When Does Curriculum Learning Help? A Theoretical Perspective

Raman Arora

Johns Hopkins University Baltimore, MD 21218 arora@cs.jhu.edu

Yunjuan Wang

Johns Hopkins University Baltimore, MD 21218 ywang509@jhu.edu

Kaibo Zhang

Johns Hopkins University Baltimore, MD 21218 kzhang90@jhu.edu

Abstract

Curriculum learning has emerged as an effective strategy to enhance the training efficiency and generalization of machine learning models. However, its theoretical underpinnings remain relatively underexplored. In this work, we develop a theoretical framework for curriculum learning based on biased regularized empirical risk minimization (RERM), identifying conditions under which curriculum learning provably improves generalization. We introduce a sufficient condition that characterizes a "good" curriculum and analyze a multi-task curriculum framework, where solving a sequence of convex tasks can facilitate better generalization. We also demonstrate how these theoretical insights translate to practical benefits when using stochastic gradient descent (SGD) as an optimization method. Beyond convex settings, we explore the utility of curriculum learning for non-convex tasks. Empirical evaluations on synthetic datasets and MNIST validate our theoretical findings and highlight the practical efficacy of curriculum-based training.

1 Introduction

In standard supervised learning, achieving a low generalization error often requires a large number of labeled training examples and significant computational resources. In contrast, humans can rapidly learn new concepts from only a few examples by leveraging prior knowledge. This human-like ability to relate new a new concept to the knowledge they have previously learned motivates the use of prior knowledge in a new learning problem. In paradigms such as multi-task learning [Caruana, 1997], transfer learning [Weiss et al., 2016], and meta-learning [Baxter, 2000], the assumption is that related tasks share information, allowing learners to generalize more effectively. In parameter transfer frameworks [Kuzborskij and Orabona, 2013, Pentina and Lampert, 2014], this shared structure is reflected in the assumption that tasks have similar optimal parameter vectors, enabling efficient learning through initialization and fine-tuning.

Curriculum learning [Bengio et al., 2009] draws inspiration from the structured manner in which humans acquire knowledge – starting with easier concepts and gradually progressing to more difficult ones. This paradigm proposes decomposing complex learning problems into a sequence of simpler sub-tasks ordered by increasing difficulty. The central idea is that such a learning progression can improve both optimization and generalization. Bengio et al. [2009] demonstrated how learning can benefit from gradual progression of the hardness of training data. Subsequent works extend the idea to other aspects of learning, such as increasing model capacity [Karras et al., 2017, Sinha et al., 2020, Morerio et al., 2017] and increasing task difficulty [Caubrière et al., 2019, Florensa et al., 2017, Lotter et al., 2017, Sarafianos et al., 2017, Zhang et al., 2017]. We focus on curriculum learning across tasks, where parameters are transferred from simpler tasks to more complex ones.

In contrast to traditional transfer learning, which assumes all tasks are closely related, curriculum learning introduces an ordering over tasks based on their difficulty. However, such

an ordering does not imply that all tasks are mutually similar. In fact, strong similarity is often limited to adjacent tasks [Pentina et al., 2015]. Accordingly, we assume that only pairs of consecutive tasks are related, allowing for progressive knowledge transfer. This setup accommodates scenarios where the first and last tasks may be significantly different, as long as each intermediate step is incrementally learnable. Figure 1 illustrates this structure, where successive tasks exhibit similar loss landscapes and closely aligned minimizers.

Curriculum learning offers both optimization and statistical benefits. From an optimization perspective, continuation methods [Allgower and Georg, 2012] progressively increase problem difficulty–starting with convex, smooth objectives and transitioning to more challenging nonconvex or nonsmooth objectives–thus helping the learner avoid poor local minima. Similarly, curricula that score training samples by difficulty [Weinshall et al., 2018, Weinshall and Amir, 2020] show improved convergence when training begins on simpler examples.

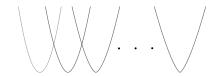


Figure 1: An illustration of potential relationship between tasks in a curriculum.

Self-paced learning [Kumar et al., 2010] adapts this idea by dynamically weighting training samples based on their inferred difficulty during training. On the statistical side, recent works [Xu and Tewari, 2022, Cohen et al., 2024] study the benefits of curriculum learning in simplified settings such as mean estimation. They show that, under appropriate conditions, learning from an easier and statistically similar source task can reduce the number of samples required to learn a target task.

In this paper, we extend previous insights to broader supervised learning problems by studying the statistical benefit of curriculum learning in the multitask setting, with a focus on the general learning setting of Vapnik [2013]. We propose a curriculum learning framework based on biased regularized empirical risk minimization (RERM)[Schölkopf et al., 2001, Denevi et al., 2019], where knowledge transfer is facilitated by incorporating a bias vector \mathbf{w}_0 in the regularization term $\lambda \|\mathbf{w} - \mathbf{w}_0\|^2$. This inductive bias has proven effective in computer vision [Kienzle and Chellapilla, 2006, Tommasi et al., 2013], natural language processing [Daumé III, 2009], meta-learning [Pentina and Lampert, 2014, Kuzborskij and Orabona, 2017, Denevi et al., 2019, 2018], and continual learning [Li et al., 2023]. We extend this idea to design a curriculum across tasks and provide theoretical and empirical support for its effectiveness. Our key contributions are as follows.

- 1. We propose a biased regularization-based curriculum framework (Algorithm 1) and introduce a novel (r,α) condition that characterizes a 'good' curriculum. This condition is simple, natural, intuitive, and depends only on the population loss of two consecutive tasks. We show that it ensures reduced sample complexity for subsequent tasks when r is small.
- 2. Under convexity assumptions, we provide excess risk bounds for our biased-RERM approach to curriculum learning. We show that the hardness of curriculum learning depends on the Lipschitz constants of the loss functions for each task, the local Lipschitz constants near the minimizer, the smoothness parameter of the loss function, and the quality of inductive bias obtained from learning previous tasks. These factors also determine the order of the tasks in a 'good' curriculum. We extend our analysis to efficient SGD-based training and apply our results to adversarially robust learning.
- 3. For nonconvex learning problems, we introduce an ERM-based curriculum learning algorithm and establish generalization guarantees via uniform convergence, showing that even in nonconvex settings, a carefully constructed curriculum can improve learning efficiency.

Paper Organization. In Section 2, we present the formal setup and define the (r,α) condition for a 'good' curriculum. Section 3 analyzes the role of biased regularization in a two-task setting. Section 4 provides theoretical guarantees for convex tasks using biased RERM and SGD. Section 5 extends our framework to nonconvex tasks using ERM. Section 6 presents empirical results on synthetic and real datasets that validate our theoretical findings.

2 Problem Setup

Notation. Throughout, we denote scalars, vectors, and matrices with lowercase italics, lowercase bold, and uppercase bold Roman letters, respectively; e.g., u, u, and U. We use [m] to denote the set $\{1, 2, \ldots, m\}$ and both $\|\cdot\|$ and $\|\cdot\|_2$ for ℓ_2 -norm. We use the standard O-notation (\mathcal{O}, Θ) and Ω .

General Learning Problem. In a general learning problem, each example z is drawn from a data domain \mathcal{Z} ; for instance, for standard supervised learning, $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$, where \mathcal{X} is the input space and \mathcal{Y} is the output space. We assume that data are drawn i.i.d. from an unknown distribution \mathcal{D} over \mathcal{Z} . The learner has access to a training dataset $S = \{z_i\}_{i=1}^n \sim \mathcal{D}^n$ consisting of n i.i.d. samples. Let \mathcal{H} denote the hypothesis class, where each hypothesis is parameterized by a vector $\mathbf{w} \in \mathbb{R}^m$. Let $\ell: \mathcal{Z} \times \mathcal{H} \to \mathbb{R}$ denote the loss function. The population risk with respect to the underlying population, \mathcal{D} , and the empirical risk on a sample $S \sim \mathcal{D}^n$ are defined, respectively, as

$$\mathit{L}_{\mathcal{D}}(\mathbf{w}) := \mathbb{E}_{\mathbf{z} \sim \mathcal{D}}[\ell(\mathbf{z}; \mathbf{w})], \qquad \widehat{\mathit{L}}_{\mathit{S}}(\mathbf{w}) := \frac{1}{|\mathit{S}|} \sum_{\mathbf{z} \in \mathit{S}} \ell(\mathbf{z}; \mathbf{w}).$$

A learning algorithm $\mathcal{A}: \mathcal{Z}^* \to \mathcal{H}$ maps any dataset S to a hypothesis $\mathcal{A}(S) \in \mathcal{H}$. The goal is to design a learning algorithm with minimal excess risk defined as $\varepsilon(\mathbf{w}) := L_{\mathcal{D}}(\mathbf{w}) - \inf_{\mathbf{w}' \in \mathcal{H}} L_{\mathcal{D}}(\mathbf{w}')$. We consider the following classes of problems based on the structural properties of the loss function.

- Convex: The learning problem is *convex* if $\ell(z, w)$ is convex in w for every z.
- Strong Convexity: The problem is λ -strongly convex if $\ell(z, w) \frac{\lambda}{2} ||w||_2^2$ is convex.
- Weak Convexity: The problem is *l-weakly convex* if $\ell(z; w) + \frac{1}{2} ||w||_2^2$ is convex in w.
- Lipschitz: $\ell(\cdot,\cdot)$ is ρ -Lipschitz if, for all $w_1, w_2 \in \mathcal{H}$, $|\ell(z; w_1) \ell(z; w_2)| \le \rho \|w_1 w_2\|_2$.
- Smooth: $\ell(\cdot,\cdot)$ is *H-smooth* if $\forall w_1, w_2 \in \mathcal{H}$, $\|\nabla_w \ell(z; w_1) \nabla_w \ell(z; w_2)\|_2 \le H \|w_1 w_2\|_2$.

Biased RERM. Regularized empirical risk minimization (RERM) is a popular learning algorithm known for its strong generalization performance. In its standard form, RERM returns a predictor $\mathcal{A}(S) \in \operatorname{argmin}_{\mathbf{w} \in \mathcal{H}} \widehat{L}_S(\mathbf{w}) + \frac{\mu}{2} \|\mathbf{w}\|_2^2$, where $\mu > 0$ is a regularization parameter that encourages low-norm solutions to prevent overfitting. We consider a variant called *biased* RERM, which returns

$$\mathcal{A}(S) \in \underset{\mathbf{w} \in \mathcal{H}}{\operatorname{argmin}} \, \widehat{L}_S(\mathbf{w}) + \frac{\mu}{2} \|\mathbf{w} - \mathbf{w}_0\|_2^2, \tag{1}$$

where $w_0 \in \mathbb{R}^m$ is a reference hypothesis that serves as an inductive bias. The regularization term now encourages solutions close to w_0 , which can be interpreted as incorporating prior knowledge into the learning. We can benefit from biased RERM if there exists a good predictor near w_0 .

Multi-task Curriculum. We consider a curriculum consisting of T distinct tasks. For each $t \in [T]$, the t-th task is defined by a specific loss function $\ell_t(\mathbf{z};\mathbf{w})$ and an associated unknown data distribution \mathcal{D}_t over the sample space \mathcal{Z} . Both the loss functions and data distributions may differ across tasks, capturing scenarios such as regression followed by classification, or variations in label semantics or data modalities. For each task $t \in [T]$, we draw an i.i.d. sample of size n_t from the corresponding distribution, $S_t \sim \mathcal{D}_t^{n_t}$. The population and empirical risks for task t are defined as

$$L_{\mathcal{D}_t}(\mathbf{w}) := \mathbb{E}_{\mathbf{z} \sim \mathcal{D}_t}[\ell_t(\mathbf{z}; \mathbf{w})], \qquad \widehat{L}_{S_t}(\mathbf{w}) := \frac{1}{n_t} \sum_{\mathbf{z} \in S_t} \ell_t(\mathbf{z}; \mathbf{w}).$$

The excess risk for task t is given by $\varepsilon_t(\mathbf{w}) := L_{\mathcal{D}_t}(\mathbf{w}) - \inf_{\mathbf{w}' \in \mathcal{H}} L_{\mathcal{D}_t}(\mathbf{w}')$. The goal of curriculum learning is to learn the target task T by sequentially training on all T tasks, while leveraging knowledge from earlier tasks to improve generalization on the final target task. In this paper, we focus on curriculum learning wherein each task is solved via biased RERM. Specifically, we use the solution from task t-1 to initialize (aka, regularize) the learning of task t. This is done through a bias function ϕ_t that maps the learned hypothesis $\widehat{\mathbf{w}}_{t-1}$ from the previous task to a bias vector for the current task. For simplicity, we assume ϕ_t is the identity map, i.e., the bias for task t is directly given by $\widehat{\mathbf{w}}_{t-1}$. However, our framework naturally extends to more general settings where each task t may have its own hypothesis class \mathcal{H}_t , and the bias function $\phi_t: \mathcal{H}_{t-1} \to \mathcal{H}_t$ bridges the learned hypothesis from task t-1 to a suitable inductive bias for task t. This sequential procedure using biased RERM across tasks is formalized in Algorithm 1.

Algorithm 1 Biased Regularization-based Curriculum Learning

```
Input: \mathbf{w}_0, S_1, \dots, S_T, \mu_1, \dots, \mu_T > 0. \widehat{\mathbf{w}}_0 = \mathbf{w}_0. for t = 1, 2, \dots, T do \widehat{\mathbf{w}}_t \in \operatorname*{argmin}_{\mathbf{w}} \left(\widehat{L}_{S_t}(\mathbf{w}) + \frac{\mu_t}{2} \|\mathbf{w} - \widehat{\mathbf{w}}_{t-1}\|_2^2\right). end for return: \widehat{\mathbf{w}}_T.
```

 (r,α) Condition of the Curriculum. To effectively apply biased RERM to task t, we require a good bias $\phi_t(\widehat{\mathbf{w}}_{t-1})$, i.e., a previous solution close to a good predictor for the current task after mapped onto \mathcal{H}_t . Since $\widehat{\mathbf{w}}_{t-1}$ is obtained by learning task t-1, this requires that consecutive tasks be similar enough for the prior solution to be informative. We formalize this similarity using the (r_t,α_t) condition, which relates the excess risks of two consecutive tasks. Specifically, we assume that

$$\inf_{\mathbf{w}':\|\mathbf{w}'-\phi_t(\mathbf{w})\|_2 \le r_t} \varepsilon_t(\mathbf{w}') \le \alpha_t \varepsilon_{t-1}(\mathbf{w}), \tag{2}$$

for some constants $r_t > 0$ and $\alpha_t \in (0,1)$. When this condition holds, we say that tasks t-1 and t satisfy the (r_t, α_t) condition. We will assume ϕ_t is the identity mapping only for simplicity in our core theorems.

Intuitively, this condition means that if a predictor w has small excess risk on task t-1, then there exists a predictor w' within a ball of radius r_t centered at w, with excess risk at most $\alpha_t \epsilon$ on task t. Thus, a solution to task t-1 can serve as a useful initialization or inductive bias for task t.

We note that since the scale of the loss functions is arbitrary, one can always apply affine rescaling to them so that α_t is the same across all tasks. Therefore, for simplicity, we assume $\alpha_t = \alpha \in (0,1) \ \forall t$. In practice, we do not rescale losses across tasks. But for theoretical clarity, assuming a constant $\alpha < 1$ allows us to streamline the presentation of our results without loss of generality. If needed, our theorems could be extended to carry task-dependent α_t values throughout. Further, we emphasize that we do not need condition (2) to hold for all $\mathbf{w} \in \mathbb{R}^m$. Since we initialize the learning for task t with a predictor that generalizes well on task t-1, it suffices if (2) holds for \mathbf{w} with $\epsilon_{t-1}(\mathbf{w}) \leq \epsilon$ for sufficiently small $\epsilon \in (0,1)$. However, we may need to set ϵ differently for different settings. So, for convenience, and without loss of generality, we state the condition as in (2).

3 Warm-up: Curriculum Learning with Two Tasks

In this section, we illustrate the role of biased RERM in curriculum learning by analyzing a simple setting with only two tasks, i.e., T=2. The goal is to learn the second (target) task by first learning the first (source) task. Let $\mathbf{w}_1^\star \in \operatorname{argmin}_\mathbf{w} L_{\mathcal{D}_1}(\mathbf{w})$, $\mathbf{w}_2^\star \in \operatorname{argmin}_\mathbf{w} L_{\mathcal{D}_2}(\mathbf{w})$ denote the optimal predictors for the two tasks. We assume that the first task is λ -strongly convex with gradients uniformly bounded at the optimum: $\|\nabla_\mathbf{w}\ell_1(\mathbf{z};\mathbf{w}_1^\star)\|_2 \le \rho_1$, $\forall \mathbf{z} \in \mathcal{Z}$. Second task is ρ_2 -Lipschitz.

The curriculum solves the first task using empirical risk minimization (ERM), and the second task using biased regularized ERM. This procedure is described in Algorithm 2.

Algorithm 2 Warm-up: A Two-task Curriculum

$$\begin{split} & \textbf{Input:} \ \ S_1, S_2, \, \mu_2 > 0. \\ & \widehat{\mathbf{w}}_1 = \operatorname{argmin}_{\mathbf{w}} \widehat{L}_{S_1}(\mathbf{w}). \\ & \widehat{\mathbf{w}}_2 = \operatorname{argmin}_{\mathbf{w}} \left(\widehat{L}_{S_2}(\mathbf{w}) + \frac{\mu_2}{2} \|\mathbf{w} - \widehat{\mathbf{w}}_1\|_2^2 \right). \\ & \text{return:} \ \widehat{\mathbf{w}}_2. \end{split}$$

Theorem 3.1. If the second task is convex, then setting
$$\mu_2 = \frac{2\rho_2}{\left(\|\mathbf{w}_2^\star - \mathbf{w}_1^\star\|_2 + \frac{\rho_1}{\lambda\sqrt{n_1}}\right)\sqrt{n_2}}$$
, we have $\mathbb{E}\left[\varepsilon_2(\widehat{\mathbf{w}}_2)\right] \leq \frac{2\rho_2}{\sqrt{n_2}}\left(\|\mathbf{w}_2^\star - \mathbf{w}_1^\star\|_2 + \frac{\rho_1}{\lambda\sqrt{n_1}}\right)$.

Theorem 3.2. If the second task is l-weakly convex, then setting $\mu_2 = l + \frac{2\rho_2}{\left(\|\mathbf{w}_2^\star - \mathbf{w}_1^\star\|_2 + \frac{\rho_1}{\lambda\sqrt{n_1}}\right)\sqrt{n_2}}$, we have $\mathbb{E}\left[\varepsilon_2(\widehat{\mathbf{w}}_2)\right] \leq \frac{2\rho_2}{\sqrt{n_2}}\left(\|\mathbf{w}_2^\star - \mathbf{w}_1^\star\|_2 + \frac{\rho_1}{\lambda\sqrt{n_1}}\right) + \frac{l}{2}\left(\|\mathbf{w}_2^\star - \mathbf{w}_1^\star\|_2 + \frac{\rho_1}{\lambda\sqrt{n_1}}\right)^2$.

Theorems 3.1 and 3.2 show that curriculum learning can achieve a fast generalization rate for the target task under a mild similarity assumption—specifically, when the optimal solutions of the two tasks, w_1^* and w_2^* , are close. This proximity ensures that a hypothesis learned from the simpler first task (i.e., strongly convex) can serve as an effective bias for the more challenging second task. Importantly, the excess risk bound for the second task reflects this structure: it improves as the distance between w_1^* and w_2^* decreases and achieves a fast rate as the first task is easier to learn.

The regularization parameter μ_2 in both theorems is chosen to optimize the theoretical bound and depends on unknown problem-specific quantities. These values are thus not intended for practical implementation. In practice, μ_2 should be treated as a tunable hyperparameter, selected via validation or cross-validation. Nonetheless, the analysis reveals that a two-phase curriculum strategy—first solving a well-behaved source task, then regularizing toward its solution can yield statistically significant gains in sample efficiency for the target task.

4 Curriculum Learning with Multiple Convex Learning Tasks

In this section, we consider a curriculum comprising T convex learning tasks that are learned sequentially. Our goal is to demonstrate the role of the (r,α) condition in facilitating efficient learning of the target (i.e., the T^{th}) task. Here, we focus on convex learning problems (with additional structure, e.g., Lipschitzness, smoothness, and non-negativity). We first provide theoretical guarantees for biased RERM under this setup (Section 4.1), then extend the analysis to computationally efficient variants such as SGD (Section 4.2) and settings where tighter bounds can be obtained by leveraging local geometry (Section 4.3). We relax the convexity assumption in Section 5.

4.1 Learning Convex Lipschitz Tasks using Biased RERM

We assume that each task $t \in [T]$ in the curriculum is a convex learning problem with a ρ_t -Lipschitz loss function. Furthermore, we assume that every pair of consecutive tasks (t-1,t) satisfies the (r_t,α) condition for some constants $r_t>0$ and $\alpha\in(0,1)$. We use the biased RERM algorithm described in Algorithm 1 for curriculum learning. To highlight the benefit of the curriculum, we begin by analyzing two consecutive tasks: task t-1 and task t.

Theorem 4.1. Suppose task t is convex and ρ_t -Lipschitz, and the (r_t, α) condition holds between tasks (t-1,t). Then, setting $\mu_t = \frac{2\rho_t}{r_t\sqrt{n_t}}$ yields the following excess risk bound:

$$\mathbb{E}\left[\varepsilon_t(\widehat{\mathbf{w}}_t)\right] \leq \frac{2r_t\rho_t}{\sqrt{n_t}} + \alpha \mathbb{E}\left[\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})\right].$$

The result above shows that if r_t is a small constant, then using $\widehat{\mathbf{w}}_{t-1}$ as the bias in biased RERM leads to a smaller sample complexity for learning task t. A natural setting where this occurs is when the minimizers of successive tasks are close. For example, in large language models (LLMs), task t-1 can represent a pretraining phase that yields a model $\widehat{\mathbf{w}}_{t-1}$ close to the minimizer of many related downstream tasks. If task t is such a downstream task and its minimizer is close to that of task t-1, then a small perturbation of $\widehat{\mathbf{w}}_{t-1}$ yields a good predictor for task t. In this case, a small value of r_t is justified, and the sample complexity required to generalize on task t is correspondingly small.

Proof Sketch. To upper bound the excess risk $\varepsilon_t(\widehat{\mathbf{w}}_t)$, we begin by decomposing it as follows:

$$\mathbb{E}_{S_t} \left[\varepsilon_t(\widehat{\mathbf{w}}_t) \right] = \mathbb{E}_{S_t} \left[L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_t) \right] - \inf_{\mathbf{w}} L_{\mathcal{D}_t}(\mathbf{w})$$

$$= \mathbb{E}_{S_t} \left[L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_t) - \widehat{L}_{S_t}(\widehat{\mathbf{w}}_t) \right] + \mathbb{E}_{S_t} \left[\widehat{L}_{S_t}(\widehat{\mathbf{w}}_t) - \widehat{L}_{S_t}(\mathbf{w}') \right] + \left[L_{\mathcal{D}_t}(\mathbf{w}') - \inf_{\mathbf{w}} L_{\mathcal{D}_t}(\mathbf{w}) \right] (3)$$

where w' is any hypothesis independent with S_t . By the (r_t, α) condition, there exists w', s.t. $\|\mathbf{w}' - \widehat{\mathbf{w}}_{t-1}\|_2 \le r_t$ and $\varepsilon_t(\mathbf{w}') \le \alpha \varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})$ hold. Hence, the third term in the decomposition can be

upper bounded by $L_{\mathcal{D}_t}(\mathbf{w}') - \inf_{\mathbf{w}} L_{\mathcal{D}_t}(\mathbf{w}) \le \alpha \varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})$. Next, consider the second term. Using the definition of biased RERM, we have:

$$\begin{split} \mathbb{E}_{S_{t}} \left[\widehat{L}_{S_{t}}(\widehat{\mathbf{w}}_{t}) - \widehat{L}_{S_{t}}(\mathbf{w}') \right] & \leq & \mathbb{E}_{S_{t}} \left[\widehat{L}_{S_{t}}(\widehat{\mathbf{w}}_{t}) + \frac{\mu_{t}}{2} \|\widehat{\mathbf{w}}_{t} - \widehat{\mathbf{w}}_{t-1}\|_{2}^{2} - \widehat{L}_{S_{t}}(\mathbf{w}') \right] \\ & \leq & \mathbb{E}_{S_{t}} \left[\widehat{L}_{S_{t}}(\mathbf{w}') + \frac{\mu_{t}}{2} \|\mathbf{w}' - \widehat{\mathbf{w}}_{t-1}\|_{2}^{2} - \widehat{L}_{S_{t}}(\mathbf{w}') \right] \leq \frac{\mu_{t} r_{t}^{2}}{2}. \end{split}$$

where the second inequality follows from the optimality of $\widehat{\mathbf{w}}_t$ under biased RERM and the final inequality uses the assumption $\|\mathbf{w}' - \widehat{\mathbf{w}}_{t-1}\|_2 \le r_t$.

Finally, we consider the first term in the decomposition: $\mathbb{E}_{S_t}\left[L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_t) - \widehat{L}_{S_t}(\widehat{\mathbf{w}}_t)\right]$ – the generalization gap. Using the uniform stability results from Shalev-Shwartz and Ben-David [2014], and noting that the loss function is convex and ρ_t -Lipschitz, the generalization gap can be bounded by $\mathbb{E}_{S_t}L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_t) \leq \mathbb{E}_{S_t}\widehat{L}_{S_t}(\widehat{\mathbf{w}}_t) + \frac{2\rho_t^2}{\mu_t n_t}$. Putting the three terms together and optimizing the bound w.r.t. μ_t to minimize the sum of the first two terms yields the upper bound stated in Theorem 4.1. \blacksquare Corollary 4.2. Assume the first task is learned with excess risk $\mathbb{E}\left[\varepsilon_1(\widehat{\mathbf{w}}_1)\right] \leq \epsilon$. Set the regularization parameter to $\mu_t = \frac{2\rho_t}{r_t\sqrt{n_t}}$, and suppose the sample size $n_t \geq \frac{4r_t^2\rho_t^2}{(1-\alpha)^2\epsilon^2}$. Then, for all tasks t, the excess risk is bounded as $\mathbb{E}\left[\varepsilon_t(\widehat{\mathbf{w}}_t)\right] \leq \epsilon$.

In the above Corollary 4.2, we assume that the first task is sufficiently easy to learn to a small excess risk. This can be achieved, for example, by choosing a strongly convex learning problem, using a large number of samples, or initializing from a high-quality pretrained model.

However, requiring ϵ -suboptimality for all tasks may be unnecessarily strict, especially when our goal is only to achieve small excess risk on the final target task. Instead, Theorem 4.1 allows us to ensure that the excess risk forms a decreasing sequence across tasks, culminating in a final bound of ϵ only for the target task T. This motivates the next corollary.

Corollary 4.3. Suppose the first task is learned to excess risk $\mathbb{E}\left[\varepsilon_1(\widehat{\mathbf{w}}_1)\right] \leq \epsilon_1$. Set the regularization parameter as $\mu_t = \frac{2\rho_t}{r_t\sqrt{n_t}}$, and assume the sample size satisfies $n_t \geq \left(\frac{4r_t\rho_t}{(1-\alpha)\epsilon_1\left(\frac{\alpha+1}{2}\right)^{t-2}}\right)^2$. Then, for every task t, we have $\mathbb{E}\left[\varepsilon_t(\widehat{\mathbf{w}}_t)\right] \leq \epsilon_1\left(\frac{\alpha+1}{2}\right)^{t-1}$.

Since $\alpha < 1$, the bound $\epsilon_1 \left(\frac{\alpha+1}{2}\right)^{t-1}$ decreases with t. This decay allows smaller sample complexity for earlier tasks in the curriculum and, correspondingly, the use of larger regularization parameters μ_t . Larger μ_t yields strongly convex objectives with larger strong convexity parameters and thereby improving the computational efficiency of learning.

4.2 Learning Lipschitz Convex Losses with SGD

We show that, instead of using biased RERM, one can apply stochastic gradient descent (SGD) with a carefully chosen learning rate to achieve the same excess risk bound as in Theorem 4.1. The SGD procedure for task t is described in Algorithm 3.

Algorithm 3 SGD for task *t*

For simplicity, we analyze the case of two consecutive tasks, t-1 and t, as in Section 4.1.

Theorem 4.4. Suppose task t has a ρ_t -Lipschitz convex loss function and satisfies the (r_t, α) condition with task t-1. Choosing the learning rate $\eta_t = \frac{r_t}{\rho_t \sqrt{n_t}}$, the excess risk of SGD satisfies

$$\mathbb{E}\left[\varepsilon_t(\widehat{\mathbf{w}}_t)\right] \leq \frac{r_t \rho_t}{\sqrt{n_t}} + \alpha \mathbb{E}\left[\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})\right].$$

The bound above matches the result in Theorem 4.1, and thus all subsequent corollaries carry over to this setting. Crucially, the use of SGD offers computational advantages: it is an efficient singlepass algorithm and updates the model using only one example at a time. This makes it particularly appealing in large-scale or streaming settings, while still benefiting from the curriculum structure.

4.3 A Tighter Bound via Leveraging the Local Lipschitz Constant

To obtain a sharper excess risk bound, we refine our analysis to leverage local Lipschitz constant around the minimizers. Specifically, we define a local Lipschitz constant $\bar{\rho}_t$ over the set of predictors w with excess risk at most $\bar{\varepsilon}_t$. The intuition is that since the final hypothesis \hat{w}_t is expected to achieve small excess risk, it may suffice to control the gradient magnitude only in this restricted region–leading to a potentially smaller constant $\bar{\rho}_t \ll \rho_t$. Formally,

$$\bar{\rho}_t \ge \sup_{\mathbf{z}} \sup_{\mathbf{w}: \varepsilon_t(\mathbf{w}) \le \bar{\varepsilon}_t} \left\| \frac{\partial \ell_t(z; \mathbf{w})}{\partial \mathbf{w}} \right\|_2.$$
 (4)

Theorem 4.5. Choosing μ_t appropriately, the excess risk of curriculum learning satisfies

$$\mathbb{E}\left[\varepsilon_t(\widehat{\mathbf{w}}_t)\right] \leq \frac{2r_t}{\sqrt{n_t}} \left(\bar{\rho}_t + \frac{6r_t(\rho_t^2 - \bar{\rho}_t^2)}{(1 - \alpha)\bar{\varepsilon}_t\sqrt{n_t}}\right) + \frac{1 + \alpha}{2} \mathbb{E}\left[\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})\right].$$

We note that Theorem 4.5 recovers Theorem 4.1 as a special case by setting $\bar{\rho}_t = \rho_t$. However, a meaningful improvement and a special case by setting $\rho_t = \rho_t$. However, a meaningful improvement as a special case by setting $\rho_t = \rho_t$. In such cases, the upper bound $\approx \frac{2r_t}{\sqrt{n_t}}\bar{\rho}_t + \frac{1+\alpha}{2}\mathbb{E}\left[\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})\right]$. Moreover, the bound depends on both $\bar{\varepsilon}_t$ and $\bar{\rho}_t$. Since $\bar{\rho}_t = \bar{\rho}_t(\bar{\varepsilon}_t)$ can be interpreted as a non-decreasing function of $\bar{\varepsilon}_t$ (by definition in (4)), one can minimize the overall upper bound by balancing the two terms: $\bar{\rho}_t$ and $\frac{6r_t(\rho_t^2 - \bar{\rho}_t^2)}{(1-\alpha)\bar{\varepsilon}_t\sqrt{n_t}}$. This offers an additional degree of flexibility in tightening the excess risk bound.

Learning Smooth and Nonnegative Convex Losses with Biased RERM

In this section, we assume that the loss functions satisfy smoothness, rather than Lipschitz continuity. Specifically, we assume that for all z, the loss function $\ell_t(z; w)$ of task t is convex, nonnegative, and H_t -smooth with respect to $w \in \mathbb{R}^m$. Moreover, tasks t-1 and t satisfy the (r_t, α) condition for constants $r_t > 0$ and $\alpha \in (0,1)$. Let $L_t^* = \inf_{\mathbf{w}} L_{\mathcal{D}_t}(\mathbf{w})$. As in earlier sections, we employ biased RERM to learn each task and focus our analysis on two consecutive tasks.

Theorem 4.6. Setting the regularization parameter $\mu_t = \max\{\frac{(2+6\alpha)H_t}{(1-\alpha)n_t}, \frac{1}{r_t}\sqrt{\frac{32H_tL_t^*}{n_t}}\}$, we have

$$\mathbb{E}\left[\varepsilon_t(\widehat{\mathbf{w}}_t)\right] \leq \sqrt{\frac{32L_t^{\star}H_tr_t^2}{n_t}} + \frac{9H_tr_t^2}{(1-\alpha)n_t} + \frac{1+\alpha}{2}\mathbb{E}\left[\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})\right].$$

The proof closely mirrors the argument used in Theorem 4.1, relying on the same excess risk decomposition from equation (3). The second and third terms in the decomposition are bounded using the same techniques as before. For the first term-the generalization gap-we apply a stability-based argument for smooth, nonnegative losses. Specifically, from standard results on uniform stability for smooth objectives, we obtain $\mathbb{E}_{S_t} L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_t) \leq \left(\frac{\mu_t n_t + H_t}{\mu_t n_t - H_t}\right)^2 \mathbb{E}_{S_t} \widehat{L}_{S_t}(\widehat{\mathbf{w}}_t)$ as long as $\mu_t n_t > H_t$.

smooth objectives, we obtain
$$\mathbb{E}_{S_t} L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_t) \le \left(\frac{\mu_t n_t + H_t}{\mu_t n_t - H_t}\right)^2 \mathbb{E}_{S_t} \widehat{L}_{S_t}(\widehat{\mathbf{w}}_t)$$
 as long as $\mu_t n_t > H_t$

Theorem 4.6 provides an optimistic rate for smooth convex losses. In the realizable case where $L_t^*=0$, we obtain a fast rate of $\mathcal{O}(1/n_t)$. Note that for this result to hold, the loss function must be well-defined over the entire domain $w \in \mathbb{R}^m$. Similar to Theorem 4.1, the benefit of the curriculum becomes evident when each r_t is small, enabling significant gains in sample efficiency. Even in the absence of a curriculum, this analysis yields an optimistic bound by replacing r_t with a larger constant. Thus, incorporating curriculum learning never worsens the sample complexity (up to the parameters r_t and α), and often leads to notable improvements.

While our analysis thus far has focused on multi-task curricula, the framework naturally extends to the single-task setting. Suppose we are given a single learning task and aim to construct an effective curriculum within its dataset. One strategy is to begin training on a subset of "easy" examples—those for which the loss is small—and then gradually incorporate the full training distribution. This aligns with the original motivation behind curriculum learning [Bengio et al., 2009], where the learner is first exposed to simpler examples and then to increasingly complex ones.

From Theorem 4.6, the excess risk bound depends on the regularization radius r, transferability parameter α , smoothness H_t , and the optimal population loss L_t^{\star} . We therefore aim to identify a subset of training examples that satisfies two goals: (1) the resulting subtask is *similar* to the original task in the sense that the pair satisfies a (r,α) condition with small r and α , and (2) the subtask has a smaller optimal risk L_t^{\star} , thereby reducing the sample complexity required to learn it.

Practically, this involves selecting a 'good' subset of the training data—i.e., a collection of examples with low loss values under an initial model—to define an auxiliary task. The learner can then solve this easier task first and use the resulting solution as a bias to efficiently solve the full task. This strategy mirrors the continuation principle embedded in curriculum learning: leveraging simple concepts as stepping stones to learn more complex ones. This idea is confirmed by Saglietti et al. [2022] and Abbe et al. [2023]. They considered specific settings and selected sparse data and low noise data as the 'good' subset.

5 Curriculum Learning without Convexity

Deep learning has become the cornerstone of recent advances in artificial intelligence and machine learning, powering state-of-the-art performance across domains such as vision, language, and robotics. At the heart of deep learning is the training of deep neural networks—an inherently nonconvex optimization problem. In this section, we investigate the benefits of curriculum learning in this nonconvex setting, focusing on tasks whose loss functions are nonconvex but Lipschitz continuous.

We assume a curriculum composed of T tasks, where each task t has a ρ_t -Lipschitz, nonconvex loss function. As before, we assume each pair of consecutive tasks satisfies the (r_t, α) condition for some $r_t > 0$, $\alpha \in (0,1)$. Unlike the convex case, where we use biased RERM, we propose an ERM-based strategy for nonconvex problems. For each task t, we select a solution by minimizing empirical loss over a ball of radius r_t centered at $\widehat{\mathbf{w}}_{t-1}$. This is formalized in Algorithm 4.

Algorithm 4 ERM-based Curriculum Learning

```
\begin{split} & \textbf{Input:} \ \ \mathbf{w}_0, S_1, \dots, S_T, r_1, \dots, r_T > 0. \\ & \widehat{\mathbf{w}}_0 = \mathbf{w}_0. \\ & \textbf{for} \ t = 1, 2, ..., T \ \textbf{do} \\ & \widehat{\mathbf{w}}_t \in \underset{\mathbf{w}: \|\mathbf{w} - \widehat{\mathbf{w}}_{t-1}\|_2 \leq r_t}{\operatorname{argmin}} \widehat{L}_{S_t}(\mathbf{w}). \\ & \textbf{end for} \\ & \text{return:} \ \widehat{\mathbf{w}}_T. \end{split}
```

When $\widehat{L}_{S_t}(\mathbf{w})$ is convex, the projection-based ERM in Algorithm 4 is equivalent to biased RERM with quadratic regularization as in Algorithm 1. However, in the nonconvex case, Algorithm 4 enables a broader exploration of the parameter space. Although this procedure may not be computationally efficient, in practice it can be approximated using methods such as SGD. We also note that the radius r_t is used primarily for theoretical analysis; in practice, it can be treated as a tunable parameter. For example, early stopping can serve as a proxy for tuning r_t , by controlling how long we train on easier data subsets. Solving constrained ERM exactly is not practical in large-scale deep learning. However, the purpose of our non-convex analysis is to provide generalization guarantees for implicit approximations to this problem, such as those computed via SGD and backpropagation. From this perspective, theoretical analysis of constrained ERM remains meaningful. Next, we present a key result for this setting.

Lemma 5.1. Let $\delta \in (0,1)$ and $\epsilon > 0$. If $n_t \geq \frac{8r_t^2\rho_t^2}{\epsilon^2} \left(\ln\left(\frac{2}{\delta}\right) + m\ln\left(\frac{8r_t\rho_t}{\epsilon} + 1\right)\right)$, then with probability at least $1 - \delta$ over the randomness of S_t ,

$$\sup_{\mathbf{w}: \|\mathbf{w} - \widehat{\mathbf{w}}_{t-1}\|_2 \leq r_t} |\widehat{L}_{S_t}(\mathbf{w}) - L_{\mathcal{D}_t}(\mathbf{w}) - \widehat{L}_{S_t}(\widehat{\mathbf{w}}_{t-1}) + L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_{t-1})| \leq \epsilon.$$

This lemma establishes uniform concentration over $\{\ell(\mathbf{z};\mathbf{w}) - \ell(\mathbf{z};\widehat{\mathbf{w}}_{t-1}) | \|\mathbf{w} - \widehat{\mathbf{w}}_{t-1}\|_2 \le r_t\}$ the loss class of shifted loss functions rather than $\{\ell(\mathbf{z};\mathbf{w}) | \|\mathbf{w} - \widehat{\mathbf{w}}_{t-1}\|_2 \le r_t\}$. This avoids dependence on potentially large loss values and instead leverages the Lipschitz condition: $|\ell(\mathbf{z};\mathbf{w}) - \ell(\mathbf{z};\widehat{\mathbf{w}}_{t-1})| \le \rho_t r_t$, which is small when r_t is small.

We also remark that we can give a tighter bound and remove the log term $\ln\left(\frac{8r_t\rho_t}{\epsilon}+1\right)$ via chaining. This can also be applied to Theorem 5.2 and Corollary 5.3 below. We have an in expectation bound

$$\mathbb{E}_{S_t} \left[\sup_{\mathbf{w}: \|\mathbf{w} - \widehat{\mathbf{w}}_{t-1}\|_2 \le r_t} |\widehat{L}_{S_t}(\mathbf{w}) - L_{\mathcal{D}_t}(\mathbf{w}) - \widehat{L}_{S_t}(\widehat{\mathbf{w}}_{t-1}) + L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_{t-1})| \right] \le 2r_t \rho_t \sqrt{\frac{3 + 9m}{n_t}}.$$

The high probability bound can be derived from this using McDiarmid's Inequality.

Theorem 5.2. For any $\epsilon>0$, if $n_t\geq \frac{8r_t^2\rho_t^2}{\epsilon^2}\left(\ln\left(\frac{2}{\delta}\right)+m\ln\left(\frac{8r_t\rho_t}{\epsilon}+1\right)\right)$, then with probability at least $1-\delta$ over the randomness of S_t , we have $\varepsilon_t(\widehat{\mathbf{w}}_t)\leq 2\epsilon+\alpha\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})$.

To prove Theorem 5.2, we decompose the excess risk a bit differently from Equation (3):

$$\begin{split} \varepsilon_t(\widehat{\mathbf{w}}_t) &= L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_t) - \inf_{\mathbf{w}} L_{\mathcal{D}_t}(\mathbf{w}) \\ &= \left[L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_t) - \widehat{L}_{S_t}(\widehat{\mathbf{w}}_t) - L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_{t-1}) + \widehat{L}_{S_t}(\widehat{\mathbf{w}}_{t-1}) \right] + \left[\widehat{L}_{S_t}(\widehat{\mathbf{w}}_t) - \widehat{L}_{S_t}(\mathbf{w}') \right] \\ &+ \left[\widehat{L}_{S_t}(\mathbf{w}') - L_{\mathcal{D}_t}(\mathbf{w}') - \widehat{L}_{S_t}(\widehat{\mathbf{w}}_{t-1}) + L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_{t-1}) \right] + \left[L_{\mathcal{D}_t}(\mathbf{w}') - \inf_{\mathbf{w}} L_{\mathcal{D}_t}(\mathbf{w}) \right], \end{split}$$

where w' satisfies $\|\mathbf{w}' - \widehat{\mathbf{w}}_{t-1}\|_2 \le r_t$ and $\varepsilon_t(\mathbf{w}') \le \alpha \varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})$. The fourth term is bounded by $\alpha \varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})$ by the (r_t, α) condition. The second term is nonpositive as $\widehat{\mathbf{w}}_t$ is the ERM solution. The first and the third terms are each bounded by ϵ using Lemma 5.1, completing the proof.

As in the convex case, smaller values of r_t lead to lower sample complexity requirements. We conclude with a high-probability bound for the entire curriculum:

Corollary 5.3. Assume
$$\varepsilon_1(\widehat{\mathbf{w}}_1) \leq \epsilon$$
. If $n_t \geq \frac{32r_t^2\rho_t^2}{(1-\alpha)^2\epsilon^2} \left(\ln\left(\frac{2T}{\delta}\right) + m\ln\left(\frac{16r_t\rho_t}{(1-\alpha)\epsilon} + 1\right)\right)$, for all $t \in 2, \ldots, T$, then Algorithm 4 ensures that with probability at least $1-\delta$, we have that $\varepsilon_T(\widehat{\mathbf{w}}_T) \leq \epsilon$.

6 Experiments

We conduct a simple empirical study using both synthetic and real dataset to support our theory. First, we investigate whether curriculum learning can enhance large-margin classifiers on separable data by first training on easy examples and then fine-tuning on harder ones. Specifically, we construct a binary classification task using mixtures of two-centered Gaussians in \mathbb{R}^{100} . The "easy" distribution \mathcal{D}_1 has margin $\gamma=3$ and low variance $\sigma=0.5$, while the hard distribution \mathcal{D}_2 varies over $\gamma\in\{0.1,0.5,1.0,2.0\}$ and $\sigma\in\{0.5,1.0,1.5,2.0\}$. We generate 1K training samples from $\mathcal{D}_1,\mathcal{D}_2$.

Linear classifiers are trained using hinge loss and gradient descent (2K epochs, learning rate from $0.001,\ldots,1.0$). The baseline trains only on \mathcal{D}_2 , while our curriculum method (Algorithm 2) first trains on \mathcal{D}_1 and then fine-tunes on \mathcal{D}_2 with ℓ_2 regularization $\lambda \|\mathbf{w}_2 - \widehat{\mathbf{w}}_1\|^2$, where $\widehat{\mathbf{w}}_1$ is the solution from the first stage. λ is selected from $\{10^{-5}, 10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 1, 10\}$ using validation data.

Each experiment is repeated 10 times, and we report mean test accuracy and standard deviation in Figure 2. Curriculum learning consistently outperforms the baseline, demonstrating that starting with an easier task aids learning on harder ones. The performance gap widens as the target task becomes more difficult—i.e., with smaller margins and higher variance—highlighting the effectiveness of the curriculum approach under challenging conditions.

Next, we apply our theory and methods to adversarially robust learning. In adversarial robustness, an adversary perturbs an input x within a perturbation set $\mathcal{B}(x)$, and the standard loss $\ell_t((x,y);w)$ is replaced by the robust loss: $\ell_t^{rob}((x,y);w) := \sup_{\tilde{x} \in \mathcal{B}(x)} \ell_t((\tilde{x},y);w)$. This replacement preserves convexity and Lipschitz continuity (see Appendix B.5), allowing us to extend the results of Sections 4.1–4.3 to the robustness setting. In Algorithm 3, the subgradient $\nabla_w \ell_t^{\text{rob}}(w_{k-1};z_k)$ is computed using adversarial training techniques.

However, smoothness does not generally carry over: while the standard loss may be smooth, the robust loss is known to be non-smooth [Xing et al., 2021]. Thus, Theorem 4.6 cannot be directly

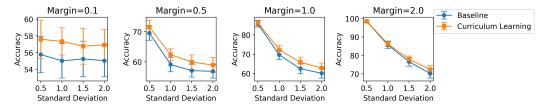


Figure 2: Test accuracy as a function of standard deviation for different margin γ .

applied. Nevertheless, we show (Appendix B.5) that if the standard loss is nonnegative and H_t -smooth, then Theorem 4.6 still holds for the robust loss. This insight allows curriculum learning results to carry over to adversarial settings simply by substituting standard loss with robust loss. In practice, good bias/initialization for robust training can come from a non-robust model, a model trained with weaker attacks, or a related task.

We evaluate curriculum adversarial training with ℓ_2 regularization on MNIST dataset. Adversarial examples are generated using 10-step PGD with step size $\alpha/5$ under an ℓ_∞ perturbation budget $\alpha \in \{0.1, 0.2, 0.3, 0.4\}$. For curriculum training, we define task t with attack strength $\alpha t/T$, for $t \in [T]$ and $T \in \{1, 2, 3\}$. No regularization is used for t = 1. From $t \geq 2$, we incorporate ℓ_2 regularization of the form $\lambda \|\mathbf{w}_t - \widehat{\mathbf{w}}_{t-1}\|^2$, where $\widehat{\mathbf{w}}_{t-1}$ is the previous model and $\lambda \in \{10^{-5}, 10^{-4}, 10^{-3}, 10^{-2}\}$.

We use a CNN with two convolutional layers followed by max-pooling and two fully connected layers with ReLU activations. The conv layers use [input, output, kernel] = [1, 10, 5] and [10, 20, 5]; the fully connected layers have dimensions [320, 100] and [100, 10]. Models are trained with cross-entropy loss using Adam for 100 epochs, batch size 128, and learning rate chosen from $\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$. Early stopping is used based on robust validation accuracy (measured with PGD attack of size α) to select both the model and hyperparameters.

We report both standard and robust test accuracy under PGD attack of size α in Table 1, averaged over three runs with standard deviation. We note that curriculum adversarial training maintains performance for small α and provides notable improvements for larger α values–particularly when $\alpha \geq 0.3$. This supports the hypothesis that initializing from easier tasks (weaker attacks) enhances robustness against stronger adversaries.

For additional experimental details and extended results, please see the supplementary material.

T	1		2		3	
α	nat acc	pgd acc	nat acc	pgd acc	nat acc	pgd acc
0.1	99.18 ± 0.07	96.07 ± 0.02	99.27 ± 0.07	95.65 ± 0.18	99.36 ± 0.03	95.74 ± 0.14
0.2	98.80 ± 0.03	94.73 ± 0.22	98.86 ± 0.15	94.60 ± 0.93	98.67 ± 0.05	94.38 ± 0.23
0.3	98.27 ± 0.46	92.77 ± 1.20	98.77 ± 0.15	94.74 ± 0.12	98.23 ± 0.15	93.61 ± 0.87
0.4	11.35 ± 0.00	11.35 ± 0.00	98.39±0.29	95.54 ± 0.41	98.52 ± 0.14	95.63 ± 0.12

Table 1: Standard (nat acc) / robust (pgd acc) accuracy under ℓ_{∞} PGD attack of size α (MNIST).

7 Conclusion

In this work, we provide theoretical guarantees for both convex and nonconvex learning problems under a multi-task curriculum learning framework that leverages implicit bias from prior tasks. Central to our analysis is the proposed (r,α) condition, which characterizes a 'good' curriculum by quantifying task similarity and enabling reduced sample complexity. While the (r,α) condition offers a principled way to evaluate curriculum quality, it may be difficult to verify in practice. A promising direction for future work is to investigate when this condition holds for specific problem families and how it can guide the design of effective, data-driven curricula.

Acknowledgments

This research was supported, in part, by the NSF CAREER award IIS-1943251.

References

- Emmanuel Abbe, Elisabetta Cornacchia, and Aryo Lotfi. Provable advantage of curriculum learning on parity targets with mixed inputs. *Advances in Neural Information Processing Systems*, 36: 24291–24321, 2023.
- Eugene L Allgower and Kurt Georg. *Numerical continuation methods: an introduction*, volume 13. Springer Science & Business Media, 2012.
- Jonathan Baxter. A model of inductive bias learning. *Journal of artificial intelligence research*, 12: 149–198, 2000.
- Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In *Proceedings of the 26th annual international conference on machine learning*, pages 41–48, 2009.
- Rich Caruana. Multitask learning. Machine learning, 28:41–75, 1997.
- Antoine Caubrière, Natalia Tomashenko, Antoine Laurent, Emmanuel Morin, Nathalie Camelin, and Yannick Esteve. Curriculum-based transfer learning for an effective end-to-end spoken language understanding and domain portability. *arXiv preprint arXiv:1906.07601*, 2019.
- Omer Cohen, Ron Meir, and Nir Weinberger. Statistical curriculum learning: An elimination algorithm achieving an oracle risk. *arXiv preprint arXiv:2402.13366*, 2024.
- Hal Daumé III. Frustratingly easy domain adaptation. arXiv preprint arXiv:0907.1815, 2009.
- Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, and Massimiliano Pontil. Learning to learn around a common mean. *Advances in neural information processing systems*, 31, 2018.
- Giulia Denevi, Carlo Ciliberto, Riccardo Grazzi, and Massimiliano Pontil. Learning-to-learn stochastic gradient descent with biased regularization. In *International Conference on Machine Learning*, pages 1566–1575. PMLR, 2019.
- Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse curriculum generation for reinforcement learning. In *Conference on robot learning*, pages 482–495. PMLR, 2017.
- Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for improved quality, stability, and variation. *arXiv* preprint arXiv:1710.10196, 2017.
- Wolf Kienzle and Kumar Chellapilla. Personalized handwriting recognition via biased regularization. In *Proceedings of the 23rd international conference on Machine learning*, pages 457–464, 2006.
- M Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable models. *Advances in neural information processing systems*, 23, 2010.
- Ilja Kuzborskij and Francesco Orabona. Stability and hypothesis transfer learning. In *International Conference on Machine Learning*, pages 942–950. PMLR, 2013.
- Ilja Kuzborskij and Francesco Orabona. Fast rates by transferring from auxiliary hypotheses. *Machine Learning*, 106:171–195, 2017.
- Haoran Li, Jingfeng Wu, and Vladimir Braverman. Fixed design analysis of regularization-based continual learning. In *Conference on Lifelong Learning Agents*, pages 513–533. PMLR, 2023.
- William Lotter, Greg Sorensen, and David Cox. A multi-scale cnn and curriculum learning strategy for mammogram classification. In *International Workshop on Deep Learning in Medical Image Analysis*, pages 169–177. Springer, 2017.
- Pietro Morerio, Jacopo Cavazza, Riccardo Volpi, René Vidal, and Vittorio Murino. Curriculum dropout. In *Proceedings of the IEEE international conference on computer vision*, pages 3544–3552, 2017.
- Anastasia Pentina and Christoph Lampert. A pac-bayesian bound for lifelong learning. In *International Conference on Machine Learning*, pages 991–999. PMLR, 2014.

- Anastasia Pentina, Viktoriia Sharmanska, and Christoph H Lampert. Curriculum learning of multiple tasks. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 5492–5500, 2015.
- Luca Saglietti, Stefano Mannelli, and Andrew Saxe. An analytical theory of curriculum learning in teacher-student networks. *Advances in Neural Information Processing Systems*, 35:21113–21127, 2022.
- Nikolaos Sarafianos, Theodore Giannakopoulos, Christophoros Nikou, and Ioannis A Kakadiaris. Curriculum learning for multi-task classification of visual attributes. In *Proceedings of the IEEE International Conference on Computer Vision Workshops*, pages 2608–2615, 2017.
- Bernhard Schölkopf, Ralf Herbrich, and Alex J Smola. A generalized representer theorem. In *International conference on computational learning theory*, pages 416–426. Springer, 2001.
- Shai Shalev-Shwartz and Shai Ben-David. *Understanding machine learning: From theory to algo*rithms. Cambridge university press, 2014.
- Samarth Sinha, Animesh Garg, and Hugo Larochelle. Curriculum by smoothing. *Advances in Neural Information Processing Systems*, 33:21653–21664, 2020.
- Tatiana Tommasi, Francesco Orabona, and Barbara Caputo. Learning categories from few examples with multi model knowledge transfer. *IEEE transactions on pattern analysis and machine intelligence*, 36(5):928–941, 2013.
- Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media, 2013.
- Roman Vershynin. *High-dimensional probability: An introduction with applications in data science*, volume 47. Cambridge university press, 2018.
- Daphna Weinshall and Dan Amir. Theory of curriculum learning, with convex loss functions. *Journal of Machine Learning Research*, 21(222):1–19, 2020.
- Daphna Weinshall, Gad Cohen, and Dan Amir. Curriculum learning by transfer learning: Theory and experiments with deep networks. In *International conference on machine learning*, pages 5238–5246. PMLR, 2018.
- Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning. *Journal of Big data*, 3:1–40, 2016.
- Yue Xing, Qifan Song, and Guang Cheng. On the algorithmic stability of adversarial training. *Advances in neural information processing systems*, 34:26523–26535, 2021.
- Ziping Xu and Ambuj Tewari. On the statistical benefits of curriculum learning. In *International Conference on Machine Learning*, pages 24663–24682. PMLR, 2022.
- Yang Zhang, Philip David, and Boqing Gong. Curriculum domain adaptation for semantic segmentation of urban scenes. In *Proceedings of the IEEE international conference on computer vision*, pages 2020–2030, 2017.

A Missing Proofs in Section 3

Lemma A.1. $\mathbb{E}_{S_1 \sim \mathcal{D}_1^{n_1}} \left[\| \widehat{\mathbf{w}}_1 - \mathbf{w}_1^{\star} \|_2^2 \right] \leq \frac{\rho_1^2}{\lambda^2 n_1}.$

Proof of Lemma A.1. Denote $g_1(z; w) = \nabla_w \ell_1(z; w)$. The gradient of the population loss can be written as

$$\mathbf{0} = \nabla_{\mathbf{w}} L_{\mathcal{D}_1}(\mathbf{w}_1^{\star}) = \nabla_{\mathbf{w}} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}_1} \ell_1(\mathbf{z}; \mathbf{w}_1^{\star}) = \mathbb{E}_{\mathbf{z} \sim \mathcal{D}_1} \nabla_{\mathbf{w}} \ell_1(\mathbf{z}; \mathbf{w}_1^{\star}) = \mathbb{E}_{\mathbf{z} \sim \mathcal{D}_1} \mathbf{g}_1(\mathbf{z}; \mathbf{w}_1^{\star}).$$

This leads to

$$\begin{split} & \mathbb{E}_{S_{1} \sim \mathcal{D}_{1}^{n_{1}}} \| \nabla_{\mathbf{w}} \widehat{L}_{S_{1}}(\mathbf{w}_{1}^{\star}) \|_{2}^{2} \\ = & \mathbb{E}_{S_{1} \sim \mathcal{D}_{1}^{n_{1}}} \| \nabla_{\mathbf{w}} \widehat{L}_{S_{1}}(\mathbf{w}_{1}^{\star}) - \nabla_{\mathbf{w}} L_{\mathcal{D}_{1}}(\mathbf{w}_{1}^{\star}) \|_{2}^{2} \\ = & \mathbb{E}_{S_{1} \sim \mathcal{D}_{1}^{n_{1}}} \left\| \frac{1}{n_{1}} \sum_{\widehat{\mathbf{z}} \in S_{1}} \mathbf{g}_{1}(\widehat{\mathbf{z}}; \mathbf{w}_{1}^{\star}) - \mathbb{E}_{\mathbf{z} \sim \mathcal{D}_{1}} \mathbf{g}_{1}(\mathbf{z}; \mathbf{w}_{1}^{\star}) \right\|_{2}^{2} \\ = & \mathbb{E}_{S_{1} \sim \mathcal{D}_{1}^{n_{1}}} \frac{1}{n_{1}^{2}} \sum_{\widehat{\mathbf{z}} \in S_{1}} \| \mathbf{g}_{1}(\widehat{\mathbf{z}}; \mathbf{w}_{1}^{\star}) - \mathbb{E}_{\mathbf{z} \sim \mathcal{D}_{1}} \mathbf{g}_{1}(\mathbf{z}; \mathbf{w}_{1}^{\star}) \|_{2}^{2} \\ = & \frac{1}{n_{1}} \mathbb{E}_{\widehat{\mathbf{z}} \sim \mathcal{D}_{1}} \| \mathbf{g}_{1}(\widehat{\mathbf{z}}; \mathbf{w}_{1}^{\star}) - \mathbb{E}_{\mathbf{z} \sim \mathcal{D}_{1}} \mathbf{g}_{1}(\mathbf{z}; \mathbf{w}_{1}^{\star}) \|_{2}^{2} \\ = & \frac{1}{n_{1}} \left(\mathbb{E}_{\widehat{\mathbf{z}} \sim \mathcal{D}_{1}} \| \mathbf{g}_{1}(\widehat{\mathbf{z}}; \mathbf{w}_{1}^{\star}) \|_{2}^{2} - \| \mathbb{E}_{\mathbf{z} \sim \mathcal{D}_{1}} \mathbf{g}_{1}(\mathbf{z}; \mathbf{w}_{1}^{\star}) \|_{2}^{2} \right) \leq \frac{\rho_{1}^{2}}{n_{1}} \end{split}$$

Since $\widehat{L}_{S_1}(\mathbf{w})$ is λ -strongly convex,

$$\|\nabla_{\mathbf{w}}\widehat{L}_{S_1}(\mathbf{w}_1^{\star})\|_2 = \|\nabla_{\mathbf{w}}\widehat{L}_{S_1}(\mathbf{w}_1^{\star}) - \nabla_{\mathbf{w}}\widehat{L}_{S_1}(\widehat{\mathbf{w}}_1)\|_2 \ge \lambda \|\mathbf{w}_1^{\star} - \widehat{\mathbf{w}}_1\|_2.$$

Therefore,

$$\mathbb{E}_{S_1 \sim \mathcal{D}_1^{n_1}} \left[\| \widehat{\mathbf{w}}_1 - \mathbf{w}_1^\star \|_2^2 \right] \leq \frac{1}{\lambda^2} \mathbb{E}_{S_1 \sim \mathcal{D}_1^{n_1}} \| \nabla_{\mathbf{w}} \widehat{L}_{S_1}(\mathbf{w}_1^\star) \|_2^2 \leq \frac{\rho_1^2}{\lambda^2 n_1}.$$

Theorem 3.1. If the second task is convex, then setting $\mu_2 = \frac{2\rho_2}{\left(\|\mathbf{w}_2^\star - \mathbf{w}_1^\star\|_2 + \frac{\rho_1}{\lambda\sqrt{n_1}}\right)\sqrt{n_2}}$, we have $\mathbb{E}\left[\varepsilon_2(\widehat{\mathbf{w}}_2)\right] \leq \frac{2\rho_2}{\sqrt{n_2}}\left(\|\mathbf{w}_2^\star - \mathbf{w}_1^\star\|_2 + \frac{\rho_1}{\lambda\sqrt{n_1}}\right)$.

Proof of Theorem 3.1. From the theory of RERM in Shalev-Shwartz and Ben-David [2014] Chapter 13, if S_1 is fixed, the second phase RERM is $\frac{2\rho_2^2}{\mu_2 n_2}$ -uniformly stable if only one data in S_2 is replaced. Therefore,

$$\begin{split} \mathbb{E}_{S_2} L_{\mathcal{D}_2}(\widehat{\mathbf{w}}_2) &\leq \mathbb{E}_{S_2} \widehat{L}_{S_2}(\widehat{\mathbf{w}}_2) + \frac{2\rho_2^2}{\mu_2 n_2} \\ &\leq \mathbb{E}_{S_2} \left[\widehat{L}_{S_2}(\widehat{\mathbf{w}}_2) + \frac{\mu_2}{2} \| \widehat{\mathbf{w}}_2 - \widehat{\mathbf{w}}_1 \|_2^2 \right] + \frac{2\rho_2^2}{\mu_2 n_2} \\ &\leq \mathbb{E}_{S_2} \left[\widehat{L}_{S_2}(\mathbf{w}_2^{\star}) + \frac{\mu_2}{2} \| \mathbf{w}_2^{\star} - \widehat{\mathbf{w}}_1 \|_2^2 \right] + \frac{2\rho_2^2}{\mu_2 n_2} \qquad \text{(from the definition of RERM)} \\ &= L_{\mathcal{D}_2}(\mathbf{w}_2^{\star}) + \frac{\mu_2}{2} \| \mathbf{w}_2^{\star} - \widehat{\mathbf{w}}_1 \|_2^2 + \frac{2\rho_2^2}{\mu_2 n_2}. \end{split}$$

13

Taking expectation w.r.t. $S_1 \sim \mathcal{D}_1^{n_1}$,

$$\begin{split} \mathbb{E}_{S_{1},S_{2}}L_{\mathcal{D}_{2}}(\widehat{\mathbf{w}}_{2}) &\leq L_{\mathcal{D}_{2}}(\mathbf{w}_{2}^{\star}) + \frac{\mu_{2}}{2}\mathbb{E}_{S_{1}}\|\mathbf{w}_{2}^{\star} - \widehat{\mathbf{w}}_{1}\|_{2}^{2} + \frac{2\rho_{2}^{2}}{\mu_{2}n_{2}} \\ &\leq L_{\mathcal{D}_{2}}(\mathbf{w}_{2}^{\star}) + \frac{\mu_{2}}{2}\mathbb{E}_{S_{1}}(\|\mathbf{w}_{2}^{\star} - \mathbf{w}_{1}^{\star}\|_{2} + \|\widehat{\mathbf{w}}_{1} - \mathbf{w}_{1}^{\star}\|_{2})^{2} + \frac{2\rho_{2}^{2}}{\mu_{2}n_{2}} \\ &\qquad \qquad \qquad \text{(triangle inequality)} \\ &\leq L_{\mathcal{D}_{2}}(\mathbf{w}_{2}^{\star}) + \frac{\mu_{2}}{2}\left(\|\mathbf{w}_{2}^{\star} - \mathbf{w}_{1}^{\star}\|_{2} + \frac{\rho_{1}}{\lambda_{2}\sqrt{n_{1}}}\right)^{2} + \frac{2\rho_{2}^{2}}{\mu_{2}n_{2}}. \end{split} \tag{Lemma A.1}$$

Setting $\mu_2 = \frac{2\rho_2}{\left(\|\mathbf{w}_2^{\star} - \mathbf{w}_1^{\star}\|_2 + \frac{\rho_1}{\lambda_{\star}/\overline{n_1}}\right)\sqrt{n_2}}$, we obtain

$$\mathbb{E}\left[L_{\mathcal{D}_2}(\widehat{\mathbf{w}}_2)\right] \le L_{\mathcal{D}_2}(\mathbf{w}^*) + \frac{2\rho_2}{\sqrt{n_2}} \left(\|\mathbf{w}_2^* - \mathbf{w}_1^*\|_2 + \frac{\rho_1}{\lambda \sqrt{n_1}} \right).$$

 $\begin{aligned} &\textbf{Theorem 3.2.} \text{ If the second task is } l\text{-weakly convex, then setting } \mu_2 = l + \frac{2\rho_2}{\left(\|\mathbf{w}_2^\star - \mathbf{w}_1^\star\|_2 + \frac{\rho_1}{\lambda\sqrt{n_1}}\right)\sqrt{n_2}}, \\ &\text{we have } \mathbb{E}\left[\varepsilon_2(\widehat{\mathbf{w}}_2)\right] \leq \frac{2\rho_2}{\sqrt{n_2}} \left(\|\mathbf{w}_2^\star - \mathbf{w}_1^\star\|_2 + \frac{\rho_1}{\lambda\sqrt{n_1}}\right) + \frac{l}{2} \left(\|\mathbf{w}_2^\star - \mathbf{w}_1^\star\|_2 + \frac{\rho_1}{\lambda\sqrt{n_1}}\right)^2. \end{aligned}$

Proof of Theorem 3.2. If S_1 is fixed, for any $\mu_2 > l$, the regularized loss $\ell_2(z; w) + \frac{\mu_2}{2} \|w - \widehat{w}_1\|_2^2$ is $(\mu_2 - l)$ -strongly convex. From the theory of RERM in Shalev-Shwartz and Ben-David [2014] Chapter 13, the second phase RERM is $\frac{2\rho_2^2}{(\mu_2 - l)n_2}$ -uniformly stable if only one data in S_2 is replaced. Therefore.

$$\begin{split} \mathbb{E}_{S_2} L_{\mathcal{D}_2}(\widehat{\mathbf{w}}_2) &\leq \mathbb{E}_{S_2} \widehat{L}_{S_2}(\widehat{\mathbf{w}}_2) + \frac{2\rho_2^2}{(\mu_2 - l)n_2} \\ &\leq \mathbb{E}_{S_2} \left[\widehat{L}_{S_2}(\widehat{\mathbf{w}}_2) + \frac{\mu_2}{2} \| \widehat{\mathbf{w}}_2 - \widehat{\mathbf{w}}_1 \|_2^2 \right] + \frac{2\rho_2^2}{(\mu_2 - l)n_2} \\ &\leq \mathbb{E}_{S_2} \left[\widehat{L}_{S_2}(\mathbf{w}_2^{\star}) + \frac{\mu_2}{2} \| \mathbf{w}_2^{\star} - \widehat{\mathbf{w}}_1 \|_2^2 \right] + \frac{2\rho_2^2}{(\mu_2 - l)n_2} \quad \text{(from the definition of RERM)} \\ &= L_{\mathcal{D}_2}(\mathbf{w}_2^{\star}) + \frac{\mu_2}{2} \| \mathbf{w}_2^{\star} - \widehat{\mathbf{w}}_1 \|_2^2 + \frac{2\rho_2^2}{(\mu_2 - l)n_2}. \end{split}$$

Taking expectation w.r.t. $S_1 \sim \mathcal{D}_1^{n_1}$,

$$\begin{split} \mathbb{E}_{S_1,S_2} L_{\mathcal{D}_2}(\widehat{\mathbf{w}}_2) & \leq L_{\mathcal{D}_2}(\mathbf{w}_2^{\star}) + \frac{\mu_2}{2} \mathbb{E}_{S_1} \|\mathbf{w}_2^{\star} - \widehat{\mathbf{w}}_1\|_2^2 + \frac{2\rho_2^2}{(\mu_2 - l)n_2} \\ & \leq L_{\mathcal{D}_2}(\mathbf{w}_2^{\star}) + \frac{\mu_2}{2} \mathbb{E}_{S_1} (\|\mathbf{w}_2^{\star} - \mathbf{w}_1^{\star}\|_2 + \|\widehat{\mathbf{w}}_1 - \mathbf{w}_1^{\star}\|_2)^2 + \frac{2\rho_2^2}{(\mu_2 - l)n_2} \\ & \qquad \qquad \text{(triangle inequality)} \\ & \leq L_{\mathcal{D}_2}(\mathbf{w}_2^{\star}) + \frac{\mu_2}{2} \left(\|\mathbf{w}_2^{\star} - \mathbf{w}_1^{\star}\|_2 + \frac{\rho_1}{\lambda \sqrt{n_1}} \right)^2 + \frac{2\rho_2^2}{(\mu_2 - l)n_2}. \end{split} \tag{Lemma A.1}$$

Setting $\mu_2=l+rac{2
ho_2}{\left(\|\mathbf{w}_2^\star-\mathbf{w}_1^\star\|_2+rac{
ho_1}{\lambda\sqrt{n_1}}
ight)\sqrt{n_2}},$ we obtain

$$\mathbb{E}\left[L_{\mathcal{D}_2}(\widehat{\mathbf{w}}_2)\right] \leq L_{\mathcal{D}_2}(\mathbf{w}^\star) + \frac{2\rho_2}{\sqrt{n_2}} \left(\|\mathbf{w}_2^\star - \mathbf{w}_1^\star\|_2 + \frac{\rho_1}{\lambda\sqrt{n_1}}\right) + \frac{l}{2} \left(\|\mathbf{w}_2^\star - \mathbf{w}_1^\star\|_2 + \frac{\rho_1}{\lambda\sqrt{n_1}}\right)^2.$$

B Missing Details in Section 4

B.1 Missing Proofs in Section 4.1

Theorem 4.1. Suppose task t is convex and ρ_t -Lipschitz, and the (r_t, α) condition holds between tasks (t-1,t). Then, setting $\mu_t = \frac{2\rho_t}{r_t\sqrt{n_t}}$ yields the following excess risk bound:

$$\mathbb{E}\left[\varepsilon_t(\widehat{\mathbf{w}}_t)\right] \le \frac{2r_t\rho_t}{\sqrt{n_t}} + \alpha \mathbb{E}\left[\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})\right].$$

Proof of Theorem 4.1. If S_1,\ldots,S_{t-1} is fixed, for any $\mu_t>0$, the regularized loss $\ell_t(\mathbf{z};\mathbf{w})+\frac{\mu_t}{2}\|\mathbf{w}-\widehat{\mathbf{w}}_{t-1}\|_2^2$ is μ_t -strongly convex. From the theory of RERM in Shalev-Shwartz and Ben-David [2014] Chapter 13, the t-th step RERM is $\frac{2\rho_t^2}{\mu_t n_t}$ -uniformly stable if only one data in S_t is replaced. Therefore, $\forall \mathbf{w}' \in \mathbb{R}^m$ independent with S_1,\ldots,S_t ,

$$\begin{split} \mathbb{E}_{S_{t}}L_{\mathcal{D}_{t}}(\widehat{\mathbf{w}}_{t}) &\leq \mathbb{E}_{S_{t}}\widehat{L}_{S_{t}}(\widehat{\mathbf{w}}_{t}) + \frac{2\rho_{t}^{2}}{\mu_{t}n_{t}} \\ &\leq \mathbb{E}_{S_{t}}\left[\widehat{L}_{S_{t}}(\widehat{\mathbf{w}}_{t}) + \frac{\mu_{t}}{2}\|\widehat{\mathbf{w}}_{t} - \widehat{\mathbf{w}}_{t-1}\|_{2}^{2}\right] + \frac{2\rho_{t}^{2}}{\mu_{t}n_{t}} \\ &\leq \mathbb{E}_{S_{t}}\left[\widehat{L}_{S_{t}}(\mathbf{w}') + \frac{\mu_{t}}{2}\|\mathbf{w}' - \widehat{\mathbf{w}}_{t-1}\|_{2}^{2}\right] + \frac{2\rho_{t}^{2}}{\mu_{t}n_{t}} \qquad \text{(from the definition of RERM)} \\ &= L_{\mathcal{D}_{t}}(\mathbf{w}') + \frac{\mu_{t}}{2}\|\mathbf{w}' - \widehat{\mathbf{w}}_{t-1}\|_{2}^{2} + \frac{2\rho_{t}^{2}}{\mu_{t}n_{t}}. \end{split}$$

Since task t-1 and task t satisfy (r_t, α) condition, there exists \mathbf{w}' , s.t. $\|\mathbf{w}' - \widehat{\mathbf{w}}_{t-1}\|_2 \le r_t$ and $\varepsilon_t(\mathbf{w}') \le \alpha \varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})$ hold. Thus,

$$\mathbb{E}_{S_{t}} L_{\mathcal{D}_{t}}(\widehat{\mathbf{w}}_{t}) \leq L_{\mathcal{D}_{t}}(\mathbf{w}') + \frac{\mu_{t}}{2} \|\mathbf{w}' - \widehat{\mathbf{w}}_{t-1}\|_{2}^{2} + \frac{2\rho_{t}^{2}}{\mu_{t} n_{t}}$$

$$= \inf_{\mathbf{w}} L_{\mathcal{D}_{t}}(\mathbf{w}) + \varepsilon_{t}(\mathbf{w}') + \frac{\mu_{t}}{2} \|\mathbf{w}' - \widehat{\mathbf{w}}_{t-1}\|_{2}^{2} + \frac{2\rho_{t}^{2}}{\mu_{t} n_{t}}$$

$$\leq \inf_{\mathbf{w}} L_{\mathcal{D}_{t}}(\mathbf{w}) + \alpha \varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1}) + \frac{\mu_{t} r_{t}^{2}}{2} + \frac{2\rho_{t}^{2}}{\mu_{t} n_{t}}.$$

Setting $\mu_t = \frac{2\rho_t}{r_t\sqrt{n_t}}$, we have $\mathbb{E}_{S_t}\varepsilon_t(\widehat{\mathbf{w}}_t) \leq \alpha\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1}) + \frac{2r_t\rho_t}{\sqrt{n_t}}$. Taking expectation w.r.t. S_1,\ldots,S_{t-1} , we obtain

$$\mathbb{E}\left[\varepsilon_t(\widehat{\mathbf{w}}_t)\right] \leq \frac{2r_t\rho_t}{\sqrt{n_t}} + \alpha \mathbb{E}\left[\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})\right].$$

Corollary 4.2. Assume the first task is learned with excess risk $\mathbb{E}\left[\varepsilon_1(\widehat{\mathbf{w}}_1)\right] \leq \epsilon$. Set the regularization parameter to $\mu_t = \frac{2\rho_t}{r_t\sqrt{n_t}}$, and suppose the sample size $n_t \geq \frac{4r_t^2\rho_t^2}{(1-\alpha)^2\epsilon^2}$. Then, for all tasks t, the excess risk is bounded as $\mathbb{E}\left[\varepsilon_t(\widehat{\mathbf{w}}_t)\right] \leq \epsilon$.

Proof of Corollary 4.2. Theorem 4.1 gives

$$\mathbb{E}\left[\varepsilon_{t}(\widehat{\mathbf{w}}_{t})\right] \leq \frac{2r_{t}\rho_{t}}{\sqrt{n_{t}}} + \alpha \mathbb{E}\left[\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})\right] \leq \alpha \mathbb{E}\left[\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})\right] + (1-\alpha)\epsilon.$$

We can use induction to prove that $\mathbb{E}\left[\varepsilon_t(\widehat{\mathbf{w}}_t)\right] \leq \epsilon$.

Corollary 4.3. Suppose the first task is learned to excess risk $\mathbb{E}\left[\varepsilon_1(\widehat{\mathbf{w}}_1)\right] \leq \epsilon_1$. Set the regularization parameter as $\mu_t = \frac{2\rho_t}{r_t\sqrt{n_t}}$, and assume the sample size satisfies $n_t \geq \left(\frac{4r_t\rho_t}{(1-\alpha)\epsilon_1\left(\frac{\alpha+1}{2}\right)^{t-2}}\right)^2$. Then, for every task t, we have $\mathbb{E}\left[\varepsilon_t(\widehat{\mathbf{w}}_t)\right] \leq \epsilon_1\left(\frac{\alpha+1}{2}\right)^{t-1}$.

Proof of Corollary 4.3. Theorem 4.1 gives

$$\mathbb{E}\left[\varepsilon_{t}(\widehat{\mathbf{w}}_{t})\right] \leq \frac{2r_{t}\rho_{t}}{\sqrt{n_{t}}} + \alpha \mathbb{E}\left[\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})\right] \leq \alpha \mathbb{E}\left[\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})\right] + \frac{1-\alpha}{2}\epsilon_{1}\left(\frac{\alpha+1}{2}\right)^{t-2}.$$

We can use induction to prove that $\mathbb{E}\left[\varepsilon_t(\widehat{\mathbf{w}}_t)\right] \leq \epsilon_1 \left(\frac{\alpha+1}{2}\right)^{t-1}$.

B.2 Missing Proofs in Section 4.2

Theorem 4.4. Suppose task t has a ρ_t -Lipschitz convex loss function and satisfies the (r_t, α) condition with task t-1. Choosing the learning rate $\eta_t = \frac{r_t}{\rho_t \sqrt{n_t}}$, the excess risk of SGD satisfies

$$\mathbb{E}\left[\varepsilon_t(\widehat{\mathbf{w}}_t)\right] \leq \frac{r_t \rho_t}{\sqrt{n_t}} + \alpha \mathbb{E}\left[\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})\right].$$

Proof of Theorem 4.4. Let's first fix S_1,\ldots,S_{t-1} . Since task t-1 and task t satisfy (r_t,α) condition, there exists \mathbf{w}' , s.t. $\|\mathbf{w}'-\widehat{\mathbf{w}}_{t-1}\|_2 \leq r_t$ and $\varepsilon_t(\mathbf{w}') \leq \alpha \varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})$ hold. For $k=1,2,\ldots,n_t$,

$$\begin{split} \|\mathbf{w}_{k} - \mathbf{w}'\|_{2}^{2} &= \|\mathbf{w}_{k-1} - \mathbf{w}' - \eta_{t} \nabla_{\mathbf{w}} \ell_{t}(\mathbf{w}_{k-1}; \mathbf{z}_{k})\|_{2}^{2} \\ &= \|\mathbf{w}_{k-1} - \mathbf{w}'\|_{2}^{2} + \eta_{t}^{2} \|\nabla_{\mathbf{w}} \ell_{t}(\mathbf{w}_{k-1}; \mathbf{z}_{k})\|_{2}^{2} + 2\eta_{t} \left\langle \mathbf{w}' - \mathbf{w}_{k-1}, \nabla_{\mathbf{w}} \ell_{t}(\mathbf{w}_{k-1}; \mathbf{z}_{k}) \right\rangle \\ &\leq \|\mathbf{w}_{k-1} - \mathbf{w}'\|_{2}^{2} + \eta_{t}^{2} \rho_{t}^{2} + 2\eta_{t} \left(\ell_{t}(\mathbf{w}'; \mathbf{z}_{k}) - \ell_{t}(\mathbf{w}_{k-1}; \mathbf{z}_{k})\right). \end{split}$$
(Lipschitz and convex loss)

Rewriting this inequality gives

$$\ell_t(\mathbf{w}_{k-1}; \mathbf{z}_k) \le \ell_t(\mathbf{w}'; \mathbf{z}_k) + \frac{\eta_t \rho_t^2}{2} + \frac{\|\mathbf{w}_{k-1} - \mathbf{w}'\|_2^2 - \|\mathbf{w}_k - \mathbf{w}'\|_2^2}{2n_t}$$

Taking average over k, we get

$$\begin{split} \frac{1}{n_t} \sum_{k=1}^{n_t} \ell_t(\mathbf{w}_{k-1}; \mathbf{z}_k) &\leq \frac{1}{n_t} \sum_{k=1}^{n_t} \ell_t(\mathbf{w}'; \mathbf{z}_k) + \frac{\eta_t \rho_t^2}{2} + \frac{\|\widehat{\mathbf{w}}_{t-1} - \mathbf{w}'\|_2^2 - \|\mathbf{w}_{n_t} - \mathbf{w}'\|_2^2}{2\eta_t n_t} \\ &\leq \frac{1}{n_t} \sum_{k=1}^{n_t} \ell_t(\mathbf{w}'; \mathbf{z}_k) + \frac{\eta_t \rho_t^2}{2} + \frac{r_t^2}{2\eta_t n_t} \\ &= \frac{1}{n_t} \sum_{k=1}^{n_t} \ell_t(\mathbf{w}'; \mathbf{z}_k) + \frac{r_t \rho_t}{\sqrt{n_t}} \end{split}$$

Since z_k is independent with w_{k-1} , taking expectation w.r.t. $S_t \sim \mathcal{D}_t^{n_t}$ gives

$$\begin{split} \frac{1}{n_t} \sum_{k=1}^{n_t} \mathbb{E}_{S_t} \left[L_{\mathcal{D}_t}(\mathbf{w}_{k-1}) \right] &= \frac{1}{n_t} \sum_{k=1}^{n_t} \mathbb{E}_{S_t} \left[\ell_t(\mathbf{w}_{k-1}; \mathbf{z}_k) \right] \\ &\leq \frac{1}{n_t} \sum_{k=1}^{n_t} \mathbb{E}_{S_t} \left[\ell_t(\mathbf{w}'; \mathbf{z}_k) \right] + \frac{r_t \rho_t}{\sqrt{n_t}} \\ &= L_{\mathcal{D}_t}(\mathbf{w}') + \frac{r_t \rho_t}{\sqrt{n_t}}. \end{split}$$

Using Jensen's Inequality,

$$\begin{split} \mathbb{E}_{S_t} \left[\varepsilon_t(\widehat{\mathbf{w}}_t) \right] &= \mathbb{E}_{S_t} \left[L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_t) \right] - \inf_{\mathbf{w}} L_{\mathcal{D}_t}(\mathbf{w}) \\ &\leq \frac{1}{n_t} \sum_{k=1}^{n_t} \mathbb{E}_{S_t} \left[L_{\mathcal{D}_t}(\mathbf{w}_{k-1}) \right] - \inf_{\mathbf{w}} L_{\mathcal{D}_t}(\mathbf{w}) \\ &\leq L_{\mathcal{D}_t}(\mathbf{w}') + \frac{r_t \rho_t}{\sqrt{n_t}} - \inf_{\mathbf{w}} L_{\mathcal{D}_t}(\mathbf{w}) \\ &\leq \frac{r_t \rho_t}{\sqrt{n_t}} + \alpha \varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1}). \end{split}$$

Taking expectation w.r.t. S_1, \ldots, S_{t-1} , we obtain

$$\mathbb{E}\left[\varepsilon_t(\widehat{\mathbf{w}}_t)\right] \leq \frac{r_t \rho_t}{\sqrt{n_t}} + \alpha \mathbb{E}\left[\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})\right].$$

B.3 Missing Proofs in Section 4.3

Theorem 4.5. Choosing μ_t appropriately, the excess risk of curriculum learning satisfies

$$\mathbb{E}\left[\varepsilon_t(\widehat{\mathbf{w}}_t)\right] \leq \frac{2r_t}{\sqrt{n_t}} \left(\bar{\rho}_t + \frac{6r_t(\rho_t^2 - \bar{\rho}_t^2)}{(1 - \alpha)\bar{\varepsilon}_t\sqrt{n_t}}\right) + \frac{1 + \alpha}{2} \mathbb{E}\left[\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})\right].$$

Proof of Theorem 4.5. Let μ_t be a constant to be determined.

 $p_0 := \mathbb{P}_{S_t \sim \mathcal{D}_t^{n_t}} \left(L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_t) - \inf_{\mathbf{w}} L_{\mathcal{D}_t}(\mathbf{w}) > \bar{\varepsilon}_t \right). \quad \text{Recall } \mathbb{E}_{S_t} \left[\varepsilon_t(\widehat{\mathbf{w}}_t) \right] = \mathbb{E}_{S_t \sim \mathcal{D}_t^{n_t}} L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_t) - \inf_{\mathbf{w}} L_{\mathcal{D}_t}(\mathbf{w}). \text{ Using Markov's Inequality,}$

$$p_0 \le \frac{\mathbb{E}_{S_t} \left[\varepsilon_t(\widehat{\mathbf{w}}_t) \right]}{\bar{\varepsilon}_t}. \tag{5}$$

Let $S_t = \{\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_{n_t}\} \sim \mathcal{D}_t^{n_t}$ and $S_t' = \{\mathbf{z}_1', \mathbf{z}_2, \dots, \mathbf{z}_{n_t}\} \sim \mathcal{D}_t^{n_t}$ be two neighboring data sets that differ in one single example. $S_t \cup S_t' = \{\mathbf{z}_1', \mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_{n_t}\} \sim \mathcal{D}^{n_t+1}$.

Recall
$$\widehat{\mathbf{w}}_t \in \underset{\mathbf{w}}{\operatorname{argmin}} \left(\widehat{L}_{S_t}(\mathbf{w}) + \frac{\mu_t}{2} \|\mathbf{w} - \widehat{\mathbf{w}}_{t-1}\|_2^2\right); \widehat{\mathbf{w}}_t' \in \underset{\mathbf{w}}{\operatorname{argmin}} \left(\widehat{L}_{S_t'}(\mathbf{w}) + \frac{\mu_t}{2} \|\mathbf{w} - \widehat{\mathbf{w}}_{t-1}\|_2^2\right)$$

Since the optimization objective $\widehat{L}_{S_t}(\mathbf{w}) + \frac{\mu_t}{2} \|\mathbf{w} - \widehat{\mathbf{w}}_{t-1}\|_2^2$ is μ_t -strongly convex, we have

$$\widehat{L}_{S_t}(\widehat{\mathbf{w}}_t') + \frac{\mu_t}{2} \|\widehat{\mathbf{w}}_t' - \widehat{\mathbf{w}}_{t-1}\|_2^2 \ge \widehat{L}_{S_t}(\widehat{\mathbf{w}}_t) + \frac{\mu_t}{2} \|\widehat{\mathbf{w}}_t - \widehat{\mathbf{w}}_{t-1}\|_2^2 + \frac{\mu_t}{2} \|\widehat{\mathbf{w}}_t' - \widehat{\mathbf{w}}_t\|_2^2.$$
 (6)

Similarly,

$$\widehat{L}_{S'_{t}}(\widehat{\mathbf{w}}_{t}) + \frac{\mu_{t}}{2} \|\widehat{\mathbf{w}}_{t} - \widehat{\mathbf{w}}_{t-1}\|_{2}^{2} \ge \widehat{L}_{S'_{t}}(\widehat{\mathbf{w}}'_{t}) + \frac{\mu_{t}}{2} \|\widehat{\mathbf{w}}'_{t} - \widehat{\mathbf{w}}_{t-1}\|_{2}^{2} + \frac{\mu_{t}}{2} \|\widehat{\mathbf{w}}'_{t} - \widehat{\mathbf{w}}_{t}\|_{2}^{2}.$$
(7)

Adding up equation (6) and equation (7),

$$\mu_t \|\widehat{\mathbf{w}}_t' - \widehat{\mathbf{w}}_t\|_2^2 \le \frac{\ell_t(\mathbf{z}_1; \widehat{\mathbf{w}}_t') - \ell_t(\mathbf{z}_1; \widehat{\mathbf{w}}_t)}{n_t} + \frac{\ell_t(\mathbf{z}_1'; \widehat{\mathbf{w}}_t) - \ell_t(\mathbf{z}_1'; \widehat{\mathbf{w}}_t')}{n_t}.$$
 (8)

We say $S_t \cup S_t'$ is good if $L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_t) - \inf_{\mathbf{w}} L_{\mathcal{D}_t}(\mathbf{w}) \leq \bar{\varepsilon}_t$ and $L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_t') - \inf_{\mathbf{w}} L_{\mathcal{D}_t}(\mathbf{w}) \leq \bar{\varepsilon}_t$ hold simultaneously. Otherwise, we say $S_t \cup S_t'$ is bad. Applying a union bound and combining with equation (5),

$$\mathbb{P}_{S_t \cup S_t' \sim \mathcal{D}_t^{n_t + 1}} \left(S_t \cup S_t' \text{ is bad} \right) \le 2p_0 \le \frac{2\mathbb{E}_{S_t} \left[\varepsilon_t(\widehat{\mathbf{w}}_t) \right]}{\bar{\varepsilon}_t}. \tag{9}$$

If $S_t \cup S_t'$ is good, by the assumption on the local Lipschitz constant, $|\ell_t(\mathbf{z}; \widehat{\mathbf{w}}_t) - \ell_t(\mathbf{z}; \widehat{\mathbf{w}}_t')| \le \bar{\rho}_t ||\widehat{\mathbf{w}}_t' - \widehat{\mathbf{w}}_t||_2$ holds for any z. Equation (8) implies

$$\mu_t \|\widehat{\mathbf{w}}_t' - \widehat{\mathbf{w}}_t\|_2^2 \le \frac{\ell_t(\mathbf{z}_1; \widehat{\mathbf{w}}_t') - \ell_t(\mathbf{z}_1; \widehat{\mathbf{w}}_t)}{n_t} + \frac{\ell_t(\mathbf{z}_1'; \widehat{\mathbf{w}}_t) - \ell_t(\mathbf{z}_1'; \widehat{\mathbf{w}}_t')}{n_t} \le \frac{2\bar{\rho}_t}{n_t} \|\widehat{\mathbf{w}}_t' - \widehat{\mathbf{w}}_t\|_2.$$

Therefore, $\|\widehat{\mathbf{w}}_t' - \widehat{\mathbf{w}}_t\|_2 \leq \frac{2\bar{\rho}_t}{\mu_t n_t}$ if $S_t \cup S_t'$ is good. Thus, we also know that $|\ell_t(\mathbf{z}; \widehat{\mathbf{w}}_t) - \ell_t(\mathbf{z}; \widehat{\mathbf{w}}_t')| \leq \bar{\rho}_t \|\widehat{\mathbf{w}}_t' - \widehat{\mathbf{w}}_t\|_2 \leq \frac{2\bar{\rho}_t^2}{\mu_t n_t}$ holds for any z. If $S_t \cup S_t'$ is bad, using the global Lipschitz constant, $|\ell_t(\mathbf{z}; \widehat{\mathbf{w}}_t) - \ell_t(\mathbf{z}; \widehat{\mathbf{w}}_t')| \leq \rho_t \|\widehat{\mathbf{w}}_t' - \widehat{\mathbf{w}}_t\|_2$ holds for any z. We similarly get $\|\widehat{\mathbf{w}}_t' - \widehat{\mathbf{w}}_t\|_2 \leq \frac{2\rho_t}{\mu_t n_t}$ if $S_t \cup S_t'$ is bad. We also know that $|\ell_t(\mathbf{z}; \widehat{\mathbf{w}}_t) - \ell_t(\mathbf{z}; \widehat{\mathbf{w}}_t')| \leq \rho_t \|\widehat{\mathbf{w}}_t' - \widehat{\mathbf{w}}_t\|_2 \leq \frac{2\rho_t^2}{\mu_t n_t}$ is true for any z. Now we upper bound the generalization gap of RERM:

$$\mathbb{E}_{S_{t} \sim \mathcal{D}_{t}^{n_{t}}} \left(L_{\mathcal{D}_{t}}(\widehat{\mathbf{w}}_{t}) - \widehat{L}_{S_{t}}(\widehat{\mathbf{w}}_{t}) \right) \\
= \mathbb{E}_{S_{t} \cup S'_{t} \sim \mathcal{D}_{t}^{n_{t}+1}} \left(\ell_{t}(\mathbf{z}_{1}; \widehat{\mathbf{w}}'_{t}) - \ell_{t}(\mathbf{z}_{1}; \widehat{\mathbf{w}}_{t}) \right) \\
\leq \frac{2\bar{\rho}_{t}^{2}}{\mu_{t} n_{t}} \mathbb{P}_{S_{t} \cup S'_{t} \sim \mathcal{D}_{t}^{n_{t}+1}} \left(S_{t} \cup S'_{t} \text{ is good} \right) + \frac{2\rho_{t}^{2}}{\mu_{t} n_{t}} \mathbb{P}_{S_{t} \cup S'_{t} \sim \mathcal{D}_{t}^{n_{t}+1}} \left(S_{t} \cup S'_{t} \text{ is bad} \right) \\
= \frac{2\bar{\rho}_{t}^{2}}{\mu_{t} n_{t}} + \frac{2(\rho_{t}^{2} - \bar{\rho}_{t}^{2})}{\mu_{t} n_{t}} \mathbb{P}_{S_{t} \cup S'_{t} \sim \mathcal{D}_{t}^{n_{t}+1}} \left(S_{t} \cup S'_{t} \text{ is bad} \right) \\
\leq \frac{2\bar{\rho}_{t}^{2}}{\mu_{t} n_{t}} + \frac{4(\rho_{t}^{2} - \bar{\rho}_{t}^{2}) \mathbb{E}_{S_{t}} \left[\varepsilon_{t}(\widehat{\mathbf{w}}_{t}) \right]}{\mu_{t} \bar{\varepsilon}_{t} n_{t}}. \tag{equation (9)}$$

Since task t-1 and task t satisfy (r_t, α) condition, there exists \mathbf{w}' , s.t. $\|\mathbf{w}' - \widehat{\mathbf{w}}_{t-1}\|_2 \le r_t$ and $\varepsilon_t(\mathbf{w}') \le \alpha \varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})$ hold. Now we upper bound the excess risk of RERM:

$$\begin{split} \mathbb{E}_{S_t} \left[\varepsilon_t(\widehat{\mathbf{w}}_t) \right] = & \mathbb{E}_{S_t \sim \mathcal{D}_t^{n_t}} L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_t) - \inf_{\mathbf{w}} L_{\mathcal{D}_t}(\mathbf{w}) \\ = & \mathbb{E}_{S_t \sim \mathcal{D}_t^{n_t}} \left(L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_t) - \widehat{L}_{S_t}(\widehat{\mathbf{w}}_t) \right) + \mathbb{E}_{S_t \sim \mathcal{D}_t^{n_t}} \left(\widehat{L}_{S_t}(\widehat{\mathbf{w}}_t) - \inf_{\mathbf{w}} L_{\mathcal{D}_t}(\mathbf{w}) \right) \\ \leq & \mathbb{E}_{S_t \sim \mathcal{D}_t^{n_t}} \left(L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_t) - \widehat{L}_{S_t}(\widehat{\mathbf{w}}_t) \right) + \mathbb{E}_{S_t \sim \mathcal{D}_t^{n_t}} \left(\widehat{L}_{S_t}(\widehat{\mathbf{w}}_t) + \frac{\mu_t}{2} \|\widehat{\mathbf{w}}_t - \widehat{\mathbf{w}}_{t-1}\|_2^2 - \inf_{\mathbf{w}} L_{\mathcal{D}_t}(\mathbf{w}) \right) \\ \leq & \mathbb{E}_{S_t \sim \mathcal{D}_t^{n_t}} \left(L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_t) - \widehat{L}_{S_t}(\widehat{\mathbf{w}}_t) \right) + \mathbb{E}_{S_t \sim \mathcal{D}_t^{n_t}} \left(\widehat{L}_{S_t}(\mathbf{w}') + \frac{\mu_t}{2} \|\mathbf{w}' - \widehat{\mathbf{w}}_{t-1}\|_2^2 - \inf_{\mathbf{w}} L_{\mathcal{D}_t}(\mathbf{w}) \right) \\ = & \mathbb{E}_{S_t \sim \mathcal{D}_t^{n_t}} \left(L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_t) - \widehat{L}_{S_t}(\widehat{\mathbf{w}}_t) \right) + L_{\mathcal{D}_t}(\mathbf{w}') + \frac{\mu_t}{2} \|\mathbf{w}' - \widehat{\mathbf{w}}_{t-1}\|_2^2 - \inf_{\mathbf{w}} L_{\mathcal{D}_t}(\mathbf{w}) \\ \leq & \frac{2\bar{\rho}_t^2}{\mu_t n_t} + \frac{4(\rho_t^2 - \bar{\rho}_t^2) \mathbb{E}_{S_t} \left[\varepsilon_t(\widehat{\mathbf{w}}_t) \right]}{\mu_t \bar{\varepsilon}_t n_t} + \alpha \varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1}) + \frac{\mu_t r_t^2}{2}. \end{split}$$

Taking expectation w.r.t. S_1, \ldots, S_{t-1} , we obtain

$$\mathbb{E}\left[\varepsilon_t(\widehat{\mathbf{w}}_t)\right] \leq \frac{2\bar{\rho}_t^2}{\mu_t n_t} + \frac{4(\rho_t^2 - \bar{\rho}_t^2)\mathbb{E}\left[\varepsilon_t(\widehat{\mathbf{w}}_t)\right]}{\mu_t \bar{\varepsilon}_t n_t} + \alpha \mathbb{E}\left[\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})\right] + \frac{\mu_t r_t^2}{2}.$$

If $\frac{4(\rho_t^2-\bar{\rho}_t^2)}{\mu_t\bar{\epsilon}_tn_t}<1$, we can solve the above inequality, and get

$$\mathbb{E}\left[\varepsilon_{t}(\widehat{\mathbf{w}}_{t})\right] \leq \frac{\frac{2\bar{\rho}_{t}^{2}}{\mu_{t}n_{t}} + \alpha\mathbb{E}\left[\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})\right] + \frac{\mu_{t}r_{t}^{2}}{2}}{1 - \frac{4(\rho_{t}^{2} - \bar{\rho}_{t}^{2})}{\mu_{t}\bar{\varepsilon}_{t}n_{t}}}.$$

Denote
$$x = \sqrt{\frac{4\bar{\rho}_t^2}{n_t r_t^2} + \frac{32(\rho_t^2 - \bar{\rho}_t^2)^2}{(1 - \alpha)\bar{\epsilon}_t^2 n_t^2}} + \frac{4(\rho_t^2 - \bar{\rho}_t^2)}{\bar{\epsilon}_t n_t}$$
, and select $\mu_t = \max\{\frac{4(1 + \alpha)(\rho_t^2 - \bar{\rho}_t^2)}{(1 - \alpha)\bar{\epsilon}_t n_t}, x\}$. We get

$$\begin{split} \mathbb{E}\left[\varepsilon_{t}(\widehat{\mathbf{w}}_{t})\right] &\leq \frac{\frac{2\widehat{\rho}_{t}^{2}}{\mu_{t}n_{t}} + \alpha \mathbb{E}\left[\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})\right] + \frac{\mu_{t}r_{t}^{2}}{2}}{1 - \frac{4(\rho_{t}^{2} - \widehat{\rho}_{t}^{2})}{\mu_{t}\varepsilon_{n_{t}}}} \\ &= \frac{\frac{2\widehat{\rho}_{t}^{2}}{\mu_{t}n_{t}} + \frac{\mu_{t}r_{t}^{2}}{2}}{1 - \frac{4(\rho_{t}^{2} - \widehat{\rho}_{t}^{2})}{\mu_{t}\varepsilon_{n_{t}}} + \frac{\alpha \mathbb{E}\left[\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})\right]}{1 - \frac{4(\rho_{t}^{2} - \widehat{\rho}_{t}^{2})}{n_{t}\varepsilon_{t}n_{t}}} \\ &\leq \frac{\frac{2\widehat{\rho}_{t}^{2}}{xn_{t}} + \frac{r_{t}^{2}}{2}\mu_{t}}{1 - \frac{4(\rho_{t}^{2} - \widehat{\rho}_{t}^{2})}{x\varepsilon_{t}n_{t}}} + \frac{\alpha \mathbb{E}\left[\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})\right]}{1 - \frac{1-\alpha}{1+\alpha}} \\ &\leq \frac{\frac{2\widehat{\rho}_{t}^{2}}{xn_{t}} + \frac{r_{t}^{2}}{2}\left(x + \frac{4(1+\alpha)(\rho_{t}^{2} - \widehat{\rho}_{t}^{2})}{(1-\alpha)\varepsilon_{t}n_{t}}\right)}{1 - \frac{4(\rho_{t}^{2} - \widehat{\rho}_{t}^{2})}{x\varepsilon_{t}n_{t}}} + \frac{1+\alpha}{2}\mathbb{E}\left[\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})\right] \\ &= \frac{\frac{2\widehat{\rho}_{t}^{2}}{n_{t}} + \frac{r_{t}^{2}}{2}\left(x^{2} + \frac{4(1+\alpha)(\rho_{t}^{2} - \widehat{\rho}_{t}^{2})}{x\varepsilon_{t}n_{t}}\right)}{x - \frac{4(\rho_{t}^{2} - \widehat{\rho}_{t}^{2})}{(1-\alpha)\varepsilon_{t}n_{t}}} + \frac{1+\alpha}{2}\mathbb{E}\left[\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})\right] \\ &= r_{t}^{2}\sqrt{\frac{4\widehat{\rho}_{t}^{2}}{n_{t}r_{t}^{2}}} + \frac{32(\rho_{t}^{2} - \widehat{\rho}_{t}^{2})^{2}}{(1-\alpha)\varepsilon_{t}^{2}n_{t}^{2}} + \frac{(6-2\alpha)r_{t}^{2}(\rho_{t}^{2} - \widehat{\rho}_{t}^{2})}{(1-\alpha)\varepsilon_{t}n_{t}} + \frac{1+\alpha}{2}\mathbb{E}\left[\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})\right] \\ &\leq \frac{2r_{t}\widehat{\rho}_{t}}{\sqrt{n_{t}}} + \left(\sqrt{\frac{32}{1-\alpha}} + \frac{6-2\alpha}{1-\alpha}\right)\frac{r_{t}^{2}(\rho_{t}^{2} - \widehat{\rho}_{t}^{2})}{\varepsilon_{t}n_{t}} + \frac{1+\alpha}{2}\mathbb{E}\left[\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})\right] \\ &\leq \frac{2r_{t}\widehat{\rho}_{t}}{\sqrt{n_{t}}} + \frac{12}{1-\alpha}\frac{r_{t}^{2}(\rho_{t}^{2} - \widehat{\rho}_{t}^{2})}{\varepsilon_{t}n_{t}} + \frac{1+\alpha}{2}\mathbb{E}\left[\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})\right] \\ &\leq \frac{2r_{t}\widehat{\rho}_{t}}{\sqrt{n_{t}}} + \frac{12}{1-\alpha}\frac{r_{t}^{2}(\rho_{t}^{2} - \widehat{\rho}_{t}^{2})}{\varepsilon_{t}n_{t}} + \frac{1+\alpha}{2}\mathbb{E}\left[\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})\right] \\ &= \frac{2r_{t}}{\sqrt{n_{t}}} \left(\widehat{\rho}_{t} + \frac{6r_{t}(\rho_{t}^{2} - \widehat{\rho}_{t}^{2})}{\varepsilon_{t}n_{t}} + \frac{1+\alpha}{2}\mathbb{E}\left[\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})\right]. \end{aligned}$$

B.4 Missing Proofs in Section 4.4

Theorem 4.6. Setting the regularization parameter $\mu_t = \max\{\frac{(2+6\alpha)H_t}{(1-\alpha)n_t}, \frac{1}{r_t}\sqrt{\frac{32H_tL_t^*}{n_t}}\}$, we have

$$\mathbb{E}\left[\varepsilon_t(\widehat{\mathbf{w}}_t)\right] \leq \sqrt{\frac{32L_t^{\star}H_tr_t^2}{n_t}} + \frac{9H_tr_t^2}{(1-\alpha)n_t} + \frac{1+\alpha}{2}\mathbb{E}\left[\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})\right].$$

 $\begin{aligned} &\textit{Proof of Theorem 4.6}. \ \ \text{Let} \ S_t = \{\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_{n_t}\} \sim \mathcal{D}_t^{n_t} \ \text{and} \ S_t' = \{\mathbf{z}_1', \mathbf{z}_2, \dots, \mathbf{z}_{n_t}\} \sim \mathcal{D}_t^{n_t} \ \text{be two} \\ &\text{neighboring data sets that differ in one single example.} \ S_t \cup S_t' = \{\mathbf{z}_1', \mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_{n_t}\} \sim \mathcal{D}_t^{n_t} \ \text{be two} \\ &\text{Recall } \widehat{\mathbf{w}}_t \in \underset{\mathbf{w}}{\operatorname{argmin}} \left(\widehat{L}_{S_t}(\mathbf{w}) + \frac{\mu_t}{2}\|\mathbf{w} - \widehat{\mathbf{w}}_{t-1}\|_2^2\right); \ \widehat{\mathbf{w}}_t' \in \underset{\mathbf{w}}{\operatorname{argmin}} \left(\widehat{L}_{S_t'}(\mathbf{w}) + \frac{\mu_t}{2}\|\mathbf{w} - \widehat{\mathbf{w}}_{t-1}\|_2^2\right). \end{aligned}$

Since the optimization objective $\widehat{L}_{S_t}(\mathbf{w}) + \frac{\mu_t}{2} \|\mathbf{w} - \widehat{\mathbf{w}}_{t-1}\|_2^2$ is μ_t -strongly convex, we have

$$\widehat{L}_{S_t}(\widehat{\mathbf{w}}_t') + \frac{\mu_t}{2} \|\widehat{\mathbf{w}}_t' - \widehat{\mathbf{w}}_{t-1}\|_2^2 \ge \widehat{L}_{S_t}(\widehat{\mathbf{w}}_t) + \frac{\mu_t}{2} \|\widehat{\mathbf{w}}_t - \widehat{\mathbf{w}}_{t-1}\|_2^2 + \frac{\mu_t}{2} \|\widehat{\mathbf{w}}_t' - \widehat{\mathbf{w}}_t\|_2^2.$$

Similarly,

$$\widehat{L}_{S_t'}(\widehat{\mathbf{w}}_t) + \frac{\mu_t}{2} \|\widehat{\mathbf{w}}_t - \widehat{\mathbf{w}}_{t-1}\|_2^2 \geq \widehat{L}_{S_t'}(\widehat{\mathbf{w}}_t') + \frac{\mu_t}{2} \|\widehat{\mathbf{w}}_t' - \widehat{\mathbf{w}}_{t-1}\|_2^2 + \frac{\mu_t}{2} \|\widehat{\mathbf{w}}_t' - \widehat{\mathbf{w}}_t\|_2^2.$$

Adding up these two inequalities,

$$\mu_t \|\widehat{\mathbf{w}}_t' - \widehat{\mathbf{w}}_t\|_2^2 \le \frac{\ell_t(\mathbf{z}_1; \widehat{\mathbf{w}}_t') - \ell_t(\mathbf{z}_1; \widehat{\mathbf{w}}_t)}{n_t} + \frac{\ell_t(\mathbf{z}_1'; \widehat{\mathbf{w}}_t) - \ell_t(\mathbf{z}_1'; \widehat{\mathbf{w}}_t')}{n_t}.$$
 (10)

By the smoothness assumption and using the self-bounded property.

$$\ell_{t}(\mathbf{z}_{1}; \widehat{\mathbf{w}}_{t}') - \ell_{t}(\mathbf{z}_{1}; \widehat{\mathbf{w}}_{t}) \leq \left\langle \nabla_{\mathbf{w}} \ell_{t}(\mathbf{z}_{1}; \widehat{\mathbf{w}}_{t}), \widehat{\mathbf{w}}_{t}' - \widehat{\mathbf{w}}_{t} \right\rangle + \frac{H_{t}}{2} \|\widehat{\mathbf{w}}_{t}' - \widehat{\mathbf{w}}_{t}\|_{2}^{2} \\
\leq \|\nabla_{\mathbf{w}} \ell_{t}(\mathbf{z}_{1}; \widehat{\mathbf{w}}_{t})\|_{2} \|\widehat{\mathbf{w}}_{t}' - \widehat{\mathbf{w}}_{t}\|_{2} + \frac{H_{t}}{2} \|\widehat{\mathbf{w}}_{t}' - \widehat{\mathbf{w}}_{t}\|_{2}^{2} \\
\leq \sqrt{2H_{t}\ell_{t}(\mathbf{z}_{1}; \widehat{\mathbf{w}}_{t})} \|\widehat{\mathbf{w}}_{t}' - \widehat{\mathbf{w}}_{t}\|_{2} + \frac{H_{t}}{2} \|\widehat{\mathbf{w}}_{t}' - \widehat{\mathbf{w}}_{t}\|_{2}^{2}. \tag{11}$$

Similarly,

$$\ell_t(\mathbf{z}_1'; \widehat{\mathbf{w}}_t) - \ell_t(\mathbf{z}_1'; \widehat{\mathbf{w}}_t') \le \sqrt{2H_t\ell_t(\mathbf{z}_1'; \widehat{\mathbf{w}}_t')} \|\widehat{\mathbf{w}}_t' - \widehat{\mathbf{w}}_t\|_2 + \frac{H_t}{2} \|\widehat{\mathbf{w}}_t' - \widehat{\mathbf{w}}_t\|_2^2. \tag{12}$$

From the choice of μ_t we know that $\mu_t n_t > H_t$. Plugging these two inequalities into equation (10), we get

$$\|\widehat{\mathbf{w}}_t' - \widehat{\mathbf{w}}_t\|_2 \le \frac{\sqrt{2H_t}}{\mu_t n_t - H_t} \left(\sqrt{\ell_t(\mathbf{z}_1; \widehat{\mathbf{w}}_t)} + \sqrt{\ell_t(\mathbf{z}_1'; \widehat{\mathbf{w}}_t')} \right).$$

Adding up equation (11) and equation (12), and combining with the inequality above, we get

$$\begin{aligned} & \left(\ell_{t}(\mathbf{z}_{1}; \widehat{\mathbf{w}}_{t}') - \ell_{t}(\mathbf{z}_{1}; \widehat{\mathbf{w}}_{t}) \right) + \left(\ell_{t}(\mathbf{z}_{1}'; \widehat{\mathbf{w}}_{t}) - \ell_{t}(\mathbf{z}_{1}'; \widehat{\mathbf{w}}_{t}') \right) \\ & \leq \left(\frac{2H_{t}}{\mu_{t}n_{t} - H_{t}} + \frac{2H_{t}^{2}}{\left(\mu_{t}n_{t} - H_{t}\right)^{2}} \right) \left(\sqrt{\ell_{t}(\mathbf{z}_{1}; \widehat{\mathbf{w}}_{t})} + \sqrt{\ell_{t}(\mathbf{z}_{1}'; \widehat{\mathbf{w}}_{t}')} \right)^{2} \\ & \leq \left(\frac{4H_{t}}{\mu_{t}n_{t} - H_{t}} + \frac{4H_{t}^{2}}{\left(\mu_{t}n_{t} - H_{t}\right)^{2}} \right) \left(\ell_{t}(\mathbf{z}_{1}; \widehat{\mathbf{w}}_{t}) + \ell_{t}(\mathbf{z}_{1}'; \widehat{\mathbf{w}}_{t}') \right). \end{aligned}$$

Now we upper bound the generalization gap of RERM:

$$\mathbb{E}_{S_t \sim \mathcal{D}_t^{n_t}} \left(L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_t) - \widehat{L}_{S_t}(\widehat{\mathbf{w}}_t) \right)$$

$$= \frac{1}{2} \mathbb{E}_{S_t \cup S_t' \sim \mathcal{D}_t^{n_t + 1}} \left[\left(\ell_t(\mathbf{z}_1; \widehat{\mathbf{w}}_t') - \ell_t(\mathbf{z}_1; \widehat{\mathbf{w}}_t) \right) + \left(\ell_t(\mathbf{z}_1'; \widehat{\mathbf{w}}_t) - \ell_t(\mathbf{z}_1'; \widehat{\mathbf{w}}_t') \right) \right]$$

$$\leq \left(\frac{2H_t}{\mu_t n_t - H_t} + \frac{2H_t^2}{\left(\mu_t n_t - H_t\right)^2}\right) \mathbb{E}_{S_t \cup S_t' \sim \mathcal{D}_t^{n_t + 1}} \left[\ell_t(\mathbf{z}_1; \widehat{\mathbf{w}}_t) + \ell_t(\mathbf{z}_1'; \widehat{\mathbf{w}}_t')\right]$$

$$= \left(\frac{4H_t}{\mu_t n_t - H_t} + \frac{4H_t^2}{\left(\mu_t n_t - H_t\right)^2}\right) \mathbb{E}_{S_t \sim \mathcal{D}_t^{n_t}} \left[\widehat{L}_{S_t}(\widehat{\mathbf{w}}_t)\right].$$

Since task t-1 and task t satisfy (r_t,α) condition, there exists \mathbf{w}' , s.t. $\|\mathbf{w}'-\widehat{\mathbf{w}}_{t-1}\|_2 \leq r_t$ and $\varepsilon_t(\mathbf{w}') \leq \alpha \varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})$ hold. Now we upper bound the excess risk of RERM:

$$\mathbb{E}_{S_{t}}\left[\varepsilon_{t}(\widehat{\mathbf{w}}_{t})\right] \\
= \mathbb{E}_{S_{t} \sim \mathcal{D}_{t}^{n_{t}}} L_{\mathcal{D}_{t}}(\widehat{\mathbf{w}}_{t}) - L_{t}^{\star} \\
\leq \left(1 + \frac{4H_{t}}{\mu_{t}n_{t} - H_{t}} + \frac{4H_{t}^{2}}{(\mu_{t}n_{t} - H_{t})^{2}}\right) \mathbb{E}_{S_{t} \sim \mathcal{D}_{t}^{n_{t}}} \left[\widehat{L}_{S_{t}}(\widehat{\mathbf{w}}_{t})\right] - L_{t}^{\star} \\
\leq \left(1 + \frac{4H_{t}}{\mu_{t}n_{t} - H_{t}} + \frac{4H_{t}^{2}}{(\mu_{t}n_{t} - H_{t})^{2}}\right) \mathbb{E}_{S_{t} \sim \mathcal{D}_{t}^{n_{t}}} \left[\widehat{L}_{S_{t}}(\widehat{\mathbf{w}}_{t}) + \frac{\mu_{t}}{2} \|\widehat{\mathbf{w}}_{t} - \widehat{\mathbf{w}}_{t-1}\|_{2}^{2}\right] - L_{t}^{\star} \\
\leq \left(1 + \frac{4H_{t}}{\mu_{t}n_{t} - H_{t}} + \frac{4H_{t}^{2}}{(\mu_{t}n_{t} - H_{t})^{2}}\right) \mathbb{E}_{S_{t} \sim \mathcal{D}_{t}^{n_{t}}} \left[\widehat{L}_{S_{t}}(\mathbf{w}') + \frac{\mu_{t}}{2} \|\mathbf{w}' - \widehat{\mathbf{w}}_{t-1}\|_{2}^{2}\right] - L_{t}^{\star} \\
\leq \left(1 + \frac{4H_{t}}{\mu_{t}n_{t} - H_{t}} + \frac{4H_{t}^{2}}{(\mu_{t}n_{t} - H_{t})^{2}}\right) \left(L_{\mathcal{D}_{t}}(\mathbf{w}') + \frac{\mu_{t}}{2} \|\mathbf{w}' - \widehat{\mathbf{w}}_{t-1}\|_{2}^{2}\right) - L_{t}^{\star} \\
\leq \left(1 + \frac{4H_{t}}{\mu_{t}n_{t} - H_{t}} + \frac{4H_{t}^{2}}{(\mu_{t}n_{t} - H_{t})^{2}}\right) \left(L_{t}^{\star} + \alpha\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1}) + \frac{\mu_{t}}{2}r_{t}^{2}\right) - L_{t}^{\star} \\
= \left(1 + \frac{4H_{t}}{\mu_{t}n_{t} - H_{t}} + \frac{4H_{t}^{2}}{(\mu_{t}n_{t} - H_{t})^{2}}\right) \alpha\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1}) \\
+ \left(1 + \frac{4H_{t}}{\mu_{t}n_{t} - H_{t}} + \frac{4H_{t}^{2}}{(\mu_{t}n_{t} - H_{t})^{2}}\right) \left(L_{t}^{\star} + \frac{4H_{t}^{2}}{2}r_{t}^{2}\right) - L_{t}^{\star}. \tag{13}$$

Since $mu_t \geq \frac{(2+6\alpha)H_t}{(1-\alpha)n_t}$,

$$\left(1 + \frac{4H_t}{\mu_t n_t - H_t} + \frac{4H_t^2}{\left(\mu_t n_t - H_t\right)^2}\right) \alpha \le \left(1 + \frac{4(1-\alpha)}{1+7\alpha} + \frac{4(1-\alpha)^2}{(1+7\alpha)^2}\right) \alpha$$

$$= \left(1 + \frac{8+24\alpha}{(1+7\alpha)^2}(1-\alpha)\right) \alpha$$

$$\le \left(1 + \frac{1-\alpha}{2\alpha}\right) \alpha = \frac{1+\alpha}{2};$$

$$\left(1 + \frac{4H_t}{\mu_t n_t - H_t} + \frac{4H_t^2}{(\mu_t n_t - H_t)^2}\right) \le \left(1 + \frac{8H_t}{\mu_t n_t} + \frac{8H_t}{\mu_t n_t}\right)
= \left(1 + \frac{16H_t}{\mu_t n_t}\right).$$

Plugging these two inequalities into equation (13), we get

$$\mathbb{E}_{S_t} \left[\varepsilon_t(\widehat{\mathbf{w}}_t) \right]$$

$$\leq \frac{1+\alpha}{2} \varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1}) + \left(1 + \frac{16H_t}{\mu_t n_t} \right) \left(L_t^{\star} + \frac{\mu_t}{2} r_t^2 \right) - L_t^{\star}$$

$$= \frac{1+\alpha}{2} \varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1}) + \frac{8H_t r_t^2}{n_t} + \frac{r_t^2}{2} \mu_t + 16L_t^{\star} \frac{H_t}{\mu_t n_t}$$

$$\begin{split} & \leq \frac{1+\alpha}{2}\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1}) + \frac{8H_{t}r_{t}^{2}}{n_{t}} + \frac{r_{t}^{2}}{2}\left(\frac{(2+6\alpha)H_{t}}{(1-\alpha)n_{t}} + \frac{1}{r_{t}}\sqrt{\frac{32H_{t}L_{t}^{\star}}{n_{t}}}\right) + 16L_{t}^{\star}\frac{H_{t}}{\left(\frac{1}{r_{t}}\sqrt{\frac{32H_{t}L_{t}^{\star}}{n_{t}}}\right)n_{t}} \\ & = \frac{1+\alpha}{2}\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1}) + \frac{(9-5\alpha)H_{t}r_{t}^{2}}{(1-\alpha)n_{t}} + r_{t}\sqrt{\frac{32H_{t}L_{t}^{\star}}{n_{t}}} \\ & \leq \sqrt{\frac{32L_{t}^{\star}H_{t}r_{t}^{2}}{n_{t}}} + \frac{9H_{t}r_{t}^{2}}{(1-\alpha)n_{t}} + \frac{1+\alpha}{2}\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1}). \end{split}$$

Taking expectation w.r.t. S_1, \ldots, S_{t-1} , we obtain

$$\mathbb{E}\left[\varepsilon_t(\widehat{\mathbf{w}}_t)\right] \leq \sqrt{\frac{32L_t^{\star}H_tr_t^2}{n_t}} + \frac{9H_tr_t^2}{(1-\alpha)n_t} + \frac{1+\alpha}{2}\mathbb{E}\left[\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})\right].$$

B.5 Missing Proofs for Adversarial Robustness

Proposition B.1. If the standard loss $\ell_t((\mathbf{x},y);\mathbf{w})$ is convex, then the robust loss $\ell_t^{rob}((\mathbf{x},y);\mathbf{w}) := \sup_{\tilde{\mathbf{x}} \in \mathcal{B}(\mathbf{x})} \ell_t((\tilde{\mathbf{x}},y);\mathbf{w})$ is convex.

Proof of Proposition B.1. $\forall w_1, w_2, \lambda \in [0, 1],$

$$\begin{split} \ell_t^{rob}((\mathbf{x},y);\lambda\mathbf{w}_1 + (1-\lambda)\mathbf{w}_2) &= \sup_{\tilde{\mathbf{x}}\in\mathcal{B}(\mathbf{x})} \ell_t((\tilde{\mathbf{x}},y);\lambda\mathbf{w}_1 + (1-\lambda)\mathbf{w}_2) \\ &\leq \sup_{\tilde{\mathbf{x}}\in\mathcal{B}(\mathbf{x})} \left[\lambda\ell_t((\tilde{\mathbf{x}},y);\mathbf{w}_1) + (1-\lambda)\ell_t((\tilde{\mathbf{x}},y);\mathbf{w}_2)\right] \\ &\leq \sup_{\tilde{\mathbf{x}}\in\mathcal{B}(\mathbf{x})} \left[\lambda\ell_t((\tilde{\mathbf{x}},y);\mathbf{w}_1)\right] + \sup_{\tilde{\mathbf{x}}\in\mathcal{B}(\mathbf{x})} \left[(1-\lambda)\ell_t((\tilde{\mathbf{x}},y);\mathbf{w}_2)\right] \\ &= \lambda\ell_t^{rob}((\mathbf{x},y);\mathbf{w}_1) + (1-\lambda)\ell_t^{rob}((\mathbf{x},y);\mathbf{w}_2). \end{split}$$

Proposition B.2. If the standard loss $\ell_t((\mathbf{x},y);\mathbf{w})$ is ρ_t -Lipschitz, then the robust loss $\ell_t^{rob}((\mathbf{x},y);\mathbf{w}) := \sup_{\tilde{\mathbf{x}} \in \mathcal{B}(\mathbf{x})} \ell_t((\tilde{\mathbf{x}},y);\mathbf{w})$ is ρ_t -Lipschitz.

Proof of Proposition B.1. $\forall w_1, w_2,$

$$\begin{split} \ell_t^{rob}((\mathbf{x},y);\mathbf{w}_1) - \ell_t^{rob}((\mathbf{x},y);\mathbf{w}_2) &= \sup_{\tilde{\mathbf{x}} \in \mathcal{B}(\mathbf{x})} \ell_t((\tilde{\mathbf{x}},y);\mathbf{w}_1) - \sup_{\tilde{\mathbf{x}} \in \mathcal{B}(\mathbf{x})} \ell_t((\tilde{\mathbf{x}},y);\mathbf{w}_2) \\ &\leq \sup_{\tilde{\mathbf{x}} \in \mathcal{B}(\mathbf{x})} \left[\ell_t((\tilde{\mathbf{x}},y);\mathbf{w}_1) - \ell_t((\tilde{\mathbf{x}},y);\mathbf{w}_2) \right] \\ &\leq \sup_{\tilde{\mathbf{x}} \in \mathcal{B}(\mathbf{x})} \left(\rho_t \|\mathbf{w}_1 - \mathbf{w}_2\|_2 \right) \\ &= \rho_t \|\mathbf{w}_1 - \mathbf{w}_2\|_2. \end{split}$$

Now we prove Theorem 4.6 in the adversarial robustness setting. In this setting, all tasks are learning the robust loss; the empirical risk, expected risk and excess risk are defined using the robust loss. We assume that $\forall z$, the standard loss $\ell_t(z; w)$ is convex, H_t -smooth and nonnegative. In addition, task t-1 and task t satisfy (r_t, α) condition for constants $r_t > 0$ and $\alpha \in (0, 1)$. Denote $L_t^* = \lim_{w} L_{\mathcal{D}_t}^{rob}(w)$. We use biased RERM described in Algorithm 1 to learn these tasks. We focus on two consecutive tasks: task t-1 and task t as before.

Theorem B.3. Setting the regularization parameter $\mu_t = \max\{\frac{(2+6\alpha)H_t}{(1-\alpha)n_t}, \frac{1}{r_t}\sqrt{\frac{32H_tL_t^*}{n_t}}\}$, we have

$$\mathbb{E}\left[\varepsilon_t(\widehat{\mathbf{w}}_t)\right] \leq \sqrt{\frac{32L_t^{\star}H_tr_t^2}{n_t}} + \frac{9H_tr_t^2}{(1-\alpha)n_t} + \frac{1+\alpha}{2}\mathbb{E}\left[\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})\right].$$

Proof of Theorem B.3. Let $S_t = \{\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_{n_t}\} \sim \mathcal{D}_t^{n_t}$ and $S_t' = \{\mathbf{z}_1', \mathbf{z}_2, \dots, \mathbf{z}_{n_t}\} \sim \mathcal{D}_t^{n_t}$ be two neighboring data sets that differ in one single example. $S_t \cup S_t' = \{\mathbf{z}_1', \mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_{n_t}\} \sim \mathcal{D}_t^{n_t+1}$. Recall $\widehat{\mathbf{w}}_t \in \operatorname*{argmin}_{\mathbf{w}} \left(\widehat{L}_{S_t}^{rob}(\mathbf{w}) + \frac{\mu_t}{2} \|\mathbf{w} - \widehat{\mathbf{w}}_{t-1}\|_2^2\right)$; $\widehat{\mathbf{w}}_t' \in \operatorname*{argmin}_{\mathbf{w}} \left(\widehat{L}_{S_t'}^{rob}(\mathbf{w}) + \frac{\mu_t}{2} \|\mathbf{w} - \widehat{\mathbf{w}}_{t-1}\|_2^2\right)$.

Since the optimization objective $\widehat{L}_{S}^{rob}(\mathbf{w}) + \frac{\mu_t}{2} \|\mathbf{w} - \widehat{\mathbf{w}}_{t-1}\|_2^2$ is μ_t -strongly convex, we have

$$\widehat{L}_{S_t}^{rob}(\widehat{\mathbf{w}}_t') + \frac{\mu_t}{2} \|\widehat{\mathbf{w}}_t' - \widehat{\mathbf{w}}_{t-1}\|_2^2 \ge \widehat{L}_{S_t}^{rob}(\widehat{\mathbf{w}}_t) + \frac{\mu_t}{2} \|\widehat{\mathbf{w}}_t - \widehat{\mathbf{w}}_{t-1}\|_2^2 + \frac{\mu_t}{2} \|\widehat{\mathbf{w}}_t' - \widehat{\mathbf{w}}_t\|_2^2.$$

Similarly,

$$\widehat{L}_{S_t'}^{rob}(\widehat{\mathbf{w}}_t) + \frac{\mu_t}{2} \|\widehat{\mathbf{w}}_t - \widehat{\mathbf{w}}_{t-1}\|_2^2 \ge \widehat{L}_{S_t'}^{rob}(\widehat{\mathbf{w}}_t') + \frac{\mu_t}{2} \|\widehat{\mathbf{w}}_t' - \widehat{\mathbf{w}}_{t-1}\|_2^2 + \frac{\mu_t}{2} \|\widehat{\mathbf{w}}_t' - \widehat{\mathbf{w}}_t\|_2^2$$

Adding up these two inequalities,

$$\mu_t \|\widehat{\mathbf{w}}_t' - \widehat{\mathbf{w}}_t\|_2^2 \le \frac{\ell_t^{rob}(\mathbf{z}_1; \widehat{\mathbf{w}}_t') - \ell_t^{rob}(\mathbf{z}_1; \widehat{\mathbf{w}}_t)}{n_t} + \frac{\ell_t^{rob}(\mathbf{z}_1'; \widehat{\mathbf{w}}_t) - \ell_t^{rob}(\mathbf{z}_1'; \widehat{\mathbf{w}}_t')}{n_t}.$$
 (14)

By the smoothness assumption and using the self-bounded property for the standard loss,

$$\ell_{t}^{rob}(z_{1}; \widehat{w}_{t}') - \ell_{t}^{rob}(z_{1}; \widehat{w}_{t}) = \sup_{\bar{x} \in \mathcal{B}(x_{1})} \ell_{t}((\bar{x}, y_{1}); \widehat{w}_{t}') - \sup_{\bar{x} \in \mathcal{B}(x_{1})} \ell_{t}((\bar{x}, y_{1}); \widehat{w}_{t})$$

$$\leq \sup_{\bar{x} \in \mathcal{B}(x_{1})} \left[\ell_{t}((\bar{x}, y_{1}); \widehat{w}_{t}') - \ell_{t}((\bar{x}, y_{1}); \widehat{w}_{t}) \right]$$

$$\leq \sup_{\bar{x} \in \mathcal{B}(x_{1})} \left\langle \nabla_{w} \ell_{t}((\bar{x}, y_{1}); \widehat{w}_{t}), \widehat{w}_{t}' - \widehat{w}_{t} \right\rangle + \frac{H_{t}}{2} \|\widehat{w}_{t}' - \widehat{w}_{t}\|_{2}^{2}$$

$$\leq \sup_{\bar{x} \in \mathcal{B}(x_{1})} \|\nabla_{w} \ell_{t}((\bar{x}, y_{1}); \widehat{w}_{t})\|_{2} \|\widehat{w}_{t}' - \widehat{w}_{t}\|_{2} + \frac{H_{t}}{2} \|\widehat{w}_{t}' - \widehat{w}_{t}\|_{2}^{2}$$

$$\leq \sup_{\bar{x} \in \mathcal{B}(x_{1})} \|\nabla_{w} \ell_{t}((\bar{x}, y_{1}); \widehat{w}_{t})\|_{2} \|\widehat{w}_{t}' - \widehat{w}_{t}\|_{2} + \frac{H_{t}}{2} \|\widehat{w}_{t}' - \widehat{w}_{t}\|_{2}^{2}$$

$$\leq \sup_{\bar{x} \in \mathcal{B}(x_{1})} \sqrt{2H_{t}\ell_{t}((\bar{x}, y_{1}); \widehat{w}_{t})} \|\widehat{w}_{t}' - \widehat{w}_{t}\|_{2} + \frac{H_{t}}{2} \|\widehat{w}_{t}' - \widehat{w}_{t}\|_{2}^{2}$$

$$= \sqrt{2H_{t}\ell_{t}^{rob}(z_{1}; \widehat{w}_{t})} \|\widehat{w}_{t}' - \widehat{w}_{t}\|_{2} + \frac{H_{t}}{2} \|\widehat{w}_{t}' - \widehat{w}_{t}\|_{2}^{2}.$$
(15)

Similarly,

$$\ell_t^{rob}(\mathbf{z}_1'; \widehat{\mathbf{w}}_t) - \ell_t^{rob}(\mathbf{z}_1'; \widehat{\mathbf{w}}_t') \le \sqrt{2H_t\ell_t^{rob}(\mathbf{z}_1'; \widehat{\mathbf{w}}_t')} \|\widehat{\mathbf{w}}_t' - \widehat{\mathbf{w}}_t\|_2 + \frac{H_t}{2} \|\widehat{\mathbf{w}}_t' - \widehat{\mathbf{w}}_t\|_2^2.$$
 (16)

From the choice of μ_t we know that $\mu_t n_t > H_t$. Plugging these two inequalities into equation (14), we get

$$\|\widehat{\mathbf{w}}_t' - \widehat{\mathbf{w}}_t\|_2 \leq \frac{\sqrt{2H_t}}{\mu_t n_t - H_t} \left(\sqrt{\ell_t^{rob}(\mathbf{z}_1; \widehat{\mathbf{w}}_t)} + \sqrt{\ell_t^{rob}(\mathbf{z}_1'; \widehat{\mathbf{w}}_t')} \right).$$

Adding up equation (15) and equation (16), and combining with the inequality above, we get

$$\begin{split} & \left(\ell_t^{rob}(\mathbf{z}_1; \widehat{\mathbf{w}}_t') - \ell_t^{rob}(\mathbf{z}_1; \widehat{\mathbf{w}}_t) \right) + \left(\ell_t^{rob}(\mathbf{z}_1'; \widehat{\mathbf{w}}_t) - \ell_t^{rob}(\mathbf{z}_1'; \widehat{\mathbf{w}}_t') \right) \\ & \leq \left(\frac{2H_t}{\mu_t n_t - H_t} + \frac{2H_t^2}{\left(\mu_t n_t - H_t \right)^2} \right) \left(\sqrt{\ell_t^{rob}(\mathbf{z}_1; \widehat{\mathbf{w}}_t)} + \sqrt{\ell_t^{rob}(\mathbf{z}_1'; \widehat{\mathbf{w}}_t')} \right)^2 \\ & \leq \left(\frac{4H_t}{\mu_t n_t - H_t} + \frac{4H_t^2}{\left(\mu_t n_t - H_t \right)^2} \right) \left(\ell_t^{rob}(\mathbf{z}_1; \widehat{\mathbf{w}}_t) + \ell_t^{rob}(\mathbf{z}_1'; \widehat{\mathbf{w}}_t') \right). \end{split}$$

Now we upper bound the generalization gap of RERM:

$$\begin{split} & \mathbb{E}_{S_t \sim \mathcal{D}_t^{n_t}} \left(L_{\mathcal{D}_t}^{rob}(\widehat{\mathbf{w}}_t) - \widehat{L}_{S_t}^{rob}(\widehat{\mathbf{w}}_t) \right) \\ &= \frac{1}{2} \mathbb{E}_{S_t \cup S_t' \sim \mathcal{D}_t^{n_t+1}} \left[\left(\ell_t^{rob}(\mathbf{z}_1; \widehat{\mathbf{w}}_t') - \ell_t^{rob}(\mathbf{z}_1; \widehat{\mathbf{w}}_t) \right) + \left(\ell_t^{rob}(\mathbf{z}_1'; \widehat{\mathbf{w}}_t) - \ell_t^{rob}(\mathbf{z}_1'; \widehat{\mathbf{w}}_t') \right) \right] \\ &\leq \left(\frac{2H_t}{\mu_t n_t - H_t} + \frac{2H_t^2}{\left(\mu_t n_t - H_t\right)^2} \right) \mathbb{E}_{S_t \cup S_t' \sim \mathcal{D}_t^{n_t+1}} \left[\ell_t^{rob}(\mathbf{z}_1; \widehat{\mathbf{w}}_t) + \ell_t^{rob}(\mathbf{z}_1'; \widehat{\mathbf{w}}_t') \right] \\ &= \left(\frac{4H_t}{\mu_t n_t - H_t} + \frac{4H_t^2}{\left(\mu_t n_t - H_t\right)^2} \right) \mathbb{E}_{S_t \sim \mathcal{D}_t^{n_t}} \left[\widehat{L}_{S_t}^{rob}(\widehat{\mathbf{w}}_t) \right]. \end{split}$$

Since task t-1 and task t satisfy (r_t,α) condition, there exists \mathbf{w}' , s.t. $\|\mathbf{w}'-\widehat{\mathbf{w}}_{t-1}\|_2 \leq r_t$ and $\varepsilon_t(\mathbf{w}') \leq \alpha \varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})$ hold. Now we upper bound the excess risk of RERM:

$$\begin{split} &\mathbb{E}_{S_{t}}\left[\varepsilon_{t}(\widehat{\mathbf{w}}_{t})\right] \\ &= \mathbb{E}_{S_{t} \sim \mathcal{D}_{t}^{n_{t}}}L_{\mathcal{D}_{t}^{ob}}^{rob}(\widehat{\mathbf{w}}_{t}) - L_{t}^{\star} \\ &\leq \left(1 + \frac{4H_{t}}{\mu_{t}n_{t} - H_{t}} + \frac{4H_{t}^{2}}{(\mu_{t}n_{t} - H_{t})^{2}}\right)\mathbb{E}_{S_{t} \sim \mathcal{D}_{t}^{n_{t}}}\left[\widehat{L}_{S_{t}^{rob}}^{rob}(\widehat{\mathbf{w}}_{t})\right] - L_{t}^{\star} \\ &\leq \left(1 + \frac{4H_{t}}{\mu_{t}n_{t} - H_{t}} + \frac{4H_{t}^{2}}{(\mu_{t}n_{t} - H_{t})^{2}}\right)\mathbb{E}_{S_{t} \sim \mathcal{D}_{t}^{n_{t}}}\left[\widehat{L}_{S_{t}^{rob}}^{rob}(\widehat{\mathbf{w}}_{t}) + \frac{\mu_{t}}{2}\|\widehat{\mathbf{w}}_{t} - \widehat{\mathbf{w}}_{t-1}\|_{2}^{2}\right] - L_{t}^{\star} \\ &\leq \left(1 + \frac{4H_{t}}{\mu_{t}n_{t} - H_{t}} + \frac{4H_{t}^{2}}{(\mu_{t}n_{t} - H_{t})^{2}}\right)\mathbb{E}_{S_{t} \sim \mathcal{D}_{t}^{n_{t}}}\left[\widehat{L}_{S_{t}^{rob}}^{rob}(\mathbf{w}') + \frac{\mu_{t}}{2}\|\mathbf{w}' - \widehat{\mathbf{w}}_{t-1}\|_{2}^{2}\right] - L_{t}^{\star} \\ &\leq \left(1 + \frac{4H_{t}}{\mu_{t}n_{t} - H_{t}} + \frac{4H_{t}^{2}}{(\mu_{t}n_{t} - H_{t})^{2}}\right)\left(L_{\mathcal{D}_{t}^{rob}}^{rob}(\mathbf{w}') + \frac{\mu_{t}}{2}\|\mathbf{w}' - \widehat{\mathbf{w}}_{t-1}\|_{2}^{2}\right) - L_{t}^{\star} \\ &\leq \left(1 + \frac{4H_{t}}{\mu_{t}n_{t} - H_{t}} + \frac{4H_{t}^{2}}{(\mu_{t}n_{t} - H_{t})^{2}}\right)\left(L_{t}^{\star} + \alpha\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1}) + \frac{\mu_{t}}{2}r_{t}^{2}\right) - L_{t}^{\star} \\ &= \left(1 + \frac{4H_{t}}{\mu_{t}n_{t} - H_{t}} + \frac{4H_{t}^{2}}{(\mu_{t}n_{t} - H_{t})^{2}}\right)\alpha\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1}) \\ &+ \left(1 + \frac{4H_{t}}{\mu_{t}n_{t} - H_{t}} + \frac{4H_{t}^{2}}{(\mu_{t}n_{t} - H_{t})^{2}}\right)\left(L_{t}^{\star} + \frac{4H_{t}^{2}}{2}r_{t}^{2}\right) - L_{t}^{\star}. \end{split}$$

Since $\mu_t \geq \frac{(2+6\alpha)H_t}{(1-\alpha)n_t}$

$$\left(1 + \frac{4H_t}{\mu_t n_t - H_t} + \frac{4H_t^2}{(\mu_t n_t - H_t)^2}\right) \alpha \le \left(1 + \frac{4(1 - \alpha)}{1 + 7\alpha} + \frac{4(1 - \alpha)^2}{(1 + 7\alpha)^2}\right) \alpha
= \left(1 + \frac{8 + 24\alpha}{(1 + 7\alpha)^2}(1 - \alpha)\right) \alpha
\le \left(1 + \frac{1 - \alpha}{2\alpha}\right) \alpha = \frac{1 + \alpha}{2};$$

$$\left(1 + \frac{4H_t}{\mu_t n_t - H_t} + \frac{4H_t^2}{(\mu_t n_t - H_t)^2}\right) \le \left(1 + \frac{8H_t}{\mu_t n_t} + \frac{8H_t}{\mu_t n_t}\right)
= \left(1 + \frac{16H_t}{\mu_t n_t}\right).$$

Plugging these two inequalities into equation (17), we get

$$\mathbb{E}_{S_t}\left[\varepsilon_t(\widehat{\mathbf{w}}_t)\right]$$

$$\begin{split} & \leq \frac{1+\alpha}{2}\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1}) + \left(1 + \frac{16H_t}{\mu_t n_t}\right) \left(L_t^{\star} + \frac{\mu_t}{2}r_t^2\right) - L_t^{\star} \\ & = \frac{1+\alpha}{2}\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1}) + \frac{8H_t r_t^2}{n_t} + \frac{r_t^2}{2}\mu_t + 16L_t^{\star} \frac{H_t}{\mu_t n_t} \\ & \leq \frac{1+\alpha}{2}\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1}) + \frac{8H_t r_t^2}{n_t} + \frac{r_t^2}{2} \left(\frac{(2+6\alpha)H_t}{(1-\alpha)n_t} + \frac{1}{r_t}\sqrt{\frac{32H_t L_t^{\star}}{n_t}}\right) + 16L_t^{\star} \frac{H_t}{\left(\frac{1}{r_t}\sqrt{\frac{32H_t L_t^{\star}}{n_t}}\right)n_t} \\ & = \frac{1+\alpha}{2}\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1}) + \frac{(9-5\alpha)H_t r_t^2}{(1-\alpha)n_t} + r_t\sqrt{\frac{32H_t L_t^{\star}}{n_t}} \\ & \leq \sqrt{\frac{32L_t^{\star} H_t r_t^2}{n_t}} + \frac{9H_t r_t^2}{(1-\alpha)n_t} + \frac{1+\alpha}{2}\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1}). \end{split}$$

Taking expectation w.r.t. S_1, \ldots, S_{t-1} , we obtain

$$\mathbb{E}\left[\varepsilon_t(\widehat{\mathbf{w}}_t)\right] \leq \sqrt{\frac{32L_t^{\star}H_tr_t^2}{n_t}} + \frac{9H_tr_t^2}{(1-\alpha)n_t} + \frac{1+\alpha}{2}\mathbb{E}\left[\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})\right].$$

C Missing Proofs in Section 5

Lemma 5.1. Let $\delta \in (0,1)$ and $\epsilon > 0$. If $n_t \geq \frac{8r_t^2\rho_t^2}{\epsilon^2} \left(\ln\left(\frac{2}{\delta}\right) + m\ln\left(\frac{8r_t\rho_t}{\epsilon} + 1\right)\right)$, then with probability at least $1 - \delta$ over the randomness of S_t ,

$$\sup_{\mathbf{w}:\|\mathbf{w}-\widehat{\mathbf{w}}_{t-1}\|_2 \le r_t} |\widehat{L}_{S_t}(\mathbf{w}) - L_{\mathcal{D}_t}(\mathbf{w}) - \widehat{L}_{S_t}(\widehat{\mathbf{w}}_{t-1}) + L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_{t-1})| \le \epsilon.$$

Proof of Lemma 5.1. Define $f(z; w) = \ell_t(z; w) - \ell_t(z; \widehat{w}_{t-1})$, then

$$\widehat{L}_{S_t}(\mathbf{w}) - L_{\mathcal{D}_t}(\mathbf{w}) - \widehat{L}_{S_t}(\widehat{\mathbf{w}}_{t-1}) + L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_{t-1}) = \frac{1}{n_t} \sum_{i=1}^{n_t} f(\mathbf{z}_i; w) - \mathbb{E}_{\mathbf{z} \sim \mathcal{D}_t} f(\mathbf{z}; \mathbf{w}).$$

From the Lipschitz assumption, if $\|\mathbf{w}-\widehat{\mathbf{w}}_{t-1}\|_2 \leq r_t$, $|f(\mathbf{z};\mathbf{w})| \leq r_t \rho_t$ is bounded. From Vershynin [2018] Chapter 4, let $\{\mathbf{v}_1,\ldots,\mathbf{v}_K\}$ be an $\frac{\epsilon}{4\rho_t}$ -net of $\{\mathbf{w}:\|\mathbf{w}-\widehat{\mathbf{w}}_{t-1}\|_2 \leq r_t\}$, such that $K \leq \left(\frac{8r_t\rho_t}{\epsilon}+1\right)^m$. $\forall \mathbf{v}_j$, from Hoeffding's Inequality, we get

$$\mathbb{P}_{S_t}\left(\left|\frac{1}{n_t}\sum_{i=1}^{n_t} f(\mathbf{z}_i; \mathbf{v}_j) - \mathbb{E}_{\mathbf{z} \sim \mathcal{D}_t} f(\mathbf{z}; \mathbf{v}_j)\right| > \frac{\epsilon}{2}\right) \le 2 \exp\left(-\frac{\epsilon^2}{8r_t^2 \rho_t^2} n_t\right).$$

Taking a union bound,

$$\mathbb{P}_{S_t} \left(\left| \frac{1}{n_t} \sum_{i=1}^{n_t} f(\mathbf{z}_i; \mathbf{v}_j) - \mathbb{E}_{\mathbf{z} \sim \mathcal{D}_t} f(\mathbf{z}; \mathbf{v}_j) \right| \le \frac{\epsilon}{2}, \forall j \right) \ge 1 - 2K \exp\left(-\frac{\epsilon^2}{8r_t^2 \rho_t^2} n_t \right) \\
\ge 1 - 2\left(\frac{8r_t \rho_t}{\epsilon} + 1 \right)^m \exp\left(-\frac{\epsilon^2}{8r_t^2 \rho_t^2} n_t \right) \\
\ge 1 - \delta.$$

If the event $\left| \frac{1}{n_t} \sum_{i=1}^{n_t} f(\mathbf{z}_i; \mathbf{v}_j) - \mathbb{E}_{\mathbf{z} \sim \mathcal{D}_t} f(\mathbf{z}; \mathbf{v}_j) \right| \leq \frac{\epsilon}{2}$ holds for all \mathbf{v}_j , I claim

$$\sup_{\mathbf{w}: \|\mathbf{w} - \widehat{\mathbf{w}}_{t-1}\|_2 \leq r_t} |\widehat{L}_{S_t}(\mathbf{w}) - L_{\mathcal{D}_t}(\mathbf{w}) - \widehat{L}_{S_t}(\widehat{\mathbf{w}}_{t-1}) + L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_{t-1})| \leq \epsilon.$$

 $\forall w$ that satisfies $\|w - \widehat{w}_{t-1}\|_2 \le r_t$, from the definition of the net, there exists v_j such that $\|w - v_j\|_2 \le \frac{\epsilon}{4\rho_t}$. Using triangle inequality,

$$\begin{split} &|\widehat{L}_{S_t}(\mathbf{w}) - L_{\mathcal{D}_t}(\mathbf{w}) - \widehat{L}_{S_t}(\widehat{\mathbf{w}}_{t-1}) + L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_{t-1})|\\ \leq &|\widehat{L}_{S_t}(\mathbf{v}_j) - L_{\mathcal{D}_t}(\mathbf{v}_j) - \widehat{L}_{S_t}(\widehat{\mathbf{w}}_{t-1}) + L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_{t-1})| + |\widehat{L}_{S_t}(\mathbf{v}_j) - \widehat{L}_{S_t}(\mathbf{w})| + |L_{\mathcal{D}_t}(\mathbf{v}_j) - L_{\mathcal{D}_t}(\mathbf{w})|\\ = &\left|\frac{1}{n_t}\sum_{i=1}^{n_t} f(\mathbf{z}_i; \mathbf{v}_j) - \mathbb{E}_{\mathbf{z} \sim \mathcal{D}_t} f(\mathbf{z}; \mathbf{v}_j)\right| + |\widehat{L}_{S_t}(\mathbf{v}_j) - \widehat{L}_{S_t}(\mathbf{w})| + |L_{\mathcal{D}_t}(\mathbf{v}_j) - L_{\mathcal{D}_t}(\mathbf{w})|\\ \leq &\frac{\epsilon}{2} + 2\rho_t \|\mathbf{w} - \mathbf{v}_j\|_2 \leq \frac{\epsilon}{2} + 2\rho_t \frac{\epsilon}{4\rho_t} = \epsilon. \end{split}$$

Therefore,

$$\begin{aligned} & \mathbb{P}_{S_t} \left(\sup_{\mathbf{w}: \|\mathbf{w} - \widehat{\mathbf{w}}_{t-1}\|_2 \le r_t} |\widehat{L}_{S_t}(\mathbf{w}) - L_{\mathcal{D}_t}(\mathbf{w}) - \widehat{L}_{S_t}(\widehat{\mathbf{w}}_{t-1}) + L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_{t-1})| \le \epsilon \right) \\ & \ge & \mathbb{P}_{S_t} \left(\left| \frac{1}{n_t} \sum_{i=1}^{n_t} f(\mathbf{z}_i; \mathbf{v}_j) - \mathbb{E}_{\mathbf{z} \sim \mathcal{D}_t} f(\mathbf{z}; \mathbf{v}_j) \right| \le \frac{\epsilon}{2}, \forall j \right) \\ & \ge & 1 - \delta. \end{aligned}$$

Theorem 5.2. For any $\epsilon > 0$, if $n_t \geq \frac{8r_t^2\rho_t^2}{\epsilon^2} \left(\ln\left(\frac{2}{\delta}\right) + m\ln\left(\frac{8r_t\rho_t}{\epsilon} + 1\right)\right)$, then with probability at least $1 - \delta$ over the randomness of S_t , we have $\varepsilon_t(\widehat{\mathbf{w}}_t) \leq 2\epsilon + \alpha\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})$.

Proof of Theorem 5.2. From Lemma 5.1, with probability at least $1 - \delta$,

$$\sup_{\mathbf{w}:\|\mathbf{w}-\widehat{\mathbf{w}}_{t-1}\|_2 \leq r_t} |\widehat{L}_{S_t}(\mathbf{w}) - L_{\mathcal{D}_t}(\mathbf{w}) - \widehat{L}_{S_t}(\widehat{\mathbf{w}}_{t-1}) + L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_{t-1})| \leq \epsilon.$$

Since task t-1 and task t satisfy (r_t, α) condition, there exists \mathbf{w}' , s.t. $\|\mathbf{w}' - \widehat{\mathbf{w}}_{t-1}\|_2 \le r_t$ and $\varepsilon_t(\mathbf{w}') \le \alpha \varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})$ hold. Now we upper bound the excess risk:

$$\begin{split} \varepsilon_t(\widehat{\mathbf{w}}_t) &= L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_t) - \inf_{\mathbf{w}} L_{\mathcal{D}_t}(\mathbf{w}) \\ &= \left(L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_t) - \widehat{L}_{S_t}(\widehat{\mathbf{w}}_t)\right) + \left(\widehat{L}_{S_t}(\widehat{\mathbf{w}}_t) - \inf_{\mathbf{w}} L_{\mathcal{D}_t}(\mathbf{w})\right) \\ &= \left(L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_t) - \widehat{L}_{S_t}(\widehat{\mathbf{w}}_t) - L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_{t-1}) + \widehat{L}_{S_t}(\widehat{\mathbf{w}}_{t-1})\right) \\ &\quad + \left(L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_{t-1}) - \widehat{L}_{S_t}(\widehat{\mathbf{w}}_{t-1})\right) + \left(\widehat{L}_{S_t}(\widehat{\mathbf{w}}_t) - \inf_{\mathbf{w}} L_{\mathcal{D}_t}(\mathbf{w})\right) \\ &\leq \epsilon + \left(L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_{t-1}) - \widehat{L}_{S_t}(\widehat{\mathbf{w}}_{t-1})\right) + \left(\widehat{L}_{S_t}(\mathbf{w}') - \inf_{\mathbf{w}} L_{\mathcal{D}_t}(\mathbf{w})\right) \\ &= \epsilon + \left(\widehat{L}_{S_t}(\mathbf{w}') - L_{\mathcal{D}_t}(\mathbf{w}') - \widehat{L}_{S_t}(\widehat{\mathbf{w}}_{t-1}) + L_{\mathcal{D}_t}(\widehat{\mathbf{w}}_{t-1})\right) + \left(L_{\mathcal{D}_t}(\mathbf{w}') - \inf_{\mathbf{w}} L_{\mathcal{D}_t}(\mathbf{w})\right) \\ &\leq 2\epsilon + \alpha \varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1}). \end{split}$$

Corollary 5.3. Assume $\varepsilon_1(\widehat{\mathbf{w}}_1) \leq \epsilon$. If $n_t \geq \frac{32r_t^2\rho_t^2}{(1-\alpha)^2\epsilon^2} \left(\ln\left(\frac{2T}{\delta}\right) + m\ln\left(\frac{16r_t\rho_t}{(1-\alpha)\epsilon} + 1\right)\right)$, for all $t \in 2, \ldots, T$, then Algorithm 4 ensures that with probability at least $1-\delta$, we have that $\varepsilon_T(\widehat{\mathbf{w}}_T) \leq \epsilon$.

Proof of Corollary 5.3. Replacing ϵ with $\frac{1-\alpha}{2}\epsilon$ in Theorem 5.2, we know that $\varepsilon_t(\widehat{\mathbf{w}}_t) \leq (1-\alpha)\epsilon + \alpha\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})$ holds with probability at least $1-\frac{\delta}{T}$. Taking a union bound, with probability at least $1-\delta$, $\varepsilon_t(\widehat{\mathbf{w}}_t) \leq (1-\alpha)\epsilon + \alpha\varepsilon_{t-1}(\widehat{\mathbf{w}}_{t-1})$ holds for every t. We can use induction to prove that $\varepsilon_t(\widehat{\mathbf{w}}_t) \leq \epsilon$.

D Additional Experimental Results

D.1 Regression

We consider three regression tasks T_1, T_2, T_3 , where T_3 is the target task. The data of the tasks are vectors in \mathbb{R}^d with d=1000. Set $\mu_1=(1,0,\ldots,0)^\top$, $\mu_2=(1.5,0,\ldots,0)^\top$, $\mu_3=(2,0,\ldots,0)^\top$. The underlying distributions of the three tasks are $\mathcal{D}_1=\mathcal{N}(\mu_1,\mathrm{I}_d),\mathcal{D}_2=\mathcal{N}(\mu_2,\mathrm{3I}_d),\mathcal{D}_3=(0,0,\ldots,0)^\top$. $\mathcal{N}(\mu_3, 10I_d)$. For any example z and weight vector w, the squared loss is defined as $\ell(w, z) =$ $\|\mathbf{w} - \mathbf{z}\|^2$. Since we are using a constant vector w to predict every input, the three formulated tasks are equivalent to three mean estimation problems. We solve the three tasks using regularized ERM. Set $\hat{\mathbf{w}}_0 = 0$. For each task, we incorporate an ℓ_2 regularization term into the empirical risks, $\lambda \|\mathbf{w}_t - \widehat{\mathbf{w}}_{t-1}\|^2$, where $\widehat{\mathbf{w}}_{t-1}$ represents the optimal weights learned from the previous task t-1. For the mean estimation of $\mathcal{N}(\mu, \sigma^2 \mathbf{I}_d)$, the regularization parameter is set as $\lambda = \frac{d\sigma^2}{n\|\mu - \widehat{\mathbf{w}}_{t-1}\|^2}$ directly without using validation, where n is the sample size of the current task. Here λ is set to minimize the test loss in expectation. We fix the sample size $n_1 = n_2 = 1.5 \text{K}$ for the first two tasks. We choose different sample size of the target task n_3 and demonstrate the statistical benefit of our curriculum. We compare six different training methods: learning T_3 directly using ERM; learning T_3 directly using RERM; learning T_1, T_3 sequentially; learning T_2, T_3 sequentially; learning T_2, T_1, T_3 sequentially; and learning T_1, T_2, T_3 sequentially. Table 2 and Figure 3 report the averaged test loss $\|\widehat{\mathbf{w}} - \mu_3\|^2$ for all training methods over 5M repetitive runs. Our results show that learning an easier task before solving the target task T_3 leads to a smaller expected risk compared with solving T_3 directly. The curriculum that learns T_1, T_2, T_3 sequentially achieves the smallest expected risk among all methods.

$\overline{n_3}$	$T_3(ERM)$	$T_3(RERM)$	T_1+T_3	T_2+T_3	$T_2 + T_1 + T_3$	$T_1+T_2+T_3$
1K	10.000	2.857	1.803	1.677	1.329	1.326
2K	5.000	2.222	1.528	1.436	1.173	1.171
3K	3.333	1.818	1.325	1.255	1.050	1.048
4K	2.500	1.538	1.170	1.115	0.950	0.948
5K	2.000	1.333	1.047	1.003	0.868	0.866
6K	1.667	1.176	0.948	0.912	0.798	0.797
7K	1.429	1.053	0.866	0.836	0.739	0.738
8K	1.250	0.952	0.797	0.771	0.688	0.688
9K	1.111	0.870	0.738	0.716	0.644	0.643
10K	1.000	0.800	0.687	0.668	0.605	0.604
11K	0.909	0.741	0.643	0.626	0.571	0.570
12K	0.833	0.690	0.604	0.589	0.540	0.539
13K	0.769	0.645	0.570	0.557	0.512	0.512
14K	0.714	0.606	0.539	0.527	0.487	0.487
15K	0.667	0.571	0.512	0.501	0.465	0.464
16K	0.625	0.541	0.487	0.477	0.444	0.444
17K	0.588	0.513	0.464	0.455	0.425	0.425
18K	0.556	0.488	0.444	0.435	0.408	0.407
19K	0.526	0.465	0.425	0.417	0.392	0.391
20K	0.500	0.444	0.407	0.401	0.377	0.377

Table 2: Test loss of different training methods under different sample size n_3 .

D.2 More Details on Synthetic Datasets Experiment

Here we provide more contents regarding the synthetic dataset experiment as described in Section 6. We aim to investigate whether leveraging curriculum learning can improve the performance of large-margin classifiers when dealing with separable data. The motivation is rooted in the intuition that if we can distinguish between data points that are easy versus hard to classify, we may benefit from a curriculum learning strategy. Specifically, by first training on easy-to-classify points to learn an initial model and then fine-tuning using harder examples, we hypothesize that the model can better generalize to challenging tasks.

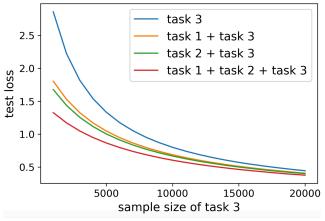


Figure 3: Test loss as a function of the sample size n_3 .

To test this hypothesis, we consider a binary classification task where data is drawn from a mixture of two distributions, \mathcal{D}_1 and \mathcal{D}_2 . Each distribution is defined as a two-centered Gaussian in \mathbb{R}^d with dimension d=100. For each distribution \mathcal{D}_i , $i\in\{1,2\}$, the two centers are located at the origin and at $[\gamma,0,\ldots,0]^T$, with the spread determined by the Gaussian noise standard deviation σ . We generate 1K training samples from each distribution. Distribution \mathcal{D}_1 , with $\gamma=3$ and $\sigma=0.5$, is considered "easy" due to its large margin and low variance. In contrast, \mathcal{D}_2 is constructed as a "hard" distribution, with parameter $\gamma\in[0.1,0.5,1.0,2.0]$ and $\sigma\in[0.5,1.0,1.5,2.0]$. Additionally, we generate 400 validation samples and 400 test samples from \mathcal{D}_2 .

We train the linear model using both logisitic loss and hinge loss, and optimize it with gradient descent for 2K epochs, using a learning rate selected from $\{0.001, 0.01, 0.05, 0.1, 0.5, 1.0\}$. No regularization is applied when training the easy distribution \mathcal{D}_1 . When fine-tuning on training dataset from \mathcal{D}_2 , we incorporate an ℓ_2 regularization term into the loss functions, $\lambda \| \mathbf{w}_2 - \widehat{\mathbf{w}}_1 \|^2$, where $\widehat{\mathbf{w}}_1$ is the optimal model weights from previous training and the regularization parameter λ is selected from the set $\{10^{-5}, 10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 1, 10\}$. Experiments are repeated 10 times, and we report the mean test accuracy along with standard deviation in Figure 4. Our results show that curriculum learning consistently outperforms the baseline, indicating that starting with an easier task facilitates learning on the more challenging target task. Furthermore, the harder the target task (characterized by a smaller margin and larger standard deviation), the more significant the improvement achieved through curriculum learning.

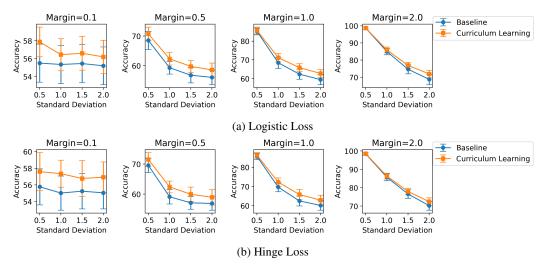


Figure 4: Test accuracy as a function of standard deviation for different margin γ .

D.3 More Details on Adversarial Training Experiments

We provide additional details and results on evaluating curriculum adversarial training with ℓ_2 regularization on MNIST dataset. We consider adversarial examples generated using both ℓ_∞ -norm perturbation (with budgets $\alpha \in \{0.1, 0.2, 0.3, 0.4\}$) and ℓ_2 -norm perturbation (with budgets $\alpha \in \{1.0, 2.0, 3.0, 4.0\}$). All adversarial examples are generated using 10-step PGD with a step size of $\alpha/5$. We hold out 20% of the training data as a validation set and use 10-step PGD adversarial examples, crafted with the same perturbation budget α , for hyper-parameter tuning and model selection. No regularization is used for t=1. From $t\geq 2$, we incorporate ℓ_2 regularization of the form $\lambda \|\mathbf{w}_t - \hat{\mathbf{w}}_{t-1}\|^2$, where $\hat{\mathbf{w}}_{t-1}$ is the previous model and $\lambda \in \{10^{-5}, 10^{-4}, 10^{-3}, 10^{-2}\}$. We use previous model $\hat{\mathbf{w}}_{t-1}$ as initialization for t. The setting has been described in Section 6. We report both standard and robust test accuracy under PGD attacks of size α over three repetitive runs in Table 3 for ℓ_∞ -attacks and Table 4 for ℓ_2 -attacks. We observe that curriculum adversarial training maintains performance for small α and provides improvements for larger α ($\alpha \geq 0.3$ for ℓ_∞ -attacks and $\alpha \geq 3.0$ for ℓ_2 attacks).

T	1		2		3	
α	nat acc	pgd acc	nat acc	pgd acc	nat acc	pgd acc
0.1	99.18 ± 0.07	96.07 ± 0.02	99.27 ± 0.07	95.65 ± 0.18	99.36 ± 0.03	95.74 ± 0.14
0.2	98.80 ± 0.03	94.73 ± 0.22	98.86 ± 0.15	94.60 ± 0.93	98.67 ± 0.05	94.38 ± 0.23
0.3	98.27 ± 0.46	92.77 ± 1.20	98.77 ± 0.15	94.74 ± 0.12	98.23 ± 0.15	93.61 ± 0.87
0.4	11.35 ± 0.00	11.35 ± 0.00	98.39±0.29	95.54 ± 0.41	98.52±0.14	95.63 ± 0.12

Table 3: Standard (nat acc) / robust (pgd acc) accuracy under ℓ_{∞} PGD attack of size α (MNIST).

T	1		2		3	
α	nat acc	pgd acc	nat acc	pgd acc	nat acc	pgd acc
1.0	99.32 ± 0.05	94.53 ± 0.16	99.26±0.05	94.44 ± 0.03	99.37±0.04	93.99 ± 0.39
2.0	98.38 ± 0.13	76.23 ± 0.39	98.51 ± 0.10	76.04 ± 0.30	98.40 ± 0.08	76.56 ± 0.27
3.0	94.35 ± 0.70	52.11 ± 0.60	94.87 ± 0.30	52.53 ± 0.35	94.06 ± 1.29	52.65 ± 0.86
4.0	89.12±2.79	31.47 ± 0.41	87.62±1.53	31.93 ± 0.94	84.55±1.35	32.00 ± 0.80

Table 4: Standard (nat acc) / robust (pgd acc) accuracy under ℓ_2 PGD attack of size α (MNIST).

D.4 Noisy MNIST

We construct a noisy MNIST dataset by adding Gaussian noise to each example, sampled from the distribution $\mathcal{N}(0, \sigma^2 I_{784})$. Our goal is to find a model that perform well on the noisy MNIST test data. To perform curriculum learning, we manually categorize the digits into four groups: [1,4,7], [3,8,0], [6,9], [2,5] and create four tasks as follows: 1). train on digits [1,4,7]; 2). train on digits [1,4,7] \cup [3,8,0]; 3). train on digits [1,4,7] \cup [3,8,0] \cup [6,9]; 4). train on all digits. The reason for selecting these categories is based on the visual similarity in the shape of the digits.

We consider three different architectures: a linear model, a two-layer ReLU network with a hidden width of 100, and a convolutional neural network (CNN). The CNN consists of two convolutional layers followed by max-pooling and two fully connected layers with ReLU activations. The first and second convolutional layers have [input channel, output channel, kernel size] = [1, 10, 5] and [10, 20, 5], respectively. The first and second fully connected layers have dimensions [320, 100] and [100, 10], respectively. For each task, we train the model using cross-entropy loss and optimize it with stochastic gradient descent (SGD) for 200 epochs, using a batch size of 128 and a learning rate selected from $\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$, with a weight decay of 10^{-4} . No regularization is applied during the first task. From the second task onward, we incorporate an ℓ_2 regularization term into the loss functions, $\lambda \|\mathbf{w}_t - \hat{\mathbf{w}}_{t-1}\|^2$ for task $t \geq 2$, where $\hat{\mathbf{w}}_{t-1}$ represents the optimal model weights from the previous task t-1. The regularization parameter λ is selected from $\{10^{-5}, 10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 1\}$. We randomly set 20% of the training data aside as the validation set and use the validation accuracy to select the optimal hyperparameters for each task and to determine the best-performing model checkpoint. The optimal model weights from task t-1 are used both to initialize model training and as the reference point for the ℓ_2 regularizer in task t. Table 5 reports the averaged results over three runs, including standard deviations. Our results demonstrate that curriculum learning consistently outperforms the baseline, particularly when the

noise level σ is higher. This indicates that curriculum learning is especially beneficial in more challenging settings where the data is noisier.

Model	σ	Baseline	Curriculum
	0.0	92.04 ± 0.05	92.34 ± 0.10
Linear	1.0	68.93 ± 0.63	70.69 ± 0.38
	2.0	42.18 ± 0.65	44.63±0.29
True levem Del II	0.0	97.87 ± 0.14	97.85 ± 0.05
Two-layer ReLU Network	1.0	80.55 ± 0.24	81.26 ± 0.13
Network	2.0	45.79±0.91	46.43±0.26
	0.0	99.00 ± 0.06	99.04 ± 0.04
Convoluted Network	1.0	84.48 ± 0.29	85.08 ± 0.11
	2.0	46.66±0.65	48.33±0.15

Table 5: Accuracy on the σ -noisy test data under different σ and different model architectures.

NeurIPS Paper Checklist

A. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: We listed our contributions in the introduction and proved our claims from Section 3 to Section 5 in the main paper.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

B. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discussed the limitations and future directions in the Conclusion section.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

C. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: The paper provide the full set of assumptions and a complete and correct proof for each theoretical result. Please see Appendix.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

D. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include the details of our datasets and our algorithms when describing our experiments. We repeated each experiments for multiple times and compared the results in detail.

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

E. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We attach the code of our experiments in the supplementary material.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so No is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

F. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: All training details and the choice of hyperparameters are included in the experiment section.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

G. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We run each experiment for multiple runs and make comparisons between the standard training and training with the curriculum.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

H. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: All experiments are conducted on a single V100 GPU.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This is a theoretical paper, and to the best of our knowledge, it respects every of the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

J. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: This is a theoretical paper. We focused on solving our problem, but the problem domain itself has a potential for positive societal impacts, where our techniques can facilitate learning the problem efficiently.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

K. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: This is a theoretical paper. The paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

L. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [NA]

Justification: This is a theoretical paper. The paper does not use existing assets.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.

- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

M. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: This is a theoretical paper. The paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- · Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- · At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

N. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This is a theoretical paper. The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- · According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

O. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.

- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

P. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.