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Abstract

Curriculum learning has emerged as an effective strategy to enhance the training
efficiency and generalization of machine learning models. However, its theoret-
ical underpinnings remain relatively underexplored. In this work, we develop a
theoretical framework for curriculum learning based on biased regularized empir-
ical risk minimization (RERM), identifying conditions under which curriculum
learning provably improves generalization. We introduce a sufficient condition
that characterizes a “good” curriculum and analyze a multi-task curriculum frame-
work, where solving a sequence of convex tasks can facilitate better generalization.
We also demonstrate how these theoretical insights translate to practical benefits
when using stochastic gradient descent (SGD) as an optimization method. Beyond
convex settings, we explore the utility of curriculum learning for non-convex tasks.
Empirical evaluations on synthetic datasets and MNIST validate our theoretical
findings and highlight the practical efficacy of curriculum-based training.

1 Introduction

In standard supervised learning, achieving a low generalization error often requires a large num-
ber of labeled training examples and significant computational resources. In contrast, humans can
rapidly learn new concepts from only a few examples by leveraging prior knowledge. This human-
like ability to relate new a new concept to the knowledge they have previously learned motivates the
use of prior knowledge in a new learning problem. In paradigms such as multi-task learning [Caru-
ana, 1997], transfer learning [Weiss et al., 2016], and meta-learning [Baxter, 2000], the assumption
is that related tasks share information, allowing learners to generalize more effectively. In param-
eter transfer frameworks [Kuzborskij and Orabona, 2013, Pentina and Lampert, 2014], this shared
structure is reflected in the assumption that tasks have similar optimal parameter vectors, enabling
efficient learning through initialization and fine-tuning.

Curriculum learning [Bengio et al., 2009] draws inspiration from the structured manner in which hu-
mans acquire knowledge – starting with easier concepts and gradually progressing to more difficult
ones. This paradigm proposes decomposing complex learning problems into a sequence of simpler
sub-tasks ordered by increasing difficulty. The central idea is that such a learning progression can
improve both optimization and generalization. Bengio et al. [2009] demonstrated how learning can
benefit from gradual progression of the hardness of training data. Subsequent works extend the idea
to other aspects of learning, such as increasing model capacity [Karras et al., 2017, Sinha et al., 2020,
Morerio et al., 2017] and increasing task difficulty [Caubrière et al., 2019, Florensa et al., 2017, Lot-
ter et al., 2017, Sarafianos et al., 2017, Zhang et al., 2017]. We focus on curriculum learning across
tasks, where parameters are transferred from simpler tasks to more complex ones.

In contrast to traditional transfer learning, which assumes all tasks are closely related, cur-
riculum learning introduces an ordering over tasks based on their difficulty. However, such
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an ordering does not imply that all tasks are mutually similar. In fact, strong similarity
is often limited to adjacent tasks [Pentina et al., 2015]. Accordingly, we assume that only
pairs of consecutive tasks are related, allowing for progressive knowledge transfer. This
setup accommodates scenarios where the first and last tasks may be significantly different,
as long as each intermediate step is incrementally learnable. Figure 1 illustrates this struc-
ture, where successive tasks exhibit similar loss landscapes and closely aligned minimizers.

Figure 1: An illustration of potential rela-
tionship between tasks in a curriculum.

Curriculum learning offers both optimization and statis-
tical benefits. From an optimization perspective, con-
tinuation methods [Allgower and Georg, 2012] progres-
sively increase problem difficulty–starting with convex,
smooth objectives and transitioning to more challeng-
ing nonconvex or nonsmooth objectives–thus helping
the learner avoid poor local minima. Similarly, curric-
ula that score training samples by difficulty [Weinshall
et al., 2018, Weinshall and Amir, 2020] show improved
convergence when training begins on simpler examples.
Self-paced learning [Kumar et al., 2010] adapts this idea by dynamically weighting training sam-
ples based on their inferred difficulty during training. On the statistical side, recent works [Xu and
Tewari, 2022, Cohen et al., 2024] study the benefits of curriculum learning in simplified settings
such as mean estimation. They show that, under appropriate conditions, learning from an easier and
statistically similar source task can reduce the number of samples required to learn a target task.

In this paper, we extend previous insights to broader supervised learning problems by studying the
statistical benefit of curriculum learning in the multitask setting, with a focus on the general learning
setting of Vapnik [2013]. We propose a curriculum learning framework based on biased regularized
empirical risk minimization (RERM)[Schölkopf et al., 2001, Denevi et al., 2019], where knowledge
transfer is facilitated by incorporating a bias vector w0 in the regularization term λ∥w − w0∥2. This
inductive bias has proven effective in computer vision [Kienzle and Chellapilla, 2006, Tommasi
et al., 2013], natural language processing [Daumé III, 2009], meta-learning [Pentina and Lampert,
2014, Kuzborskij and Orabona, 2017, Denevi et al., 2019, 2018], and continual learning [Li et al.,
2023]. We extend this idea to design a curriculum across tasks and provide theoretical and empirical
support for its effectiveness. Our key contributions are as follows.

1. We propose a biased regularization-based curriculum framework (Algorithm 1) and introduce a
novel (r, α) condition that characterizes a ‘good’ curriculum. This condition is simple, natural,
intuitive, and depends only on the population loss of two consecutive tasks. We show that it
ensures reduced sample complexity for subsequent tasks when r is small.

2. Under convexity assumptions, we provide excess risk bounds for our biased-RERM approach to
curriculum learning. We show that the hardness of curriculum learning depends on the Lipschitz
constants of the loss functions for each task, the local Lipschitz constants near the minimizer,
the smoothness parameter of the loss function, and the quality of inductive bias obtained from
learning previous tasks. These factors also determine the order of the tasks in a ‘good’ curriculum.
We extend our analysis to efficient SGD-based training and apply our results to adversarially
robust learning.

3. For nonconvex learning problems, we introduce an ERM-based curriculum learning algorithm
and establish generalization guarantees via uniform convergence, showing that even in nonconvex
settings, a carefully constructed curriculum can improve learning efficiency.

Paper Organization. In Section 2, we present the formal setup and define the (r, α) condition
for a ‘good’ curriculum. Section 3 analyzes the role of biased regularization in a two-task setting.
Section 4 provides theoretical guarantees for convex tasks using biased RERM and SGD. Section 5
extends our framework to nonconvex tasks using ERM. Section 6 presents empirical results on
synthetic and real datasets that validate our theoretical findings.
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2 Problem Setup

Notation. Throughout, we denote scalars, vectors, and matrices with lowercase italics, lowercase
bold, and uppercase bold Roman letters, respectively; e.g., u, u, and U. We use [m] to denote the set
{1, 2, . . . ,m} and both ∥ · ∥ and ∥ · ∥2 for ℓ2-norm. We use the standard O-notation (O, Θ and Ω).

General Learning Problem. In a general learning problem, each example z is drawn from a data
domain Z; for instance, for standard supervised learning, Z = X × Y , where X is the input space
and Y is the output space. We assume that data are drawn i.i.d. from an unknown distribution D over
Z . The learner has access to a training dataset S = {zi}ni=1 ∼ Dn consisting of n i.i.d. samples.
Let H denote the hypothesis class, where each hypothesis is parameterized by a vector w ∈ Rm.
Let ℓ : Z × H → R denote the loss function. The population risk with respect to the underlying
population, D, and the empirical risk on a sample S ∼ Dn are defined, respectively, as

LD(w) := Ez∼D[ℓ(z;w)], L̂S(w) :=
1

|S|
∑
z∈S

ℓ(z;w).

A learning algorithm A : Z∗ → H maps any dataset S to a hypothesis A(S) ∈ H. The goal is to
design a learning algorithm with minimal excess risk defined as ε(w) := LD(w)− infw′∈H LD(w′).
We consider the following classes of problems based on the structural properties of the loss function.

• Convex: The learning problem is convex if ℓ(z,w) is convex in w for every z.

• Strong Convexity: The problem is λ-strongly convex if ℓ(z,w)− λ
2 ∥w∥22 is convex.

• Weak Convexity: The problem is l-weakly convex if ℓ(z;w) + l
2∥w∥22 is convex in w.

• Lipschitz: ℓ(·, ·) is ρ-Lipschitz if, for all w1,w2 ∈ H, |ℓ(z;w1)− ℓ(z;w2)| ≤ ρ ∥w1 − w2∥2.
• Smooth: ℓ(·, ·) is H-smooth if ∀w1,w2 ∈ H, ∥∇wℓ(z;w1)−∇wℓ(z;w2)∥2 ≤ H ∥w1 − w2∥2.

Biased RERM. Regularized empirical risk minimization (RERM) is a popular learning algorithm
known for its strong generalization performance. In its standard form, RERM returns a predictor
A(S) ∈ argminw∈H L̂S(w) + µ

2 ∥w∥22, where µ > 0 is a regularization parameter that encourages
low-norm solutions to prevent overfitting. We consider a variant called biased RERM, which returns

A(S) ∈ argmin
w∈H

L̂S(w) +
µ

2
∥w − w0∥22, (1)

where w0 ∈ Rm is a reference hypothesis that serves as an inductive bias. The regularization term
now encourages solutions close to w0, which can be interpreted as incorporating prior knowledge
into the learning. We can benefit from biased RERM if there exists a good predictor near w0.

Multi-task Curriculum. We consider a curriculum consisting of T distinct tasks. For each t ∈
[T ], the t-th task is defined by a specific loss function ℓt(z;w) and an associated unknown data
distribution Dt over the sample space Z . Both the loss functions and data distributions may differ
across tasks, capturing scenarios such as regression followed by classification, or variations in label
semantics or data modalities. For each task t ∈ [T ], we draw an i.i.d. sample of size nt from the
corresponding distribution, St ∼ Dnt

t . The population and empirical risks for task t are defined as

LDt
(w) := Ez∼Dt

[ℓt(z;w)], L̂St
(w) :=

1

nt

∑
z∈St

ℓt(z;w).

The excess risk for task t is given by εt(w) := LDt
(w) − infw′∈H LDt

(w′). The goal of curricu-
lum learning is to learn the target task T by sequentially training on all T tasks, while leveraging
knowledge from earlier tasks to improve generalization on the final target task. In this paper, we
focus on curriculum learning wherein each task is solved via biased RERM. Specifically, we use the
solution from task t − 1 to initialize (aka, regularize) the learning of task t. This is done through a
bias function ϕt that maps the learned hypothesis ŵt−1 from the previous task to a bias vector for
the current task. For simplicity, we assume ϕt is the identity map, i.e., the bias for task t is directly
given by ŵt−1. However, our framework naturally extends to more general settings where each task
t may have its own hypothesis class Ht, and the bias function ϕt : Ht−1 → Ht bridges the learned
hypothesis from task t − 1 to a suitable inductive bias for task t. This sequential procedure using
biased RERM across tasks is formalized in Algorithm 1.
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Algorithm 1 Biased Regularization-based Curriculum Learning

Input: w0, S1, . . . , ST , µ1, . . . , µT > 0.
ŵ0 = w0.
for t = 1, 2, ..., T do

ŵt ∈ argmin
w

(
L̂St(w) + µt

2 ∥w − ŵt−1∥22
)

.

end for
return: ŵT .

(r, α) Condition of the Curriculum. To effectively apply biased RERM to task t, we require
a good bias ϕt(ŵt−1), i.e., a previous solution close to a good predictor for the current task after
mapped onto Ht. Since ŵt−1 is obtained by learning task t− 1, this requires that consecutive tasks
be similar enough for the prior solution to be informative. We formalize this similarity using the
(rt, αt) condition, which relates the excess risks of two consecutive tasks. Specifically, we assume
that

inf
w′:∥w′−ϕt(w)∥2≤rt

εt(w′) ≤ αtεt−1(w), (2)

for some constants rt > 0 and αt ∈ (0, 1). When this condition holds, we say that tasks t − 1 and
t satisfy the (rt, αt) condition. We will assume ϕt is the identity mapping only for simplicity in our
core theorems.

Intuitively, this condition means that if a predictor w has small excess risk on task t− 1, then there
exists a predictor w′ within a ball of radius rt centered at w, with excess risk at most αtϵ on task t.
Thus, a solution to task t− 1 can serve as a useful initialization or inductive bias for task t.

We note that since the scale of the loss functions is arbitrary, one can always apply affine rescaling to
them so that αt is the same across all tasks. Therefore, for simplicity, we assume αt = α ∈ (0, 1) ∀t.
In practice, we do not rescale losses across tasks. But for theoretical clarity, assuming a constant
α < 1 allows us to streamline the presentation of our results without loss of generality. If needed, our
theorems could be extended to carry task-dependent αt values throughout. Further, we emphasize
that we do not need condition (2) to hold for all w ∈ Rm. Since we initialize the learning for task t
with a predictor that generalizes well on task t − 1, it suffices if (2) holds for w with ϵt−1(w) ≤ ϵ
for sufficiently small ϵ ∈ (0, 1). However, we may need to set ϵ differently for different settings. So,
for convenience, and without loss of generality, we state the condition as in (2).

3 Warm-up: Curriculum Learning with Two Tasks

In this section, we illustrate the role of biased RERM in curriculum learning by analyzing a simple
setting with only two tasks, i.e., T = 2. The goal is to learn the second (target) task by first learning
the first (source) task. Let w⋆

1 ∈ argminw LD1
(w), w⋆

2 ∈ argminw LD2
(w) denote the optimal

predictors for the two tasks. We assume that the first task is λ-strongly convex with gradients
uniformly bounded at the optimum:∥∇wℓ1(z;w⋆

1)∥2 ≤ ρ1, ∀z ∈ Z . Second task is ρ2-Lipschitz.

The curriculum solves the first task using empirical risk minimization (ERM), and the second task
using biased regularized ERM. This procedure is described in Algorithm 2.

Algorithm 2 Warm-up: A Two-task Curriculum

Input: S1, S2, µ2 > 0.
ŵ1 = argminw L̂S1

(w).
ŵ2 = argminw

(
L̂S2

(w) + µ2

2 ∥w − ŵ1∥22
)

.
return: ŵ2.

Theorem 3.1. If the second task is convex, then setting µ2 = 2ρ2(
∥w⋆

2−w⋆
1∥2+

ρ1
λ
√

n1

)√
n2

, we have

E [ε2(ŵ2)] ≤ 2ρ2√
n2

(
∥w⋆

2 − w⋆
1∥2 +

ρ1

λ
√
n1

)
.
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Theorem 3.2. If the second task is l-weakly convex, then setting µ2 = l + 2ρ2(
∥w⋆

2−w⋆
1∥2+

ρ1
λ
√

n1

)√
n2

,

we have E [ε2(ŵ2)] ≤ 2ρ2√
n2

(
∥w⋆

2 − w⋆
1∥2 +

ρ1

λ
√
n1

)
+ l

2

(
∥w⋆

2 − w⋆
1∥2 +

ρ1

λ
√
n1

)2
.

Theorems 3.1 and 3.2 show that curriculum learning can achieve a fast generalization rate for the
target task under a mild similarity assumption—specifically, when the optimal solutions of the two
tasks, w⋆

1 and w⋆
2, are close. This proximity ensures that a hypothesis learned from the simpler

first task (i.e., strongly convex) can serve as an effective bias for the more challenging second task.
Importantly, the excess risk bound for the second task reflects this structure: it improves as the
distance between w⋆

1 and w⋆
2 decreases and achieves a fast rate as the first task is easier to learn.

The regularization parameter µ2 in both theorems is chosen to optimize the theoretical bound and
depends on unknown problem-specific quantities. These values are thus not intended for practical
implementation. In practice, µ2 should be treated as a tunable hyperparameter, selected via valida-
tion or cross-validation. Nonetheless, the analysis reveals that a two-phase curriculum strategy—
first solving a well-behaved source task, then regularizing toward its solution can yield statistically
significant gains in sample efficiency for the target task.

4 Curriculum Learning with Multiple Convex Learning Tasks

In this section, we consider a curriculum comprising T convex learning tasks that are learned sequen-
tially. Our goal is to demonstrate the role of the (r, α) condition in facilitating efficient learning of
the target (i.e., the T th) task. Here, we focus on convex learning problems (with additional structure,
e.g., Lipschitzness, smoothness, and non-negativity). We first provide theoretical guarantees for
biased RERM under this setup (Section 4.1), then extend the analysis to computationally efficient
variants such as SGD (Section 4.2) and settings where tighter bounds can be obtained by leveraging
local geometry (Section 4.3). We relax the convexity assumption in Section 5.

4.1 Learning Convex Lipschitz Tasks using Biased RERM

We assume that each task t ∈ [T ] in the curriculum is a convex learning problem with a ρt-Lipschitz
loss function. Furthermore, we assume that every pair of consecutive tasks (t − 1, t) satisfies the
(rt, α) condition for some constants rt > 0 and α ∈ (0, 1). We use the biased RERM algorithm
described in Algorithm 1 for curriculum learning. To highlight the benefit of the curriculum, we
begin by analyzing two consecutive tasks: task t− 1 and task t.

Theorem 4.1. Suppose task t is convex and ρt-Lipschitz, and the (rt, α) condition holds between
tasks (t− 1, t). Then, setting µt =

2ρt

rt
√
nt

yields the following excess risk bound:

E [εt(ŵt)] ≤
2rtρt√

nt
+ αE [εt−1(ŵt−1)] .

The result above shows that if rt is a small constant, then using ŵt−1 as the bias in biased RERM
leads to a smaller sample complexity for learning task t. A natural setting where this occurs is when
the minimizers of successive tasks are close. For example, in large language models (LLMs), task
t−1 can represent a pretraining phase that yields a model ŵt−1 close to the minimizer of many related
downstream tasks. If task t is such a downstream task and its minimizer is close to that of task t−1,
then a small perturbation of ŵt−1 yields a good predictor for task t. In this case, a small value of rt
is justified, and the sample complexity required to generalize on task t is correspondingly small.

Proof Sketch. To upper bound the excess risk εt(ŵt), we begin by decomposing it as follows:

ESt
[εt(ŵt)]=ESt

[LDt
(ŵt)]− inf

w
LDt

(w)

=ESt

[
LDt

(ŵt)− L̂St
(ŵt)

]
+ESt

[
L̂St

(ŵt)− L̂St
(w′)

]
+
[
LDt

(w′)− inf
w

LDt
(w)
]
(3)

where w′ is any hypothesis independent with St. By the (rt, α) condition, there exists w′, s.t. ∥w′−
ŵt−1∥2 ≤ rt and εt(w′) ≤ αεt−1(ŵt−1) hold. Hence, the third term in the decomposition can be
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upper bounded by LDt(w
′)− inf

w
LDt(w) ≤ αεt−1(ŵt−1). Next, consider the second term. Using

the definition of biased RERM, we have:

ESt

[
L̂St

(ŵt)− L̂St
(w′)

]
≤ ESt

[
L̂St

(ŵt) +
µt

2
∥ŵt − ŵt−1∥22 − L̂St

(w′)
]

≤ ESt

[
L̂St(w

′) +
µt

2
∥w′ − ŵt−1∥22 − L̂St(w

′)
]
≤ µtr

2
t

2
.

where the second inequality follows from the optimality of ŵt under biased RERM and the final
inequality uses the assumption ∥w′ − ŵt−1∥2 ≤ rt.

Finally, we consider the first term in the decomposition: ESt

[
LDt

(ŵt)− L̂St
(ŵt)

]
– the general-

ization gap. Using the uniform stability results from Shalev-Shwartz and Ben-David [2014], and
noting that the loss function is convex and ρt-Lipschitz, the generalization gap can be bounded by
EStLDt(ŵt) ≤ EStL̂St(ŵt)+

2ρ2
t

µtnt
. Putting the three terms together and optimizing the bound w.r.t.

µt to minimize the sum of the first two terms yields the upper bound stated in Theorem 4.1.
Corollary 4.2. Assume the first task is learned with excess risk E [ε1(ŵ1)] ≤ ϵ. Set the regulariza-
tion parameter to µt =

2ρt

rt
√
nt

, and suppose the sample size nt ≥ 4r2t ρ
2
t

(1−α)2ϵ2 . Then, for all tasks t, the
excess risk is bounded as E [εt(ŵt)] ≤ ϵ.

In the above Corollary 4.2, we assume that the first task is sufficiently easy to learn to a small excess
risk. This can be achieved, for example, by choosing a strongly convex learning problem, using a
large number of samples, or initializing from a high-quality pretrained model.

However, requiring ϵ-suboptimality for all tasks may be unnecessarily strict, especially when our
goal is only to achieve small excess risk on the final target task. Instead, Theorem 4.1 allows us to
ensure that the excess risk forms a decreasing sequence across tasks, culminating in a final bound of
ϵ only for the target task T . This motivates the next corollary.
Corollary 4.3. Suppose the first task is learned to excess risk E [ε1(ŵ1)] ≤ ϵ1. Set the regularization
parameter as µt =

2ρt

rt
√
nt

, and assume the sample size satisfies nt ≥
(

4rtρt

(1−α)ϵ1(α+1
2 )

t−2

)2
. Then, for

every task t, we have E [εt(ŵt)] ≤ ϵ1
(
α+1
2

)t−1
.

Since α < 1, the bound ϵ1
(
α+1
2

)t−1
decreases with t. This decay allows smaller sample complexity

for earlier tasks in the curriculum and, correspondingly, the use of larger regularization parameters
µt. Larger µt yields strongly convex objectives with larger strong convexity parameters and thereby
improving the computational efficiency of learning.

4.2 Learning Lipschitz Convex Losses with SGD

We show that, instead of using biased RERM, one can apply stochastic gradient descent (SGD) with
a carefully chosen learning rate to achieve the same excess risk bound as in Theorem 4.1. The SGD
procedure for task t is described in Algorithm 3.

Algorithm 3 SGD for task t

Input: w0 = ŵt−1, St = {z1, . . . , znt}, ηt > 0.
for k = 1, 2, ..., nt do

wk = wk−1 − ηt∇wℓt(wk−1; zk).
end for
return: ŵt =

1
nt

nt−1∑
k=0

wk.

For simplicity, we analyze the case of two consecutive tasks, t− 1 and t, as in Section 4.1.
Theorem 4.4. Suppose task t has a ρt-Lipschitz convex loss function and satisfies the (rt, α) con-
dition with task t− 1. Choosing the learning rate ηt =

rt
ρt

√
nt

, the excess risk of SGD satisfies

E [εt(ŵt)] ≤
rtρt√
nt

+ αE [εt−1(ŵt−1)] .
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The bound above matches the result in Theorem 4.1, and thus all subsequent corollaries carry over
to this setting. Crucially, the use of SGD offers computational advantages: it is an efficient single-
pass algorithm and updates the model using only one example at a time. This makes it particularly
appealing in large-scale or streaming settings, while still benefiting from the curriculum structure.

4.3 A Tighter Bound via Leveraging the Local Lipschitz Constant

To obtain a sharper excess risk bound, we refine our analysis to leverage local Lipschitz constant
around the minimizers. Specifically, we define a local Lipschitz constant ρ̄t over the set of predictors
w with excess risk at most ε̄t. The intuition is that since the final hypothesis ŵt is expected to
achieve small excess risk, it may suffice to control the gradient magnitude only in this restricted
region–leading to a potentially smaller constant ρ̄t ≪ ρt. Formally,

ρ̄t ≥ sup
z

sup
w:εt(w)≤ε̄t

∥∥∥∥∂ℓt(z;w)∂w

∥∥∥∥
2

. (4)

Theorem 4.5. Choosing µt appropriately, the excess risk of curriculum learning satisfies

E [εt(ŵt)] ≤
2rt√
nt

(
ρ̄t +

6rt(ρ
2
t − ρ̄2t )

(1− α)ε̄t
√
nt

)
+

1 + α

2
E [εt−1(ŵt−1)] .

We note that Theorem 4.5 recovers Theorem 4.1 as a special case by setting ρ̄t = ρt. However, a
meaningful improvement can be obtained when nt is large and ρ̄t ≪ ρt. In such cases, the upper
bound ≈ 2rt√

nt
ρ̄t +

1+α
2 E [εt−1(ŵt−1)]. Moreover, the bound depends on both ε̄t and ρ̄t. Since

ρ̄t = ρ̄t(ε̄t) can be interpreted as a non-decreasing function of ε̄t (by definition in (4)), one can
minimize the overall upper bound by balancing the two terms: ρ̄t and 6rt(ρ

2
t−ρ̄2

t )
(1−α)ε̄t

√
nt

. This offers an
additional degree of flexibility in tightening the excess risk bound.

4.4 Learning Smooth and Nonnegative Convex Losses with Biased RERM

In this section, we assume that the loss functions satisfy smoothness, rather than Lipschitz continuity.
Specifically, we assume that for all z, the loss function ℓt(z;w) of task t is convex, nonnegative, and
Ht-smooth with respect to w ∈ Rm. Moreover, tasks t − 1 and t satisfy the (rt, α) condition for
constants rt > 0 and α ∈ (0, 1). Let L⋆

t = infw LDt
(w). As in earlier sections, we employ biased

RERM to learn each task and focus our analysis on two consecutive tasks.

Theorem 4.6. Setting the regularization parameter µt = max{ (2+6α)Ht

(1−α)nt
, 1
rt

√
32HtL⋆

t

nt
}, we have

E [εt(ŵt)] ≤

√
32L⋆

tHtr2t
nt

+
9Htr

2
t

(1− α)nt
+

1 + α

2
E [εt−1(ŵt−1)] .

The proof closely mirrors the argument used in Theorem 4.1, relying on the same excess risk de-
composition from equation (3). The second and third terms in the decomposition are bounded using
the same techniques as before. For the first term–the generalization gap–we apply a stability-based
argument for smooth, nonnegative losses. Specifically, from standard results on uniform stability for

smooth objectives, we obtain EStLDt(ŵt) ≤
(

µtnt+Ht

µtnt−Ht

)2
EStL̂St(ŵt) as long as µtnt > Ht.

Theorem 4.6 provides an optimistic rate for smooth convex losses. In the realizable case where
L⋆
t = 0, we obtain a fast rate of O(1/nt). Note that for this result to hold, the loss function must be

well-defined over the entire domain w ∈ Rm. Similar to Theorem 4.1, the benefit of the curriculum
becomes evident when each rt is small, enabling significant gains in sample efficiency. Even in
the absence of a curriculum, this analysis yields an optimistic bound by replacing rt with a larger
constant. Thus, incorporating curriculum learning never worsens the sample complexity (up to the
parameters rt and α), and often leads to notable improvements.

While our analysis thus far has focused on multi-task curricula, the framework naturally extends to
the single-task setting. Suppose we are given a single learning task and aim to construct an effective
curriculum within its dataset. One strategy is to begin training on a subset of “easy” examples–those
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for which the loss is small–and then gradually incorporate the full training distribution. This aligns
with the original motivation behind curriculum learning [Bengio et al., 2009], where the learner is
first exposed to simpler examples and then to increasingly complex ones.

From Theorem 4.6, the excess risk bound depends on the regularization radius r, transferability
parameter α, smoothness Ht, and the optimal population loss L⋆

t . We therefore aim to identify a
subset of training examples that satisfies two goals: (1) the resulting subtask is similar to the original
task in the sense that the pair satisfies a (r, α) condition with small r and α, and (2) the subtask has
a smaller optimal risk L⋆

t , thereby reducing the sample complexity required to learn it.

Practically, this involves selecting a ‘good’ subset of the training data–i.e., a collection of examples
with low loss values under an initial model–to define an auxiliary task. The learner can then solve
this easier task first and use the resulting solution as a bias to efficiently solve the full task. This
strategy mirrors the continuation principle embedded in curriculum learning: leveraging simple
concepts as stepping stones to learn more complex ones. This idea is confirmed by Saglietti et al.
[2022] and Abbe et al. [2023]. They considered specific settings and selected sparse data and low
noise data as the ‘good’ subset.

5 Curriculum Learning without Convexity

Deep learning has become the cornerstone of recent advances in artificial intelligence and ma-
chine learning, powering state-of-the-art performance across domains such as vision, language, and
robotics. At the heart of deep learning is the training of deep neural networks–an inherently noncon-
vex optimization problem. In this section, we investigate the benefits of curriculum learning in this
nonconvex setting, focusing on tasks whose loss functions are nonconvex but Lipschitz continuous.

We assume a curriculum composed of T tasks, where each task t has a ρt-Lipschitz, nonconvex
loss function. As before, we assume each pair of consecutive tasks satisfies the (rt, α) condition
for some rt > 0, α ∈ (0, 1). Unlike the convex case, where we use biased RERM, we propose an
ERM-based strategy for nonconvex problems. For each task t, we select a solution by minimizing
empirical loss over a ball of radius rt centered at ŵt−1. This is formalized in Algorithm 4.

Algorithm 4 ERM-based Curriculum Learning

Input: w0, S1, . . . , ST , r1, . . . , rT > 0.
ŵ0 = w0.
for t = 1, 2, ..., T do

ŵt ∈ argmin
w:∥w−ŵt−1∥2≤rt

L̂St
(w).

end for
return: ŵT .

When L̂St(w) is convex, the projection-based ERM in Algorithm 4 is equivalent to biased RERM
with quadratic regularization as in Algorithm 1. However, in the nonconvex case, Algorithm 4
enables a broader exploration of the parameter space. Although this procedure may not be compu-
tationally efficient, in practice it can be approximated using methods such as SGD. We also note
that the radius rt is used primarily for theoretical analysis; in practice, it can be treated as a tunable
parameter. For example, early stopping can serve as a proxy for tuning rt, by controlling how long
we train on easier data subsets. Solving constrained ERM exactly is not practical in large-scale deep
learning. However, the purpose of our non-convex analysis is to provide generalization guarantees
for implicit approximations to this problem, such as those computed via SGD and backpropaga-
tion. From this perspective, theoretical analysis of constrained ERM remains meaningful. Next, we
present a key result for this setting.

Lemma 5.1. Let δ ∈ (0, 1) and ϵ > 0. If nt ≥ 8r2t ρ
2
t

ϵ2

(
ln
(
2
δ

)
+m ln

(
8rtρt

ϵ + 1
))

, then with
probability at least 1− δ over the randomness of St,

sup
w:∥w−ŵt−1∥2≤rt

|L̂St
(w)− LDt

(w)− L̂St
(ŵt−1) + LDt

(ŵt−1)| ≤ ϵ.
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This lemma establishes uniform concentration over
{
ℓ(z;w)− ℓ(z; ŵt−1)

∣∣∥w − ŵt−1∥2 ≤ rt
}

–
the loss class of shifted loss functions rather than

{
ℓ(z;w)

∣∣∥w − ŵt−1∥2 ≤ rt
}

. This avoids
dependence on potentially large loss values and instead leverages the Lipschitz condition:
|ℓ(z;w)− ℓ(z; ŵt−1)| ≤ ρtrt, which is small when rt is small.

We also remark that we can give a tighter bound and remove the log term ln
(
8rtρt

ϵ + 1
)

via chaining.
This can also be applied to Theorem 5.2 and Corollary 5.3 below. We have an in expectation bound

ESt

[
sup

w:∥w−ŵt−1∥2≤rt

|L̂St(w)− LDt(w)− L̂St(ŵt−1) + LDt(ŵt−1)|

]
≤ 2rtρt

√
3 + 9m

nt
.

The high probability bound can be derived from this using McDiarmid’s Inequality.

Theorem 5.2. For any ϵ > 0, if nt ≥ 8r2t ρ
2
t

ϵ2

(
ln
(
2
δ

)
+m ln

(
8rtρt

ϵ + 1
))

, then with probability at
least 1− δ over the randomness of St, we have εt(ŵt) ≤ 2ϵ+ αεt−1(ŵt−1).

To prove Theorem 5.2, we decompose the excess risk a bit differently from Equation (3):

εt(ŵt) = LDt
(ŵt)− inf

w
LDt

(w)

=
[
LDt

(ŵt)− L̂St
(ŵt)− LDt

(ŵt−1) + L̂St
(ŵt−1)

]
+
[
L̂St

(ŵt)− L̂St
(w′)

]
+
[
L̂St

(w′)− LDt
(w′)− L̂St

(ŵt−1) + LDt
(ŵt−1)

]
+
[
LDt

(w′)− inf
w

LDt
(w)
]
,

where w′ satisfies ∥w′ − ŵt−1∥2 ≤ rt and εt(w′) ≤ αεt−1(ŵt−1). The fourth term is bounded by
αεt−1(ŵt−1) by the (rt, α) condition. The second term is nonpositive as ŵt is the ERM solution.
The first and the third terms are each bounded by ϵ using Lemma 5.1, completing the proof.

As in the convex case, smaller values of rt lead to lower sample complexity requirements. We
conclude with a high-probability bound for the entire curriculum:

Corollary 5.3. Assume ε1(ŵ1) ≤ ϵ. If nt ≥ 32r2t ρ
2
t

(1−α)2ϵ2

(
ln
(
2T
δ

)
+m ln

(
16rtρt

(1−α)ϵ + 1
))

, for all
t ∈ 2, . . . , T , then Algorithm 4 ensures that with probability at least 1−δ, we have that εT (ŵT ) ≤ ϵ.

6 Experiments

We conduct a simple empirical study using both synthetic and real dataset to support our theory. First,
we investigate whether curriculum learning can enhance large-margin classifiers on separable data
by first training on easy examples and then fine-tuning on harder ones. Specifically, we construct a
binary classification task using mixtures of two-centered Gaussians in R100. The “easy” distribution
D1 has margin γ = 3 and low variance σ = 0.5, while the hard distribution D2 varies over γ ∈
{0.1, 0.5, 1.0, 2.0} and σ ∈ {0.5, 1.0, 1.5, 2.0}. We generate 1K training samples from D1,D2.

Linear classifiers are trained using hinge loss and gradient descent (2K epochs, learning rate from
0.001, . . . , 1.0). The baseline trains only on D2, while our curriculum method (Algorithm 2) first
trains on D1 and then fine-tunes on D2 with ℓ2 regularization λ∥w2−ŵ1∥2, where ŵ1 is the solution
from the first stage. λ is selected from {10−5, 10−4, 10−3, 10−2, 10−1, 1, 10} using validation data.

Each experiment is repeated 10 times, and we report mean test accuracy and standard deviation in
Figure 2. Curriculum learning consistently outperforms the baseline, demonstrating that starting
with an easier task aids learning on harder ones. The performance gap widens as the target task
becomes more difficult–i.e., with smaller margins and higher variance–highlighting the effectiveness
of the curriculum approach under challenging conditions.

Next, we apply our theory and methods to adversarially robust learning. In adversarial robustness,
an adversary perturbs an input x within a perturbation set B(x), and the standard loss ℓt((x, y);w)
is replaced by the robust loss: ℓrobt ((x, y);w) := supx̃∈B(x) ℓt((x̃, y);w). This replacement pre-
serves convexity and Lipschitz continuity (see Appendix B.5), allowing us to extend the results of
Sections 4.1–4.3 to the robustness setting. In Algorithm 3, the subgradient ∇wℓ

rob
t (wk−1; zk) is

computed using adversarial training techniques.

However, smoothness does not generally carry over: while the standard loss may be smooth, the
robust loss is known to be non-smooth [Xing et al., 2021]. Thus, Theorem 4.6 cannot be directly
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Figure 2: Test accuracy as a function of standard deviation for different margin γ.

applied. Nevertheless, we show (Appendix B.5) that if the standard loss is nonnegative and Ht-
smooth, then Theorem 4.6 still holds for the robust loss. This insight allows curriculum learning
results to carry over to adversarial settings simply by substituting standard loss with robust loss. In
practice, good bias/initialization for robust training can come from a non-robust model, a model
trained with weaker attacks, or a related task.

We evaluate curriculum adversarial training with ℓ2 regularization on MNIST dataset. Adversarial
examples are generated using 10-step PGD with step size α/5 under an ℓ∞ perturbation budget α ∈
{0.1, 0.2, 0.3, 0.4}. For curriculum training, we define task t with attack strength αt/T , for t ∈ [T ]
and T ∈ {1, 2, 3}. No regularization is used for t = 1. From t ≥ 2, we incorporate ℓ2 regularization
of the form λ∥wt − ŵt−1∥2, where ŵt−1 is the previous model and λ ∈ {10−5, 10−4, 10−3, 10−2}.

We use a CNN with two convolutional layers followed by max-pooling and two fully connected
layers with ReLU activations. The conv layers use [input, output, kernel] = [1, 10, 5] and [10,
20, 5]; the fully connected layers have dimensions [320, 100] and [100, 10]. Models are trained
with cross-entropy loss using Adam for 100 epochs, batch size 128, and learning rate chosen from
{10−4, 10−3, 10−2, 10−1}. Early stopping is used based on robust validation accuracy (measured
with PGD attack of size α) to select both the model and hyperparameters.

We report both standard and robust test accuracy under PGD attack of size α in Table 1, averaged
over three runs with standard deviation. We note that curriculum adversarial training maintains
performance for small α and provides notable improvements for larger α values–particularly when
α ≥ 0.3. This supports the hypothesis that initializing from easier tasks (weaker attacks) enhances
robustness against stronger adversaries.

For additional experimental details and extended results, please see the supplementary material.

α
T 1 2 3

nat acc pgd acc nat acc pgd acc nat acc pgd acc
0.1 99.18±0.07 96.07±0.02 99.27±0.07 95.65±0.18 99.36±0.03 95.74±0.14
0.2 98.80±0.03 94.73±0.22 98.86±0.15 94.60±0.93 98.67±0.05 94.38±0.23
0.3 98.27±0.46 92.77±1.20 98.77±0.15 94.74±0.12 98.23±0.15 93.61±0.87
0.4 11.35±0.00 11.35±0.00 98.39±0.29 95.54±0.41 98.52±0.14 95.63±0.12

Table 1: Standard (nat acc) / robust (pgd acc) accuracy under ℓ∞ PGD attack of size α (MNIST).

7 Conclusion

In this work, we provide theoretical guarantees for both convex and nonconvex learning problems
under a multi-task curriculum learning framework that leverages implicit bias from prior tasks. Cen-
tral to our analysis is the proposed (r, α) condition, which characterizes a ‘good’ curriculum by
quantifying task similarity and enabling reduced sample complexity. While the (r, α) condition
offers a principled way to evaluate curriculum quality, it may be difficult to verify in practice. A
promising direction for future work is to investigate when this condition holds for specific problem
families and how it can guide the design of effective, data-driven curricula.
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A Missing Proofs in Section 3

Lemma A.1. ES1∼Dn1
1

[
∥ŵ1 − w⋆

1∥22
]
≤ ρ2

1

λ2n1
.

Proof of Lemma A.1. Denote g1(z;w) = ∇wℓ1(z;w). The gradient of the population loss can be
written as

0 = ∇wLD1
(w⋆

1) = ∇wEz∼D1
ℓ1(z;w⋆

1) = Ez∼D1
∇wℓ1(z;w⋆

1) = Ez∼D1
g1(z;w⋆

1).

This leads to

ES1∼Dn1
1
∥∇wL̂S1

(w⋆
1)∥22

=ES1∼Dn1
1
∥∇wL̂S1(w

⋆
1)−∇wLD1(w

⋆
1)∥22

=ES1∼Dn1
1

∥∥∥∥∥∥ 1

n1

∑
ẑ∈S1

g1(ẑ;w⋆
1)− Ez∼D1

g1(z;w⋆
1)

∥∥∥∥∥∥
2

2

=ES1∼Dn1
1

1

n2
1

∑
ẑ∈S1

∥g1(ẑ;w⋆
1)− Ez∼D1

g1(z;w⋆
1)∥

2
2

=
1

n1
Eẑ∼D1

∥g1(ẑ;w⋆
1)− Ez∼D1

g1(z;w⋆
1)∥

2
2

=
1

n1

(
Eẑ∼D1

∥g1(ẑ;w⋆
1)∥

2
2 − ∥Ez∼D1

g1(z;w⋆
1)∥

2
2

)
≤ ρ21

n1
.

Since L̂S1(w) is λ-strongly convex,

∥∇wL̂S1(w
⋆
1)∥2 = ∥∇wL̂S1(w

⋆
1)−∇wL̂S1(ŵ1)∥2 ≥ λ∥w⋆

1 − ŵ1∥2.

Therefore,

ES1∼Dn1
1

[
∥ŵ1 − w⋆

1∥22
]
≤ 1

λ2
ES1∼Dn1

1
∥∇wL̂S1

(w⋆
1)∥22 ≤ ρ21

λ2n1
.

Theorem 3.1. If the second task is convex, then setting µ2 = 2ρ2(
∥w⋆

2−w⋆
1∥2+

ρ1
λ
√

n1

)√
n2

, we have

E [ε2(ŵ2)] ≤ 2ρ2√
n2

(
∥w⋆

2 − w⋆
1∥2 +

ρ1

λ
√
n1

)
.

Proof of Theorem 3.1. From the theory of RERM in Shalev-Shwartz and Ben-David [2014] Chapter
13, if S1 is fixed, the second phase RERM is 2ρ2

2

µ2n2
-uniformly stable if only one data in S2 is replaced.

Therefore,

ES2
LD2

(ŵ2) ≤ ES2
L̂S2

(ŵ2) +
2ρ22
µ2n2

≤ ES2

[
L̂S2(ŵ2) +

µ2

2
∥ŵ2 − ŵ1∥22

]
+

2ρ22
µ2n2

≤ ES2

[
L̂S2

(w⋆
2) +

µ2

2
∥w⋆

2 − ŵ1∥22
]
+

2ρ22
µ2n2

(from the definition of RERM)

= LD2
(w⋆

2) +
µ2

2
∥w⋆

2 − ŵ1∥22 +
2ρ22
µ2n2

.
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Taking expectation w.r.t. S1 ∼ Dn1
1 ,

ES1,S2
LD2

(ŵ2) ≤ LD2
(w⋆

2) +
µ2

2
ES1

∥w⋆
2 − ŵ1∥22 +

2ρ22
µ2n2

≤ LD2
(w⋆

2) +
µ2

2
ES1

(∥w⋆
2 − w⋆

1∥2 + ∥ŵ1 − w⋆
1∥2)2 +

2ρ22
µ2n2

(triangle inequality)

≤ LD2
(w⋆

2) +
µ2

2

(
∥w⋆

2 − w⋆
1∥2 +

ρ1
λ
√
n1

)2

+
2ρ22
µ2n2

. (Lemma A.1)

Setting µ2 = 2ρ2(
∥w⋆

2−w⋆
1∥2+

ρ1
λ
√

n1

)√
n2

, we obtain

E [LD2(ŵ2)] ≤ LD2(w
⋆) +

2ρ2√
n2

(
∥w⋆

2 − w⋆
1∥2 +

ρ1
λ
√
n1

)
.

Theorem 3.2. If the second task is l-weakly convex, then setting µ2 = l + 2ρ2(
∥w⋆

2−w⋆
1∥2+

ρ1
λ
√

n1

)√
n2

,

we have E [ε2(ŵ2)] ≤ 2ρ2√
n2

(
∥w⋆

2 − w⋆
1∥2 +

ρ1

λ
√
n1

)
+ l

2

(
∥w⋆

2 − w⋆
1∥2 +

ρ1

λ
√
n1

)2
.

Proof of Theorem 3.2. If S1 is fixed, for any µ2 > l, the regularized loss ℓ2(z;w) + µ2

2 ∥w − ŵ1∥22
is (µ2 − l)-strongly convex. From the theory of RERM in Shalev-Shwartz and Ben-David [2014]
Chapter 13, the second phase RERM is 2ρ2

2

(µ2−l)n2
-uniformly stable if only one data in S2 is replaced.

Therefore,

ES2
LD2

(ŵ2) ≤ ES2
L̂S2

(ŵ2) +
2ρ22

(µ2 − l)n2

≤ ES2

[
L̂S2

(ŵ2) +
µ2

2
∥ŵ2 − ŵ1∥22

]
+

2ρ22
(µ2 − l)n2

≤ ES2

[
L̂S2

(w⋆
2) +

µ2

2
∥w⋆

2 − ŵ1∥22
]
+

2ρ22
(µ2 − l)n2

(from the definition of RERM)

= LD2
(w⋆

2) +
µ2

2
∥w⋆

2 − ŵ1∥22 +
2ρ22

(µ2 − l)n2
.

Taking expectation w.r.t. S1 ∼ Dn1
1 ,

ES1,S2LD2(ŵ2) ≤ LD2(w
⋆
2) +

µ2

2
ES1∥w⋆

2 − ŵ1∥22 +
2ρ22

(µ2 − l)n2

≤ LD2(w
⋆
2) +

µ2

2
ES1(∥w⋆

2 − w⋆
1∥2 + ∥ŵ1 − w⋆

1∥2)2 +
2ρ22

(µ2 − l)n2

(triangle inequality)

≤ LD2
(w⋆

2) +
µ2

2

(
∥w⋆

2 − w⋆
1∥2 +

ρ1
λ
√
n1

)2

+
2ρ22

(µ2 − l)n2
. (Lemma A.1)

Setting µ2 = l + 2ρ2(
∥w⋆

2−w⋆
1∥2+

ρ1
λ
√

n1

)√
n2

, we obtain

E [LD2(ŵ2)] ≤ LD2(w
⋆) +

2ρ2√
n2

(
∥w⋆

2 − w⋆
1∥2 +

ρ1
λ
√
n1

)
+

l

2

(
∥w⋆

2 − w⋆
1∥2 +

ρ1
λ
√
n1

)2

.
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B Missing Details in Section 4

B.1 Missing Proofs in Section 4.1

Theorem 4.1. Suppose task t is convex and ρt-Lipschitz, and the (rt, α) condition holds between
tasks (t− 1, t). Then, setting µt =

2ρt

rt
√
nt

yields the following excess risk bound:

E [εt(ŵt)] ≤
2rtρt√

nt
+ αE [εt−1(ŵt−1)] .

Proof of Theorem 4.1. If S1, . . . , St−1 is fixed, for any µt > 0, the regularized loss ℓt(z;w) +
µt

2 ∥w − ŵt−1∥22 is µt-strongly convex. From the theory of RERM in Shalev-Shwartz and Ben-

David [2014] Chapter 13, the t-th step RERM is 2ρ2
t

µtnt
-uniformly stable if only one data in St is

replaced. Therefore, ∀w′ ∈ Rm independent with S1, . . . , St,

EStLDt(ŵt) ≤ EStL̂St(ŵt) +
2ρ2t
µtnt

≤ ESt

[
L̂St

(ŵt) +
µt

2
∥ŵt − ŵt−1∥22

]
+

2ρ2t
µtnt

≤ ESt

[
L̂St(w

′) +
µt

2
∥w′ − ŵt−1∥22

]
+

2ρ2t
µtnt

(from the definition of RERM)

= LDt
(w′) +

µt

2
∥w′ − ŵt−1∥22 +

2ρ2t
µtnt

.

Since task t − 1 and task t satisfy (rt, α) condition, there exists w′, s.t. ∥w′ − ŵt−1∥2 ≤ rt and
εt(w′) ≤ αεt−1(ŵt−1) hold. Thus,

ESt
LDt

(ŵt) ≤ LDt
(w′) +

µt

2
∥w′ − ŵt−1∥22 +

2ρ2t
µtnt

= inf
w

LDt(w) + εt(w′) +
µt

2
∥w′ − ŵt−1∥22 +

2ρ2t
µtnt

≤ inf
w

LDt
(w) + αεt−1(ŵt−1) +

µtr
2
t

2
+

2ρ2t
µtnt

.

Setting µt = 2ρt

rt
√
nt

, we have ESt
εt(ŵt) ≤ αεt−1(ŵt−1) + 2rtρt√

nt
. Taking expectation w.r.t.

S1, . . . , St−1, we obtain

E [εt(ŵt)] ≤
2rtρt√

nt
+ αE [εt−1(ŵt−1)] .

Corollary 4.2. Assume the first task is learned with excess risk E [ε1(ŵ1)] ≤ ϵ. Set the regulariza-
tion parameter to µt =

2ρt

rt
√
nt

, and suppose the sample size nt ≥ 4r2t ρ
2
t

(1−α)2ϵ2 . Then, for all tasks t, the
excess risk is bounded as E [εt(ŵt)] ≤ ϵ.

Proof of Corollary 4.2. Theorem 4.1 gives

E [εt(ŵt)] ≤
2rtρt√

nt
+ αE [εt−1(ŵt−1)] ≤ αE [εt−1(ŵt−1)] + (1− α)ϵ.

We can use induction to prove that E [εt(ŵt)] ≤ ϵ.

Corollary 4.3. Suppose the first task is learned to excess risk E [ε1(ŵ1)] ≤ ϵ1. Set the regularization
parameter as µt =

2ρt

rt
√
nt

, and assume the sample size satisfies nt ≥
(

4rtρt

(1−α)ϵ1(α+1
2 )

t−2

)2
. Then, for

every task t, we have E [εt(ŵt)] ≤ ϵ1
(
α+1
2

)t−1
.
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Proof of Corollary 4.3. Theorem 4.1 gives

E [εt(ŵt)] ≤
2rtρt√

nt
+ αE [εt−1(ŵt−1)] ≤ αE [εt−1(ŵt−1)] +

1− α

2
ϵ1

(
α+ 1

2

)t−2

.

We can use induction to prove that E [εt(ŵt)] ≤ ϵ1
(
α+1
2

)t−1
.

B.2 Missing Proofs in Section 4.2

Theorem 4.4. Suppose task t has a ρt-Lipschitz convex loss function and satisfies the (rt, α) con-
dition with task t− 1. Choosing the learning rate ηt =

rt
ρt

√
nt

, the excess risk of SGD satisfies

E [εt(ŵt)] ≤
rtρt√
nt

+ αE [εt−1(ŵt−1)] .

Proof of Theorem 4.4. Let’s first fix S1, . . . , St−1. Since task t − 1 and task t satisfy (rt, α) condi-
tion, there exists w′, s.t. ∥w′ − ŵt−1∥2 ≤ rt and εt(w′) ≤ αεt−1(ŵt−1) hold. For k = 1, 2, . . . , nt,

∥wk − w′∥22 = ∥wk−1 − w′ − ηt∇wℓt(wk−1; zk)∥22
= ∥wk−1 − w′∥22 + η2t ∥∇wℓt(wk−1; zk)∥22 + 2ηt ⟨w′ − wk−1,∇wℓt(wk−1; zk)⟩
≤ ∥wk−1 − w′∥22 + η2t ρ

2
t + 2ηt (ℓt(w′; zk)− ℓt(wk−1; zk)) .

(Lipschitz and convex loss)
Rewriting this inequality gives

ℓt(wk−1; zk) ≤ ℓt(w′; zk) +
ηtρ

2
t

2
+

∥wk−1 − w′∥22 − ∥wk − w′∥22
2ηt

Taking average over k, we get

1

nt

nt∑
k=1

ℓt(wk−1; zk) ≤
1

nt

nt∑
k=1

ℓt(w′; zk) +
ηtρ

2
t

2
+

∥ŵt−1 − w′∥22 − ∥wnt
− w′∥22

2ηtnt

≤ 1

nt

nt∑
k=1

ℓt(w′; zk) +
ηtρ

2
t

2
+

r2t
2ηtnt

=
1

nt

nt∑
k=1

ℓt(w′; zk) +
rtρt√
nt

Since zk is independent with wk−1, taking expectation w.r.t. St ∼ Dnt
t gives

1

nt

nt∑
k=1

ESt
[LDt

(wk−1)] =
1

nt

nt∑
k=1

ESt
[ℓt(wk−1; zk)]

≤ 1

nt

nt∑
k=1

ESt [ℓt(w
′; zk)] +

rtρt√
nt

= LDt
(w′) +

rtρt√
nt

.

Using Jensen’s Inequality,
ESt

[εt(ŵt)] = ESt
[LDt

(ŵt)]− inf
w

LDt
(w)

≤ 1

nt

nt∑
k=1

ESt
[LDt

(wk−1)]− inf
w

LDt
(w)

≤ LDt
(w′) +

rtρt√
nt

− inf
w

LDt
(w)

≤ rtρt√
nt

+ αεt−1(ŵt−1).

Taking expectation w.r.t. S1, . . . , St−1, we obtain

E [εt(ŵt)] ≤
rtρt√
nt

+ αE [εt−1(ŵt−1)] .
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B.3 Missing Proofs in Section 4.3

Theorem 4.5. Choosing µt appropriately, the excess risk of curriculum learning satisfies

E [εt(ŵt)] ≤
2rt√
nt

(
ρ̄t +

6rt(ρ
2
t − ρ̄2t )

(1− α)ε̄t
√
nt

)
+

1 + α

2
E [εt−1(ŵt−1)] .

Proof of Theorem 4.5. Let µt be a constant to be determined.
p0 := PSt∼Dnt

t

(
LDt(ŵt)− inf

w
LDt(w) > ε̄t

)
. Recall ESt [εt(ŵt)] = ESt∼Dnt

t
LDt(ŵt) −

inf
w

LDt
(w). Using Markov’s Inequality,

p0 ≤ ESt
[εt(ŵt)]

ε̄t
. (5)

Let St = {z1, z2, . . . , znt
} ∼ Dnt

t and S′
t = {z′1, z2, . . . , znt

} ∼ Dnt
t be two neighboring data sets

that differ in one single example. St ∪ S′
t = {z′1, z1, z2, . . . , znt

} ∼ Dnt+1.
Recall ŵt ∈ argmin

w

(
L̂St

(w) + µt

2 ∥w − ŵt−1∥22
)

; ŵ′
t ∈ argmin

w

(
L̂S′

t
(w) + µt

2 ∥w − ŵt−1∥22
)

.

Since the optimization objective L̂St
(w) + µt

2 ∥w − ŵt−1∥22 is µt-strongly convex, we have

L̂St
(ŵ′

t) +
µt

2
∥ŵ′

t − ŵt−1∥22 ≥ L̂St
(ŵt) +

µt

2
∥ŵt − ŵt−1∥22 +

µt

2
∥ŵ′

t − ŵt∥22. (6)

Similarly,

L̂S′
t
(ŵt) +

µt

2
∥ŵt − ŵt−1∥22 ≥ L̂S′

t
(ŵ′

t) +
µt

2
∥ŵ′

t − ŵt−1∥22 +
µt

2
∥ŵ′

t − ŵt∥22. (7)

Adding up equation (6) and equation (7),

µt∥ŵ′
t − ŵt∥22 ≤ ℓt(z1; ŵ′

t)− ℓt(z1; ŵt)

nt
+

ℓt(z′1; ŵt)− ℓt(z′1; ŵ′
t)

nt
. (8)

We say St ∪ S′
t is good if LDt(ŵt) − inf

w
LDt(w) ≤ ε̄t and LDt(ŵ

′
t) − inf

w
LDt(w) ≤ ε̄t hold

simultaneously. Otherwise, we say St ∪ S′
t is bad. Applying a union bound and combining with

equation (5),

P
St∪S′

t∼Dnt+1
t

(St ∪ S′
t is bad) ≤ 2p0 ≤ 2ESt

[εt(ŵt)]

ε̄t
. (9)

If St ∪ S′
t is good, by the assumption on the local Lipschitz constant, |ℓt(z; ŵt) − ℓt(z; ŵ′

t)| ≤
ρ̄t∥ŵ′

t − ŵt∥2 holds for any z. Equation (8) implies

µt∥ŵ′
t − ŵt∥22 ≤ ℓt(z1; ŵ′

t)− ℓt(z1; ŵt)

nt
+

ℓt(z′1; ŵt)− ℓt(z′1; ŵ′
t)

nt
≤ 2ρ̄t

nt
∥ŵ′

t − ŵt∥2.

Therefore, ∥ŵ′
t − ŵt∥2 ≤ 2ρ̄t

µtnt
if St ∪S′

t is good. Thus, we also know that |ℓt(z; ŵt)− ℓt(z; ŵ′
t)| ≤

ρ̄t∥ŵ′
t − ŵt∥2 ≤ 2ρ̄2

t

µtnt
holds for any z. If St ∪ S′

t is bad, using the global Lipschitz constant,
|ℓt(z; ŵt) − ℓt(z; ŵ′

t)| ≤ ρt∥ŵ′
t − ŵt∥2 holds for any z. We similarly get ∥ŵ′

t − ŵt∥2 ≤ 2ρt

µtnt
if

St ∪ S′
t is bad. We also know that |ℓt(z; ŵt)− ℓt(z; ŵ′

t)| ≤ ρt∥ŵ′
t − ŵt∥2 ≤ 2ρ2

t

µtnt
is true for any z.

Now we upper bound the generalization gap of RERM:

ESt∼Dnt
t

(
LDt

(ŵt)− L̂St
(ŵt)

)
=E

St∪S′
t∼Dnt+1

t

(
ℓt(z1; ŵ′

t)− ℓt(z1; ŵt)
)

≤ 2ρ̄2t
µtnt

P
St∪S′

t∼Dnt+1
t

(St ∪ S′
t is good) +

2ρ2t
µtnt

P
St∪S′

t∼Dnt+1
t

(St ∪ S′
t is bad)

=
2ρ̄2t
µtnt

+
2(ρ2t − ρ̄2t )

µtnt
P
St∪S′

t∼Dnt+1
t

(St ∪ S′
t is bad)

≤ 2ρ̄2t
µtnt

+
4(ρ2t − ρ̄2t )ESt

[εt(ŵt)]

µtε̄tnt
. (equation (9))
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Since task t − 1 and task t satisfy (rt, α) condition, there exists w′, s.t. ∥w′ − ŵt−1∥2 ≤ rt and
εt(w′) ≤ αεt−1(ŵt−1) hold. Now we upper bound the excess risk of RERM:

ESt
[εt(ŵt)] =ESt∼Dnt

t
LDt

(ŵt)− inf
w

LDt
(w)

=ESt∼Dnt
t

(
LDt

(ŵt)− L̂St
(ŵt)

)
+ ESt∼Dnt

t

(
L̂St

(ŵt)− inf
w

LDt
(w)
)

≤ESt∼Dnt
t

(
LDt(ŵt)− L̂St(ŵt)

)
+ ESt∼Dnt

t

(
L̂St(ŵt) +

µt

2
∥ŵt − ŵt−1∥22 − inf

w
LDt(w)

)
≤ESt∼Dnt

t

(
LDt

(ŵt)− L̂St
(ŵt)

)
+ ESt∼Dnt

t

(
L̂St

(w′) +
µt

2
∥w′ − ŵt−1∥22 − inf

w
LDt

(w)
)

=ESt∼Dnt
t

(
LDt

(ŵt)− L̂St
(ŵt)

)
+ LDt

(w′) +
µt

2
∥w′ − ŵt−1∥22 − inf

w
LDt

(w)

≤ 2ρ̄2t
µtnt

+
4(ρ2t − ρ̄2t )ESt

[εt(ŵt)]

µtε̄tnt
+ αεt−1(ŵt−1) +

µtr
2
t

2
.

Taking expectation w.r.t. S1, . . . , St−1, we obtain

E [εt(ŵt)] ≤
2ρ̄2t
µtnt

+
4(ρ2t − ρ̄2t )E [εt(ŵt)]

µtε̄tnt
+ αE [εt−1(ŵt−1)] +

µtr
2
t

2
.

If 4(ρ2
t−ρ̄2

t )
µtε̄tnt

< 1, we can solve the above inequality, and get

E [εt(ŵt)] ≤
2ρ̄2

t

µtnt
+ αE [εt−1(ŵt−1)] +

µtr
2
t

2

1− 4(ρ2
t−ρ̄2

t )
µtε̄tnt

.

Denote x =
√

4ρ̄2
t

ntr2t
+

32(ρ2
t−ρ̄2

t )
2

(1−α)ε̄2tn
2
t
+

4(ρ2
t−ρ̄2

t )
ε̄tnt

, and select µt = max{ 4(1+α)(ρ2
t−ρ̄2

t )
(1−α)ϵ̄tnt

, x}. We get

E [εt(ŵt)] ≤
2ρ̄2

t

µtnt
+ αE [εt−1(ŵt−1)] +

µtr
2
t

2

1− 4(ρ2
t−ρ̄2

t )
µtε̄tnt

=

2ρ̄2
t

µtnt
+

µtr
2
t

2

1− 4(ρ2
t−ρ̄2

t )
µtε̄tnt

+
αE [εt−1(ŵt−1)]

1− 4(ρ2
t−ρ̄2

t )
µtε̄tnt

≤
2ρ̄2

t

xnt
+

r2t
2 µt

1− 4(ρ2
t−ρ̄2

t )
xε̄tnt

+
αE [εt−1(ŵt−1)]

1− 1−α
1+α

≤
2ρ̄2

t

xnt
+

r2t
2

(
x+

4(1+α)(ρ2
t−ρ̄2

t )
(1−α)ϵ̄tnt

)
1− 4(ρ2

t−ρ̄2
t )

xε̄tnt

+
1 + α

2
E [εt−1(ŵt−1)]

=

2ρ̄2
t

nt
+

r2t
2

(
x2 +

4(1+α)(ρ2
t−ρ̄2

t )
(1−α)ϵ̄tnt

x
)

x− 4(ρ2
t−ρ̄2

t )
ε̄tnt

+
1 + α

2
E [εt−1(ŵt−1)]

= r2t

√
4ρ̄2t
ntr2t

+
32(ρ2t − ρ̄2t )

2

(1− α)ε̄2tn
2
t

+
(6− 2α)r2t (ρ

2
t − ρ̄2t )

(1− α)ε̄tnt
+

1 + α

2
E [εt−1(ŵt−1)]

≤ 2rtρ̄t√
nt

+

(√
32

1− α
+

6− 2α

1− α

)
r2t (ρ

2
t − ρ̄2t )

ε̄tnt
+

1 + α

2
E [εt−1(ŵt−1)]

(
√
A+B ≤

√
A+

√
B)

≤ 2rtρ̄t√
nt

+
12

1− α

r2t (ρ
2
t − ρ̄2t )

ε̄tnt
+

1 + α

2
E [εt−1(ŵt−1)]

=
2rt√
nt

(
ρ̄t +

6rt(ρ
2
t − ρ̄2t )

(1− α)ε̄t
√
nt

)
+

1 + α

2
E [εt−1(ŵt−1)] .
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B.4 Missing Proofs in Section 4.4

Theorem 4.6. Setting the regularization parameter µt = max{ (2+6α)Ht

(1−α)nt
, 1
rt

√
32HtL⋆

t

nt
}, we have

E [εt(ŵt)] ≤

√
32L⋆

tHtr2t
nt

+
9Htr

2
t

(1− α)nt
+

1 + α

2
E [εt−1(ŵt−1)] .

Proof of Theorem 4.6. Let St = {z1, z2, . . . , znt} ∼ Dnt
t and S′

t = {z′1, z2, . . . , znt} ∼ Dnt
t be two

neighboring data sets that differ in one single example. St ∪ S′
t = {z′1, z1, z2, . . . , znt} ∼ Dnt+1

t .
Recall ŵt ∈ argmin

w

(
L̂St(w) + µt

2 ∥w − ŵt−1∥22
)

; ŵ′
t ∈ argmin

w

(
L̂S′

t
(w) + µt

2 ∥w − ŵt−1∥22
)

.

Since the optimization objective L̂St(w) + µt

2 ∥w − ŵt−1∥22 is µt-strongly convex, we have

L̂St
(ŵ′

t) +
µt

2
∥ŵ′

t − ŵt−1∥22 ≥ L̂St
(ŵt) +

µt

2
∥ŵt − ŵt−1∥22 +

µt

2
∥ŵ′

t − ŵt∥22.

Similarly,

L̂S′
t
(ŵt) +

µt

2
∥ŵt − ŵt−1∥22 ≥ L̂S′

t
(ŵ′

t) +
µt

2
∥ŵ′

t − ŵt−1∥22 +
µt

2
∥ŵ′

t − ŵt∥22.

Adding up these two inequalities,

µt∥ŵ′
t − ŵt∥22 ≤ ℓt(z1; ŵ′

t)− ℓt(z1; ŵt)

nt
+

ℓt(z′1; ŵt)− ℓt(z′1; ŵ′
t)

nt
. (10)

By the smoothness assumption and using the self-bounded property,

ℓt(z1; ŵ′
t)− ℓt(z1; ŵt) ≤

〈
∇wℓt(z1; ŵt), ŵ′

t − ŵt

〉
+

Ht

2
∥ŵ′

t − ŵt∥22

≤ ∥∇wℓt(z1; ŵt)∥2∥ŵ′
t − ŵt∥2 +

Ht

2
∥ŵ′

t − ŵt∥22

≤
√

2Htℓt(z1; ŵt)∥ŵ′
t − ŵt∥2 +

Ht

2
∥ŵ′

t − ŵt∥22. (11)

Similarly,

ℓt(z′1; ŵt)− ℓt(z′1; ŵ′
t) ≤

√
2Htℓt(z′1; ŵ′

t)∥ŵ′
t − ŵt∥2 +

Ht

2
∥ŵ′

t − ŵt∥22. (12)

From the choice of µt we know that µtnt > Ht. Plugging these two inequalities into equation (10),
we get

∥ŵ′
t − ŵt∥2 ≤

√
2Ht

µtnt −Ht

(√
ℓt(z1; ŵt) +

√
ℓt(z′1; ŵ′

t)

)
.

Adding up equation (11) and equation (12), and combining with the inequality above, we get(
ℓt(z1; ŵ′

t)− ℓt(z1; ŵt)
)
+
(
ℓt(z′1; ŵt)− ℓt(z′1; ŵ′

t)
)

≤

(
2Ht

µtnt −Ht
+

2H2
t

(µtnt −Ht)
2

)(√
ℓt(z1; ŵt) +

√
ℓt(z′1; ŵ′

t)

)2

≤

(
4Ht

µtnt −Ht
+

4H2
t

(µtnt −Ht)
2

)(
ℓt(z1; ŵt) + ℓt(z′1; ŵ′

t)
)
.

Now we upper bound the generalization gap of RERM:

ESt∼Dnt
t

(
LDt

(ŵt)− L̂St
(ŵt)

)
=
1

2
E
St∪S′

t∼Dnt+1
t

[(
ℓt(z1; ŵ′

t)− ℓt(z1; ŵt)
)
+
(
ℓt(z′1; ŵt)− ℓt(z′1; ŵ′

t)
)]
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≤

(
2Ht

µtnt −Ht
+

2H2
t

(µtnt −Ht)
2

)
E
St∪S′

t∼Dnt+1
t

[
ℓt(z1; ŵt) + ℓt(z′1; ŵ′

t)
]

=

(
4Ht

µtnt −Ht
+

4H2
t

(µtnt −Ht)
2

)
ESt∼Dnt

t

[
L̂St

(ŵt)
]
.

Since task t − 1 and task t satisfy (rt, α) condition, there exists w′, s.t. ∥w′ − ŵt−1∥2 ≤ rt and
εt(w′) ≤ αεt−1(ŵt−1) hold. Now we upper bound the excess risk of RERM:

ESt
[εt(ŵt)]

=ESt∼Dnt
t
LDt

(ŵt)− L⋆
t

≤

(
1 +

4Ht

µtnt −Ht
+

4H2
t

(µtnt −Ht)
2

)
ESt∼Dnt

t

[
L̂St(ŵt)

]
− L⋆

t

≤

(
1 +

4Ht

µtnt −Ht
+

4H2
t

(µtnt −Ht)
2

)
ESt∼Dnt

t

[
L̂St

(ŵt) +
µt

2
∥ŵt − ŵt−1∥22

]
− L⋆

t

≤

(
1 +

4Ht

µtnt −Ht
+

4H2
t

(µtnt −Ht)
2

)
ESt∼Dnt

t

[
L̂St

(w′) +
µt

2
∥w′ − ŵt−1∥22

]
− L⋆

t

≤

(
1 +

4Ht

µtnt −Ht
+

4H2
t

(µtnt −Ht)
2

)(
LDt(w

′) +
µt

2
∥w′ − ŵt−1∥22

)
− L⋆

t

≤

(
1 +

4Ht

µtnt −Ht
+

4H2
t

(µtnt −Ht)
2

)(
L⋆
t + αεt−1(ŵt−1) +

µt

2
r2t

)
− L⋆

t

=

(
1 +

4Ht

µtnt −Ht
+

4H2
t

(µtnt −Ht)
2

)
αεt−1(ŵt−1)

+

(
1 +

4Ht

µtnt −Ht
+

4H2
t

(µtnt −Ht)
2

)(
L⋆
t +

µt

2
r2t

)
− L⋆

t . (13)

Since mut ≥ (2+6α)Ht

(1−α)nt
,(

1 +
4Ht

µtnt −Ht
+

4H2
t

(µtnt −Ht)
2

)
α ≤

(
1 +

4(1− α)

1 + 7α
+

4(1− α)2

(1 + 7α)
2

)
α

=

(
1 +

8 + 24α

(1 + 7α)2
(1− α)

)
α

≤
(
1 +

1− α

2α

)
α =

1 + α

2
;

(
1 +

4Ht

µtnt −Ht
+

4H2
t

(µtnt −Ht)
2

)
≤
(
1 +

8Ht

µtnt
+

8Ht

µtnt

)
=

(
1 +

16Ht

µtnt

)
.

Plugging these two inequalities into equation (13), we get

ESt
[εt(ŵt)]

≤1 + α

2
εt−1(ŵt−1) +

(
1 +

16Ht

µtnt

)(
L⋆
t +

µt

2
r2t

)
− L⋆

t

=
1 + α

2
εt−1(ŵt−1) +

8Htr
2
t

nt
+

r2t
2
µt + 16L⋆

t

Ht

µtnt
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≤1 + α

2
εt−1(ŵt−1) +

8Htr
2
t

nt
+

r2t
2

(
(2 + 6α)Ht

(1− α)nt
+

1

rt

√
32HtL⋆

t

nt

)
+ 16L⋆

t

Ht(
1
rt

√
32HtL⋆

t

nt

)
nt

=
1 + α

2
εt−1(ŵt−1) +

(9− 5α)Htr
2
t

(1− α)nt
+ rt

√
32HtL⋆

t

nt

≤

√
32L⋆

tHtr2t
nt

+
9Htr

2
t

(1− α)nt
+

1 + α

2
εt−1(ŵt−1).

Taking expectation w.r.t. S1, . . . , St−1, we obtain

E [εt(ŵt)] ≤

√
32L⋆

tHtr2t
nt

+
9Htr

2
t

(1− α)nt
+

1 + α

2
E [εt−1(ŵt−1)] .

B.5 Missing Proofs for Adversarial Robustness

Proposition B.1. If the standard loss ℓt((x, y);w) is convex, then the robust loss ℓrobt ((x, y);w) :=
sup

x̃∈B(x)
ℓt((x̃, y);w) is convex.

Proof of Proposition B.1. ∀w1,w2, λ ∈ [0, 1],

ℓrobt ((x, y);λw1 + (1− λ)w2) = sup
x̃∈B(x)

ℓt((x̃, y);λw1 + (1− λ)w2)

≤ sup
x̃∈B(x)

[λℓt((x̃, y);w1) + (1− λ)ℓt((x̃, y);w2)]

≤ sup
x̃∈B(x)

[λℓt((x̃, y);w1)] + sup
x̃∈B(x)

[(1− λ)ℓt((x̃, y);w2)]

= λℓrobt ((x, y);w1) + (1− λ)ℓrobt ((x, y);w2).

Proposition B.2. If the standard loss ℓt((x, y);w) is ρt-Lipschitz, then the robust loss
ℓrobt ((x, y);w) := sup

x̃∈B(x)
ℓt((x̃, y);w) is ρt-Lipschitz.

Proof of Proposition B.1. ∀w1,w2,

ℓrobt ((x, y);w1)− ℓrobt ((x, y);w2) = sup
x̃∈B(x)

ℓt((x̃, y);w1)− sup
x̃∈B(x)

ℓt((x̃, y);w2)

≤ sup
x̃∈B(x)

[ℓt((x̃, y);w1)− ℓt((x̃, y);w2)]

≤ sup
x̃∈B(x)

(ρt∥w1 − w2∥2)

= ρt∥w1 − w2∥2.

Now we prove Theorem 4.6 in the adversarial robustness setting. In this setting, all tasks are learning
the robust loss; the empirical risk, expected risk and excess risk are defined using the robust loss.
We assume that ∀z, the standard loss ℓt(z;w) is convex, Ht-smooth and nonnegative. In addition,
task t − 1 and task t satisfy (rt, α) condition for constants rt > 0 and α ∈ (0, 1). Denote L⋆

t =
inf

w
Lrob
Dt

(w). We use biased RERM described in Algorithm 1 to learn these tasks. We focus on two
consecutive tasks: task t− 1 and task t as before.
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Theorem B.3. Setting the regularization parameter µt = max{ (2+6α)Ht

(1−α)nt
, 1
rt

√
32HtL⋆

t

nt
}, we have

E [εt(ŵt)] ≤

√
32L⋆

tHtr2t
nt

+
9Htr

2
t

(1− α)nt
+

1 + α

2
E [εt−1(ŵt−1)] .

Proof of Theorem B.3. Let St = {z1, z2, . . . , znt
} ∼ Dnt

t and S′
t = {z′1, z2, . . . , znt

} ∼ Dnt
t be two

neighboring data sets that differ in one single example. St ∪ S′
t = {z′1, z1, z2, . . . , znt

} ∼ Dnt+1
t .

Recall ŵt ∈ argmin
w

(
L̂rob
St

(w) + µt

2 ∥w − ŵt−1∥22
)

; ŵ′
t ∈ argmin

w

(
L̂rob
S′
t
(w) + µt

2 ∥w − ŵt−1∥22
)

.

Since the optimization objective L̂rob
St

(w) + µt

2 ∥w − ŵt−1∥22 is µt-strongly convex, we have

L̂rob
St

(ŵ′
t) +

µt

2
∥ŵ′

t − ŵt−1∥22 ≥ L̂rob
St

(ŵt) +
µt

2
∥ŵt − ŵt−1∥22 +

µt

2
∥ŵ′

t − ŵt∥22.

Similarly,

L̂rob
S′
t
(ŵt) +

µt

2
∥ŵt − ŵt−1∥22 ≥ L̂rob

S′
t
(ŵ′

t) +
µt

2
∥ŵ′

t − ŵt−1∥22 +
µt

2
∥ŵ′

t − ŵt∥22.

Adding up these two inequalities,

µt∥ŵ′
t − ŵt∥22 ≤ ℓrobt (z1; ŵ′

t)− ℓrobt (z1; ŵt)

nt
+

ℓrobt (z′1; ŵt)− ℓrobt (z′1; ŵ′
t)

nt
. (14)

By the smoothness assumption and using the self-bounded property for the standard loss,

ℓrobt (z1; ŵ′
t)− ℓrobt (z1; ŵt) = sup

x̃∈B(x1)
ℓt((x̃, y1); ŵ′

t)− sup
x̃∈B(x1)

ℓt((x̃, y1); ŵt)

≤ sup
x̃∈B(x1)

[
ℓt((x̃, y1); ŵ′

t)− ℓt((x̃, y1); ŵt)
]

≤ sup
x̃∈B(x1)

〈
∇wℓt((x̃, y1); ŵt), ŵ′

t − ŵt

〉
+

Ht

2
∥ŵ′

t − ŵt∥22

≤ sup
x̃∈B(x1)

∥∇wℓt((x̃, y1); ŵt)∥2∥ŵ′
t − ŵt∥2 +

Ht

2
∥ŵ′

t − ŵt∥22

≤ sup
x̃∈B(x1)

√
2Htℓt((x̃, y1); ŵt)∥ŵ′

t − ŵt∥2 +
Ht

2
∥ŵ′

t − ŵt∥22

=
√

2Htℓrobt (z1; ŵt)∥ŵ′
t − ŵt∥2 +

Ht

2
∥ŵ′

t − ŵt∥22. (15)

Similarly,

ℓrobt (z′1; ŵt)− ℓrobt (z′1; ŵ′
t) ≤

√
2Htℓrobt (z′1; ŵ′

t)∥ŵ′
t − ŵt∥2 +

Ht

2
∥ŵ′

t − ŵt∥22. (16)

From the choice of µt we know that µtnt > Ht. Plugging these two inequalities into equation (14),
we get

∥ŵ′
t − ŵt∥2 ≤

√
2Ht

µtnt −Ht

(√
ℓrobt (z1; ŵt) +

√
ℓrobt (z′1; ŵ′

t)

)
.

Adding up equation (15) and equation (16), and combining with the inequality above, we get(
ℓrobt (z1; ŵ′

t)− ℓrobt (z1; ŵt)
)
+
(
ℓrobt (z′1; ŵt)− ℓrobt (z′1; ŵ′

t)
)

≤

(
2Ht

µtnt −Ht
+

2H2
t

(µtnt −Ht)
2

)(√
ℓrobt (z1; ŵt) +

√
ℓrobt (z′1; ŵ′

t)

)2

≤

(
4Ht

µtnt −Ht
+

4H2
t

(µtnt −Ht)
2

)(
ℓrobt (z1; ŵt) + ℓrobt (z′1; ŵ′

t)
)
.
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Now we upper bound the generalization gap of RERM:

ESt∼Dnt
t

(
Lrob
Dt

(ŵt)− L̂rob
St

(ŵt)
)

=
1

2
E
St∪S′

t∼Dnt+1
t

[(
ℓrobt (z1; ŵ′

t)− ℓrobt (z1; ŵt)
)
+
(
ℓrobt (z′1; ŵt)− ℓrobt (z′1; ŵ′

t)
)]

≤

(
2Ht

µtnt −Ht
+

2H2
t

(µtnt −Ht)
2

)
E
St∪S′

t∼Dnt+1
t

[
ℓrobt (z1; ŵt) + ℓrobt (z′1; ŵ′

t)
]

=

(
4Ht

µtnt −Ht
+

4H2
t

(µtnt −Ht)
2

)
ESt∼Dnt

t

[
L̂rob
St

(ŵt)
]
.

Since task t − 1 and task t satisfy (rt, α) condition, there exists w′, s.t. ∥w′ − ŵt−1∥2 ≤ rt and
εt(w′) ≤ αεt−1(ŵt−1) hold. Now we upper bound the excess risk of RERM:

ESt [εt(ŵt)]

=ESt∼Dnt
t
Lrob
Dt

(ŵt)− L⋆
t

≤

(
1 +

4Ht

µtnt −Ht
+

4H2
t

(µtnt −Ht)
2

)
ESt∼Dnt

t

[
L̂rob
St

(ŵt)
]
− L⋆

t

≤

(
1 +

4Ht

µtnt −Ht
+

4H2
t

(µtnt −Ht)
2

)
ESt∼Dnt

t

[
L̂rob
St

(ŵt) +
µt

2
∥ŵt − ŵt−1∥22

]
− L⋆

t

≤

(
1 +

4Ht

µtnt −Ht
+

4H2
t

(µtnt −Ht)
2

)
ESt∼Dnt

t

[
L̂rob
St

(w′) +
µt

2
∥w′ − ŵt−1∥22

]
− L⋆

t

≤

(
1 +

4Ht

µtnt −Ht
+

4H2
t

(µtnt −Ht)
2

)(
Lrob
Dt

(w′) +
µt

2
∥w′ − ŵt−1∥22

)
− L⋆

t

≤

(
1 +

4Ht

µtnt −Ht
+

4H2
t

(µtnt −Ht)
2

)(
L⋆
t + αεt−1(ŵt−1) +

µt

2
r2t

)
− L⋆

t

=

(
1 +

4Ht

µtnt −Ht
+

4H2
t

(µtnt −Ht)
2

)
αεt−1(ŵt−1)

+

(
1 +

4Ht

µtnt −Ht
+

4H2
t

(µtnt −Ht)
2

)(
L⋆
t +

µt

2
r2t

)
− L⋆

t . (17)

Since µt ≥ (2+6α)Ht

(1−α)nt
,(

1 +
4Ht

µtnt −Ht
+

4H2
t

(µtnt −Ht)
2

)
α ≤

(
1 +

4(1− α)

1 + 7α
+

4(1− α)2

(1 + 7α)
2

)
α

=

(
1 +

8 + 24α

(1 + 7α)2
(1− α)

)
α

≤
(
1 +

1− α

2α

)
α =

1 + α

2
;

(
1 +

4Ht

µtnt −Ht
+

4H2
t

(µtnt −Ht)
2

)
≤
(
1 +

8Ht

µtnt
+

8Ht

µtnt

)
=

(
1 +

16Ht

µtnt

)
.

Plugging these two inequalities into equation (17), we get

ESt
[εt(ŵt)]
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≤1 + α

2
εt−1(ŵt−1) +

(
1 +

16Ht

µtnt

)(
L⋆
t +

µt

2
r2t

)
− L⋆

t

=
1 + α

2
εt−1(ŵt−1) +

8Htr
2
t

nt
+

r2t
2
µt + 16L⋆

t

Ht

µtnt

≤1 + α

2
εt−1(ŵt−1) +

8Htr
2
t

nt
+

r2t
2

(
(2 + 6α)Ht

(1− α)nt
+

1

rt

√
32HtL⋆

t

nt

)
+ 16L⋆

t

Ht(
1
rt

√
32HtL⋆

t

nt

)
nt

=
1 + α

2
εt−1(ŵt−1) +

(9− 5α)Htr
2
t

(1− α)nt
+ rt

√
32HtL⋆

t

nt

≤

√
32L⋆

tHtr2t
nt

+
9Htr

2
t

(1− α)nt
+

1 + α

2
εt−1(ŵt−1).

Taking expectation w.r.t. S1, . . . , St−1, we obtain

E [εt(ŵt)] ≤

√
32L⋆

tHtr2t
nt

+
9Htr

2
t

(1− α)nt
+

1 + α

2
E [εt−1(ŵt−1)] .

C Missing Proofs in Section 5

Lemma 5.1. Let δ ∈ (0, 1) and ϵ > 0. If nt ≥ 8r2t ρ
2
t

ϵ2

(
ln
(
2
δ

)
+m ln

(
8rtρt

ϵ + 1
))

, then with
probability at least 1− δ over the randomness of St,

sup
w:∥w−ŵt−1∥2≤rt

|L̂St
(w)− LDt

(w)− L̂St
(ŵt−1) + LDt

(ŵt−1)| ≤ ϵ.

Proof of Lemma 5.1. Define f(z;w) = ℓt(z;w)− ℓt(z; ŵt−1), then

L̂St(w)− LDt(w)− L̂St(ŵt−1) + LDt(ŵt−1) =
1

nt

nt∑
i=1

f(zi;w)− Ez∼Dtf(z;w).

From the Lipschitz assumption, if ∥w− ŵt−1∥2 ≤ rt, |f(z;w)| ≤ rtρt is bounded. From Vershynin
[2018] Chapter 4, let {v1, . . . , vK} be an ϵ

4ρt
-net of {w : ∥w − ŵt−1∥2 ≤ rt}, such that K ≤(

8rtρt

ϵ + 1
)m

. ∀vj , from Hoeffding’s Inequality, we get

PSt

(∣∣∣∣∣ 1nt

nt∑
i=1

f(zi; vj)− Ez∼Dt
f(z; vj)

∣∣∣∣∣ > ϵ

2

)
≤ 2 exp

(
− ϵ2

8r2t ρ
2
t

nt

)
.

Taking a union bound,

PSt

(∣∣∣∣∣ 1nt

nt∑
i=1

f(zi; vj)− Ez∼Dt
f(z; vj)

∣∣∣∣∣ ≤ ϵ

2
, ∀j

)
≥ 1− 2K exp

(
− ϵ2

8r2t ρ
2
t

nt

)
≥ 1− 2

(
8rtρt
ϵ

+ 1

)m

exp

(
− ϵ2

8r2t ρ
2
t

nt

)
≥ 1− δ.

If the event
∣∣∣∣ 1
nt

nt∑
i=1

f(zi; vj)− Ez∼Dt
f(z; vj)

∣∣∣∣ ≤ ϵ
2 holds for all vj , I claim

sup
w:∥w−ŵt−1∥2≤rt

|L̂St
(w)− LDt

(w)− L̂St
(ŵt−1) + LDt

(ŵt−1)| ≤ ϵ.
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∀w that satisfies ∥w − ŵt−1∥2 ≤ rt, from the definition of the net, there exists vj such that ∥w −
vj∥2 ≤ ϵ

4ρt
. Using triangle inequality,

|L̂St
(w)− LDt

(w)− L̂St
(ŵt−1) + LDt

(ŵt−1)|
≤|L̂St

(vj)− LDt
(vj)− L̂St

(ŵt−1) + LDt
(ŵt−1)|+ |L̂St

(vj)− L̂St
(w)|+ |LDt

(vj)− LDt
(w)|

=

∣∣∣∣∣ 1nt

nt∑
i=1

f(zi; vj)− Ez∼Dt
f(z; vj)

∣∣∣∣∣+ |L̂St
(vj)− L̂St

(w)|+ |LDt
(vj)− LDt

(w)|

≤ ϵ

2
+ 2ρt∥w − vj∥2 ≤ ϵ

2
+ 2ρt

ϵ

4ρt
= ϵ.

Therefore,

PSt

(
sup

w:∥w−ŵt−1∥2≤rt

|L̂St
(w)− LDt

(w)− L̂St
(ŵt−1) + LDt

(ŵt−1)| ≤ ϵ

)

≥PSt

(∣∣∣∣∣ 1nt

nt∑
i=1

f(zi; vj)− Ez∼Dtf(z; vj)

∣∣∣∣∣ ≤ ϵ

2
, ∀j

)
≥1− δ.

Theorem 5.2. For any ϵ > 0, if nt ≥ 8r2t ρ
2
t

ϵ2

(
ln
(
2
δ

)
+m ln

(
8rtρt

ϵ + 1
))

, then with probability at
least 1− δ over the randomness of St, we have εt(ŵt) ≤ 2ϵ+ αεt−1(ŵt−1).

Proof of Theorem 5.2. From Lemma 5.1, with probability at least 1− δ,

sup
w:∥w−ŵt−1∥2≤rt

|L̂St
(w)− LDt

(w)− L̂St
(ŵt−1) + LDt

(ŵt−1)| ≤ ϵ.

Since task t − 1 and task t satisfy (rt, α) condition, there exists w′, s.t. ∥w′ − ŵt−1∥2 ≤ rt and
εt(w′) ≤ αεt−1(ŵt−1) hold. Now we upper bound the excess risk:

εt(ŵt) = LDt
(ŵt)− inf

w
LDt

(w)

=
(
LDt

(ŵt)− L̂St
(ŵt)

)
+
(
L̂St

(ŵt)− inf
w

LDt
(w)
)

=
(
LDt(ŵt)− L̂St(ŵt)− LDt(ŵt−1) + L̂St(ŵt−1)

)
+
(
LDt(ŵt−1)− L̂St(ŵt−1)

)
+
(
L̂St(ŵt)− inf

w
LDt(w)

)
≤ ϵ+

(
LDt

(ŵt−1)− L̂St
(ŵt−1)

)
+
(
L̂St

(w′)− inf
w

LDt
(w)
)

= ϵ+
(
L̂St

(w′)− LDt
(w′)− L̂St

(ŵt−1) + LDt
(ŵt−1)

)
+
(
LDt

(w′)− inf
w

LDt
(w)
)

≤ 2ϵ+ αεt−1(ŵt−1).

Corollary 5.3. Assume ε1(ŵ1) ≤ ϵ. If nt ≥ 32r2t ρ
2
t

(1−α)2ϵ2

(
ln
(
2T
δ

)
+m ln

(
16rtρt

(1−α)ϵ + 1
))

, for all
t ∈ 2, . . . , T , then Algorithm 4 ensures that with probability at least 1−δ, we have that εT (ŵT ) ≤ ϵ.

Proof of Corollary 5.3. Replacing ϵ with 1−α
2 ϵ in Theorem 5.2, we know that εt(ŵt) ≤ (1− α)ϵ+

αεt−1(ŵt−1) holds with probability at least 1− δ
T . Taking a union bound, with probability at least

1 − δ, εt(ŵt) ≤ (1 − α)ϵ + αεt−1(ŵt−1) holds for every t. We can use induction to prove that
εt(ŵt) ≤ ϵ.
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D Additional Experimental Results

D.1 Regression

We consider three regression tasks T1, T2, T3, where T3 is the target task. The data of the tasks are
vectors in Rd with d = 1000. Set µ1 = (1, 0, . . . , 0)⊤, µ2 = (1.5, 0, . . . , 0)⊤, µ3 = (2, 0, . . . , 0)⊤.
The underlying distributions of the three tasks are D1 = N (µ1, Id),D2 = N (µ2, 3Id),D3 =
N (µ3, 10Id). For any example z and weight vector w, the squared loss is defined as ℓ(w, z) =
∥w − z∥2. Since we are using a constant vector w to predict every input, the three formulated
tasks are equivalent to three mean estimation problems. We solve the three tasks using regularized
ERM. Set ŵ0 = 0. For each task, we incorporate an ℓ2 regularization term into the empirical risks,
λ∥wt−ŵt−1∥2, where ŵt−1 represents the optimal weights learned from the previous task t−1. For
the mean estimation of N (µ, σ2Id), the regularization parameter is set as λ = dσ2

n∥µ−ŵt−1∥2 directly
without using validation, where n is the sample size of the current task. Here λ is set to minimize
the test loss in expectation. We fix the sample size n1 = n2 = 1.5K for the first two tasks. We
choose different sample size of the target task n3 and demonstrate the statistical benefit of our cur-
riculum. We compare six different training methods: learning T3 directly using ERM; learning T3

directly using RERM; learning T1, T3 sequentially; learning T2, T3 sequentially; learning T2, T1, T3

sequentially; and learning T1, T2, T3 sequentially. Table 2 and Figure 3 report the averaged test loss
∥ŵ−µ3∥2 for all training methods over 5M repetitive runs. Our results show that learning an easier
task before solving the target task T3 leads to a smaller expected risk compared with solving T3 di-
rectly. The curriculum that learns T1, T2, T3 sequentially achieves the smallest expected risk among
all methods.

n3 T3(ERM) T3(RERM) T1+T3 T2+T3 T2+T1+T3 T1+T2+T3

1K 10.000 2.857 1.803 1.677 1.329 1.326
2K 5.000 2.222 1.528 1.436 1.173 1.171
3K 3.333 1.818 1.325 1.255 1.050 1.048
4K 2.500 1.538 1.170 1.115 0.950 0.948
5K 2.000 1.333 1.047 1.003 0.868 0.866
6K 1.667 1.176 0.948 0.912 0.798 0.797
7K 1.429 1.053 0.866 0.836 0.739 0.738
8K 1.250 0.952 0.797 0.771 0.688 0.688
9K 1.111 0.870 0.738 0.716 0.644 0.643
10K 1.000 0.800 0.687 0.668 0.605 0.604
11K 0.909 0.741 0.643 0.626 0.571 0.570
12K 0.833 0.690 0.604 0.589 0.540 0.539
13K 0.769 0.645 0.570 0.557 0.512 0.512
14K 0.714 0.606 0.539 0.527 0.487 0.487
15K 0.667 0.571 0.512 0.501 0.465 0.464
16K 0.625 0.541 0.487 0.477 0.444 0.444
17K 0.588 0.513 0.464 0.455 0.425 0.425
18K 0.556 0.488 0.444 0.435 0.408 0.407
19K 0.526 0.465 0.425 0.417 0.392 0.391
20K 0.500 0.444 0.407 0.401 0.377 0.377
Table 2: Test loss of different training methods under different sample size n3.

D.2 More Details on Synthetic Datasets Experiment

Here we provide more contents regarding the synthetic dataset experiment as described in Section 6.
We aim to investigate whether leveraging curriculum learning can improve the performance of large-
margin classifiers when dealing with separable data. The motivation is rooted in the intuition that
if we can distinguish between data points that are easy versus hard to classify, we may benefit from
a curriculum learning strategy. Specifically, by first training on easy-to-classify points to learn an
initial model and then fine-tuning using harder examples, we hypothesize that the model can better
generalize to challenging tasks.
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Figure 3: Test loss as a function of the sample size n3.

To test this hypothesis, we consider a binary classification task where data is drawn from a mixture
of two distributions, D1 and D2. Each distribution is defined as a two-centered Gaussian in Rd with
dimension d = 100. For each distribution Di, i ∈ {1, 2}, the two centers are located at the origin
and at [γ, 0, . . . , 0]T , with the spread determined by the Gaussian noise standard deviation σ. We
generate 1K training samples from each distribution. Distribution D1, with γ = 3 and σ = 0.5,
is considered “easy” due to its large margin and low variance. In contrast, D2 is constructed as a
"hard" distribution, with parameter γ ∈ [0.1, 0.5, 1.0, 2.0] and σ ∈ [0.5, 1.0, 1.5, 2.0]. Additionally,
we generate 400 validation samples and 400 test samples from D2.

We train the linear model using both logisitic loss and hinge loss, and optimize it with gradient
descent for 2K epochs, using a learning rate selected from {0.001, 0.01, 0.05, 0.1, 0.5, 1.0}. No
regularization is applied when training the easy distribution D1. When fine-tuning on training dataset
from D2, we incorporate an ℓ2 regularization term into the loss functions, λ∥w2−ŵ1∥2, where ŵ1 is
the optimal model weights from previous training and the regularization parameter λ is selected from
the set {10−5, 10−4, 10−3, 10−2, 10−1, 1, 10}. Experiments are repeated 10 times, and we report
the mean test accuracy along with standard deviation in Figure 4. Our results show that curriculum
learning consistently outperforms the baseline, indicating that starting with an easier task facilitates
learning on the more challenging target task. Furthermore, the harder the target task (characterized
by a smaller margin and larger standard deviation), the more significant the improvement achieved
through curriculum learning.

(a) Logistic Loss

(b) Hinge Loss

Figure 4: Test accuracy as a function of standard deviation for different margin γ.
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D.3 More Details on Adversarial Training Experiments

We provide additional details and results on evaluating curriculum adversarial training with ℓ2
regularization on MNIST dataset. We consider adversarial examples generated using both ℓ∞-
norm perturbation (with budgets α ∈ {0.1, 0.2, 0.3, 0.4}) and ℓ2-norm perturbation (with budgets
α ∈ {1.0, 2.0, 3.0, 4.0}). All adversarial examples are generated using 10-step PGD with a step size
of α/5. We hold out 20% of the training data as a validation set and use 10-step PGD adversarial
examples, crafted with the same perturbation budget α, for hyper-parameter tuning and model se-
lection. No regularization is used for t = 1. From t ≥ 2, we incorporate ℓ2 regularization of the
form λ∥wt − ŵt−1∥2, where ŵt−1 is the previous model and λ ∈ {10−5, 10−4, 10−3, 10−2}. We
use previous model ŵt−1 as initialization for t. The setting has been described in Section 6. We
report both standard and robust test accuracy under PGD attacks of size α over three repetitive runs
in Table 3 for ℓ∞-attacks and Table 4 for ℓ2-attacks. We observe that curriculum adversarial training
maintains performance for small α and provides improvements for larger α (α ≥ 0.3 for ℓ∞-attacks
and α ≥ 3.0 for ℓ2 attacks).

α
T 1 2 3

nat acc pgd acc nat acc pgd acc nat acc pgd acc
0.1 99.18±0.07 96.07±0.02 99.27±0.07 95.65±0.18 99.36±0.03 95.74±0.14
0.2 98.80±0.03 94.73±0.22 98.86±0.15 94.60±0.93 98.67±0.05 94.38±0.23
0.3 98.27±0.46 92.77±1.20 98.77±0.15 94.74±0.12 98.23±0.15 93.61±0.87
0.4 11.35±0.00 11.35±0.00 98.39±0.29 95.54±0.41 98.52±0.14 95.63±0.12

Table 3: Standard (nat acc) / robust (pgd acc) accuracy under ℓ∞ PGD attack of size α (MNIST).

α
T 1 2 3

nat acc pgd acc nat acc pgd acc nat acc pgd acc
1.0 99.32±0.05 94.53±0.16 99.26±0.05 94.44±0.03 99.37±0.04 93.99±0.39
2.0 98.38±0.13 76.23±0.39 98.51±0.10 76.04±0.30 98.40±0.08 76.56±0.27
3.0 94.35±0.70 52.11±0.60 94.87±0.30 52.53±0.35 94.06±1.29 52.65±0.86
4.0 89.12±2.79 31.47±0.41 87.62±1.53 31.93±0.94 84.55±1.35 32.00±0.80

Table 4: Standard (nat acc) / robust (pgd acc) accuracy under ℓ2 PGD attack of size α (MNIST).

D.4 Noisy MNIST

We construct a noisy MNIST dataset by adding Gaussian noise to each example, sampled from the
distribution N (0, σ2I784). Our goal is to find a model that perform well on the noisy MNIST test
data. To perform curriculum learning, we manually categorize the digits into four groups: [1,4,7],
[3,8,0], [6,9], [2,5] and create four tasks as follows: 1). train on digits [1,4,7]; 2). train on digits
[1,4,7]∪[3,8,0]; 3). train on digits [1,4,7]∪[3,8,0]∪[6,9]; 4). train on all digits. The reason for
selecting these categories is based on the visual similarity in the shape of the digits.

We consider three different architectures: a linear model, a two-layer ReLU network with a hidden
width of 100, and a convolutional neural network (CNN). The CNN consists of two convolutional
layers followed by max-pooling and two fully connected layers with ReLU activations. The first
and second convolutional layers have [input channel, output channel, kernel size] = [1, 10, 5] and
[10, 20, 5], respectively. The first and second fully connected layers have dimensions [320, 100]
and [100, 10], respectively. For each task, we train the model using cross-entropy loss and opti-
mize it with stochastic gradient descent (SGD) for 200 epochs, using a batch size of 128 and a
learning rate selected from {10−4, 10−3, 10−2, 10−1}, with a weight decay of 10−4. No regular-
ization is applied during the first task. From the second task onward, we incorporate an ℓ2 regu-
larization term into the loss functions, λ∥wt − ŵt−1∥2 for task t ≥ 2, where ŵt−1 represents the
optimal model weights from the previous task t − 1. The regularization parameter λ is selected
from {10−5, 10−4, 10−3, 10−2, 10−1, 1}. We randomly set 20% of the training data aside as the
validation set and use the validation accuracy to select the optimal hyperparameters for each task
and to determine the best-performing model checkpoint. The optimal model weights from task t− 1
are used both to initialize model training and as the reference point for the ℓ2 regularizer in task
t. Table 5 reports the averaged results over three runs, including standard deviations. Our results
demonstrate that curriculum learning consistently outperforms the baseline, particularly when the
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noise level σ is higher. This indicates that curriculum learning is especially beneficial in more chal-
lenging settings where the data is noisier.

Model σ Baseline Curriculum

Linear
0.0 92.04±0.05 92.34±0.10
1.0 68.93±0.63 70.69±0.38
2.0 42.18±0.65 44.63±0.29

Two-layer ReLU
Network

0.0 97.87±0.14 97.85±0.05
1.0 80.55±0.24 81.26±0.13
2.0 45.79±0.91 46.43±0.26

Convoluted Network
0.0 99.00±0.06 99.04±0.04
1.0 84.48±0.29 85.08±0.11
2.0 46.66±0.65 48.33±0.15

Table 5: Accuracy on the σ-noisy test data under different σ and different model architectures.
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NeurIPS Paper Checklist

A. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We listed our contributions in the introduction and proved our claims from
Section 3 to Section 5 in the main paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

B. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discussed the limitations and future directions in the Conclusion
section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

C. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The paper provide the full set of assumptions and a complete and correct
proof for each theoretical result. Please see Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
D. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include the details of our datasets and our algorithms when describing our
experiments. We repeated each experiments for multiple times and compared the results in
detail.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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E. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We attach the code of our experiments in the supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

F. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All training details and the choice of hyperparameters are included in the
experiment section.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

G. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We run each experiment for multiple runs and make comparisons between the
standard training and training with the curriculum.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

32

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

H. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments are conducted on a single V100 GPU.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

I. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This is a theoretical paper, and to the best of our knowledge, it respects every
of the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

J. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This is a theoretical paper. We focused on solving our problem, but the
problem domain itself has a potential for positive societal impacts, where our techniques
can facilitate learning the problem efficiently.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

K. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This is a theoretical paper. The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

L. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: This is a theoretical paper. The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

M. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: This is a theoretical paper. The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

N. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: This is a theoretical paper. The paper does not involve crowdsourcing nor
research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

O. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

P. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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