000. We will release the code
and dataset upon publication of the manuscript.

A.3 PERFORMANCE ON DEPTH PERCEPTION

We demonstrate a few example images and the inferred depth. Our network can capture the global
3D structure of the scene, although details on object surfaces are still missing. Because background
occurs in every training sample, the network appears to bias the depth estimation on objects towards
the depth of the walls behind, as is also shown in the scatter plot.
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Figure 4: Comparison between ground truth depth and inferred depth

A.4 SEGMENTATION PERFORMANCE ON MORE CHALLENGING IMAGES

We further evaluated our model on images of running vehicles in virtual towns generated by Carla
environment (Dosovitskiy et al., 2017), following the approach of (Henderson & Lampert, 2020)
but with much more diverse scenes (the traffic dataset used in (Henderson & Lampert, 2020) were
collected in one street with camera viewing from one side of the vehicle while we trained and
tested our model across different cities with all possible viewing angles). This dataset is much more
challenging as it includes more realistic lighting condition (e.g., mirror reflection) and much more
complex scene structure. As shown, across different viewing angles, the model can always segment
the major car in view correctly, although with some artifact in segmentation mask. One difficult
situation is when the road’s color is very homogeneous, because the cars mostly move along the
road, treating part of the road as object does not increase prediction error by warping and the model
turn to make such mistake. Because some cars distant from the camera are very small and barely
detectable, we calculate IoU weighted by the size of object, this yields a size-weighted IoU of 0.44.

Figure 5: Segmentation performance on images of cars in virtual towns generated by Carla. Top:
input images, middle: image weighted by the inferred mask for the object slot containing the car,
bottom: image weighted by the inferred mask for the background. Other slots (3 in total in training)
are neglected.
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A.5 METHOD

A.5.1 PREDICTION BY WARPING

We first describe the prediction of part of the next image by warping the current image. Here we
consider only rigid objects and the fates of all visible pixels belonging to an object. With depth
D(t) ∈ Rw×h = hθ(I

(t)) of all pixels in a view inferred by the Depth Perception network based
on visual features in the image I(t) , the 3D location of a pixel at any coordinate (i, j) in the
image, where |i| ≤ w−1

2 ,|j| ≤ h−1
2 , can be determined given the focal length d of the camera as

m̂
(t)
(i,j) =

D(t)(i,j)√
i2+j2+d2

· [i, d, j]. Here, we take the coordinate of the center of an image as (0,0). On

the other hand, with the inferred x̂
(t)
k and x̂

(t−1)
k , the current and previous locations of the object k

that the pixel (i, j) belongs to, from I(t) and I(t−1) respectively, we can estimate the instantaneous
velocity of the object v̂(t)

k = x̂
(t)
k − x̂

(t−1)
k . Similarly, with the inferred the current and previous

pose probabilities of the object, p(t)
ϕk

and p
(t−1)
ϕk

, we can obtain the likelihood of its angular velocity

p(ϕ
(t)
k , ϕ

(t−1)
k | ω(t)

k = ω) ∝
∑

γ1,γ2,γ1−γ2∈
{ω−2π,ω,ω+2π}

p(ϕ
(t)
k = γ1) · p(ϕ(t−1)

k = γ2) (5)

.

By additionally imposing a prior distribution (we use Von Mises distribution) over ω
(t)
k that

favors slow rotation, we can obtain the posterior distribution of the object’s angular velocity
p(ω

(t)
k | ϕ(t)

k , ϕ
(t−1)
k ), and eventually the posterior distribution of the object’s next pose p(ϕ

(t+1)
k |

ϕ
(t)
k , ϕ

(t−1)
k ).

Assuming a pixel (i, j) belongs to object k, using the estimated motion information v̂
(t)
k and p(ω

(t)
k |

ϕ
(t)
k , ϕ

(t−1)
k ) of the object, together with the current location and pose of the object and the current

3D location m̂
(t)
(i,j) of the pixel, we can predict the 3D location m′(t+1)

k,(i,j) of the pixel at the next
moment as

m′(t+1)
k,(i,j) = M

(t)
−ωobs

[M
(t)
ω̂k

(m̂
(t)
(i,j) − x̂

(t)
k ) + x̂

(t)
k + v̂

(t)
k − v

(t)
obs] (6)

where M
(t)
−ωobs

and M
(t)
ω̂k

are rotational matrices due to the rotation of the observer and the object,

respectively, and v
(t)
obs is the velocity of the observer (relative to its own reference frame at t). In this

way, assuming objects move smoothly most of the time, if the self motion information is known, the
3D location of each visible pixel can be predicted. If a pixel belongs to the background, ωK+1 = 0
and vK+1 = 0 (K + 1 is the background’s index). Given the predicted 3D location, the target coor-
dinate (i′, j′)

(t+1)
k of the pixel on the image and its new depth D′

k(i, j)
(t+1) can be calculated. This

prediction of pixel movement allows predicting the image I ′(t+1) and depth D′(t+1) by weighting
the colors and depth of pixels predicted to land near each pixel at the discrete grid of the next frame,
as explained in Sec 2.4.2.

A.5.2 WARPING CONTRIBUTION WEIGHT

As the object attribution of each pixel is not known but is inferred by fobj(I
(t)), it is represented for

every pixel as a probability of belonging to each object and the background π
(t)
k , k = 1, 2, · · · ,K+

1. Therefore, the predicted motion of each pixel should be described as a probability distribution
over K + 1 discrete target locations p(x′(t+1)

(i,j) ) =
∑K+1

k=1 π
(t)
kij · δ(x′(t+1)

k,(i,j)), i.e., pixel (i, j) has a

probability of π(t)
kij to move to location x′(t+1)

k,(i,j) at the next time point, for k = 1, 2, · · · ,K+1. With
such probabilistic prediction of pixel movement for all visible pixel (i, j)(t), we can partially predict
the colors of the next image at the pixel grids where some original pixels from the current view will
land nearby by weighting their contribution:

I ′(t+1)
Warp (p, q) =

{∑
k,i,j wk(i,j,p,q)I

(t)(i,j)∑
k,i,j wk(i,j,p,q)

, if
∑

k,i,j wk(i, j, p, q) > 0

0, otherwise
(7)
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We define the weight of the contribution from any source pixel (i, j) to a target pixel (p, q) as

wk(i, j, p, q) = π
(t)
kij · e

−β·D′(t+1)
k (i,j) ·max{1− |i′(t+1)

k − p|, 0} ·max{1− |j′(t+1)
k − q|, 0} (8)

The first term incorporates the uncertainty of which object a pixel belongs to. The second term
e−β·D′(t+1)

k (i,j) resolves the issue of occlusion when multiple pixels are predicted to move close
to the same pixel grid by down-weighting the pixels predicted to land farther from the camera.
These last two terms mean that only the source pixels predicted to land within a square of of 2 × 2

pixels centered at any target location (p, q) will contribute to the color I ′
(t+1)
Warp (p, q). The depth

map D′(t+1)
Warp can be predicted by the same weighting scheme after replacing I(t)(i, j) with each

predicted depth D′(t+1)
k (i, j) assuming the pixel belongs to object k.

A.6 DEPENDENCY OF SEGMENTATION PERFORMANCE ON OBJECT SIZE AND DISTANCE
ACROSS MODELS
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Figure 6: Comparison of segmentation quality with respect to the pixel occupancy and distance of
the object from the observer.

We observe that for objects further away from the observer which occupies less pixels (because of
the 2D perspective projection), the IOU goes down with the increase in the distance. We see this for
all the compared models. This points to a requirement for robust segmentation to balance between
the scales of the object. However, we are led to believe that even using an hierarchical structures to
model this would fail as collating them together to the same scale would still be problematic, needing
to weigh which scale is more important than others. Adding bigger motion to the object can help
adding extra information for such small objects so that they are not missed during segmentation.

A.7 COMPARISON WITH THE GENESIS MODEL

Genesis Engelcke et al. (2019) and the Genesis V2 Engelcke et al. (2021) models as mentioned
in the main text are shown to perform very well in their manuscript. However, we were unable
to train Genesis V2 with our dataset as we were consistently getting poor results. We decided to
reuse the Genesis model pre-trained on the GQN dataset, then fine tuned it on our dataset. We
show the segmentation result using this training procedure below. We keep this comparison in the
appendix as we are not very confident how much longer it needs to be trained and how much more
hyperparameter tuning it would need to improve. The comparison results are shown in the figure:7.
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Figure 7: Example of object segmentation by different models

A.8 ILLUSTRATION OF PREDICTION QUALITY

In the figure below, we display the first, second image, one of the masked objects, the predicted
third image, and the ground truth of the third image, from top to the bottom. We provide reference
lines and some circles to aid the comparison between images and evaluate the warping quality.
Imagination quality can be inspected usually at one side of the predicted images.
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