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Abstract

Curriculum learning has emerged as an effective strategy to enhance the training
efficiency and generalization of machine learning models. However, its theoret-
ical underpinnings remain relatively underexplored. In this work, we develop a
theoretical framework for curriculum learning based on biased regularized empir-
ical risk minimization (RERM), identifying conditions under which curriculum
learning provably improves generalization. We introduce a sufficient condition
that characterizes a “good” curriculum and analyze a multi-task curriculum frame-
work, where solving a sequence of convex tasks can facilitate better generalization.
We also demonstrate how these theoretical insights translate to practical benefits
when using stochastic gradient descent (SGD) as an optimization method. Beyond
convex settings, we explore the utility of curriculum learning for non-convex tasks.
Empirical evaluations on synthetic datasets and MNIST validate our theoretical
findings and highlight the practical efficacy of curriculum-based training.

1 Introduction

In standard supervised learning, achieving a low generalization error often requires a large num-
ber of labeled training examples and significant computational resources. In contrast, humans can
rapidly learn new concepts from only a few examples by leveraging prior knowledge. This human-
like ability to relate new a new concept to the knowledge they have previously learned motivates the
use of prior knowledge in a new learning problem. In paradigms such as multi-task learning [Caru-
ana, 1997], transfer learning [Weiss et al., 2016], and meta-learning [Baxter, 2000], the assumption
is that related tasks share information, allowing learners to generalize more effectively. In param-
eter transfer frameworks [Kuzborskij and Orabona, 2013, Pentina and Lampert, 2014], this shared
structure is reflected in the assumption that tasks have similar optimal parameter vectors, enabling
efficient learning through initialization and fine-tuning.

Curriculum learning [Bengio et al., 2009] draws inspiration from the structured manner in which hu-
mans acquire knowledge — starting with easier concepts and gradually progressing to more difficult
ones. This paradigm proposes decomposing complex learning problems into a sequence of simpler
sub-tasks ordered by increasing difficulty. The central idea is that such a learning progression can
improve both optimization and generalization. Bengio et al. [2009] demonstrated how learning can
benefit from gradual progression of the hardness of training data. Subsequent works extend the idea
to other aspects of learning, such as increasing model capacity [Karras et al., 2017, Sinha et al., 2020,
Morerio et al., 2017] and increasing task difficulty [Caubriere et al., 2019, Florensa et al., 2017, Lot-
ter et al., 2017, Sarafianos et al., 2017, Zhang et al., 2017]. We focus on curriculum learning across
tasks, where parameters are transferred from simpler tasks to more complex ones.

In contrast to traditional transfer learning, which assumes all tasks are closely related, cur-
riculum learning introduces an ordering over tasks based on their difficulty. However, such
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an ordering does not imply that all tasks are mutually similar. In fact, strong similarity
is often limited to adjacent tasks [Pentina et al., 2015]. Accordingly, we assume that only
pairs of consecutive tasks are related, allowing for progressive knowledge transfer. This
setup accommodates scenarios where the first and last tasks may be significantly different,
as long as each intermediate step is incrementally learnable. Figure 1 illustrates this struc-
ture, where successive tasks exhibit similar loss landscapes and closely aligned minimizers.

Curriculum learning offers both optimization and statis-

tical benefits. From an optimization perspective, con-

tinuation methods [Allgower and Georg, 2012] progres-

sively increase problem difficulty—starting with convex,

smooth objectives and transitioning to more challeng-

ing nonconvex or nonsmooth objectives—thus helping

the learner avoid poor local minima. Similarly, curric- Figure 1: An illustration of potential rela-
ula that score training samples by difficulty [Weinshall ~tionship between tasks in a curriculum.
etal., 2018, Weinshall and Amir, 2020] show improved

convergence when training begins on simpler examples.

Self-paced learning [Kumar et al., 2010] adapts this idea by dynamically weighting training sam-
ples based on their inferred difficulty during training. On the statistical side, recent works [Xu and
Tewari, 2022, Cohen et al., 2024] study the benefits of curriculum learning in simplified settings
such as mean estimation. They show that, under appropriate conditions, learning from an easier and
statistically similar source task can reduce the number of samples required to learn a target task.

In this paper, we extend previous insights to broader supervised learning problems by studying the
statistical benefit of curriculum learning in the multitask setting, with a focus on the general learning
setting of Vapnik [2013]. We propose a curriculum learning framework based on biased regularized
empirical risk minimization (RERM)[Scholkopf et al., 2001, Denevi et al., 2019], where knowledge
transfer is facilitated by incorporating a bias vector wy in the regularization term A||w — wo||?. This
inductive bias has proven effective in computer vision [Kienzle and Chellapilla, 2006, Tommasi
et al., 2013], natural language processing [Daumé III, 2009], meta-learning [Pentina and Lampert,
2014, Kuzborskij and Orabona, 2017, Denevi et al., 2019, 2018], and continual learning [Li et al.,
2023]. We extend this idea to design a curriculum across tasks and provide theoretical and empirical
support for its effectiveness. Our key contributions are as follows.

1. We propose a biased regularization-based curriculum framework (Algorithm 1) and introduce a
novel (7, @) condition that characterizes a ‘good’ curriculum. This condition is simple, natural,
intuitive, and depends only on the population loss of two consecutive tasks. We show that it
ensures reduced sample complexity for subsequent tasks when 7 is small.

2. Under convexity assumptions, we provide excess risk bounds for our biased-RERM approach to
curriculum learning. We show that the hardness of curriculum learning depends on the Lipschitz
constants of the loss functions for each task, the local Lipschitz constants near the minimizer,
the smoothness parameter of the loss function, and the quality of inductive bias obtained from
learning previous tasks. These factors also determine the order of the tasks in a ‘good’ curriculum.
We extend our analysis to efficient SGD-based training and apply our results to adversarially
robust learning.

3. For nonconvex learning problems, we introduce an ERM-based curriculum learning algorithm
and establish generalization guarantees via uniform convergence, showing that even in nonconvex
settings, a carefully constructed curriculum can improve learning efficiency.

Paper Organization. In Section 2, we present the formal setup and define the (r, ) condition
for a ‘good’ curriculum. Section 3 analyzes the role of biased regularization in a two-task setting.
Section 4 provides theoretical guarantees for convex tasks using biased RERM and SGD. Section 5
extends our framework to nonconvex tasks using ERM. Section 6 presents empirical results on
synthetic and real datasets that validate our theoretical findings.



2 Problem Setup

Notation. Throughout, we denote scalars, vectors, and matrices with lowercase italics, lowercase
bold, and uppercase bold Roman letters, respectively; e.g., u, u, and U. We use [m] to denote the set
{1,2,...,m} and both || - || and || - ||2 for 3-norm. We use the standard O-notation (O, © and (2).

General Learning Problem. In a general learning problem, each example z is drawn from a data
domain Z; for instance, for standard supervised learning, Z = X x ), where X’ is the input space
and ) is the output space. We assume that data are drawn i.i.d. from an unknown distribution D over
Z. The learner has access to a training dataset S = {z;}7_; ~ D" consisting of n i.i.d. samples.
Let H denote the hypothesis class, where each hypothesis is parameterized by a vector w € R™.
Let £ : Z x H — R denote the loss function. The population risk with respect to the underlying
population, D, and the empirical risk on a sample S ~ D™ are defined, respectively, as

Lo(Ww) = Eppll(zw)],  Ls(w) = ﬁ Stz w).
z€S

A learning algorithm A : Z* — 7 maps any dataset S to a hypothesis A(S) € H. The goal is to
design a learning algorithm with minimal excess risk defined as e(w) := Lp(w) — infy ey Lp(W').
We consider the following classes of problems based on the structural properties of the loss function.

 Convex: The learning problem is convex if £(z, w) is convex in w for every z.

« Strong Convexity: The problem is A-strongly convex if £(z, w) — %||w||3 is convex.

* Weak Convexity: The problem is [-weakly convex if £(z;w) + L[|w||3 is convex in w.

* Lipschitz: ¢(-,-) is p-Lipschitz if, for all wy, wo € H, |l(z;w1) — £(z; wa)| < p ||[w1 — wa|2.
Smooth: ¢(-,-) is H-smooth if Yw1,wa € H, ||Vwl(z; W1) — Vyl(z; wWa)|l2 < H [[w1 — walla.

Biased RERM. Regularized empirical risk minimization (RERM) is a popular learning algorithm
known for its strong generalization performance. In its standard form, RERM returns a predictor

A(S) € argmin, Ls(w) + £||w||3, where y > 0 is a regularization parameter that encourages
low-norm solutions to prevent overfitting. We consider a variant called biased RERM, which returns

A(S) € argmin Ls(w) + & lw — wol 3, (M
weH

where wg € R™ is a reference hypothesis that serves as an inductive bias. The regularization term
now encourages solutions close to wy, which can be interpreted as incorporating prior knowledge
into the learning. We can benefit from biased RERM if there exists a good predictor near wy.

Multi-task Curriculum. We consider a curriculum consisting of 7" distinct tasks. For each ¢ €
[T], the t-th task is defined by a specific loss function ¢;(z; w) and an associated unknown data
distribution D, over the sample space Z. Both the loss functions and data distributions may differ
across tasks, capturing scenarios such as regression followed by classification, or variations in label
semantics or data modalities. For each task ¢ € [T], we draw an i.i.d. sample of size n; from the
corresponding distribution, Sy ~ Dj**. The population and empirical risks for task ¢ are defined as

Lp, (W) == E,up,[le(z;w)],  Ls,(w):= ni > bz w).
t z€Sy

The excess risk for task ¢ is given by &;(w) := Lp,(w) — infys ey Lp,(w'). The goal of curricu-
lum learning is to learn the target task 7' by sequentially training on all 7' tasks, while leveraging
knowledge from earlier tasks to improve generalization on the final target task. In this paper, we
focus on curriculum learning wherein each task is solved via biased RERM. Specifically, we use the
solution from task ¢ — 1 to initialize (aka, regularize) the learning of task ¢. This is done through a
bias function ¢; that maps the learned hypothesis w;_; from the previous task to a bias vector for
the current task. For simplicity, we assume ¢; is the identity map, i.e., the bias for task ¢ is directly
given by w;_ 1. However, our framework naturally extends to more general settings where each task
t may have its own hypothesis class H;, and the bias function ¢, : H;_1 — H, bridges the learned
hypothesis from task ¢ — 1 to a suitable inductive bias for task ¢. This sequential procedure using
biased RERM across tasks is formalized in Algorithm 1.



Algorithm 1 Biased Regularization-based Curriculum Learning

Input: Wo, Sl,...,ST, Uiyeooypur > 0.
\/X\lo = Wp.
fort=1,2,....,T do
W, € argmin (Est (W) + & w — wt_1||§).
w
end for
return: Wr.

(r, ) Condition of the Curriculum. To effectively apply biased RERM to task ¢, we require
a good bias ¢;(W,_1), i.e., a previous solution close to a good predictor for the current task after
mapped onto H;. Since W;_1 is obtained by learning task ¢ — 1, this requires that consecutive tasks
be similar enough for the prior solution to be informative. We formalize this similarity using the
(r¢, at) condition, which relates the excess risks of two consecutive tasks. Specifically, we assume
that

inf ee(W) < ouer_1(W), 2
wrilor— B e, (W) S @21 (W) )

for some constants 7; > 0 and «; € (0, 1). When this condition holds, we say that tasks ¢ — 1 and
t satisfy the (ry, ay) condition. We will assume ¢ is the identity mapping only for simplicity in our
core theorems.

Intuitively, this condition means that if a predictor w has small excess risk on task ¢ — 1, then there
exists a predictor w’ within a ball of radius 7, centered at w, with excess risk at most ;¢ on task .
Thus, a solution to task ¢ — 1 can serve as a useful initialization or inductive bias for task ¢.

We note that since the scale of the loss functions is arbitrary, one can always apply affine rescaling to
them so that «; is the same across all tasks. Therefore, for simplicity, we assume «; = « € (0, 1) V.
In practice, we do not rescale losses across tasks. But for theoretical clarity, assuming a constant
a < 1 allows us to streamline the presentation of our results without loss of generality. If needed, our
theorems could be extended to carry task-dependent «; values throughout. Further, we emphasize
that we do not need condition (2) to hold for all w € R™. Since we initialize the learning for task ¢
with a predictor that generalizes well on task ¢ — 1, it suffices if (2) holds for w with ¢;_1(w) < ¢
for sufficiently small € € (0, 1). However, we may need to set e differently for different settings. So,
for convenience, and without loss of generality, we state the condition as in (2).

3 Warm-up: Curriculum Learning with Two Tasks

In this section, we illustrate the role of biased RERM in curriculum learning by analyzing a simple
setting with only two tasks, i.e., T' = 2. The goal is to learn the second (target) task by first learning
the first (source) task. Let wi € argmin,, Lp, (W), wi € argming, Lp,(w) denote the optimal
predictors for the two tasks. We assume that the first task is A-strongly convex with gradients
uniformly bounded at the optimum: ||V ¢1(z; w7)||2 < p1, ¥z € Z. Second task is pa-Lipschitz.

The curriculum solves the first task using empirical risk minimization (ERM), and the second task
using biased regularized ERM. This procedure is described in Algorithm 2.

Algorithm 2 Warm-up: A Two-task Curriculum

Input: 54,55, pus > 0.
Wi = argminy, Lg, (W).
Wy = argmin,, <L5‘2 (W) + B [lw — Wl”%)

return: wo.

2p2

T , we have
2~ Will2 T X 7wy ) V2

Theorem 3.1. If the second task is convex, then setting py =

E [2(2)] < 222 (Jlws — willa + 5255 )-
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Theorem 3.2. If the second task is /-weakly convex, then setting po = [ + (

2
we have E [£2(W2)] < \2/% (Hw§ —will2 + /\\p/ln—l) +4 (Hw§ —will2 + %ﬁ) .

Theorems 3.1 and 3.2 show that curriculum learning can achieve a fast generalization rate for the
target task under a mild similarity assumption—specifically, when the optimal solutions of the two
tasks, wi and w3, are close. This proximity ensures that a hypothesis learned from the simpler
first task (i.e., strongly convex) can serve as an effective bias for the more challenging second task.
Importantly, the excess risk bound for the second task reflects this structure: it improves as the
distance between w7} and w3 decreases and achieves a fast rate as the first task is easier to learn.

The regularization parameter po in both theorems is chosen to optimize the theoretical bound and
depends on unknown problem-specific quantities. These values are thus not intended for practical
implementation. In practice, po should be treated as a tunable hyperparameter, selected via valida-
tion or cross-validation. Nonetheless, the analysis reveals that a two-phase curriculum strategy—
first solving a well-behaved source task, then regularizing toward its solution can yield statistically
significant gains in sample efficiency for the target task.

4 Curriculum Learning with Multiple Convex Learning Tasks

In this section, we consider a curriculum comprising 1" convex learning tasks that are learned sequen-
tially. Our goal is to demonstrate the role of the (7, @) condition in facilitating efficient learning of
the target (i.e., the T'") task. Here, we focus on convex learning problems (with additional structure,
e.g., Lipschitzness, smoothness, and non-negativity). We first provide theoretical guarantees for
biased RERM under this setup (Section 4.1), then extend the analysis to computationally efficient
variants such as SGD (Section 4.2) and settings where tighter bounds can be obtained by leveraging
local geometry (Section 4.3). We relax the convexity assumption in Section 5.

4.1 Learning Convex Lipschitz Tasks using Biased RERM

We assume that each task ¢ € [T'] in the curriculum is a convex learning problem with a p;-Lipschitz
loss function. Furthermore, we assume that every pair of consecutive tasks (¢ — 1,¢) satisfies the
(r¢, &) condition for some constants r; > 0 and o € (0,1). We use the biased RERM algorithm
described in Algorithm 1 for curriculum learning. To highlight the benefit of the curriculum, we
begin by analyzing two consecutive tasks: task ¢ — 1 and task .

Theorem 4.1. Suppose task ¢ is convex and p;-Lipschitz, and the (r;, &) condition holds between

tasks (¢ — 1,¢). Then, setting p; = Tf% yields the following excess risk bound:

2ript
VALl

E [St(\/ﬂ\/t)] < + aE [Et—l(\/{/t—l)} .

The result above shows that if r; is a small constant, then using w;_ as the bias in biased RERM
leads to a smaller sample complexity for learning task ¢. A natural setting where this occurs is when
the minimizers of successive tasks are close. For example, in large language models (LLMs), task
t—1 can represent a pretraining phase that yields a model w;_1 close to the minimizer of many related
downstream tasks. If task ¢ is such a downstream task and its minimizer is close to that of task ¢t —1,
then a small perturbation of w;_; yields a good predictor for task ¢. In this case, a small value of r;
is justified, and the sample complexity required to generalize on task ¢ is correspondingly small.

Proof Sketch. To upper bound the excess risk £¢(W;), we begin by decomposing it as follows:
Es, [e+(Wt)] =Es, [Lp, (Wi)] — inf Lp, ()
—Es,[ Lo, (1) = Ls, (%) |+ Es,| s, (W) = Ls, (W) |+ Lo, (W) — inf Lo, (w)](3)

where w’ is any hypothesis independent with S;. By the (7, ) condition, there exists w, s.t. ||w’ —
Wi_1|l2 < 7y and g4(w') < agy—1(Wy_1) hold. Hence, the third term in the decomposition can be



upper bounded by Lp, (w') — inf Lp,(w) < aey—1(W;_1). Next, consider the second term. Using
w
the definition of biased RERM, we have:

Es, [Ls, () = Ls,(w)| < Es, |[Ls, (W) + LI = S 3 - L, (w)]
2
~ ~ ~ T
< Es, [Ls. (W) + EHW = @} - Is, ()] < 2.

where the second inequality follows from the optimality of w; under biased RERM and the final
inequality uses the assumption |wW' — Wy_1]|2 < 4.

Finally, we consider the first term in the decomposition: Eg, [Lpt (W,) — Lg, (vAvt)} — the general-

ization gap. Using the uniform stability results from Shalev-Shwartz and Ben-David [2014], and
noting that the loss function is convex and p;-Lipschitz, the generalization gap can be bounded by

~ 2
Es, Lp, (W) < Eg, Lg, (W) + igjt . Putting the three terms together and optimizing the bound w.r.t.
¢ to minimize the sum of the first two terms yields the upper bound stated in Theorem 4.1. ]

Corollary 4.2. Assume the first task is learned with excess risk E [e1(W1)] < e. Set the regulariza-

2 2
tion parameter to p; = Tf” = and suppose the sample size n; > (14aﬁ Then, for all tasks ¢, the

excess risk is bounded as E [e;(W;)] < e.

In the above Corollary 4.2, we assume that the first task is sufficiently easy to learn to a small excess
risk. This can be achieved, for example, by choosing a strongly convex learning problem, using a
large number of samples, or initializing from a high-quality pretrained model.

However, requiring e-suboptimality for all tasks may be unnecessarily strict, especially when our
goal is only to achieve small excess risk on the final target task. Instead, Theorem 4.1 allows us to
ensure that the excess risk forms a decreasing sequence across tasks, culminating in a final bound of
e only for the target task 7'. This motivates the next corollary.

Corollary 4.3. Suppose the first task is learned to excess risk E [e1(W1)] < €;. Set the regularization

parameter as fi; = - \/77* and assume the sample size satisfies n; > ((1(1)64%) . Then, for

every task t, we have IE [g,(W;)] < €1 ((’7“) N

Since o < 1, the bound €; (O‘“) " decreases with ¢. This decay allows smaller sample complexity
for earlier tasks in the curriculum and, correspondingly, the use of larger regularization parameters
. Larger u; yields strongly convex objectives with larger strong convexity parameters and thereby
improving the computational efficiency of learning.

4.2 Learning Lipschitz Convex Losses with SGD

We show that, instead of using biased RERM, one can apply stochastic gradient descent (SGD) with
a carefully chosen learning rate to achieve the same excess risk bound as in Theorem 4.1. The SGD
procedure for task ¢ is described in Algorithm 3.

Algorithm 3 SGD for task ¢
Input: wo = Wy_1, St = {21,...,2n,},mt > 0.
fork=1,2,....,n; do

Wi = Wi—1 — Nt Vil (Wp—1; Z1).
end for

ng—1
return: Wy = n% > Wi

For simplicity, we analyze the case of two consecutive tasks, t — 1 and ¢, as in Section 4.1.

Theorem 4.4. Suppose task ¢ has a p;-Lipschitz convex loss function and satisfies the (7, @) con-
dition with task ¢ — 1. Choosing the learning rate n; = the excess risk of SGD satisfies

pW’
~ T
Efee(W1)] < “EL + B [e-1(Wi-1)].

N



The bound above matches the result in Theorem 4.1, and thus all subsequent corollaries carry over
to this setting. Crucially, the use of SGD offers computational advantages: it is an efficient single-
pass algorithm and updates the model using only one example at a time. This makes it particularly
appealing in large-scale or streaming settings, while still benefiting from the curriculum structure.

4.3 A Tighter Bound via Leveraging the Local Lipschitz Constant

To obtain a sharper excess risk bound, we refine our analysis to leverage local Lipschitz constant
around the minimizers. Specifically, we define a local Lipschitz constant p; over the set of predictors
w with excess risk at most &;. The intuition is that since the final hypothesis w; is expected to
achieve small excess risk, it may suffice to control the gradient magnitude only in this restricted
region—leading to a potentially smaller constant p; < p;. Formally,

0l (z;w)

o “

pt > sup  sup

z wigg(wW)<&

,
Theorem 4.5. Choosing p; appropriately, the excess risk of curriculum learning satisfies

- 2r (o 6ri(pi—pi) |, 1t
E < ==

[er(We)] < N </0t (= a)E g +—
We note that Theorem 4.5 recovers Theorem 4.1 as a special case by setting p, = p,. However, a
meaningful improvement can be obtained when n; is large and p; < p;. In such cases, the upper
bound ~ %ﬁt + 1+TC‘IEZ [e+—1(W¢—1)]. Moreover, the bound depends on both &; and p;. Since

E [c‘?t_l (\/i/t—l)] .

pt = pt(&4) can be interpreted as a non-decreasing function of &; (by definition in (4)), one can
6ry (l’?_ﬁf)

(= e This offers an

minimize the overall upper bound by balancing the two terms: p; and
additional degree of flexibility in tightening the excess risk bound.

4.4 Learning Smooth and Nonnegative Convex Losses with Biased RERM

In this section, we assume that the loss functions satisfy smoothness, rather than Lipschitz continuity.
Specifically, we assume that for all z, the loss function ¢,(z; w) of task ¢ is convex, nonnegative, and
H;-smooth with respect to w € R™. Moreover, tasks ¢ — 1 and ¢ satisfy the (r, @) condition for
constants 7 > 0 and a € (0, 1). Let L} = inf,, Lp, (w). As in earlier sections, we employ biased
RERM to learn each task and focus our analysis on two consecutive tasks.

246a)H; 1 [32H,

Theorem 4.6. Setting the regularization parameter p; = max{ ((1_a)nt e ntL? }, we have

32L§Htrt2 n 9Ht7"t2 1+«

Ele (W) < ny (1—a)n, 2

E [Et—l(wt—l)} .

The proof closely mirrors the argument used in Theorem 4.1, relying on the same excess risk de-
composition from equation (3). The second and third terms in the decomposition are bounded using
the same techniques as before. For the first term—the generalization gap—we apply a stability-based
argument for smooth, nonnegative losses. Specifically, from standard results on uniform stability for

pene+Hye

2
Ht"t_Ht) Es, Ls,(W:) as long as pgng > Hy.

smooth objectives, we obtain Eg, Lp, (W) < (
Theorem 4.6 provides an optimistic rate for smooth convex losses. In the realizable case where
L} = 0, we obtain a fast rate of O(1/n;). Note that for this result to hold, the loss function must be
well-defined over the entire domain w € R™. Similar to Theorem 4.1, the benefit of the curriculum
becomes evident when each r, is small, enabling significant gains in sample efficiency. Even in
the absence of a curriculum, this analysis yields an optimistic bound by replacing r; with a larger
constant. Thus, incorporating curriculum learning never worsens the sample complexity (up to the
parameters 7; and «), and often leads to notable improvements.

While our analysis thus far has focused on multi-task curricula, the framework naturally extends to
the single-task setting. Suppose we are given a single learning task and aim to construct an effective
curriculum within its dataset. One strategy is to begin training on a subset of “easy” examples—those



for which the loss is small-and then gradually incorporate the full training distribution. This aligns
with the original motivation behind curriculum learning [Bengio et al., 2009], where the learner is
first exposed to simpler examples and then to increasingly complex ones.

From Theorem 4.6, the excess risk bound depends on the regularization radius r, transferability
parameter «, smoothness H;, and the optimal population loss L}. We therefore aim to identify a
subset of training examples that satisfies two goals: (1) the resulting subtask is similar to the original
task in the sense that the pair satisfies a (r, «) condition with small r and ¢, and (2) the subtask has
a smaller optimal risk L}, thereby reducing the sample complexity required to learn it.

Practically, this involves selecting a ‘good’ subset of the training data—i.e., a collection of examples
with low loss values under an initial model-to define an auxiliary task. The learner can then solve
this easier task first and use the resulting solution as a bias to efficiently solve the full task. This
strategy mirrors the continuation principle embedded in curriculum learning: leveraging simple
concepts as stepping stones to learn more complex ones. This idea is confirmed by Saglietti et al.
[2022] and Abbe et al. [2023]. They considered specific settings and selected sparse data and low
noise data as the ‘good’ subset.

5 Curriculum Learning without Convexity

Deep learning has become the cornerstone of recent advances in artificial intelligence and ma-
chine learning, powering state-of-the-art performance across domains such as vision, language, and
robotics. At the heart of deep learning is the training of deep neural networks—an inherently noncon-
vex optimization problem. In this section, we investigate the benefits of curriculum learning in this
nonconvex setting, focusing on tasks whose loss functions are nonconvex but Lipschitz continuous.

We assume a curriculum composed of 7' tasks, where each task ¢ has a p,-Lipschitz, nonconvex
loss function. As before, we assume each pair of consecutive tasks satisfies the (¢, &) condition
for some r; > 0, @ € (0,1). Unlike the convex case, where we use biased RERM, we propose an
ERM-based strategy for nonconvex problems. For each task ¢, we select a solution by minimizing
empirical loss over a ball of radius r; centered at w;_1. This is formalized in Algorithm 4.

Algorithm 4 ERM-based Curriculum Learning

Imput: wq, S1,...,57,7r1,...,r7 > 0.
\/R\/O = Wp.
fort=1,2,...,T do R
We € argmin  Lg, (w).
wi|lw—Wi_1]|2<r:
end for
return: wWr.

When Lg, (w) is convex, the projection-based ERM in Algorithm 4 is equivalent to biased RERM
with quadratic regularization as in Algorithm 1. However, in the nonconvex case, Algorithm 4
enables a broader exploration of the parameter space. Although this procedure may not be compu-
tationally efficient, in practice it can be approximated using methods such as SGD. We also note
that the radius r; is used primarily for theoretical analysis; in practice, it can be treated as a tunable
parameter. For example, early stopping can serve as a proxy for tuning r;, by controlling how long
we train on easier data subsets. Solving constrained ERM exactly is not practical in large-scale deep
learning. However, the purpose of our non-convex analysis is to provide generalization guarantees
for implicit approximations to this problem, such as those computed via SGD and backpropaga-
tion. From this perspective, theoretical analysis of constrained ERM remains meaningful. Next, we
present a key result for this setting.

Lemma 5.1. Let § € (0,1) and ¢ > 0. If n, > 5528 (In (2) + mn (222 4 1)), then with
probability at least 1 — ¢ over the randomness of S,

Sup |Est (W) - LDt (W) - Zst (G\thl) + LDt (\/i/tfl)‘ <e

wil|w—W_1l2<r¢



This lemma establishes uniform concentration over {/(z;w) — £(z; Wy—1)||w — Wy_1]l2 < 74 }—

the loss class of shifted loss functions rather than {¢(z;w)|||w — W¢_1]l2 < r¢}. This avoids
dependence on potentially large loss values and instead leverages the Lipschitz condition:
|€(z; W) — €(z; Wi—1)| < pere, which is small when r; is small.

We also remark that we can give a tighter bound and remove the log term In (% + 1) via chaining.
This can also be applied to Theorem 5.2 and Corollary 5.3 below. We have an in expectation bound

~ ~ ~ [3+9m
sup |LSt (W) - LDt (W) - LSt (Wt—l) + LDt (Wt—1)|‘| < 2Ttpt .
w:wa\?/tfluggn nt

The high probability bound can be derived from this using McDiarmid’s Inequality.

Es

t

Theorem 5.2. For any ¢ > 0, if n; > 8%"? (In(2) +mIn (8%“ + 1)), then with probability at
least 1 — § over the randomness of S, we have €,(W;) < 2€ + ag;_1(W;_1).

To prove Theorem 5.2, we decompose the excess risk a bit differently from Equation (3):

et(Wy) = Lp, (W) — irv%f Lp,(w)
= L0, (W) = L, (W) = Lo, (W1-1) + L, (%1 1)| + |, (W) = L, ()]
+ | L (W) = Lo, (W) = L, (1) + Lo, (We-1)| + [ Lo, (W) = inf L, (w)] ,

where w' satisfies |w' — W;_1||2 < r and e4(W') < ag¢—1(W¢—1). The fourth term is bounded by
agy—1(Wi—1) by the (r¢, &) condition. The second term is nonpositive as w; is the ERM solution.
The first and the third terms are each bounded by € using Lemma 5.1, completing the proof.

As in the convex case, smaller values of r; lead to lower sample complexity requirements. We
conclude with a high-probability bound for the entire curriculum:

B 2 2
Corollary 5.3. Assume g1(wy) < e. If ny > (532)222 (1n (%) +mln (% + 1)), for all
t €2,...,T, then Algorithm 4 ensures that with probability at least 1 — §, we have that ep (W) < €.

6 Experiments

We conduct a simple empirical study using both synthetic and real dataset to support our theory. First,
we investigate whether curriculum learning can enhance large-margin classifiers on separable data
by first training on easy examples and then fine-tuning on harder ones. Specifically, we construct a
binary classification task using mixtures of two-centered Gaussians in R1%C. The “easy” distribution
D; has margin v = 3 and low variance 0 = 0.5, while the hard distribution Dy varies over vy €
{0.1,0.5,1.0,2.0} and o € {0.5,1.0,1.5,2.0}. We generate 1K training samples from Dy, Ds.

Linear classifiers are trained using hinge loss and gradient descent (2K epochs, learning rate from
0.001,...,1.0). The baseline trains only on D5, while our curriculum method (Algorithm 2) first
trains on D; and then fine-tunes on Dy with /5 regularization \||ws — W1 ||?, where Wy is the solution
from the first stage. \ is selected from {107°,1074,1073,1072,1071, 1, 10} using validation data.

Each experiment is repeated 10 times, and we report mean test accuracy and standard deviation in
Figure 2. Curriculum learning consistently outperforms the baseline, demonstrating that starting
with an easier task aids learning on harder ones. The performance gap widens as the target task
becomes more difficult—i.e., with smaller margins and higher variance—highlighting the effectiveness
of the curriculum approach under challenging conditions.

Next, we apply our theory and methods to adversarially robust learning. In adversarial robustness,
an adversary perturbs an input x within a perturbation set B(x), and the standard loss £ ((x, y); W)
is replaced by the robust loss: £;°((x,y);w) := supgep(x) ¢t((X,y); w). This replacement pre-
serves convexity and Lipschitz continuity (see Appendix B.5), allowing us to extend the results of
Sections 4.1-4.3 to the robustness setting. In Algorithm 3, the subgradient VW€§°b(wk_1; z)) is
computed using adversarial training techniques.

However, smoothness does not generally carry over: while the standard loss may be smooth, the
robust loss is known to be non-smooth [Xing et al., 2021]. Thus, Theorem 4.6 cannot be directly
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Figure 2: Test accuracy as a function of standard deviation for different margin +.

applied. Nevertheless, we show (Appendix B.5) that if the standard loss is nonnegative and H-
smooth, then Theorem 4.6 still holds for the robust loss. This insight allows curriculum learning
results to carry over to adversarial settings simply by substituting standard loss with robust loss. In
practice, good bias/initialization for robust training can come from a non-robust model, a model
trained with weaker attacks, or a related task.

We evaluate curriculum adversarial training with /5 regularization on MNIST dataset. Adversarial
examples are generated using 10-step PGD with step size «/5 under an £, perturbation budget o €
{0.1,0.2,0.3,0.4}. For curriculum training, we define task ¢ with attack strength at/T, for ¢ € [T
and T € {1, 2,3}. No regularization is used for t = 1. From ¢ > 2, we incorporate /5 regularization
of the form \||w; — W;_1||?, where W;_1 is the previous model and A € {107°,107%,1073, 1072},

We use a CNN with two convolutional layers followed by max-pooling and two fully connected
layers with ReLU activations. The conv layers use [input, output, kernel] = [1, 10, 5] and [10,
20, 5]; the fully connected layers have dimensions [320, 100] and [100, 10]. Models are trained
with cross-entropy loss using Adam for 100 epochs, batch size 128, and learning rate chosen from
{107%,1073,10=2,10~'}. Early stopping is used based on robust validation accuracy (measured
with PGD attack of size ) to select both the model and hyperparameters.

We report both standard and robust test accuracy under PGD attack of size « in Table 1, averaged
over three runs with standard deviation. We note that curriculum adversarial training maintains
performance for small o and provides notable improvements for larger o values—particularly when
a > 0.3. This supports the hypothesis that initializing from easier tasks (weaker attacks) enhances
robustness against stronger adversaries.

For additional experimental details and extended results, please see the supplementary material.

T 1 2 3
« nat acc pgd acc nat acc pgd acc nat acc pgd acc
0.1 99.18£0.07 96.07+£0.02 | 99.27+£0.07 95.65+0.18 | 99.36+£0.03 95.74+0.14
0.2 98.80+0.03 94.73+0.22 | 98.86+0.15 94.60+£0.93 | 98.67+0.05 94.38+0.23
0.3 98.27+0.46 92.77£1.20 | 98.77+0.15 94.74+£0.12 | 98.23+0.15 93.61+0.87
0.4 11.35£0.00 11.35+0.00 | 98.39+0.29 95.54+0.41 | 98.524+0.14 95.63+0.12

Table 1: Standard (nat acc) / robust (pgd acc) accuracy under ¢, PGD attack of size o« (MNIST).

7 Conclusion

In this work, we provide theoretical guarantees for both convex and nonconvex learning problems
under a multi-task curriculum learning framework that leverages implicit bias from prior tasks. Cen-
tral to our analysis is the proposed (r, ) condition, which characterizes a ‘good’ curriculum by
quantifying task similarity and enabling reduced sample complexity. While the (7, «) condition
offers a principled way to evaluate curriculum quality, it may be difficult to verify in practice. A
promising direction for future work is to investigate when this condition holds for specific problem
families and how it can guide the design of effective, data-driven curricula.
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A Missing Proofs in Section 3

2
Lemma A.l. Eg pm [[Wi —wi[3] < 524-.

Proof of Lemma A.1. Denote g,(z;w) = Vy{1(z;w). The gradient of the population loss can be
written as

0 = VyLp, (W]) = VWE,op, li(z; w]) = Esop, Vil (z;W]) = E,p, g (23 WT).
This leads to
Eg, <oy [ VwLs, (W))l3

[VwLs, (W) — VLo, (w))][3

=Eg, .pm

1 ~
=Eg, pm - Z g,(z;wy) — Esup, g4 (z;w7)

7Z€S51 2
1 . 2
=Egvpp1 5 > llgy (@ wh) = Eyep, gy (2 W15
1 7e81
1 Y 2
ZHEmal lg1(z3wl) — E,up, g1 (2 W1)Il5
1 P

. 2 2
= (EE~D1 gz wi)ll5 — ||EZND1g1(Z;W;)||2) < .
ni ni

Since Lg, (w) is A-strongly convex,

IVwLs, (Wi)ll2 = [Vwls, (WT) = ViLs, (W1)ll2 > A[wi — Wal2.

Therefore,
Egyop [191 = Wil3] < 5Es, wps (VoL (W1 < £
S1~D;'t 1 Hi2] =73 S1~D]! wlsi(\Wi)ll2 = ny
O
Theorem 3.1. If the second task is convex, then setting py = 202 , we have

(Iws —willa+ 554 ) vii

E[ea(W2)] < 22 (lws — will + 525 ).

Proof of Theorem 3.1. From the theory of RERM in Shalev-Shwartz and Ben-David [2014] Chapter

13, if S is fixed, the second phase RERM is %-uniformly stable if only one data in S is replaced.
Therefore,

N ~ 202
Es, Lp,(Wa) < Es, Ls, (W) + —2-
Han2

< Es, | Lo, (W2) + 22 [1%; — 3] + 205

— 2 2 2 M2n2

~ . 203 o
<Eg, [L52 (w3) + %ng - W ||§} 2 (from the definition of RERM)
H2T2
H2 o2, 263
= Lp,(w3) + —=||w5 — W15 + .
o, (w5) + 2 g — a4 222

13



Taking expectation w.r.t. S; ~ D},

~ ~ 2p3
Es, 52 Lps(%2) < Loy (w3) + £ s [ws — @[3 + 2
M2

142 - 2p3
5 B (Iw = willa + |91 — will2)” + M2;2
(triangle inequality)

< LDz (Wg) +

1 e\, 203
* 2 * 1
< Lp,(w}) + > <|w§ —willa + 3 m) + M27j2. (Lemma A.1)
Settin = 202 , we obtain
g H2 (HWE*WIHHA\”},LT) - w

s * p * * p
Bl )] < Loy (w') + 22 (s —will + 5= ).

O

2p2
9
HWE_WIHQ_‘—APT%)\/W’Q

Theorem 3.2. If the second task is /-weakly convex, then setting po = [ + (

2
we have E [£2(W2)] < \2/% (Hw§ —will2 + )\\p/ln—l) +1 (Hw§ —will2 + /\pi\/lﬁ) :

Proof of Theorem 3.2. 1f S is fixed, for any p5 > [, the regularized loss {2(z; W) + £2[|w — W1||3
is (g — I)-strongly convex. From the theory of RERM in Shalev-Shwartz and Ben-David [2014]

Chapter 13, the second phase RERM is 205 -uniformly stable if only one data in S5 is replaced.

(p2—0)n2
Therefore,
- = 2p3
Es,Lp,(W2) < Es,Ls, (W2) + (2 =D
< By, [, () + 219 2] + 2B
< Es, | Lsy (W2) + - [lwa = Wiz + T
T * K2 o~ 12 Qp% s
< Eg, [Ls2 (w3) + ?sz - W ||2} + =D (from the definition of RERM)
L ( *)_’_/J/Q” * = ||2+ 2p%
= w —=|ws —w —_—
D2 (W2 2 2 112 (12 — Dna
Taking expectation w.r.t. S; ~ D7'?,
~ . 2 o~ 2 295
Es,,5,Lp,(W2) < Lp,(w3) + ?Esl [ws —Wall3 + [
M2 o~ 2p3
< Iy () + 2B, (195 = will + [ = willa)? + 2
(triangle inequality)
p o\ 2p3
2 " 1
< LD2(W§) + ? <W§ — W1||2 + AW) + m (Lemma Al)
Settin =1+ 2p2 , we obtain
&l (Iws—wi o+ 555 ) v

=~ 2p2 * 14 l * P1 ?
Bl ()] < Loy(w') + 22 (o = will + 52 ) + 5 (1w = will + 5= )

O
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B Missing Details in Section 4

B.1 Missing Proofs in Section 4.1

Theorem 4.1. Suppose task ¢ is convex and p;-Lipschitz, and the (r;, &) condition holds between

tasks (¢t — 1,¢). Then, setting p; = ri%ﬁ yields the following excess risk bound:

2rypy

E [ei(W)] < >

+ alE [Et—l(\/’\\’t—l)} .

Proof of Theorem 4.1. If Sy,...,S;_1 is fixed, for any pu; > 0, the regularized loss ¢;(z; w) +
Btllw — W_1]|3 is pu-strongly convex. From the theory of RERM in Shalev-Shwartz and Ben-

David [2014] Chapter 13, the ¢-th step RERM is 20¢ -uniformly stable if only one data in S; is

Htn

replaced. Therefore, Yw’' € R™ independent with Sy, ..., Sy,

- S~ 2
]EStLDt (Wt) < EStLSt (Wt) +
e
PN Kt~ -~ 2 2%’%
< Es, |Ls, () + 19— S 3] + S0
= it 2p7
< Eg, [Lst (W) + ELw' - th_1||§} + =Pt (from the definition of RERM)
Tt

~ 2p?
= Lo, (W) + W = W+ T

tTt

Since task ¢t — 1 and task ¢ satisfy (r;, a) condition, there exists w/, s.t. ||w — W;_q||s < r; and
e¢(W') < agy—1(Wi_1) hold. Thus,

- N By o i 207
B, Lo, (W) < Lo, (W) + AW @3 +
Tt
. N By~ e 207
= 1r“1/fLrDt(w) + (W) + ?HW — W15 + T
< inf Lp, (W) + age_1 (W )+Wt2 2/
in QEL_ _ aiin 2 .
< inf Lp, t—1(We1 5 e
Setting p; = ri’}%‘, we have Eg,ey(W;) < ag1(Wi_1) + Mﬁp: Taking expectation w.r.t.
S1,...,S5:_1, we obtain

2rypy
Ve

Elee(we)] < + oF [er—1(We-1)] -

O

Corollary 4.2. Assume the first task is learned with excess risk E [e1(W1)] < e. Set the regulariza-
2p¢

Tey/Mt’

2 2
tion parameter to p; = and suppose the sample size n; > (1@152‘62 . Then, for all tasks ¢, the

excess risk is bounded as E [e;(W;)] < e.
Proof of Corollary 4.2. Theorem 4.1 gives

2rpy

E[er(We)] < N

+ aE [g4—1(Wi—1)] < @B [ei—1(Wi—1)] + (1 — a)e.

We can use induction to prove that E [e4(W;)] < e. O

Corollary 4.3. Suppose the first task is learned to excess risk E [e1 (W1 )] < €;. Set the regularization

2 . . 4r 2
parameter as p; = —£ and assume the sample size satisfies ny > (—”p = t,z) . Then, for
Tey/Mt (1,(1)61(%)

every task ¢, we have E [e,(W;)] < &1 (%H)tfl.
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Proof of Corollary 4.3. Theorem 4.1 gives

E[ei(Wy)] < LN [et—1(Wi—1)] < aE [g4—1(We—1)] + t
— - - - € .
t\Wt)] = s t—1(We—1)| = t—1(Wt—1 5 €1 5

We can use induction to prove that E [e;(W;)] < €; (a“) O
B.2 Missing Proofs in Section 4.2

Theorem 4.4. Suppose task ¢ has a p;-Lipschitz convex loss function and satisfies the (7, a) con-
dition with task ¢ — 1. Choosing the learning rate 1; = W’ the excess risk of SGD satisfies

T\;’% + B [er—1(Wi-1)] .-

E[er(We)] <

Proof of Theorem 4.4. Let’s first fix Sy, ..., St—1. Since task ¢ — 1 and task ¢ satisfy (r¢, @) condi-
tion, there exists W', s.t. ||[W' — Wy_1]|2 < ry and g,(W') < agy_1(Wy—1) hold. Fork = 1,2,...,n,,

e = W3 = llwis = ' = Vbe(wiri za) 3
= Wit = '3+ 07 [Vl 20) 3 + 2 (W = Wi, Vil (W1 20))

< Wit = WIS+ nipf + 2ne (C(W's 1) — be(Wi—1522)) -
(Lipschitz and convex loss)
Rewriting this inequality gives

2 Wf_WIQ—W—W/2
Co(winsza) < Lo(w'szi) + TPy I9em1 =Wl = Jhwi = W

2 QT]t
Taking average over k, we get
RS RS ey W1 = WII5 — [[wn, — W13
— N l(wWiorize) < — Y L(Wiz) + =L+ = = 2
ntZ i ) nt; (Whzi) + =5 2
1 0 p? r2
< — Y L(Whizp) + L 4
Ty kZ::l i ) 2 2nmt
1 & r
= Zet(w/vzk) + Lo

Since z;, is independent with wy,_1, taking expectation w.r.t. S; ~ D't gives

1 1 &
— Es, [Lp, (W = — Eg, [li(Wi_1;2
nt; s, [Lp,(Wk—1)] nt; s, [0e(Wr—1;21)]

1 & TPt
— Es, [le(W;21)] + —
v ; ' )] v

= Lo, (W) + £

v
Using Jensen’s Inequality,
Est [Et (G\Vt)] = Est [LDt (G\Vt)} - lnf LDt (W)

IN

1 & .
< TTZ (Lo, (Wi-1)] — inf Lo, (w)

Tt Pt
<Lp +——1thw
< Lp, (W) N D, (W)

TPt ~
< — 4 agi—1(We—1).
= n + g1 (We—1)
Taking expectation w.r.t. S,...,S;_1, we obtain
~ r
E[e0(®0)] < “2 + 0 [eroa (1)
t
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B.3 Missing Proofs in Section 4.3

Theorem 4.5. Choosing 1, appropriately, the excess risk of curriculum learning satisfies
2r 674 (p? — p? l+a
t (pt t(Pf — Pi) ) +

Proof of Theorem 4.5. Let 1, be a constant to be determined.
po = Psppe (Lo, (W) —inf Lp, (W) > &). Recall B, [51(W0)] = Es,oppeLp, (%) -
inf Lp, (w). Using Markov’s Inequality,

E [c‘?t_l (\/i/t—l)] .

Es, [e1(W¢)]

Do < = : )
€t
Let Sy = {z1,22,...,2n,} ~ Dyt and S} = {z},2a,...,2,, } ~ D} be two neighboring data sets
that differ in one single example. S; U S; = {z},71,22,...,2p,} ~ D™ TL

Recall W, € argmin (Est (W) + & |w — wt_1||§); %, € argmin (ESQ (W) + & |w — wt_1||§).
w w

Since the optimization objective fgt (W) + &t|lw — Wy_1]|3 is p-strongly convex, we have

L (W) + BLIW, = Weoal3 = Do, (30) + 29— w3+ B4 19, - 93 ©)
Similarly,
NN ot~ ~ 2T Bty ~r ~ 2, Mt~ ~ 2
Loy (@) + B8 — 13 > Doy (3) + WL - W B+ ELW0 - w3 @)
Adding up equation (6) and equation (7),
PN 0z W) — by (z1; W 0z, W) — by (2 W,
Mt”W; _Wt”§ < t( 1 t) t( 1 t) + t( 1 t) t( 1 t). 8)

nt nt
We say S; U S} is good if Lp, (W) — inf Lp, (w) < & and Lp, (\?v;) — inf Lp,(w) < & hold
simultaneously. Otherwise, we say S; U S] is bad. Applying a union bound and combining with
equation (5),
2Es, [e4(We)]

w1 (Sp U S] is bad) < 2pg < =220 ©9)
t t

IPSf,USé’\/'D

If S; U S/ is good, by the assumption on the local Lipschitz constant, |[¢;(z;W;) — £;(z;W})| <
pt||W; — Wy||2 holds for any z. Equation (8) implies

Ce(215Wy) — Li(215 We) n Co(2h5 W) — L(25 Wy) < 2P

ng Ny oy

Therefore, ||W; — W¢|lo < jﬁ; if S, U S/ is good. Thus, we also know that |£;(z; W;) — £;(z; W})| <

19} — Wel2-

pe||Wy — W3 <

pellWy — Wella < ;iﬁri holds for any z. If S; U S; is bad, using the global Lipschitz constant,

10 (z; W) — Li(z;W})| < pi]|[ W} — We||2 holds for any z. We similarly get [|[W, — Wy < iﬁ;t if
2
t

S, U S} is bad. We also know that |¢;(z; W;) — £;(z; W})| < pe||Wy — We||2 < ;ipn
Now we upper bound the generalization gap of RERM:

Es,~ppe (Lo, (W) = Ls, (%))

:Estust,N,D:utJrl (ft(zl; \/i/;) — ly(z1; G\Vt))

- is true for any z.

257 , 202 N
SMPSNS%ND?“ (S¢ U Sy is good) + mpstusgw?m (8¢ U Sy is bad)
207 | 200} — i) o
Mt * LTy S,uSL~DptH (St 1 is bad)
272 4 2 =2 E ~
< 2Py Wei = PORs: ()], (equation (9))
Hatie HtELTut
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Since task ¢t — 1 and task ¢ satisfy (r;, a) condition, there exists w/, s.t. ||w — W;_1|l2 < r; and
e¢(W') < agy_1(Wy_1) hold. Now we upper bound the excess risk of RERM:

Es, [e:(Wi)] =Eg, wppe Lp, (W;) — inf Lp, (W)

+ Lo, (W) + 5L [w = §e1 3 — inf Lo, (w)

2
T

= - + a1 (We—1) +
Hemy Mty 2
Taking expectation w.r.t. Sq,...,S;_1, we obtain
N 252 4(p? — P2)E [ex(W R 2
E [e,(W;)] < Pt + (pi Pt} e (We)] + aF [e—1 (We_1)] + HilTy
Mg &Ny 2

If 4(p7 —p7)

nEe < 1, we can solve the above inequality, and get

B fey (@) < B OB E ) + 5
t\Wt)| =

1 — 4(0?_5?)
BeEeny

_ [4p7 | 32007-p7)2 | Alpi—py) _ 4(1+a)(p —p7)
Denote x = \/nt;,? T ey =2, and select py = max{W, x}. We get

2 2
T, ) [eo—1(Wy_1)] + Lot

~ 2
E e, (W < Tt _
[ (W)l < 1 — 4ei=p)
PtEemt
2p7 pers =
o mne 2 al[e;1(Wi1)]
1— 4(p7—5%) 1— 4(p?—p3)
WtEemt HtEtmy
2;3t2 rt2 -~
< on Tkt aE e (W)
= 1022 1o
1 — 4pi—pi) I
TELN

273 rtz 4(1+a)(pf—f)f)
J:lint + 2 (.’I} + (1—a)ény ) n 1+«
1— 4(9?‘5?) 2
xTELNt
257 | 7 (2 40+0)(pi—p7)
W T (m T Twan fE) 1+a

IN

Elet—1(Wi—1)]

= ) +—3 E[e/—1(We—1)]
= \/ R e R PR
< 2“\/% + ( 13_2a + 61—_2;> T?(/);m—t N lgaE[gt_l(wt_l)]
(WVA+B<VA+VB)
<Xl 2 R G
- e (o ) + R
O
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B.4 Missing Proofs in Section 4.4

(2460)H, 1 [32H,

Li
Tang* 7 . }, we have

Theorem 4.6. Setting the regularization parameter p; = max{

32L§Htrt2 n 9Ht7"t2 1+«

Ele(Wo)] < T (1—a)n, 2

E [Et—l(wt—l)} .

Proof of Theorem 4.6. Let Sy = {z1,22,...,2n,} ~ Dy and S} = {2z}, 22, ... ,2n, } ~ D}t be two
neighboring data sets that differ in one single example. S; U S/ = {z},21,2o,...,2n,} ~ D",

Recall w; € argmin (Zst (W) + &t |lw — vAvt,1||§); W, € argmin (Esé (W) + &t |lw — vAvt,1||%).
w w

Since the optimization objective Lg, (W) + &¢[|w — W;_1]|3 is y;-strongly convex, we have

L, (W) + ZHIW; = W13 > L, (W) + EHIG0 = W3+ 5L 194 — 3.

Similarly,
7o Pt~ 7o Hty~r Mt 1
Ly (W) + B0 = Woal13 = Doy (1) + EE 197 — a3 + 200 — a3
Adding up these two inequalities,

PN Ci(z1; W) — Uy (z1; W 02 W) — (2, W)
Mt“W; —Wt”% S t( 1 t)n t( 1 t) + t( 1 t)n t( 1 t). (10)
t t

By the smoothness assumption and using the self-bounded property,
~ ~ ~N o~ A Hy o
(213 Wy) — Ce(z1;We) < (Vily(205We), Wy — Wi ) + TtHWQ — Well3
o 1~ Hy o 2
< [Vl (ze; We)ll2l|Wh = Well2 + =7 Wy — Well2
~ ~/ ~ Ht ~/ ~ 112
2H by (z0; W) [[Wy, — Well2 + = [Wy — Well2. (11
Similarly,
Hy o
- I, = w3 (12)

From the choice of y; we know that pzn; > H;. Plugging these two inequalities into equation (10),

we get
PR V2H, = -
W = Well2 < Ly — M, tH V(W) + 1/ (25 W5) ) -
the — 11¢

Adding up equation (11) and equation (12), and combining with the inequality above, we get

(ét(Zl;\/’\\/;) — ét(zﬁwt)) + (Et(z/l,?vt) — gt(le,\/i’;))

2H, 2H? ( - - )2
< + Ce(z1; W) + 4/ 0 (2 ;W
<,U/tnt —Hy (e — Hy)? (22 W1) (713 W)

G2y W) — G253 Wh) < \J2H L (273 W))|[W) — Wel2 +

<

< 4H, AH?

+ Oz W) + (25 W) .
weng — Hy (,utnt—Ht)2> ( s W) @ t))

Now we upper bound the generalization gap of RERM:

Es,~pp+ (Lo, (W) = Ls, (%1))

1 ~ ~ ~ ~
ziEstuséND?ﬁl [(Ce(z1; Wy) — Ce(z1; W) + (Le(25 W) — Le(2)5 W) ]
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<

2H,; 2H?
+
e — He o (pymy — Hy)

4H, 4Ht2 -~
— —+ ]E ~D"t |:L + \%% :|
(umt —H, ' (- H)? ) S0P s, (We)

> Byt [0 %1) + (21 %))

Since task ¢t — 1 and task ¢ satisfy (r;, a) condition, there exists w/, s.t. ||w — W;_1||2 < r; and

e¢(W') < agy_1(Wy_1) hold. Now we upper bound the excess risk of RERM:

Es, [et (We)]
=Eg, .ppe Lp, (We) — L}

AH, 4H2 Ts (w
1+ + ]E~”thW}_L*
( pene — Hy (#tnth)2> B o t
4H? L, (W) + 2w, - &
<(1+ Es,ope | Ls (W) + EL 180 = We 3] - L
( A Ht Ty ) se~ppe | Lisi (W) + - [We = Wi [l :
AH? 7 P
<1+ + t Eg,pre |Ls, (W) + - |W' — Wy 2}_L*
( = Ht (tht_Ht)2> syt | Ls, (W) 5 [ -1l ?
AH? W
<[1+ + . (LDt(W/)+&||W/_Wt_1H§)_L:
pene — He o (pyny — Hy) ?
4H? W
<(1+ + — (LI—&-aEt—l(Wt—l)""& 2) Li
pene — He o (pyny — Hy) 2
4H?
=1+ t asea (W
( L Ht T ) t—1(Wi—1)
AH 4H?
i+ —2 o o) (L) - L
pene — He o (pyny — Hy) 2
Since mu; > %
4H 4H2 Moo doe),
1+ LA a< |1+ %) + : Q)Q “
ey — 1+7a (1+ 7a)

1+1—a 1—5—0[.
=

<1+ ?iiia (1—a)>a
(

4H, AH?
(1 + !
t

8Ht 8Ht>
_|_
MUy — Ht tht

et Tt

( 16Ht>
= =+ .
Kt

Plugging these two inequalities into equation (13), we get
Es, [e¢(We)]
14+« —~ 16Ht Ut
S et—1(We—1) + (1 + s ) (L: + ?Tf) — L}
1+ ~ 8Hyr?  r?

H,
_ _ 16Ly
5 Et 1(Wt 1) + g + = 2 e + ey
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1+« ~ 8Hyr? 12 [ (2+6a)H, 1 [32H.L} H
AEe @y S e (PO L BRI gy t
2 ng 2\ (I—a)ny m ne (1 /32H,,L;) -
1+4a . (9 — 5a)Hyr? 32H. Ly}
2 e (W) + (1—a)n, e ny

82LiHy? | 9Hpf | 1+a o

- ne (1—a)ng 2 er-1(Wi).

Taking expectation w.r.t. S1,...,.S;_1, we obtain

32L2Htrt2 n 9Htrt2 1+«

E [e:(Wy)] < Elet—1(We1)]-
[ee(Wy)] < g 1—a)n B [et—1(We-1)]
O
B.5 Missing Proofs for Adversarial Robustness
Proposition B.1. If the standard loss /;((x, y); w) is convex, then the robust loss £;°°((x,y); ) :=
sup £¢((X,y);w) is convex.
XeB(x)
Proof of Proposition B.1. Yw1,wa, A € [0,1],
GO ((%, ) Awn + (1= A)wa) = Sul(o)ft((ia y); Awi + (1 — A)wa)
xeB(x
< s (A% y); wi) + (1= N E((X,y); wa)]
xeB(x
< sup [MG((X,y);wi)] 4+ sup [(1 = A)l((X,y); wa)]
X€B(x) K€B(x)
= M ((x,y);wi) + (1= P ((x, y); wa).-
O

Proposition B.2. If the standard loss /¢;((x,y);w) is p-Lipschitz, then the robust loss

7o ((x,y);w) i= sup £((X,y); w) is ps-Lipschitz.
XeB(x)

Proof of Proposition B.1. Yw1,wa,

GO ((x, ) wi) — 60 ((x, ) w2) = sup L((X,y);wi) — sup L((X,y); wa)

XeB(x) XEB(x)

< sup [Le((X,y);wi) — Le((X, y); wa)]
XeB(x)

< sup (pef|wi — wal2)
xeB(x)

pelwi — wal|2.

O

Now we prove Theorem 4.6 in the adversarial robustness setting. In this setting, all tasks are learning
the robust loss; the empirical risk, expected risk and excess risk are defined using the robust loss.
We assume that Vz, the standard loss ¢;(z; w) is convex, H;-smooth and nonnegative. In addition,
task ¢ — 1 and task ¢ satisfy (r¢, &) condition for constants , > 0 and o € (0,1). Denote L} =
ir“1lf Lg)tb(w). We use biased RERM described in Algorithm 1 to learn these tasks. We focus on two

consecutive tasks: task ¢ — 1 and task ¢ as before.
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Theorem B.3. Setting the regularization parameter j; = max{ ((2;:62))5,’ %\ / 32Ht } we have
32LF Hyr? N 9H,r? 1+«

ny (1 —a)ng 9 Elet—1(We-1)] .

E [er(Wy)] <

Proof of Theorem B.3. Let Sy = {z1,22,...,2,,} ~ Dyt and S} = {7z}, z2,...,2y, } ~ Dy be two
neighboring data sets that differ in one single example. S; U S/ = {z},21,25,...,2n,} ~ D" .

Recall w; € argmin (Eg‘;b(w) + BHw — W15 ) W, € argmln (L”’b( )+ Gllw — vAvt,1||%).
w
Since the optimization objective fgfb(w) + Et[|w — Wy_1 |3 is p-strongly convex, we have
b Mt b Mt~ ~ Hejp~r ~
LM W) + 019 — S 3 > TR0 + 25— S 3+ 22 - w3
Similarly,
b Ht b Pt~ ~ Bt ) ~ ~
T (0) + B~ Sal3 2 TR0 + 518 - a3+ 25— Sl

Adding up these two inequalities,

070 (213 Wy) — 0% (213 W) n (P (215 W) — (1 (245 W)

w— w2 < 14
pe[[ Wy — wellz < " " (14)
By the smoothness assumption and using the self-bounded property for the standard loss,
0 (215 Wy) = 60 (20; W) = sup L((K,91);Wp) — sup Li((X,51); W)
XEB(x1) XeB(x1)
< sup [ét((ivyl);‘/ﬁ;)_gt((ivyl);wtﬂ
XeB(x1)
~1 A~ Hy\ o 2
< sup (Vole((X 1), W )Wt7Wt>+7”Wt well3
XeEB(x1)
) ~ ~ ~/ ~ Ht ~/ ~ 12
< sup [[Vale((%,y1); We)ll2llWe = Wellz + 7 [1We — Wl
XEB(x1)
~ ~ Ht -~/ ~ 2
< sup V2H (R, y1); We) [ Wy — Wil + —F 5 Wi = Well2
XEB(x1)
_ rob(, . S \IW — W Hepor o 2
=\ 2H 7 (215 W) [[wy — Wil + —- HWt w3 (15)
Similarly,
erob rob( /. &/ rob (ot . o Ht ~/ ~ 112
(71 We) — £ (17Wt) 2H 4 (Zlth)”Wt Well2 + — ||Wt we 3 (16)

From the choice of y; we know that p;n; > H;. Plugging these two inequahtles into equation (14),

we get
o~ V2H, ) N . ~
Wy =Wl < MT—th \/@"b(luwt) + \/ﬁ{"b 7wy )

Adding up equation (15) and equation (16), and combining with the inequality above, we get
(67 (203 W) — (225 W)) + (G0 (215 W) — 6 (215 Wy))
2H, 2H? ( &) >
< 4 érob Z -W grob 7 (W
(Mtnt —Hy (g — > \/ 11 W) \/ vt
4H, 4H?
< +
pene — He o (pgmy — Ht)

> (67 (203 W) + (10(215W3)) -
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Now we upper bound the generalization gap of RERM:

Espp (LS(W0) = LE" (W)
1

=3B uspmpprt (G203 W0) = 67 (213 9)) + (67 (245 W0) — 6 (2 9)]
2H; 2H? . R . R
( =1 (g H)) Es,usimppet (G720 W) + 67 (21 W1)]
4H, 4H? b
= + E DT |:L7’O Wy ] .
(,utnt — H; (tht _ Ht)2 Sy¢~Dy St ( f)

Since task ¢t — 1 and task ¢ satisfy (r;, a) condition, there exists w/, s.t. ||w — W;_1|l2 < r; and
e¢(W') < agy_1(Wy_1) hold. Now we upper bound the excess risk of RERM:

Es, [e¢(Wt)]
=Eg, pr L (W) — L}

AH, AH? .
<1+ n Eg e [L"’ } L
< My — Ht (utnt — Ht)Q Se~D Se ( )
4Ht 4Ht2 Trob /-~ Mt~ ~ 2
<|(1+ + ENnt[me + =W — Wy }—L*
( jne = H, (g — Hy)? ) S LS (We) + S lIWe = Wea h
4Ht 4Ht2 T b /’[/t = 2
<|1+ + E Nnt[Lm W)+ =W — W }—L*
< ng — Ht (Mtnt _ Ht)2 S¢~D, St ( ) 2 || t 1”2 t
AH, 4Ht2 bt Bty o~ 2
<|1+ + (LTOW + =W =Wy )—L*
< :u’tnt _ Ht (ﬂtnt _ Ht)Q D+ ( ) 2 || t 1H2 t
4H, 4H? R
s\t ot TRE (Lt* + agr—1(We—1) + &Tf) - L7
el — Ht (utnt — Ht) 2
4H, AH? ~
=(1+ agi_1 (Wi
( e — Hy o (pygmy — Ht)2 t=1(We-1)
4H, 4H?
Ty t_ - (L;+ He 2) Li. (17)
pene — He o (pyny — Hy) 2
. (2460)H,
Since p; > Toayn,

4H, 4H? 4(1 —
ot

4(1 — )?
2 + 7 | @
Mty — Ht (utnt — Ht) 1+ Ta (]. + 70&)
8 + 24«
4

)
1+ ——F—(1-—
( (Tt 7a) a)>a
1+1—a a—1+a'
2 2
) (1420
e Mt
1

( 16Ht>
+ .
Tt

+

IN

IN

4H, H? 8H;, 8H;
1+ +
e — He o (pgny — Ht)

Plugging these two inequalities into equation (17), we get

Es, [e:(W¢)]
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1+« . 16H;
< et—1(We—1) + (1 + ) (L* + &7}2> - Ly
2 e 2

1+ N 8H, 2 , Hy
= a&‘t_l(Wt_1) + trt + — i e+ 16L5
Ty 2 T
1+« N 8Hr?2 12 2+ 6a)H, 1 /32H.L} N H
O @y S (PO L PRI gy :
2 Ny 2\ (1—a)n, 7 ny ( 1 32H1,L;) "
e\ e )T
B 1 + « ~ (9 — 50[)Ht7"t2 32HtL;
- 2 gt—l(wt—l) + (1 _ a)nt + 7y ny

32LF Hyr? 9H,r? 1+« N
< nt + 1 —a)n, 9 et-1(Wi1).

Taking expectation w.r.t. Sq,...,S;_1, we obtain

32L; Hyr? N 9H,r? 1+«

Eer(wy)] < 1 1-an; 2

IE [gt—l(‘/i/t—l)} .

C Missing Proofs in Section 5

Lemma 5.1. Let § € (0,1) and ¢ > 0. If n, > 5528 (In (2) + mn (2222 4 1)), then with
probability at least 1 — ¢ over the randomness of S,

sup |Est (W) - LDt (W) - Zst (\/i]t—l) + LDt (‘/i]t—l)‘ <e

W:‘|W7\/’C’t71”2g’l‘t
Proof of Lemma 5.1. Define f(z;w) = £;(z; W) — €4(z; W¢—1), then
Est(W)—LDt( ) LS (Wt 1)+LDt Wt 1 Zf Zi; W ZNth(Z;W)'

From the Lipschitz assumption, if [|[w — W;_1||2 < 7, | f(z; W)| < ryp; is bounded. From Vershynin
[2018] Chapter 4, let {v1,..., vk} be an zo--net of {w : [|w — Wi—1ll2 < 7}, such that K <

(S”Tpt + l)m. Vv;, from Hoeffding’s Inequality, we get
Po, (|35 £asiv) — B fzivy)| > & ) < 200 (5
— 2i;Vj) — Epup, f(z; v — | <2exp | —=5—n¢ |-
S e ’ P ! 2 P 8rip; '
<) >1-2Ke <
= - X n
2’ P\ g2z

8 2
>1—2< Ttpt ) exp( 2 2m>
8ri p

Taking a union bound,

1
P, (

— > F(zi5V5) = B, [ (V)
t =1

>1-
If the event n% i f(zi;v5) — Epup, f(z;v5)| < § holds for all v;, I claim
i=1
sup |Est (W) - LDt (W) - Zst (\/i/tfl) + LDt (\/i/tfl)‘ <e

wil|w—W_1l2<r¢
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Vw that satisﬁes W — W¢—1|l2 < r¢, from the definition of the net, there exists v; such that ||w —
Villa < 4 -. Using triangle inequality,

|Zst (W) - LDt (W) - Est (wt—l) + LDt (Wt—1)|
<|Ls,(v;) = Lp, (v;) — Ls,(Wi—1) + Lp,(We—1)| + | Ls, (v;) — Ls, (W) + |Lp, (v;) — Lp, (w)|

+ |Zst(vj) - Est(W)| + |LDt(Vj) - LDt(W>|

1 &
= - Zf(zi;vj) —E,wp, f(z;v;)

<5 =+ 2pellw — vz < 3 +20t4p =€
Therefore,
( | sup H |Ls, (W) — Lp, (W) — Ls, (W—1) + Lp, (We_1)| < 6)
wW—Wi_1|l2<r;

Zf Z’L,Vj ZN'th(Z;Vj> <

N

o)

Theorem 5.2. For any ¢ > 0, if n, > 8”2”? (In (2) + mIn (822t 4 1)) then with probability at
least 1 — & over the randomness of S;, we have er(Wy) < 2e+ agg_1(Wi1

>Pst (

— 4.

O

Proof of Theorem 5.2. From Lemma 5.1, with probability at least 1 — 4,

sup  |Ls,(w) — Lp, (W) — Ls,(W—1) + Lp, (We_1)| < e.

W:HW—Qt71 Hzg’l‘t

Since task ¢ — 1 and task ¢ satisfy (r;, «) condition, there exists w/, s.t. ||w — W;_1]|o < r; and
et(W') < aer_1(Wi_1) hold. Now we upper bound the excess risk:

e/(W1) = Lo, (%) — inf Lp, ()
= (L2, (1) = D5, (80)) + (Ls, (W) — inf Lo, (w))
= (Lo, (1) = Ls, (%) = Ly, (W0-1) + L, (W)
+ (Lo, (Wi-1) = Ls, (W0-1)) + (Ls, (W) — inf Lo, (w))
< e+ (Lo, (Wio1) = Ls, (1)) + (L, (W) — inf Lp, ()

= e+ (L5, (W) = Lo, (W) = Ls, (¥1-1) + Lo, (Wi-1)) + (L, (W) — inf Lp, ()
S 2e + aet—l(\/i’t—l)-
O

2 2
Corollary 5.3. Assume g1(wy) < e. If ny > (1332)@22 (1n( DY+ mn (% + 1)), for all
t €2,...,T, then Algorithm 4 ensures that with probability at least 1 — §, we have that ep(Wr) < e.

Proof of Corollary 5.3. Replacing € with 15%¢ in Theorem 5.2, we know that &,(W;) < (1 — a)e +
agy_1(W¢—1) holds with probability at least 1 — % Taking a union bound, with probability at least
1 -9, e(w) < (1 — a)e+ aei—1(W—1) holds for every t. We can use induction to prove that
Et (\/?\\’f) S €. D
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D Additional Experimental Results

D.1 Regression

We consider three regression tasks T4, 15, T3, where T3 is the target task. The data of the tasks are
vectors in R? with d = 1000. Set p; = (1,0,...,0)", o = (1.5,0,...,0)T, u3 = (2,0,...,0)".
The underlying distributions of the three tasks are D7 = N(u1,14), D2 = N(p2,3ly),Ds =
N (us3,101,;). For any example z and weight vector w, the squared loss is defined as ¢(w,z) =
|lw — z||%. Since we are using a constant vector w to predict every input, the three formulated
tasks are equivalent to three mean estimation problems. We solve the three tasks using regularized
ERM. Set Wy = 0. For each task, we incorporate an £ regularization term into the empirical risks,
A|we—We_1 2 where W;_1 represents the optimal weights learned from the previous task t — 1. For
do

. . . . . 2 .
the mean estimation of \'(u, 0®14), the regularization parameter is set as \ = l—w, oz directly

without using validation, where n is the sample size of the current task. Here )\ is set to minimize
the test loss in expectation. We fix the sample size n; = ny = 1.5K for the first two tasks. We
choose different sample size of the target task n3 and demonstrate the statistical benefit of our cur-
riculum. We compare six different training methods: learning 73 directly using ERM; learning 75
directly using RERM; learning 77, T3 sequentially; learning 75, T3 sequentially; learning 15,717,715
sequentially; and learning 7%, T5, T3 sequentially. Table 2 and Figure 3 report the averaged test loss
||W — u3|? for all training methods over 5M repetitive runs. Our results show that learning an easier
task before solving the target task 75 leads to a smaller expected risk compared with solving T3 di-
rectly. The curriculum that learns 77, 75, T3 sequentially achieves the smallest expected risk among
all methods.

ns T3 (ERM) T3 (RERM) T+T1T5 | To+T3 | To+T1+15 | Ti+15+13
1K 10.000 2.857 1.803 | 1.677 1.329 1.326
2K 5.000 2.222 1.528 | 1.436 1.173 1.171
3K 3.333 1.818 1.325 | 1.255 1.050 1.048
4K 2.500 1.538 1.170 | 1.115 0.950 0.948
5K 2.000 1.333 1.047 | 1.003 0.868 0.866
6K 1.667 1.176 0.948 | 0912 0.798 0.797
7K 1.429 1.053 0.866 | 0.836 0.739 0.738
8K 1.250 0.952 0.797 | 0.771 0.688 0.688
9K I.111 0.870 0.738 | 0.716 0.644 0.643
10K 1.000 0.800 0.687 | 0.668 0.605 0.604
11K 0.909 0.741 0.643 | 0.626 0.571 0.570
12K 0.833 0.690 0.604 | 0.589 0.540 0.539
13K 0.769 0.645 0.570 | 0.557 0.512 0.512
14K 0.714 0.606 0.539 | 0.527 0.487 0.487
15K 0.667 0.571 0.512 | 0.501 0.465 0.464
16K 0.625 0.541 0.487 | 0477 0.444 0.444
17K 0.588 0.513 0.464 | 0.455 0.425 0.425
18K 0.556 0.488 0.444 | 0435 0.408 0.407
19K 0.526 0.465 0425 | 0417 0.392 0.391
20K 0.500 0.444 0.407 | 0.401 0.377 0.377

Table 2: Test loss of different training methods under different sample size ns.

D.2 More Details on Synthetic Datasets Experiment

Here we provide more contents regarding the synthetic dataset experiment as described in Section 6.
We aim to investigate whether leveraging curriculum learning can improve the performance of large-
margin classifiers when dealing with separable data. The motivation is rooted in the intuition that
if we can distinguish between data points that are easy versus hard to classify, we may benefit from
a curriculum learning strategy. Specifically, by first training on easy-to-classify points to learn an
initial model and then fine-tuning using harder examples, we hypothesize that the model can better
generalize to challenging tasks.
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Figure 3: Test loss as a function of the sample size ng.

To test this hypothesis, we consider a binary classification task where data is drawn from a mixture
of two distributions, D; and Ds. Each distribution is defined as a two-centered Gaussian in R¢ with
dimension d = 100. For each distribution D;, ¢ € {1, 2}, the two centers are located at the origin
and at [7,0,...,0]”, with the spread determined by the Gaussian noise standard deviation . We
generate 1K training samples from each distribution. Distribution D;, with v = 3 and o0 = 0.5,
is considered “easy” due to its large margin and low variance. In contrast, D is constructed as a
"hard" distribution, with parameter v € [0.1,0.5,1.0,2.0] and o € [0.5, 1.0, 1.5, 2.0]. Additionally,
we generate 400 validation samples and 400 test samples from Ds.

We train the linear model using both logisitic loss and hinge loss, and optimize it with gradient
descent for 2K epochs, using a learning rate selected from {0.001, 0.01, 0.05, 0.1, 0.5, 1.0}. No
regularization is applied when training the easy distribution D;. When fine-tuning on training dataset
from Dy, we incorporate an /5 regularization term into the loss functions, \||wo — W1 ||?, where Wy is
the optimal model weights from previous training and the regularization parameter A is selected from
the set {107°,107%,1073,1072,107,1,10}. Experiments are repeated 10 times, and we report
the mean test accuracy along with standard deviation in Figure 4. Our results show that curriculum
learning consistently outperforms the baseline, indicating that starting with an easier task facilitates
learning on the more challenging target task. Furthermore, the harder the target task (characterized
by a smaller margin and larger standard deviation), the more significant the improvement achieved
through curriculum learning.
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Figure 4: Test accuracy as a function of standard deviation for different margin ~.
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D.3 More Details on Adversarial Training Experiments

We provide additional details and results on evaluating curriculum adversarial training with £
regularization on MNIST dataset. We consider adversarial examples generated using both /.-
norm perturbation (with budgets o € {0.1,0.2,0.3,0.4}) and ¢3-norm perturbation (with budgets
a € {1.0,2.0,3.0,4.0}). All adversarial examples are generated using 10-step PGD with a step size
of a/5. We hold out 20% of the training data as a validation set and use 10-step PGD adversarial
examples, crafted with the same perturbation budget o, for hyper-parameter tuning and model se-
lection. No regularization is used for ¢ = 1. From ¢ > 2, we incorporate ¢ regularization of the
form A||w; — W;_1||?, where W;_1 is the previous model and A € {107°,107%,1073,1072}. We
use previous model W;_; as initialization for ¢. The setting has been described in Section 6. We
report both standard and robust test accuracy under PGD attacks of size « over three repetitive runs
in Table 3 for /., -attacks and Table 4 for ¢s-attacks. We observe that curriculum adversarial training
maintains performance for small « and provides improvements for larger o (o > 0.3 for £ -attacks
and «« > 3.0 for /5 attacks).

T 1 2 3
«Q nat acc pgd acc nat acc pgd acc nat acc pgd acc
0.1 99.184+0.07 96.07£0.02 | 99.274+0.07 95.65£0.18 | 99.36+0.03 95.74£0.14
0.2 98.80+0.03 94.73+0.22 | 98.86+0.15 94.60+£0.93 | 98.67+0.05 94.38+0.23
0.3 98.27+0.46  92.77£1.20 | 98.77+0.15 94.74+£0.12 | 98.23+0.15 93.61+0.87
0.4 11.35+£0.00 11.35+£0.00 | 98.39+0.29 95.54+0.41 | 98.52+0.14 95.63£0.12

Table 3: Standard (nat acc) / robust (pgd acc) accuracy under /., PGD attack of size o« (MNIST).

T 1 2 3
@ nat acc ped acc nat acc pgd acc nat acc pgd acc
1.0 99.324+0.05 94.53+0.16 | 99.26+0.05 94.44+0.03 | 99.37+£0.04 93.99£0.39
2.0 98.38+0.13  76.23+0.39 | 98.51+0.10 76.04+0.30 | 98.40+0.08 76.56+0.27
3.0 94.35£0.70  52.11+£0.60 | 94.87+£0.30 52.53+0.35 | 94.06+£1.29 52.65+0.86
4.0 89.12£2.79 31.47+0.41 | 87.62+1.53 31.93+0.94 | 84.55+1.35 32.00+£0.80

Table 4: Standard (nat acc) / robust (pgd acc) accuracy under {5 PGD attack of size e (MNIST).

D.4 Noisy MNIST

We construct a noisy MNIST dataset by adding Gaussian noise to each example, sampled from the
distribution N'(0, 0°I7g4). Our goal is to find a model that perform well on the noisy MNIST test
data. To perform curriculum learning, we manually categorize the digits into four groups: [1,4,7],
[3,8,0], [6,9], [2,5] and create four tasks as follows: 1). train on digits [1,4,7]; 2). train on digits
[1,4,7]U[3,8,0]; 3). train on digits [1,4,7]U[3,8,0]U[6,9]; 4). train on all digits. The reason for
selecting these categories is based on the visual similarity in the shape of the digits.

We consider three different architectures: a linear model, a two-layer ReLU network with a hidden
width of 100, and a convolutional neural network (CNN). The CNN consists of two convolutional
layers followed by max-pooling and two fully connected layers with ReLU activations. The first
and second convolutional layers have [input channel, output channel, kernel size] = [1, 10, 5] and
[10, 20, 5], respectively. The first and second fully connected layers have dimensions [320, 100]
and [100, 10], respectively. For each task, we train the model using cross-entropy loss and opti-
mize it with stochastic gradient descent (SGD) for 200 epochs, using a batch size of 128 and a
learning rate selected from {10~%,1073,1072,1071}, with a weight decay of 10~*. No regular-
ization is applied during the first task. From the second task onward, we incorporate an {5 regu-
larization term into the loss functions, \||w; — W;_1]|? for task ¢ > 2, where W;_; represents the
optimal model weights from the previous task ¢ — 1. The regularization parameter A is selected
from {107°,1074,1073,1072,1071,1}. We randomly set 20% of the training data aside as the
validation set and use the validation accuracy to select the optimal hyperparameters for each task
and to determine the best-performing model checkpoint. The optimal model weights from task t — 1
are used both to initialize model training and as the reference point for the {5 regularizer in task
t. Table 5 reports the averaged results over three runs, including standard deviations. Our results
demonstrate that curriculum learning consistently outperforms the baseline, particularly when the
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noise level o is higher. This indicates that curriculum learning is especially beneficial in more chal-
lenging settings where the data is noisier.

Model o Baseline Curriculum
0.0 | 92.04+0.05 | 92.344+0.10
Linear 1.0 | 68.93+0.63 | 70.694+0.38
2.0 | 42.18+0.65 | 44.63+0.29
0.0 | 97.87£0.14 | 97.854+0.05
1.0 | 80.55+0.24 | 81.264+0.13
2.0 | 45.7940.91 | 46.43+0.26
0.0 | 99.00+£0.06 | 99.0440.04
Convoluted Network | 1.0 | 84.484+0.29 | 85.08+0.11
2.0 | 46.661+0.65 | 48.334+0.15

Table 5: Accuracy on the o-noisy test data under different o and different model architectures.

Two-layer ReLU
Network
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NeurlIPS Paper Checklist
A. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We listed our contributions in the introduction and proved our claims from
Section 3 to Section 5 in the main paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

B. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discussed the limitations and future directions in the Conclusion
section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

» The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

C. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The paper provide the full set of assumptions and a complete and correct
proof for each theoretical result. Please see Appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

» The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include the details of our datasets and our algorithms when describing our
experiments. We repeated each experiments for multiple times and compared the results in
detail.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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E. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We attach the code of our experiments in the supplementary material.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

F. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All training details and the choice of hyperparameters are included in the
experiment section.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

G. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We run each experiment for multiple runs and make comparisons between the
standard training and training with the curriculum.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
H. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: All experiments are conducted on a single V100 GPU.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

1. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This is a theoretical paper, and to the best of our knowledge, it respects every
of the NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

J. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This is a theoretical paper. We focused on solving our problem, but the
problem domain itself has a potential for positive societal impacts, where our techniques
can facilitate learning the problem efficiently.

Guidelines:
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» The answer NA means that there is no societal impact of the work performed.

¢ If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

e The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

K. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This is a theoretical paper. The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

L. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: This is a theoretical paper. The paper does not use existing assets.
Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
M. New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]
Justification: This is a theoretical paper. The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

N. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: This is a theoretical paper. The paper does not involve crowdsourcing nor
research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

¢ Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

O. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

35


paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
P. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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