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ABSTRACT

Learning from 3D protein structures has gained a lot of attention in the fields
of protein modeling and structural bioinformatics. Unfortunately, the number
of available structures is orders of magnitude lower than the dataset sizes com-
monly used in computer vision and machine learning. Moreover, this number is
reduced even further, when only annotated protein structures can be considered,
which makes the training of existing models difficult and prone to overfitting. To
address this challenge, we introduce a new representation learning framework for
3D protein structures. Our framework uses unsupervised contrastive learning to
learn meaningful representations of protein structures, making use of annotated and
unlabeled proteins from the Protein Data Bank. We show, how these representations
can be used in the field of structural bioinformatics to directly solve different protein
tasks, such as protein function and structural similarity prediction. Moreover, we
show how fine-tuned networks, pre-trained with our algorithm, lead to significantly
improved task performance.

1 INTRODUCTION

In recent years, learning on 3D protein structures has gained a lot of attention in the fields of protein
modeling and structural bioinformatics. These neural network architectures process the 3D position of
the atoms and/or amino acids in 3D space in order to make predictions of unprecedented performance,
in tasks ranging from protein design (Ingraham et al., 2019; Strokach et al., 2020; Jing et al., 2021),
over protein structure classification (Hermosilla et al., 2021), protein quality assessment (Baldassarre
et al., 2020; Derevyanko et al., 2018), and protein function prediction (Amidi et al., 2017; Gligorijevic
et al., 2021) – just to name a few. Unfortunately, learning on the structure of proteins leads to a
reduced amount of training data, as compared for example to sequence learning, since 3D structures
are harder to obtain and thus less prevalent. While the Protein Data Bank (PDB) (Berman et al., 2000)
today contains only around 182K macromolecular structures, the Pfam database (Mistry et al., 2020)
contains 47M protein sequences. Naturally, the number of available structures decreases even further
when only the structures labeled with a specific property are considered. We refer to these as annotated
protein structures. The SIFTS database, for example, contains around 220K annotated enzymes from
96K different PDB entries, and the SCOPe database contains 226 K annotated structures. These
numbers are orders of magnitude lower than the data set sizes which led to the major breakthroughs
in the field of deep learning. ImageNet (Russakovsky et al., 2015), for instance, contains more than
10M annotated images. As learning on 3D protein structures cannot benefit from these large amounts
of data, model sizes are limited or overfitting might occur.

In order, to take advantage of unlabeled data, researchers have, over the years, designed different
algorithms, that are able to learn meaningful representations from such data without labels (Hadsell
et al., 2006; Ye et al., 2019; Chen et al., 2020a). In natural language processing, next token prediction
or random token masking are commonly used unsupervised training objectives, that are able to learn
meaningful word representations useful for different downstream tasks (Peters et al., 2018; Devlin
et al., 2019). Recently, such algorithms have been used to learn meaningful protein representations
from unlabeled sequences (Alley et al., 2019), or as a pre-trained method for later fine-tuning models
on different downstream tasks (Rao et al., 2019). In computer vision recently, contrastive learning
has shown great performance on image classification when used to pre-train deep convolutional
neural network (CNN) architectures (Chen et al., 2020a;b). This pre-training objective has also been
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used in the context of protein sequence representation learning by dividing sequences in amino acid
’patches’ (Lu et al., 2020b), or by using data augmentation techniques based on protein evolutionary
information (Lu et al., 2020a). Most recently, the contrastive learning framework has been applied
to graph convolutional neural networks (You et al., 2020). These techniques were tested on protein
spatial neighboring graphs (graphs where edges connect neighbor amino acids in 3D space) for the
binary task of classifying a protein as enzyme or not. However, these algorithms were designed for
arbitrary graphs and did not take into account the underlying structure of proteins.

In this work, we introduce a contrastive learning framework for representation learning of 3D
protein structures. For each unlabeled protein chain, we select random molecular sub-structures
during training. We then minimize the cosine distance between the learned representations of
the sub-structures sampled from the same protein, while maximizing the cosine distance between
representations from different protein chains. This training objective enables us, to pre-train models
on all available annotated, but more importantly also unlabeled, protein structures from the PDB. The
obtained representation can later be used as a weight initialization strategy to improve performance on
different downstream tasks, such as protein structure classification and function prediction. Moreover,
we show how the learned protein representation is able to capture protein structural similarity and
functionality, by embedding proteins from the same fold or with similar functions close together in
this space.

The remainder of this paper is structured as follows. First, we provide a summary of the state-of-the-
art in Section 2. Then, we introduce our framework in Section 3.Later, in Section 4, we describe the
experiments conducted to evaluate our framework and the representations learned, and lastly, we
provide a summary of our findings and possible lines of future research in Section 5.

2 RELATED WORK

3D protein structure learning. Early work on learning from 3D protein structures used graph
kernels and support vector machines to classify enzymes (Borgwardt et al., 2005). Later, the
advances in the fields of machine learning and computer vision brought a new set of techniques
to the field. Several authors represent the protein tertiary structure as a 3D density map, and
process it with a 3D convolutional neural network (3DCNN). Among the problems addressed
with this technique, are protein quality assessment (Derevyanko et al., 2018), protein enzyme
classification (Amidi et al., 2017), protein-ligand binding affinity (Ragoza et al., 2017), protein binding
site prediction (Jiménez et al., 2017) and protein-protein interaction interface prediction (Townshend
et al., 2019). Other authors have used graph convolutional neural networks (GCNN) to learn directly
from the protein spatial neighboring graph. Some of the tasks solved with these techniques, are
protein interface prediction (Fout et al., 2017), function prediction (Gligorijevic et al., 2021), protein
quality assessment (Baldassarre et al., 2020), and protein design (Strokach et al., 2020). Recently,
several neural network architectures, specifically designed for protein structures, have been proposed
to tackle protein design challenges (Ingraham et al., 2019; Jing et al., 2021), or protein fold and
function prediction (Hermosilla et al., 2021).

Protein representation learning. Protein representation learning based on protein sequences is an
active area of research. Early works used similar techniques as the ones used in natural language
processing to compute embeddings of groups of neighboring amino acids in a sequence (Asgari
& Mofrad, 2015). Recently, other works have used unsupervised learning algorithms from natural
language processing such as token masking or next token prediction (Peters et al., 2018; Devlin
et al., 2019) to learn representations from protein sequences (Alley et al., 2019; Rao et al., 2019; Min
et al., 2020; Strodthoff et al., 2020). This year, Lu et al. (2020b;a) have suggested using contrastive
learning on protein sequences, to obtain a meaningful protein representation. Despite the advances in
representation learning for protein sequences, representation learning for 3D protein structures mostly
has relied on hand-crafted features. La et al. (2009) proposed a method to compute a vector of 3D
Zernike descriptors to represent protein surfaces, which later can be used for shape retrieval. Recently,
Guzenko et al. (2020) used a similar approach, to compute a vector of 3D Zernike descriptors directly
from the 3D density volume, which can be used later for protein shape comparison. The annual
shape retrieval contest (SHREC) usually contains a protein shape retrieval track, in which methods
are required to determine protein similarity from different protein surfaces (Langenfeld et al., 2019;
2020). Some of the works presented here, make use of 3DCNNs or GCNNs to achieve this goal.
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However, they operate on protein surfaces, and are either trained in a supervised fashion on the binary
shape similarity task, or pre-trained on a classification task.

Contrastive learning. In 1992, Becker & Hinton (1992) suggested training neural networks through
the agreement between representations of the same image under different transformations. Later,
Hadsell et al. (2006) proposed to learn image representations by minimizing the distance between
positive pairs and maximizing the distance between negative pairs (see Figure 1). This idea was used
in other works by sampling negative pairs from the mini-batches used during training (Ji et al., 2019;
Ye et al., 2019). Recently, Chen et al. (2020a;b) have shown how these methods can improve image
classification performance. You et al. (2020) have transferred these ideas to graphs, by proposing four
different data transformations to be used during training: node dropping, edge perturbation, attribute
masking, and subgraph sampling. These ideas were tested on the commonly used graph benchmark
PROTEINS (Borgwardt et al., 2005), composed of only 1, 113 proteins. However, since this data set
is composed of spatial neighboring graphs of secondary structures, the proposed data augmentation
techniques can generate graphs of unconnected chain sections. In this paper instead, we suggest using
a domain-specific transformation strategy, that preserves the local information of protein sequences.

3 3D PROTEIN CONTRASTIVE LEARNING

3.1 PROTEIN GRAPH

In this work, the protein chain is defined as a graph G = (N ,R,F ,A,B), where each node represents
the alpha carbon of an amino acid with its 3D coordinates, N ∈ Rn×3, being n the number of amino
acids in the protein. Moreover, for each node, we store a local frame composed of three orthonormal
vectors describing the orientation of the amino acid wrt. the protein backbone,R ∈ Rn×3×3. Lastly,
each node has also t different associated features with it, F ∈ Rn×t. The connectivity of the graph
is stored in two different adjacency matrices, A ∈ Rn×n and B ∈ Rn×n. Matrix A is defined as
Aij = 1 if amino acids i and j are connected by a peptide bond and Aij = 0 otherwise. Matrix B is
defined as Bij = 1 if amino acids i and j are at a distance smaller than d in 3D space and Bij = 0
otherwise.

3.2 CONTRASTIVE LEARNING FRAMEWORK

E

E

P

P
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Figure 1: For each protein we sample random sub-
structures which are then encoded into two repre-
sentations, h and z, using encodersE and P . Then,
we minimize the distance between representations
z from the same protein and maximize the distance
between representations from different proteins.

Inspired by recent works in the computer vi-
sion domain (Ye et al., 2019; Ji et al., 2019;
Chen et al., 2020a), our framework is trained
by maximizing the similarity between repre-
sentations from sub-structures of the same pro-
tein, and minimizing the similarity between
sub-structures from different proteins. More
formally, given a protein graph G, we sample
two sub-structures Gi and Gj from it. We then
compute the latent representations of these sub-
structures, hi and hj , using a protein graph en-
coder, hi = E(Gi). Based on the findings of
Chen et al. (2020a), we further project these la-
tent representations into smaller latent represen-
tation, zi and zj , using a multilayer perceptron
(MLP) with a single hidden layer, zi = P (hi).
Lastly, the similarity between these representa-
tions is computed using the cosine distance, s(zi, zj). In order to minimize the similarity between
these representations, we use the following loss function for the sub-structure Gi:

li = −log
exp(s(zi, zj)/τ)∑2N

k=1 1[k 6=i,k 6=j]exp(s(zi, zk)/τ)
(1)

where τ is a temperature parameter used to improve learning from ’hard’ examples, 1[k 6=i,k 6=j] ∈ [0, 1]
is a function that evaluates to 1 if k 6= i and k 6= j, and N is the number of protein structures in the
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current mini-batch. To compute lj we use again Equation 1, but exchange the role of i and j. This loss
has been used before in the context of representation learning (Chen et al., 2020a; van den Oord et al.,
2018), and as in previous work, our framework does not explicitly sample negative examples but
uses instead the rest of sub-structures sampled from different proteins in the mini-batch as negative
examples. In the following subsections, we will describe the different components specific to our
framework designed to process protein structures.

3.3 SUB-STRUCTURE SAMPLING

As Chen et al. (2020a) demonstrated, the data transformation applied to the input, is of key importance
to obtain a meaningful representation. Among the different transformations tested, the authors found
out that image cropping and adding random noise to the pixel values were the transformations that
resulted in more informative representations. In this work, we propose to use a domain-specific
cropping strategy of the input data.

(a) (b) (c)

Figure 2: Our sampling strategy used during con-
trastive learning. For a protein chain (a), we select
a random amino acid (b). Then we travel along
the chain in both directions until we have a certain
percentage p of the sequence covered (c).

Proteins chains are composed of one or several
stable sub-structures, called protein domains,
which reoccur in different proteins. These sub-
structures can indicate evolutionary history be-
tween different proteins, as well as the func-
tion carried out by the protein (Ponting & Rus-
sell, 2002). Our sampling strategy uses the con-
cept of protein sub-structures to sample for each
protein two different continuous sub-structures
along the polypeptide chain. We achieve that,
by first selecting a random amino acid in the
protein chain xi ∈ N . We then travel along the
protein sequence in both directions using the adjacency matrix A while selecting each amino acid
xi+t and xi−t in the process. This process continues until we have covered a certain percentage p of
the protein chain, whereby our experiments indicate that a value of p between 40% and 60% provides
the best results (see Section 4). If during this sampling we reach the end of the sequence in one of the
directions, we continue sampling in the other direction until we have covered the desired percentage
p. The selected amino acids compose the sub-structure that is then given as input to the graph
encoder E . Figure 2 illustrates this process. Note that, since our framework learns from unlabeled
data, we do not sample specifically protein domains from the protein chain, which would require
annotations. We instead sample random sub-structures that might be composed of a complete or
partial domain, or, in large proteins, even span several domains. The training objective then enforces
a similar representation for random sub-structures of the same protein chain, where the properties of
the complete structure have to be inferred. We will show in our experiments, that these properties are
able to encode similar structural classifications as the ones developed over the years by researchers,
as well as information related to the protein function.

3.4 PROTEIN ENCODER

The information captured by a learned representation using contrastive learning strongly depends
on the network architecture used to encode the input (Tschannen et al., 2020). Therefore, we
define the following requirements for our protein encoder. The memory footprint of the network
has to be minimal, to allow for large batch sizes (Chen et al., 2020a), all the input data has to be
computed on-demand to process our random sub-structures, and the operations must be able to
completely differentiate protein structures. We base our protein encoder on the architecture proposed
by Hermosilla et al. (2021), whereby we perform several modifications to fulfill our requirements. In
the following paragraphs, we describe the proposed network architecture.

Convolution operation. Similar to CNNs and GCNNs where a message passing operation is used
to update the features of a node, based on the information of the neighboring nodes, Hermosilla et al.
(2021) proposed a message-passing operator for 3D protein structures. This operator computed the
value of a new feature in a node xi, by aggregating the features from all neighboring nodes xj at
a distance smaller than d in 3D space. The features from neighboring nodes were first scaled by a
learned function represented by an MLP with one hidden layer that received as input the edge features
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from node pairs xixj , resulting in the following operation:

F l
o(G, xi) =

∑
j∈N (xi)

F l−1
j ko(f(G, xi, xj)) (2)

whereN (xi) is the list of nodes at a distance smaller than d from xi, ko is the learned kernel function,
and f(G, xi, xj) is the function that computes the edge information between node xi and xj .

In the work of Hermosilla et al. (2021), the function f computed three distances between the two
nodes: the Euclidean distance, the shortest path along covalent bonds, and the shortest path along
covalent and hydrogen bonds. In this work, we use Equation 2 as our message-passing algorithm but
our function f computes instead a different set of edge features, similar to the ones used by Ingraham
et al. (2019):

• ~t: Three values representing the vector xj − xi described in the local frame of node xi, Oi ∈ R,
and normalized by distance d.

• r: Three values representing the orientation information between the local frames Oi and Oj . We
use the dot product between the three axes instead of other representations such as quaternions (In-
graham et al., 2019) or 6D representations (Zhou et al., 2019) since it improved performance in
our experiments (see Section 4).

• δ: One value representing the shortest path along peptide bond between the two nodes xi and xj ,
normalized by δmax.

While the features computed by Hermosilla et al. (2021) provided good results in their experiments,
they were rotational invariant and they were not able to differentiate chiral protein sub-structures. By
incorporating information of direction, ~t, and orientation, r, in our kernel, the operations become
rotation equivariant and provide the network with the tools to differentiate such structures. We denote
the combination of these two modifications as Rot. Eq. in our experiments. Moreover, Hermosilla
et al. (2021) also considered the shortest path along covalent and hydrogen bonds. Calculating such
distance on demand can be computationally demanding, which is a limiting factor in our setup, since
we sample random sub-structures in each training step. Moreover, the resulting connectivity can
depend on the method used to compute the hydrogen bonds, and it can vary for highly disordered
structures (Zhang & Sagui, 2015). Therefore, we do not include such bonds and let the network
detect the necessary secondary structures directly from the protein structure.

The seven edge features computed by f (~t, r, and δ) all have values in the range [−1, 1]. Similar to
positional encoding (Vaswani et al., 2017), we further augment these inputs by applying the function
g = 1− 2|x|, which makes all features contribute to the final value of the kernel ko even when their
values are equal to zero. This feature augmentation results in 14 final input values to ko, the original 7
edges features, plus the transformed ones. We refer to those features as Add. Input in our experiments.
Lastly, we weigh the final value of ko by a function α to remove discontinuities at distance d, where a
small displacement of a neighboring node xj can make it exit the receptive field. Similar to the cutoff
function proposed by Klicpera et al. (2020), the function α smoothly decreases from one to zero
at the edge of the receptive field, making the contributions of neighboring nodes disappear as they
approach d. Our function is defined as α = (1− tanh(di ∗ 16− 14))/2, where di is the distance of
the neighboring node normalized by d. We refer to this function as Smooth in our experiments.

Network architecture. The network architecture proposed by Hermosilla et al. (2021) processed
each protein at the atomic level, and computed features per atom before they were pooled to amino
acids. However, processing all atoms of a protein significantly increases computation time and
memory footprint. Therefore, in this work, we represent each amino acid by its alpha carbon instead.
We use a set ResNet bottleneck blocks (He et al., 2016) and pooling operations as in as Hermosilla
et al. (2021) to compute 2048 features for each protein structure. A detailed description of the protein
encoder is provided in the supplementary material.

4 EXPERIMENTS

In this section, we will describe the experiments conducted to evaluate our methods, and demonstrate
the resulting learned representations.
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Figure 3: Dimensionality reduction of the protein representations using TSNE (Van der Maaten &
Hinton, 2008). Left: Proteins from the Fold Classification task, training set on the left, test set on the
right, color-coded based on the highest hierarchy level in the SCOPe classification system. Right:
Proteins from the Enzyme Classification task, training on the left, test set on the right, color-coded
based on the highest level of the Enzyme Commission number.

4.1 DATA SETS AND TASKS

Our main data set used for unsupervised learning is based on the PDB (Berman et al., 2000). We
collected 476, 362 different protein chains, each composed of at least 25 of amino acids. This set of
protein chains was later reduced for each task, removing chains from the set based on the available
annotations. All networks were trained for 550K training steps, resulting in 6 days of training.

Fold Classification. This data set was first proposed by Hou et al. (2018) which consolidated 16, 712
proteins of 1, 195 different folds from the SCOPe 1.75 database (Murzin et al., 1955). Directly from
this source, we obtained the 3D structures of these proteins. The data set provides three different
test sets with increasing difficulty: Protein, in which proteins of the same family are present in both
test and training set; Family, where proteins from the families in the test set are not seen during
training; and Superfamily, in which proteins from the same superfamily as the proteins in the test set
are not seen during training. Performance is measured with overall accuracy on these test sets. For
pre-training, we filtered the PDB data set and removed all annotated protein chains with the same
folds as the proteins in the test sets. This procedure generated one PDB data set for each test set
composed of proteins with and without annotations. These data sets contain 377, 271 chains for the
Superfamily test set, 313, 616 chains for the Family test set, and 324, 304 chains for the Protein test
set.

Enzyme Classification. This data set was presented by Hermosilla et al. (2021) and it contains
37, 428 proteins from 384 different EC numbers. The task consists of, given a 3D structure of an
enzyme, to predict its complete EC number, e.g. 4.2.3.1, among the 384 numbers available in the
data set. The proteins in the data set are split into three sets, training, validation, and testing, whereby
proteins in each set do not have more than 50% of sequence similarity with proteins from the other
sets. Thus, we obtain 29, 215 proteins for training, 2, 562 proteins for validation, and 5, 651 for
testing. Performance is measured with overall accuracy on the test set. For more details, we refer the
reader to Hermosilla et al. (2021). For pre-training, we remove all proteins from the PDB data set
which belong to the same EC number as the 384 used in the test set, where only the first two digits
are considered, e.g. EC4.1. Thus, we obtain 270, 861 protein chains for pre-training with and without
EC labels..

Protein Similarity. We used the benchmark proposed by Holm (2019). This data set is composed of
140 protein domains for which similar protein chains have to be found from a set of 15, 211. More-
over, they provide another set composed of 176, 022 protein chains that we use to train our distance
metric. In this benchmark, different similarity levels are considered based on the SCOPe classification
hierarchy, Fold, Superfamily, and Family. Performance is measured with Fmax (see Appendix D).
For pre-training, we filtered the PDB data set and removed all proteins that are annotated with the
same Fold as the 140 protein domains. This resulted in 432, 884 protein chains with and without
annotated Fold class.

4.2 QUALITATIVE EVALUATION

First, we evaluate the representation learned by mapping the high dimensional space to a 2D repre-
sentation using TSNE (Van der Maaten & Hinton, 2008). Then, we color-code each point based on
the SCOPe and EC number classification schemes (see Figure 3).
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Table 1: Performance comparison of the different variants of our pre-trained networks on the Fold
and Enzyme classification task. 1-NN makes predictions by searching the latent space for the
nearest neighbor on the training data set, SVM indicates results of a support vector machine model
trained on the learned protein representations, MLP presents the results of an MLP trained using
our representations, Fine-tuning indicates the performance of a fine-tuned protein encoder, and No
pre-train indicates the results of a protein encoder trained from scratch.

FOLD ENZYME

Super. Fam. Protein Avg

HHSuite 17.5 % 69.2 % 98.6 % 61.8 % 82.6 %
TMalign 34.0 % 65.7 % 97.5 % 65.7 %

Kipf & Welling (2017) 16.8 % 21.3 % 82.8 % 40.3 % 67.3 %
Diehl (2019) 12.9 % 16.3 % 72.5 % 33.9 % 57.9 %
Derevyanko et al. (2018) 31.6 % 45.4 % 92.5 % 56.5 % 78.8 %
Gligorijevic et al. (2021) 15.3 % 20.6 % 73.2 % 36.4 % 63.3 %
Baldassarre et al. (2020) 23.7 % 32.5 % 84.4 % 46.9 % 60.8 %
Hermosilla et al. (2021) 45.0 % 69.7 % 98.9 % 71.2 % 87.2 %

Ours (No pre-train) 47.6 % 70.2 % 99.2 % 72.3 % 87.2 %
Ours (1-NN) 21.3 % 47.5 % 87.7 % 52.2 % 46.5 %
Ours (SVM) 32.3 % 49.2 % 94.0 % 58.5 % 53.5 %
Ours (MLP) 38.6 % 69.3 % 98.4 % 68.8 % 74.3 %
Ours (Fine-tuning) 50.3 % 80.6 % 99.7 % 76.9 % 87.6 %

For the Fold Classification task, we take the training and test set Protein, and color code each data
point based on their class according to the SCOPe classification hierarchy. Note, that the model
did not see during training any of the folds of the proteins in the test set. We can see, that our
representation clusters points from the same class for classes a, b, c, d, and g. However, points from
classes e and f are spread among the other classes.

Moreover, we also use the same evaluation for the Enzyme Classification task. We color code each
data point based on the first number from the EC number. Figure 3 shows that, even if the data points
do not seem to form a unique cluster for each EC number, data points from small clusters in the
embedding all belong to the same EC class. This might be an indication, that the network did not use
the higher levels of the EC number classification scheme to cluster data points, but groups proteins
based on other properties that are captured beyond the first digit of the EC number.

4.3 QUANTITATIVE EVALUATION

In order to quantitatively evaluate the learned representation, we evaluate how the high dimensional
space captures human-designed classifications developed over the years. As it is common practice,
we use the performance on downstream tasks, to measure the quality of the learned representation.

Table 2: Comparison of our distance metric
based on the learned representations for the
Protein Similarity benchmark.

Fold Super. Fam.

DaliLite 0.38 0.83 0.96
DeepAlign 0.28 0.78 0.97
mTMaLign 0.13 0.55 0.91
TMaLign 0.12 0.39 0.85

Ours (Euclidean) 0.14 0.39 0.65
Ours (Cosine) 0.12 0.39 0.65
Ours (Cos. Learn) 0.35 0.55 0.63

Distance-based classification. For the tasks of Fold
and Enzyme Classification, we compute the latent rep-
resentation h for the training and test sets. We then use
the Euclidean distance in the latent space to search for
the closest protein in the train set for each protein in the
test set. We count a protein classified correctly if the
selected closest protein in the training set is from the
same class as the queried protein. Table 1 presents the
results of this experiment in the row 1-NN. We can see,
that even if the network did not see proteins from those
folds during training, it learns a representation that can
classify such folds with higher accuracy, than most of
the supervised trained methods. However, for the En-
zyme classification task, where the network did not
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see enzymes of the same subclass during pre-training,
the performance is lower than other methods but still
competitive.

Moreover, we evaluate the learned representation on the Protein Similarity task. Here, we use
the Euclidean distance between representations h and cosine distance between representations z
as a measure of protein similarity. We can see in Table 2 that, even if our method is not able to
outperform state of the art methods such as DaliLite (Holm, 2019) and DeepAlign (Wang et al.,
2013), it achieves higher performance in the Fold test set than TMAlign (Zhang & Skolnick, 2005)
and mTMAlign (Dong et al., 2018), which are well-established methods to measure protein similarity.
For the Superfamily test set it achieves the same performance as TMAlign, but worse than other
methods, while in the Family test set it achieves the lowest performance.

Using a distance metric with our learned representations might not be optimal since we do not enforce
them to represent a metric space during training. Therefore, we trained an MLP to transform our
representation h into a new representation z

′
which minimizes the cosine distance between proteins

of the same class and maximizes it if they are from a different class. We learned three different
representations z

′
, to determine if proteins are from the same Fold, Superfamily, or Family. Table 2

presents the results on such experiment. We can see that this learned distance metric achieves the
second-best Fmax for the Fold task, surpasing commonly used methods such as TMAlign (Zhang &
Skolnick, 2005), mTMAlign (Dong et al., 2018) and DeepAlign (Wang et al., 2013). For the Super-
family task achieves competitive performance compared to mTMAlign (Dong et al., 2018), whilst
for the Family tasks achieves the worst Fmax. This might be an indication that our representation is
able to capture the global structure of protein but struggles to capture fine details. When comparing
timings for a single query against the 15K proteins, our method only takes a few seconds for the
query, as it just performs the subtraction/dot product between the representations, plus around four
minutes for loading and encoding of the 15K proteins. In contrast, DaliLite (Holm, 2019) requires
around 15 hours and TMAlign (Zhang & Skolnick, 2005) a bit less than one hour, on a computer
equipped with six cores.

Classifier. We also measure the quality of the representation, by training different classifiers using
such protein representation as input and comparing to other learned and non-learned based baselines.
Note that some of these baselines were designed for different tasks. However, this comparison allows
positioning our learned representation into context with other available protein encoders. First, we
train a support vector machine model (SVM) on our representation for the tasks of Fold and Enzyme
classification, row SVM in Table 1. As expected, we achieve higher performance than the Euclidean
distance method. We also trained an MLP with a single hidden layer on these representations, row
MLP in Table 1. This method performed better than the SVM in both tasks, and achieved similar
performance to the accuracy obtained by training the protein encoder from scratch on the Fold
Classification task, row No pre-train in Table 1. Furthermore, this classifier outperforms most of the
other methods, including the commonly used TMALign method (Zhang & Skolnick, 2005) on the
fold classification task, where the TMAlign similarity is used to find for each protein in the test set
the most similar protein in the training set.

Fine tuning. Lastly, we measure if our pre-trained encoder can be used as a weight initialization
scheme in a fine-tuning setup. Table 1 presents the results of this experiment in row Fine tuning. We
can see, that this setup achieves the highest accuracy in Table 1, surpassing a randomly initialized
protein encoder and obtaining new state-of-the-art results on both data sets.

4.4 ABLATION STUDIES

In this section, we evaluate the pre-training procedure. First, we analyze how the amount of
information removed from the sequence affects the learned representation. We measure it by training
an MLP to classify the protein representations according to the Fold classification task. For pre-
training, we use the entire PDB data set, and train the protein encoder for 180K training steps, which
results in two days of computation. From the results in Table 3, we can see that removing between
20% and 40% of the protein chain makes the contrastive objective too easy, and the protein encoder
does not learn a rich enough representation. On the other hand, removing between 60% and 80%
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Table 3: Ablations on the data transforma-
tions used during pre-training for the Fold
Classification task.

Transf. Super. Fam. Protein Avg

60%-80% 35.2 % 67.2 % 98.0 % 66.8 %
40%-60% 38.9 % 70.1 % 98.8 % 69.3 %
20%-40% 32.5 % 57.0 % 97.6 % 62.4 %
Sub-graph 42.1 % 65.9 % 98.7 % 68.9 %

Table 4: Ablations on the data transforma-
tions used on the supervised setting for the
Fold Classification task.

Transf. Super. Fam. Protein Avg

60%-80% 9.9 % 23.8 % 62.7 % 32.1 %
40%-60% 26.7 % 48.3 % 91.9 % 55.6 %
20%-40% 38.9 % 63.2 % 98.0 % 66.7 %

Noise 47.6 % 70.2 % 99.2 % 72.3 %

does not preserve enough information, and the performance also suffers. As can be seen, we found
that removing between 40% and 60% of the protein chains achieves the best performance.

We further compare our suggested data transformation approach to the graph augmentation technique
used by You et al. (2020). You et al. (2020) selected a random sub-graph on the spatial neighboring
graph, thus selecting a random area in 3D space. We can see in Table 3, that while You et al. (2020)
obtains a good performance on the Superfamily test set, it obtains lower accuracy on the Family
and Protein test set. Since the Family and Protein test sets contain proteins with higher sequence
similarity to the training set than the Superfamily test set, we hypothesize that our method uses more
information of the protein sequence for the representation than the sub-graph method, since the latest
sees disconnected sections of the chains during training, while our method always sees a connected
sub-chain. Although we acknowledge that both methods can be beneficial for different tasks, we
observed that on average our method provides better performance.

Lastly, we evaluate how the proposed data transformation could affect the supervised training of
the protein encoder on the Fold Classification task. We can see in Table 4, that in contrast to
the unsupervised training, our data transformation technique used as data augmentation reduces
performance in this setup. Instead, the best accuracy is obtained by adding a small random Gaussian
noise into the 3D coordinates of the alpha carbon. These results align with the ones obtained on other
contrastive learning works (Chen et al., 2020a), where these extreme data transformation strategies
hurt the supervised training instead of improving its performance.

5 CONCLUSIONS

In this paper, we have introduced contrastive learning for protein structures. While learning on
protein structures has shown remarkable results, it suffers from rather low availability of annotated
data sets, which strengthens the need for unsupervised learning technologies. In this paper, we
demonstrated, that by combining protein-aware data transformations with adequately adapted, state-
of-the-art learning technologies, we were able to obtain a learned representation without the need
for such annotated data. This is highly beneficial, since the availability of annotated 3D structures is
limited, as compared to sequence data. Using our learned representation, we could show on relevant
protein tasks, that we achieve competitive performance when the distance between representations is
used as a metric of protein similarity.

We believe that our work is a first important step in transferring unsupervised learning methods to
large-scale protein structure databases. In the future, we foresee, that the learned representation can
not only be used, to solve the tasks demonstrated in the paper, but that it can also be helpful, to
solve other protein structure problems. Protein-protein interaction prediction, for example, could be
addressed using our proposed framework by finding the matching geometric patterns in the learned
representations. Additionally, upon acceptance, we plan to release the representations for all PDB
proteins, and make our technology available, such that these representations can be updated with
newly discovered proteins.
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Table 5: Ablations on the edge feature ele-
ments on the Fold Classification task.

Super. Fam. Protein Avg

Baseline 39.0 % 65.6 % 98.6 % 67.7 %
Rot. Eq. 45.5 % 69.7 % 98.9 % 71.4 %
Add. Input 44.6 % 67.7 % 98.7 % 70.3 %
Smooth 40.7 % 65.4 % 98.4 % 68.2 %
Full 47.6 % 70.2 % 99.2 % 72.3 %

Table 6: Ablations of the rotation representa-
tion used on the Fold Classification task.

Super. Fam. Protein Avg

Quat. 44.0 % 68.7 % 98.0 % 70.2 %
6D 46.1 % 68.2 % 98.7 % 71.0 %

Dot Axis 45.5 % 69.7 % 98.9 % 71.4 %

A ADDITIONAL ABLATION STUDIES

First, we evaluate the different extensions we incorporated into the convolution operation as proposed
by Hermosilla et al. (2021) (see Table 5). Our baseline method uses as edge features the Euclidean
distance and the shortest path along the sequence. We evaluate the performance improvement
when we substitute the Euclidean distance by direction and orientation information as described in
Section 3.4, denoted as Rot. Eq. in the table. We also evaluate how transforming the original inputs
similar to positional encoding affects the resulting performance, denoted as Add. Input in the table.
Furthermore, we evaluate the effect of the smoothing function applied towards the boundary of the
receptive field, denoted as Smooth in Table 5. We can see that adding the components individually
to the baseline, results in an improvement of accuracy in all cases. Moreover, when we incorporate
all together in our final convolution operation, we experience even a higher improvement, Full in
Table 5.

Lastly, we evaluated the performance of the model, when changing the representation of the orien-
tation features. Here, we compare Quaternions (Ingraham et al., 2019), with the 6D representation
introduced by Zhou et al. (2019), and the simple dot product between the axes of the two frames.
Results of this experiment are shown in Table 6. The worse performance is obtained by Quaternions,
while the 6D and the dot product obtain similar performance. Although the dot product is not able to
represent a full rotation, it obtained a slightly higher performance than the 6D and a faster convergence
during training. We hypothesize, that even the 6D representation is more descriptive, it uses more
floats than the dot product method wrt. the rest of the inputs to the kernel.

B NETWORK ARCHITECTURE

Our neural network receives as input the list of amino acids of the protein. Each protein is then
simplified several times with a pooling operation that reduces the number of amino acids by half
each step. We use the same pooling operation proposed by Hermosilla et al. (2021) where every
two consecutive amino acids are grouped into a new node. The initial features are defined by an
embedding of 16 features for each amino acid type that is optimized together with the network
parameters. These initial features are then processed by two ResNet bottleneck blocks (He et al.,
2016) and then pooled to the next simplified protein representation using average pooling. This
process is repeated four times until we obtain a set of features for the last simplified protein graph.
The number of features used for each level are [256, 512, 1024, 2048]. The radius of the receptive
field, d, used to compute the adjacency matrix B in each level are [8, 12, 16, 20] Å. Lastly, in order to
obtain a set of features for the complete protein structure we use an order invariant operation that
aggregates the features of all nodes. In particular, we use the average of the features of all nodes.
Figure 4 provides an illustration of the proposed architecture.

C TRAINING PARAMETERS

In this subsection, we will describe the hyperparameters used on the different training setups. All
methods were trained on a desktop pc with six cores, 32 Gb of RAM, and a GeForce GTX 2080.
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Figure 4: Illustration of our protein encoder. We use an amino acid embedding as our input features
that are then processed by consecutive ResNet Bottleneck blocks and pooling operations. To obtain
the final protein representation we use the average of the features from the remaining graph nodes.

C.1 UNSUPERVISED SETUP

To train our models with the contrastive learning objective we used a latent representation h of
size 2048 and a projected representation z of size 128. We use Stochastic Gradient Descent (SGD)
optimizer with an initial learning rate of 0.3 which was decreased linearly until 0.0001 after a fourth
of the total number of training steps. We use a batch size of 256 and a dropout rate of 0.2 for the
whole architecture. Moreover, we used a weight decay factor of 1e− 5.

C.2 FOLD AND ENZYME CLASSIFICATION

Supervised: To train the models on the supervised task of Fold classification we use the SGD
optimizer with an initial learning rate of 0.001 which was decreased after 100 epochs to 0.0001 and
after 300 epochs to 0.00001. We train the networks for a total of 400 epochs using a batch size of 8.
To avoid overfitting we use a dropout rate of 0.2 on the encoder and 0.5 on the final MLP. Moreover,
to further regularize the model, we use a weight decay factor of 5e− 4. We additional augment the
data by applying Gaussian noise to the 3D coordinates with a standard deviation of 0.05.

Fine-tune: For the fine-tuning setup we use the same parameters and for the supervise method but
we use instead a smaller learning rate of 0.0005 which is decreased to 0.00005 after 300 epochs.
Moreover, we use linear learning rate warm-up for the first 25 epochs.

D PERFORMANCE METRIC DALILITE

To evaluate the performance of different methods on the DaliLite benchmark we use Fmax as defined
by Holm (2019). We sort the 15K proteins based on our distance metric to our target and use the
following definition of Fmax:

Fmax = max
n

F (n)

= max
n

2p(n)r(n)

p(n) + r(n)

= max
n

2TP (n)

n+ T
(3)

where n is the rank of the query in the ordered list, i. e. the index of the protein in the sorted list. For
the n first results in the ordered list, we define p(n) as the precision, r(n) as the recall, TP (n) as the
number of true positives pairs, and T is the number of structures in the class. We compute the final
value for the test set by averaging the Fmax among the 140 test protein domains. For more details on
this metric, we refer the reader to Holm (2019).
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