
A Simple Linear Patch Revives Layer-Pruned Large Language Models

Anonymous ACL submission

Abstract
Layer pruning has become a popular technique001
for compressing large language models (LLMs)002
due to its simplicity. However, existing layer003
pruning methods often suffer from significant004
performance drops. We identify that this degra-005
dation stems from the mismatch of activation006
magnitudes across layers and tokens at the007
pruning interface. To address this, we propose008
LINEARPATCH, a simple plug-and-play tech-009
nique to revive the layer-pruned LLMs. Our010
method introduces Hadamard transformation011
to suppress massive outliers in particular to-012
kens, and channel-wise scaling to align the ac-013
tivation magnitudes. These operations can be014
ingeniously fused into a real symmetric ma-015
trix using the spectral theorem, i.e., the pro-016
posed LINEARPATCH at the pruning interface017
with negligible inference overhead. Our ex-018
periments demonstrate that LINEARPATCH re-019
tains up to 94.15% performance of the original020
model when pruning 5 layers of LLaMA-3-8B021
on the question answering benchmark, surpass-022
ing existing state-of-the-art methods by 4%.023
Additionally, with the proposed offline knowl-024
edge distillation using only 5K samples, LIN-025
EARPATCH can be further boosted to 95.16%026
within 30 minutes on a single computing card.027
Code will be released upon acceptance.028

1 Introduction029

Recent large language models (LLMs) have030

achieved remarkable success towards the artificial031

general intelligence (Achiam et al., 2023; Jiang032

et al., 2023; Yang et al., 2024a; Dubey et al., 2024;033

Team et al., 2025; Liu et al., 2024a; Guo et al.,034

2025). However, the large size of LLMs also brings035

significant computational and memory overhead036

for the deployment. Various model compression037

methods are thereon proposed, including quantiza-038

tion (Xiao et al., 2023a; Ashkboos et al., 2024b;039

Sun et al., 2024b) and pruning (Ashkboos et al.,040

2024a; van der Ouderaa et al., 2023; Xia et al.,041

2023; Sarah et al., 2024; Hu et al., 2024).042

Among these methods, layer pruning is a popular 043

solution as it can be readily applied without hard- 044

ware or low-level dependencies (Song et al., 2024; 045

Kim et al., 2024; Chen et al., 2024a; Men et al., 046

2024; Gromov et al., 2024). This is different from 047

unstructured pruning (Han et al., 2015; Frantar and 048

Alistarh, 2023; Sun et al., 2023) which cannot be 049

efficiently accelerated due to the irregular memory 050

access. The structured sparsity (Ashkboos et al., 051

2024a; van der Ouderaa et al., 2023) or N:M spar- 052

sity (Frantar and Alistarh, 2023; Sun et al., 2023; 053

Zhang et al., 2024) also rely on hacking the model 054

architectures or low level kernels. However, despite 055

the simplicity of layer pruning, a critical challenge 056

is the sharp drop of performance. 057

In this work, we discover a new phenomenon 058

that explains the degradation by layer pruning, i.e., 059

the mismatch of activation magnitudes across lay- 060

ers and tokens at the pruning interface. Specif- 061

ically, when layers are pruned in LLMs, the ac- 062

tivations from the remaining layers often exhibit 063

different scales. The magnitude of activations in 064

the layer preceding the pruning interface may not 065

match those in the following layer after pruning. 066

The mismatch is exacerbated by the presence of 067

massive outliers in the activations of special to- 068

kens (e.g., [BOS] or delimiter tokens), which are 069

common in LLMs (Liu et al., 2024b; Sun et al., 070

2024a). As a result, the pruned LLMs may suf- 071

fer from efficient forward propagation as before, 072

which ultimately leads to the drop in performance. 073

To this end, we propose LINEARPATCH, a plug- 074

and-play technique to compensate the mismatch of 075

activation magnitudes. The proposed method can 076

be orthogonally integrated with various pruning 077

metrics. Specifically, LINEARPATCH first applies 078

Hadamard transformation to suppress the massive 079

outliers from special tokens (e.g., [BOS] or delim- 080

iter tokens), a well-known issue in LLMs (Liu et al., 081

2024b; Sun et al., 2024a). A channel-wise scaling 082

parameter is then introduced to bridge the gap of 083

1

activation magnitudes. By leveraging the spectrum084

theory, both the Hadamard matrices and diagonal-085

ized channel-wise scaling can be integrated into086

a real symmetric matrix, i.e., the proposed LIN-087

EARPATCH to be inserted at the pruning interface.088

The proposed approach introduces negligible infer-089

ence overhead, and is shown to effectively align090

the activation magnitudes. To further enhance the091

pruned LLMs, we explore the potential of offline092

knowledge distillation. Specifically, we fine-tune093

only the linear patch introduced by LINEARPATCH094

while freezing all other parameters. This efficient095

training process requires only 5K samples and can096

be completed within 30 minutes on a single com-097

puting card for the LLaMA-2-7B model.098

Our empirical results demonstrate the effective-099

ness of LINEARPATCH across various LLMs and100

tasks. For instance, LINEARPATCH achieves a re-101

tained performance ratio of up to 94.15% when102

pruning 5 layers for LLaMA-3-8B on the ques-103

tion answering benchmark, significantly higher104

than existing state-of-the-art (SOTA) methods such105

as LLM-Streamline (90.84%). Moreover, with106

efficient knowledge distillation, LINEARPATCH107

can further boost the retained performance to108

95.16%. These results highlight the potential of109

LINEARPATCH as a powerful solution for reviv-110

ing layer-pruned LLMs with minimal overhead and111

significant performance gains.112

2 Related work113

Recently, layer pruning has emerged as a promising114

approach for compressing Large Language Models115

(LLMs). Unlike width pruning that often results in116

irregular network structures, layer pruning removes117

entire Transformer layers, including attention and118

MLP modules, making it easier to deploy. Re-119

cent studies, such as LaCo (Yang et al., 2024b),120

ShortGPT (Men et al., 2024), UIDL (Gromov et al.,121

2024), SLEB (Song et al., 2024), Shortened LLaMa122

(Kim et al., 2024), and LLM-Streamline (Chen123

et al., 2024a), have demonstrated the effectiveness124

of layer pruning in compressing LLMs.125

LoCo (Yang et al., 2024b) merges rear model126

layers into a prior layer using reserving differences127

while seeking common (RDSC) strategy, with co-128

sine similarity of the model’s output as the guid-129

ing metric. ShortGPT (Men et al., 2024) employs130

cosine similarity between the inputs and outputs131

of each layer to assess layer importance, subse-132

quently removing the least critical layers. UIDL133

(Gromov et al., 2024) introduces an angular dis- 134

tance metric to evaluate and remove consecutive 135

layers, followed by QLoRA fine-tuning to mitigate 136

pruning-induced damage. SLEB (Song et al., 2024) 137

iteratively identifies and eliminates redundant lay- 138

ers based on perplexity degradation on a calibration 139

dataset. Shortened LLaMa (Kim et al., 2024) ex- 140

plores Taylor-based metrics and perplexity degra- 141

dation as pruning criteria, restoring pruned model 142

performance through LoRA fine-tuning. LLM- 143

Streamline (Chen et al., 2024a) identifies the least 144

important consecutive layers using cosine similar- 145

ity and replaces them with a lightweight network, 146

claiming that fine-tuning this network with MSE 147

loss outperforms LoRA fine-tuning. 148

Despite the demonstrated effectiveness of these 149

layer pruning methods, they all overlook the signifi- 150

cant magnitude mismatch that occurs after pruning, 151

which we find detrimental to model performance. 152

LINEARPATCH addresses this issue by introducing 153

a simple yet effective magnitude alignment patch. 154

While LLM-Streamline also inserts a lightweight 155

network at the pruning site, their network is ran- 156

domly initialized and fails to address magnitude 157

alignment. In contrast, LinearPatch achieves su- 158

perior performance under both training-free and 159

post-training conditions compared to concurrent 160

layer pruning methods. 161

3 Method 162

We introduce LINEARPATCH, a plug-and-play 163

method to enhance the layer-pruned LLMs. We 164

find that channel magnitude matters both across dif- 165

ferent layers (Section 3.2) and tokens (Section 3.3). 166

In Section 3.4, we introduce that all these issues 167

can be resolved by a linear patch, which can be 168

efficiently fine-tuned for further improvement. 169

3.1 Preliminaries on LLM Layer Pruning 170

Layer pruning has emerged as a promising tech- 171

nique for compressing the redundant layers in large 172

language model. LLMs primarily adopt the Trans- 173

former architecture, which consists of a series of 174

Transformer decoder layers and each layer adopts a 175

residual structure. We denote the ℓ-th Transformer 176

layer as f(X(ℓ); θ(ℓ)), with X(ℓ) and θ(ℓ) represent- 177

ing its input activations and associated parameters, 178

respectively. Due to the prevalent pre-norm archi- 179

tecture of LLMs, the input to the (ℓ+ 1)-th layer 180

X(ℓ+1) can thus be obtained by 181

X(ℓ+1) = X(ℓ) + f(X(ℓ), θ(ℓ)). (1) 182

2

(d) Hadamard Trans. Magnitude

σd= 230.32σd= 2137.75

(b) Channel Magnitude Scaling

Pe
rp
le
xi
ty

(a) Layer-wise Channel Magnitude

35.68 w/o Scaling

(c) Token-wise Channel Magnitude

Figure 1: Visualization of the identified layer-wise channel mismatch and token-wise channel mismatch in layer-
pruned LLMs. (a) and (b) identify the layer-wise channel mismatch at the pruning interface and the validity of
channel scaling. (c) and (d) identify the token-wise channel mismatch and the validity of Hadamard transformation.

Cosine Similarity for Layer Pruning. We183

choose the prevalent cosine similarity as the prun-184

ing metric, despite that the proposed approach is185

agnostic to the pruning metric. Recent efforts find186

cosine similarity particularly effective in identi-187

fying redundant Transformer layers (Men et al.,188

2024; Gromov et al., 2024). For example, LLM-189

Streamline (Chen et al., 2024a) identifies and re-190

moves n contiguous layers with the highest cosine191

similarities among their input activations. The opti-192

mal layer index ℓ∗ is thus determined by:193

ℓ∗ = argmax
ℓ

E
(X

(ℓ)
i ,X

(ℓ+n)
i)∈D

X
(ℓ)
i ·X(ℓ+n)

i

∥X(ℓ)
i ∥∥X(ℓ+n)

i ∥
, (2)194

where D denotes the input activations of layers ob-195

tained with calibration samples, and X
(ℓ)
i ∈ RL×C196

represents the input of the ℓ-th layer for the i-th197

sample, and L and C are the sequence length and198

hidden dimension, respectively.199

Consider that removing transformer layers con-200

tiguously from ℓ∗-th layer to (ℓ∗ + n)-th layer, the201

(ℓ∗ + n)-th layer takes the input of the ℓ∗-th layer202

as its own input, i.e.,203

X(ℓ∗+n) = X(ℓ∗) + f(X(ℓ∗), θ(ℓ
∗+n)). (3)204

However, we find layer pruning brings a large205

gap on the channel magnitude at the pruning in-206

terface, which negatively impacts the model per-207

formance, as shown in Figure 1. In Section 3.2208

and Section 3.3, we investigate the root causes two209

aspects, and propose our solutions accordingly.210

3.2 Channel Magnitude Alignment211

Layer-wise Channel Mismatch. We find that the212

mismatch of channel magnitude would directly af-213

fect the performance of pruned LLMs. As shown in214

Figure 1 (a), the magnitude of hidden states in dif-215

ferent layers of LLM varies, while the removal of216

contiguous layers brings a significant gap between 217

the channel magnitude. 218

For LLM to remove its layer with index in 219

[ℓ∗, ℓ∗ + n), we statistically compute channel-wise 220

scaling parameters as follows. For activation of 221

each channel k, we compute the ratio of mean acti- 222

vation magnitude between the input of (ℓ∗ + n)-th 223

layer and ℓ∗-th layer over the calibration set and 224

derive the channel-wise scaling parameter d ∈ RC , 225

where dk is defined as 226

dk(ℓ
∗, ℓ∗ + n) =

1

BL

B∑
i=1

L∑
j=1

|X(ℓ∗+n)
i,j,k |

|X(ℓ∗)
i,j,k|

. (4) 227

Quantitative Evaluation. It can be found from 228

Figure 1 (b) that X(ℓ∗) ·d matches the magnitude di- 229

rectly, together with the improved perplexity scores. 230

Additionally, we also perturb the input Xℓ∗ around 231

the scaling parameter d ∈ RC with the perturba- 232

tion coefficient α, i.e., 233

X(ℓ∗+n) = αX(ℓ∗) · d+ f(αX(ℓ∗) · d, θ(ℓ∗+n)). 234

From Figure 1 (b), finding the optimal scaling pa- 235

rameter d yields lower perplexity than vanilla layer- 236

pruning without scaling. By varying α, the model 237

suffers from the performance drop dramatically. 238

Remarks. The issue of channel magnitude mis- 239

match has been neglected by the prevalent metric 240

of cosine similarity, given that the scalings over in- 241

put are cancelled out, i.e., cos(a,b) = cos(xa, yb) 242

for any a, b ∈ Rn and x, y ∈ R+. 243

3.3 Token Magnitude Smoothing 244

Token-wise Scaling Mismatch. As suggested 245

by recent research (Liu et al., 2024b; Xiao et al., 246

2023b), there are massive outliers specific to par- 247

ticular tokens (e.g., [BOS] and delimiter tokens) 248

with magnitudes over 1e3, as shown in Figure 1 (c). 249

3

LLM

·
·
·

·
·
·

·
·
·

✂

✂

Block 0

1

l - 1

l

l + n

L-1

L

replace

Step1：Contiguous

Layer Pruning

Pruned LLM

Hadamard H

Alignment D

·
·
·

·
·
·

Pruned LLM

Linear Patch A

·
·
·

·
·
·

merge

Hadamard HT

Step2：Channel Alignment

in Rotation Space

Step3：Matrix Merging and

Optional Fine-tuning

Figure 2: Overview of LINEARPATCH. In step1, we remove layers contiguously with cosine similarity metric. In
step2, we obtain channel-wise scaling parameters in the Hadamard rotation space. In step3, we fuse the channel-wise
scaling parameters and the Hadamard transformations to obtain LINEARPATCH, which allows further fine-tuning.

Consequently, the scaling parameter dk may not250

fit all tokens along the k-th channel, given the to-251

kens within this channel also exhibit large variance252

of magnitude. Specifically, we calculate the stan-253

dard deviations of magnitude gap averaged over all254

tokens, i.e.,255

σd(ℓ
∗, ℓ∗ + n) =

1

C

C∑
k=1

σ

(
|X(ℓ∗+n)

k |
|X(ℓ∗)

k |

)
, (5)256

where σ(·) is the standard deviation. A small σd is257

usually preferred to share the scaling parameter for258

all tokens. However, due to the presence of outliers,259

we observe σd = 2137.75 when pruning 9 layers260

from LLaMA-2-7B.261

Hadamard Transformation. Inspired by recent262

research (Lin et al., 2024; Liu et al., 2024c; Ashk-263

boos et al., 2024b; Sun et al., 2024b), Hadamard264

transformation over activations can effectively sup-265

press outliers, as shown in Figure 1 (d). A Walsh-266

Hadamard matrix (Horadam, 2012) is a specific267

type of Hadamard matrix with size C = 2n, which268

can be constructed recursively as:269 H2 =
1√
2

[
1 1

1 −1

]
H2n = H2 ⊗H2n−1 ,

(6)270

whereas for cases C ̸= 2n, we follow Ashkboos271

et al. (2024b) to factorize C = 2nm and use a272

Kronecker construction HC = H2n ⊗ Hm. The273

orthogonality of Hadamard matrix (i.e., H⊤H = I) 274

makes the following transformations equivalent: 275

X(ℓ∗) = (X(ℓ∗)H)H⊤, (7) 276

where X(ℓ∗)H denotes the rotated activations of ℓ∗- 277

th layer. As shown in Figure 1 (d), the rotation thus 278

effectively redistributes outliers among all channels. 279

With the rotated activations, it is thus more friendly 280

to share the same scaling parameter d for all tokens, 281

with σd down to 230.32. 282

3.4 LINEARPATCH: the Ultimate Recipe 283

From Figure 2, LINEARPATCH can be obtained by 284

fusing the proposed channel-wise scaling d and 285

Hadamard transformations H, which both reduces 286

the transformation overhead and allows efficient 287

fine-tuning to enhance the pruned LLMs. 288

Formulation under Spectral Theorem. Com- 289

bining Section 3.2 and Section 3.3, we first apply 290

the Hadamard transformation on the input X(ℓ∗), 291

over which we apply the channel-wise scaling on 292

the rotated space. A key ingredient of the LIN- 293

EARPATCH is to fuse all operations into a single 294

matrix A, i.e., 295

Xnew
(ℓ∗) = X(ℓ∗)HDH⊤ = X(ℓ∗)A, (8) 296

where D = diag(d) ∈ RC×C and A = HDH⊤. 297

The last equality stems from the spectral theorem 298

(Helson, 2006), which states that any real symmet- 299

ric matrix can be decomposed into an orthogonal 300

4

matrix of eigenvectors (i.e., H) and a diagonal ma-301

trix of real eigenvalues (i.e., D).302

As shown in Figure 2, LINEARPATCH is a plug-303

and-play method by inserting A into the pruned304

layers, which effectively bridges the gap induced305

by layer-pruning. Additionally, this also reduces306

the inference overhead by launching only a single307

GEMM operation for the matrix multiplication in-308

stead of three. Overall LINEARPATCH has negligi-309

ble overhead during the inference and more latency310

analysis can be found in 6.311

Offline Knowledge Distillation. Initialized from312

Equation (8), we show that LINEARPATCH can be313

efficiently fine-tuned via offline knowledge distil-314

lation to enhance the pruned LLMs. Specifically,315

given a tiny training corpus X ∈ T (e.g., only316

5,000 training samples), we collect the output log-317

its ot ∈ RB×L×V of the original teacher model,318

where B,L, V denote the batch size, sequence319

length, and the vocabulary size, respectively. How-320

ever, saving the entire ot is extremely memory con-321

sume due to the huge vocabulary size. To reduce322

the storage, we save top-K logits oKt ∈ RB×L×K323

with their indices from the vocabulary, which helps324

to focus on the most informative candidate to-325

kens. Meanwhile, we also collect the output logits326

oKs ∈ RB×L×K from the student model (i.e., the327

pruned LLM), with the same indices of the vocab-328

ulary from the teacher model. Thus we minimize329

the Kullback-Leibler (KL) divergence (Chen et al.,330

2024c,b) between the output distributions as331

min
A

EX∈T KL
(
z(oKt)), z(oKs)

)
, (9)332

where z(·) indicates the softmax function. By freez-333

ing all the rest parameters except for the linear334

patch A, the training paradigm sufficiently reduces335

the memory consumption and a single 24GB GPU336

can meet the fine-tuning of LLMs with size 7B337

within 30 minutes.338

Apart from knowledge distillation with339

Kullback-Leibler divergence loss, we also tried340

to minimize the mean squared error (MSE) of341

the pruned layers following (Chen et al., 2024a).342

However, the MSE empirically leads to over-fitting343

and thus brings sub-optimal solutions.344

4 Experiments345

4.1 Setup346

Models. We evaluate the proposed LIN-347

EARPATCH on various open-sourced LLMs,348

including LLaMA-2-7B/13B (Touvron et al., 349

2023), and LLaMA-3-8B (Dubey et al., 2024). 350

Download links to officially released LLMs can be 351

found in Table 8 in the Appendix B. 352

Baselines. We mainly compare our methods with 353

state-of-the-art layer-wise pruning approaches with 354

different pruning metrics, including the gradient- 355

base LLM-Pruner (Ma et al., 2023), perplexity- 356

based SLEB (Song et al., 2024), cosine similarity- 357

based ShortGPT (Men et al., 2024) and LLM- 358

Streamline (Chen et al., 2024a). For LLM-Pruner, 359

we use block-wise pruning configuration with C4 360

calibration set to reproduce all results. For SLEB, 361

we use the official code 1 or the indices of pruned- 362

layers for reproduction. For LLM-Streamline and 363

ShortGPT, we reproduce the methods following the 364

description of the publications. 365

Evaluation. Three benchmarks are used for eval- 366

uation: perplexity (PPL), Massive Multitask Lan- 367

guage Understanding (MMLU), and commonsense 368

question answering (QA). For PPL, we measure 369

language generation on WikiText2 (Merity et al., 370

2016), C4 (Raffel et al., 2020), and PTB (Marcus 371

et al., 1993) datasets. For MMLU, we test five- 372

shot performance on MMLU datasets (Hendrycks 373

et al., 2020). For QA, we assess on 9 commonsense 374

QA tasks and report the average (AVG) for PPL, 375

weighted average (Weighted AVG) for MMLU, and 376

both AVG and retained performance (RP) for QA. 377

More details can be found in Appendix C. 378

4.2 Implementation Details 379

Calibration and Fine-tuning. To decide the 380

pruned layer and initialize the channel-wise scaling 381

parameter, we randomly select 128 sentences with 382

sequence length 2048 from WIKITEXT-2 datasets 383

for all models as few-shot calibration samples. We 384

conducted ablation on the size of calibration set 385

in Appendix D. To fine-tune the LINEARPATCH, 386

we use AdamW optimizer with learning rate 1e-4, 387

using 5000 sentences with sequence length 2048 388

from WIKITEXT-2 datasets for 1 epoch. 389

Resource Dependence. Our implementation is 390

based on the PyTorch framework. All experiments 391

are conducted on a server with a 24GB GPU. For 392

model size 7B, the initialization process of LIN- 393

EARPATCH is about 30 seconds and the optional 394

fine-tuning process is about 30 minutes. 395

1https://github.com/jiwonsong-dev/SLEB

5

Model n/N Method Ratio ARC-c ARC-e BoolQ HeSw PIQA WG WSC Race-h CoPa AVG RP

0/32 Dense - 46.25 74.58 77.74 75.97 79.11 68.98 80.59 39.62 87.00 69.98 100

9/32 LLMPruner 26.99 31.91 52.90 62.42 54.41 71.33 53.20 65.57 28.52 79.00 55.47 78.14
9/32 SLEB 27.03 31.91 52.31 46.09 58.28 69.59 58.25 69.23 32.25 79.00 55.21 78.41
9/32 ShortGPT 27.03 32.76 48.61 62.17 56.17 64.36 64.33 71.06 32.25 77.00 56.52 80.29
9/32 LLM-Streamline(None) 27.03 32.76 48.61 62.17 56.17 64.36 64.33 71.06 32.25 77.00 56.52 80.29
9/32 LINEARPATCH[S/L] 26.78 33.45 55.22 62.14 57.67 67.46 65.11 77.29 34.93 79.00 59.14 84.08

7/32 LLMPruner 20.56 35.24 60.61 62.42 61.66 75.41 54.78 71.43 31.67 80.00 59.25 83.80
7/32 SLEB 21.02 33.02 56.57 63.91 62.49 73.07 58.96 69.23 32.06 84.00 59.26 83.66
7/32 ShortGPT 21.02 36.18 55.89 62.17 62.66 70.40 65.98 77.29 33.78 81.00 60.59 86.06
7/32 LLM-Streamline(None) 21.02 36.18 55.89 62.17 62.66 70.40 65.98 77.29 33.78 81.00 60.59 86.06

L
L

aM
A

-2
-7

B

7/32 LINEARPATCH[S/L] 20.78 37.63 61.24 62.14 63.49 70.46 65.90 79.49 36.46 85.00 62.42 88.88

0/40 Dense - 49.06 77.40 80.61 79.35 80.52 72.38 86.81 40.48 91.00 73.07 100

10/40 LLMPruner 23.90 39.51 67.26 65.84 72.24 77.91 57.30 73.26 33.59 85.00 63.55 86.32
10/40 SLEB 24.37 39.93 66.04 66.76 68.24 75.63 63.61 75.46 36.94 84.00 64.07 87.54
10/40 ShortGPT 24.37 43.00 63.51 58.20 69.29 72.52 69.85 81.32 36.84 87.00 64.61 88.45
10/40 LLM-Streamline(None) 24.37 43.00 63.51 58.20 69.29 72.52 69.85 81.32 36.84 87.00 64.61 88.45
10/40 LINEARPATCH[S/L] 24.17 44.20 65.53 62.39 70.15 73.83 69.61 81.68 38.09 89.00 66.05 90.49

8/40 LLMPruner 19.48 41.98 67.51 63.33 68.76 76.50 56.51 68.86 32.06 85.00 62.28 84.78
8/40 SLEB 19.50 36.43 61.83 62.32 67.03 75.08 62.51 78.02 34.83 83.00 62.34 84.74
8/40 ShortGPT 19.50 44.03 67.38 57.00 72.38 75.24 69.61 79.85 38.18 89.00 65.85 90.27
8/40 LLM-Streamline(None) 19.50 44.03 67.38 57.00 72.38 75.24 69.61 79.85 38.18 89.00 65.85 90.27

L
L

aM
A

-2
-1

3B

8/40 LINEARPATCH[S/L] 19.30 44.54 69.53 67.74 73.02 75.68 69.38 82.78 39.71 92.00 68.26 93.45

0/32 Dense - 53.41 77.78 81.28 79.16 80.85 72.85 86.45 40.19 89.00 73.44 100

7/32 LLMPruner 19.37 35.32 59.30 55.23 51.48 72.58 59.98 67.03 31.39 81.00 57.03 77.12
7/32 SLEB 19.01 34.04 60.06 45.17 62.01 74.05 55.01 67.40 32.82 45.17 52.86 72.48
7/32 ShortGPT 19.01 42.41 56.65 65.26 64.70 70.89 71.19 73.63 34.16 75.00 61.54 83.79
7/32 LLM-Streamline(None) 19.01 28.92 39.56 38.07 33.26 59.47 55.56 59.71 24.02 60.00 44.29 59.99
7/32 LINEARPATCH[S] 18.80 43.17 60.82 75.66 66.74 72.85 70.17 75.82 37.51 77.00 64.42 87.82
7/32 LINEARPATCH[L] 18.80 34.39 51.26 57.52 49.31 63.33 63.22 72.53 29.95 67.00 54.28 73.57

5/32 LLMPruner 13.39 39.51 68.10 71.28 64.69 76.33 64.48 74.36 35.60 78.00 63.59 86.23
5/32 SLEB 13.58 39.68 66.16 54.71 67.39 75.90 62.51 73.63 34.16 83.00 61.90 83.88
5/32 ShortGPT 13.58 45.56 63.51 73.12 70.13 74.92 71.19 75.09 36.94 79.00 65.50 89.27
5/32 LLM-Streamline(None) 13.58 47.35 66.20 73.52 71.10 74.27 71.03 76.56 36.65 84.00 66.74 90.84
5/32 LINEARPATCH[S] 13.37 45.73 68.60 73.30 70.71 76.01 73.09 79.85 38.18 82.00 67.50 91.91

L
L

aM
A

-3
-8

B

5/32 LINEARPATCH[L] 13.37 48.55 70.71 74.25 72.52 76.71 73.95 81.32 38.37 86.00 69.15 94.15

Table 1: Comparison on QA benchmark with training-free methods. n denotes the number of pruned layers and
N denotes the total number of layers of the model. The Ratio column represents the proportion(%) of pruning
parameters to the total parameters of the model. AVG column denotes the average accuracy(%) and RP column
denotes the retained performance(%). Same interpretation is adopted in all the tables.

Pruning Configurations. We set pruning ratios396

below 30% to be consistent with prior studies. De-397

tailed pruning configurations, including the number398

and indices of pruned layers for each method, are399

provided in Table 9 in the Appendix B.400

4.3 Main Results401

Our LINEARPATCH can be seamlessly inte-402

grated with layer-wise pruning methods that403

remove contiguous layers. We denote LIN-404

EARPATCH combined with ShortGPT and LLM-405

Streamline pruning methods as LINEARPATCH[S]406

and LINEARPATCH[L], respectively. In most cases,407

they prune the same set of layers and are collec-408

tively labeled as LINEARPATCH[S/L].409

4.3.1 Comparison on Training-free Methods410

We first evaluate the performance in a training-free411

setting on commonsense QA benchmarks. For the412

sake of fairness, all the methods do not include fine- 413

tuning. For LLM Pruner, we discard the process 414

of fine-tuning using LoRA. For LLM-Streamline, 415

according to its publication, discarding layer re- 416

placement and the process of offline distillation is 417

denoted by LLM-Streamline(None). For results of 418

LINEARPATCH on more models and benchmarks, 419

please refer to Appendix E. 420

As shown in Table 1, LINEARPATCH achieves 421

superior performance on QA benchmark evalua- 422

tion compared to other methods. Specifically, on 423

the LLaMA-2-7B model with a 7/32 pruning ra- 424

tio, LINEARPATCH achieves the retained perfor- 425

mance ratio of 88.88%, outperforming LLMPruner 426

(83.80%) and SLEB (83.66%). On the LLaMA-3- 427

8B model with a 5/32 pruning ratio, LINEARPATCH 428

achieves the retained performance ratio of 94.15%, 429

significantly higher than LLMPruner (86.23%) 430

and SLEB (83.88%). When ShortGPT/LLM- 431

6

Model n/N Method Ratio ARC-c ARC-e BoolQ HeSw PIQA WG WSC Race-h CoPa AVG RP

0/32 Dense 0 46.25 74.58 77.74 75.97 79.11 68.98 80.59 39.62 87.00 69.98 100
7/32 LLM-Streamline(FFN) + FT 19.01 38.23 60.48 70.18 63.75 69.86 67.48 80.95 37.51 79.00 63.05 90.00
7/32 LINEARPATCH[L] 20.78 37.63 61.24 62.14 63.49 70.46 65.90 79.49 36.46 85.00 62.42 88.88

LLaMa2-7B

7/32 LINEARPATCH[L] + FT 20.78 38.23 64.35 65.32 69.33 73.23 67.40 83.88 38.37 87.00 65.23 92.83

0/32 Dense 0 53.41 77.78 81.28 79.16 80.85 72.85 86.45 40.19 89.00 73.44 100
5/32 LLM-Streamline(FFN) + FT 11.39 30.03 39.94 65.32 49.19 59.79 67.80 81.32 31.39 71.00 55.09 74.34
5/32 LINEARPATCH[L] 13.37 48.55 70.71 74.25 72.52 76.71 73.95 81.32 38.37 86.00 69.15 94.15

LLaMA-3-8B

5/32 LINEARPATCH[L] + FT 13.37 48.12 72.77 70.98 74.63 77.42 74.03 84.62 38.56 89.00 70.01 95.16

Table 2: Comparison on QA benchmark with SOTA post-training method LLM-Streamline.

Model n/N Method Ratio WIKI-2 C4 PTB AVG

0/32 Dense 0 5.47 6.97 22.51 11.65
7/32 LLM-Streamline(FFN) + FT 19.01 9.60 17.10 47.04 24.58
7/32 LINEARPATCH[L] 20.78 13.22 14.58 45.97 24.59

LLaMA-2-7B

7/32 LINEARPATCH[L] + FT 20.78 8.09 11.25 32.48 17.27

0/32 Dense - 6.14 8.88 10.59 8.54
5/32 LLM-Streamline(FFN) + FT 11.39 383.15 201.60 101.35 228.70
5/32 LINEARPATCH[L] 13.37 15.13 17.41 19.30 17.28

LLaMA-3-8B

5/32 LINEARPATCH[L] + FT 13.37 9.00 13.34 14.34 12.23

Table 3: Comparison on PPL benchmark with SOTA post-training method LLM-Streamline.

Streamline is employed as the baselined pruning432

method, LINEARPATCH[S/L] achieves significant433

performance improvement compared with its base-434

line. For example, on the LLaMA-2-7B model with435

a 9/32 pruning ratio, LINEARPATCH[S/L] achieves436

the retained performance ratio of 84.08%, leading437

both ShortGPT and LLM-Streamline with 3.79%.438

On the LLaMa-13B model with a 8/40 pruning ra-439

tio, LINEARPATCH[S/L] achieves the retained per-440

formance ratio of 93.45%, leading both ShortGPT441

and LLM-Streamline with 3.18%.442

4.3.2 Comparison on Post-training Methods443

We present a comprehensive comparison of our444

proposed LINEARPATCH method against the state-445

of-the-art post-training method, LLM-Streamline.446

For fair comparison, we used the same dataset,447

samples, and learning rate for fine-tuning.448

Results on QA Benchmark. For QA benchmark,449

results in Table 2 demonstrate the superior perfor-450

mance of LINEARPATCH, especially when com-451

bined with fine-tuning. For instance, on LLaMA-2-452

7B with 7/32 layers pruned, LINEARPATCH[L]+FT453

achieves an average accuracy of 65.23%, out-454

performing LLM-Streamline (63.05%). Simi-455

larly, on LLaMA-3-8B with 5/32 layers pruned,456

LINEARPATCH[L]+FT attains an average accu-457

racy of 70.01%, significantly outperforming LLM-458

Streamline, which yields suboptimal results due to459

its randomly initialized replacement networks. No-460

tably, our method achieved a retained performance461

(RP) of 95.16% on LLaMA-3-8B with 5/32 layers462

pruned. 463

Results on PPL Benchmark. For PPL bench- 464

mark, LINEARPATCH[L] consistently outperforms 465

or matches LLM-Streamline, as shown in Table 466

3. For instance, on LLaMA-2-7B with 7/32 layers 467

pruned, LINEARPATCH[L]+FT achieves an average 468

perplexity of 17.27, significantly outperforming 469

LLM-Streamline (24.58). Similarly, on LLaMA-3- 470

8B with 5/32 layers pruned, LINEARPATCH[L]+FT 471

attains an average perplexity of 12.23, demonstrat- 472

ing its robustness and effectiveness. 473

4.4 Discussions 474

Tunable parameters and Loss Functions. We 475

conducted a series of comprehensive experiments 476

on LLaMA-2-7B with 9/32 layers pruned to system- 477

atically evaluate how different training configura- 478

tions influence the performance of LINEARPATCH, 479

as detailed in Table 4. The results indicate that 480

the choice of training settings significantly affects 481

the performance of LINEARPATCH. Specifically, 482

LINEARPATCH with model logits as the distilla- 483

tion target and the KL divergence loss function 484

achieved the best overall performance. This con- 485

figuration attained the lowest average perplexity 486

(19.58) on language modelling tasks and the high- 487

est average accuracy (61.71%) on QA tasks, with a 488

relative performance improvement of 2.13% over 489

LLM-Streamline. Our analysis suggests that using 490

replaced layer output for distillation may lead to 491

overfitting issues and inferior performance. Fur- 492

7

Model Parameters Distillation Target Loss Ratio WIKI-2 C4 PTB PPL AVG QA AVG QA RP

Dense - - - - 5.47 6.97 22.51 11.65 69.98 100
LLM-Streamline(FFN) + FT FFN Replaced layer ouput MSE 25.02 13.00 27.22 68.97 36.40 59.44 84.74
LLM-Streamline(FFN) + FT FFN Model logits KL 25.02 - - - - - NaN

LINEARPATCH[L] + FT LINEARPATCH Replaced layer ouput MSE 26.78 15.26 19.54 54.33 29.71 59.58 84.80
LINEARPATCH[L] + FT Diagonal Model logits KL 26.78 17.51 18.64 51.64 29.26 59.40 84.45
LINEARPATCH[L] + FT LINEARPATCH Model logits KL 26.78 8.60 12.98 37.16 19.58 61.71 88.15

Table 4: Comparisons on tunable parameters, distillation target and loss functions. FT denotes fine-tuning.

WIKI-2 C4 PTB AVG ARC-c ARC-e BoolQ HeSw PIQA WG WSC Race-h CoPa AVG RP

Dense 5.47 6.97 22.51 11.65 46.25 74.58 77.74 75.97 79.11 68.98 80.59 39.62 87.00 69.98 100

Vanilla 35.68 36.10 96.52 56.10 32.76 48.61 62.17 56.17 64.36 64.33 71.06 32.25 77.00 56.52 80.29
+d 20.68 22.75 57.67 33.70 35.07 54.97 62.17 56.93 66.76 63.77 75.09 34.83 78.00 58.62 83.56
+A 18.60 19.28 53.00 30.29 33.53 55.22 62.14 57.69 67.41 65.04 77.29 34.93 79.00 59.14 84.09
+ FT 8.60 12.98 37.16 19.58 34.81 60.65 62.48 64.52 70.29 66.69 76.92 39.04 80.00 61.71 88.15

Table 5: Ablation study on the ingredients of LINEARPATCH over LLaMA-2-7B with 9/32 layers pruned. +d applies
channel scaling, +A (i.e., HDH⊤) refers to the LINEARPATCH, and +FT denotes fine-tuning with knowlede
distillation. Note that we omit ablating H since Hadamard transformation alone is an equivalent operation.

thermore, LLM-Streamline’s approach of incorpo-493

rating a randomly initialized lightweight network494

introduces instability during logits distillation, po-495

tentially causing performance degradation and di-496

verse training. These findings highlight that LIN-497

EARPATCH offers a more effective initialization to498

enable more reliable performance recovery through499

lightweight training paradigms.500

The Ingredients of Linear Patch. Table 5 ab-501

lates the impact of components of the proposed502

LINEARPATCH. The results show that each compo-503

nent of LINEARPATCH contributes significantly to504

the overall performance. Pruned model suffer from505

substantial performance degradation, with an aver-506

age perplexity of 56.10 and a retained performance507

of 80.29% on QA tasks. When scaling parameters508

d is introduced, the performance improves, with an509

average perplexity of 33.70 and a retained perfor-510

mance of 83.56%. Further incorporating Hadamard511

rotation to create LINEARPATCH A achieves an512

average perplexity of 30.29 and a retained perfor-513

mance of 84.09%, with a relative performance im-514

provement of 3.8% over the baseline. Fine-tuning515

can yield significant additional benefits, with a rel-516

ative retained performance gain of 4.06%.517

Inference Overhead. As LINEARPATCH is a sin-518

gle linear layer inserted at the pruning interface,519

there is empirically no difference on the end-to-520

end inference latency. Here we study the overhead521

of LINEARPATCH alone and compare it with the522

existing baseline, i.e., LLM-Streamline with feed-523

forward-network. We conduct experiments using524

a batch size of 16 and a sequence length of 2048, 525

with 1000 iterations to measure the average infer- 526

ence time for the single additional layer. The hid- 527

den size was set to 4096, aligning with the configu- 528

rations of LLaMA-2-7B. All calculations are based 529

on float16 precision. As shown in Table 6, LIN- 530

EARPATCH is ~8x smaller in size and ~190x faster 531

than LLM-Streanline (FFN). We also conducted 532

overhead analysis on offline storage overhead in 533

Appendix A. 534

Method Parameters (M) Time cost (s)

LLM-Streamline (FFN) 135.27 0.094927
LINEARPATCH 16.78 0.000576

Table 6: Online inference time overhead.

5 Conclusion 535

In conclusion, we introduce LINEARPATCH, a sim- 536

ple yet effective plug-and-play technique that ad- 537

dresses the critical issue of activation magnitude 538

mismatch in layer-pruned large language models 539

(LLMs). By leveraging the Hadamard transfor- 540

mation and channel-wise scaling, LINEARPATCH 541

efficiently aligns activations across layers, signif- 542

icantly enhancing model performance with neg- 543

ligible inference overhead. Extensive empirical 544

evaluations are conducted to demonstrate the effec- 545

tiveness of the proposed approach. We hope the 546

proposed LINEARPATCH can shed more light on 547

simple and light-weight algorithms of LLM com- 548

pression without compromising the performance. 549

8

6 Limitations550

Layer pruning can streamline LLMs for efficiency,551

but it may unevenly degrade model performance552

across different tasks. For example, while some553

text generation tasks might remain robust, com-554

plex reasoning or context-dependent tasks could555

suffer. Although we conduct extensive experiments556

on several benchmarks, such as PPL, MMLU, and557

commonsense QA, it might not be enough to assess558

all abilities of LLMs. Therefore, in future work,559

a comprehensive evaluation framework is neces-560

sary to thoroughly assess the trade-offs between561

efficiency gains from layer pruning and potential562

performance degradation across diverse tasks and563

contexts.564

7 Ethics Statement565

Layer pruning methods can significantly reduce the566

computational costs of deploying Large Language567

Models (LLMs), making them more accessible to a568

broader range of users. However, these methods do569

not address the social biases embedded in LLMs,570

which often stem from the training data and can571

affect fairness and inclusivity. It is crucial to ensure572

ethical deployment of LLMs.573

References574

2019. Winogrande: An adversarial winograd schema575
challenge at scale.576

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama577
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,578
Diogo Almeida, Janko Altenschmidt, Sam Altman,579
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.580
arXiv preprint arXiv:2303.08774.581

Saleh Ashkboos, Maximilian L Croci, Marcelo Gen-582
nari do Nascimento, Torsten Hoefler, and James583
Hensman. 2024a. Slicegpt: Compress large language584
models by deleting rows and columns. arXiv preprint585
arXiv:2401.15024.586

Saleh Ashkboos, Amirkeivan Mohtashami, Maximil-587
ian L Croci, Bo Li, Pashmina Cameron, Martin Jaggi,588
Dan Alistarh, Torsten Hoefler, and James Hensman.589
2024b. Quarot: Outlier-free 4-bit inference in rotated590
llms. arXiv preprint arXiv:2404.00456.591

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,592
et al. 2020. Piqa: Reasoning about physical com-593
monsense in natural language. In Proceedings of594
the AAAI conference on artificial intelligence, vol-595
ume 34, pages 7432–7439.596

Xiaodong Chen, Yuxuan Hu, and Jing Zhang. 2024a. 597
Compressing large language models by stream- 598
lining the unimportant layer. arXiv preprint 599
arXiv:2403.19135. 600

Xinrui Chen, Yizhi Wang, Yao Li, Xitong Ling, 601
Mengkui Li, Ruikang Liu, Minxi Ouyang, Kang 602
Zhao, Tian Guan, and Yonghong He. 2024b. Low 603
bit-width zero-shot quantization with soft feature- 604
infused hints for iot systems. IEEE Internet of 605
Things Journal. 606

Xinrui Chen, Yizhi Wang, Renao Yan, Yiqing Liu, Tian 607
Guan, and Yonghong He. 2024c. Texq: zero-shot 608
network quantization with texture feature distribu- 609
tion calibration. Advances in Neural Information 610
Processing Systems, 36. 611

Christopher Clark, Kenton Lee, Ming-Wei Chang, 612
Tom Kwiatkowski, Michael Collins, and Kristina 613
Toutanova. 2019. Boolq: Exploring the surprising 614
difficulty of natural yes/no questions. arXiv preprint 615
arXiv:1905.10044. 616

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, 617
Ashish Sabharwal, Carissa Schoenick, and Oyvind 618
Tafjord. 2018. Think you have solved question an- 619
swering? try arc, the ai2 reasoning challenge. arXiv 620
preprint arXiv:1803.05457. 621

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 622
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 623
Akhil Mathur, Alan Schelten, Amy Yang, Angela 624
Fan, et al. 2024. The llama 3 herd of models. arXiv 625
preprint arXiv:2407.21783. 626

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas- 627
sive language models can be accurately pruned in 628
one-shot. In International Conference on Machine 629
Learning, pages 10323–10337. PMLR. 630

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, 631
Paolo Glorioso, and Daniel A Roberts. 2024. The un- 632
reasonable ineffectiveness of the deeper layers. arXiv 633
preprint arXiv:2403.17887. 634

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, 635
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, 636
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In- 637
centivizing reasoning capability in llms via reinforce- 638
ment learning. arXiv preprint arXiv:2501.12948. 639

Song Han, Jeff Pool, John Tran, and William Dally. 640
2015. Learning both weights and connections 641
for efficient neural network. Advances in neural 642
information processing systems, 28. 643

Henry Helson. 2006. The spectral theorem. The 644
Spectral Theorem, pages 23–41. 645

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, 646
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 647
2020. Measuring massive multitask language under- 648
standing. arXiv preprint arXiv:2009.03300. 649

Kathy J Horadam. 2012. Hadamard matrices and their 650
applications. Princeton university press. 651

9

Yuxuan Hu, Jing Zhang, Zhe Zhao, Chen Zhao, Xi-652
aodong Chen, Cuiping Li, and Hong Chen. 2024.653
Sp3: Enhancing structured pruning via pca projection.654
In Findings of the Association for Computational655
Linguistics ACL 2024, pages 3150–3170.656

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-657
sch, Chris Bamford, Devendra Singh Chaplot, Diego658
de las Casas, Florian Bressand, Gianna Lengyel, Guil-659
laume Lample, Lucile Saulnier, et al. 2023. Mistral660
7b. arXiv preprint arXiv:2310.06825.661

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault662
Castells, Shinkook Choi, Junho Shin, and Hyoung-663
Kyu Song. 2024. Shortened llama: A simple depth664
pruning for large language models. arXiv preprint665
arXiv:2402.02834, 11.666

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,667
and Eduard Hovy. 2017. Race: Large-scale reading668
comprehension dataset from examinations. arXiv669
preprint arXiv:1704.04683.670

Hector Levesque, Ernest Davis, and Leora Morgen-671
stern. 2012. The winograd schema challenge. In672
Thirteenth international conference on the principles673
of knowledge representation and reasoning.674

Haokun Lin, Haobo Xu, Yichen Wu, Jingzhi Cui, Ying-675
tao Zhang, Linzhan Mou, Linqi Song, Zhenan Sun,676
and Ying Wei. 2024. Rotation and permutation for677
advanced outlier management and efficient quantiza-678
tion of llms. arXiv preprint arXiv:2406.01721.679

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,680
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi681
Deng, Chenyu Zhang, Chong Ruan, et al. 2024a.682
Deepseek-v3 technical report. arXiv preprint683
arXiv:2412.19437.684

Ruikang Liu, Haoli Bai, Haokun Lin, Yuening Li, Han685
Gao, Zhengzhuo Xu, Lu Hou, Jun Yao, and Chun686
Yuan. 2024b. Intactkv: Improving large language687
model quantization by keeping pivot tokens intact.688
arXiv preprint arXiv:2403.01241.689

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge690
Soran, Dhruv Choudhary, Raghuraman Krishnamoor-691
thi, Vikas Chandra, Yuandong Tian, and Tij-692
men Blankevoort. 2024c. Spinquant–llm quan-693
tization with learned rotations. arXiv preprint694
arXiv:2405.16406.695

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.696
Llm-pruner: On the structural pruning of large lan-697
guage models. Advances in neural information698
processing systems, 36:21702–21720.699

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann700
Marcinkiewicz. 1993. Building a large annotated cor-701
pus of English: The Penn Treebank. Computational702
Linguistics, 19(2):313–330.703

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,704
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng705
Chen. 2024. Shortgpt: Layers in large language706

models are more redundant than you expect. arXiv 707
preprint arXiv:2403.03853. 708

Stephen Merity, Caiming Xiong, James Bradbury, and 709
Richard Socher. 2016. Pointer sentinel mixture mod- 710
els. arXiv preprint arXiv:1609.07843. 711

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 712
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 713
Wei Li, and Peter J Liu. 2020. Exploring the lim- 714
its of transfer learning with a unified text-to-text 715
transformer. Journal of machine learning research, 716
21(140):1–67. 717

Anthony Sarah, Sharath Nittur Sridhar, Maciej Szankin, 718
and Sairam Sundaresan. 2024. Llama-nas: Efficient 719
neural architecture search for large language models. 720
arXiv preprint arXiv:2405.18377. 721

Paul-Edouard Sarlin, Daniel DeTone, Tomasz Mal- 722
isiewicz, and Andrew Rabinovich. 2020. Superglue: 723
Learning feature matching with graph neural net- 724
works. In Proceedings of the IEEE/CVF conference 725
on computer vision and pattern recognition, pages 726
4938–4947. 727

Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun 728
Kim, Yulhwa Kim, and Jae-Joon Kim. 2024. Sleb: 729
Streamlining llms through redundancy verification 730
and elimination of transformer blocks. arXiv preprint 731
arXiv:2402.09025. 732

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang 733
Liu. 2024a. Massive activations in large language 734
models. arXiv preprint arXiv:2402.17762. 735

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico 736
Kolter. 2023. A simple and effective pruning ap- 737
proach for large language models. arXiv preprint 738
arXiv:2306.11695. 739

Yuxuan Sun, Ruikang Liu, Haoli Bai, Han Bao, 740
Kang Zhao, Yuening Li, Jiaxin Hu, Xianzhi Yu, 741
Lu Hou, Chun Yuan, et al. 2024b. Flatquant: Flat- 742
ness matters for llm quantization. arXiv preprint 743
arXiv:2410.09426. 744

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, 745
Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun 746
Xiao, Chenzhuang Du, Chonghua Liao, et al. 2025. 747
Kimi k1. 5: Scaling reinforcement learning with llms. 748
arXiv preprint arXiv:2501.12599. 749

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 750
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 751
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 752
Bhosale, et al. 2023. Llama 2: Open founda- 753
tion and fine-tuned chat models. arXiv preprint 754
arXiv:2307.09288. 755

Tycho FA van der Ouderaa, Markus Nagel, Mart 756
Van Baalen, Yuki M Asano, and Tijmen Blankevoort. 757
2023. The llm surgeon. arXiv preprint 758
arXiv:2312.17244. 759

10

https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi760
Chen. 2023. Sheared llama: Accelerating language761
model pre-training via structured pruning. arXiv762
preprint arXiv:2310.06694.763

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao764
Wu, Julien Demouth, and Song Han. 2023a.765
Smoothquant: Accurate and efficient post-training766
quantization for large language models. In767
International Conference on Machine Learning,768
pages 38087–38099. PMLR.769

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song770
Han, and Mike Lewis. 2023b. Efficient streaming771
language models with attention sinks. arXiv preprint772
arXiv:2309.17453.773

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang,774
Ce Bian, Chao Yin, Chenxu Lv, Da Pan, Dian Wang,775
Dong Yan, et al. 2023. Baichuan 2: Open large-scale776
language models. arXiv preprint arXiv:2309.10305.777

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,778
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan779
Li, Dayiheng Liu, Fei Huang, et al. 2024a. Qwen2780
technical report. arXiv preprint arXiv:2407.10671.781

Yifei Yang, Zouying Cao, and Hai Zhao. 2024b. Laco:782
Large language model pruning via layer collapse.783
arXiv preprint arXiv:2402.11187.784

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali785
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a786
machine really finish your sentence? arXiv preprint787
arXiv:1905.07830.788

Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin789
Zhao, Lu Hou, and Carlo Vittorio Cannistraci.790
2024. Plug-and-play: An efficient post-training791
pruning method for large language models. In792
The Twelfth International Conference on Learning793
Representations.794

11

A Offline Storage Overhead Analysis.795

As demonstrated in Table 7, assuming that the train-796

ing samples with batch size B and sequence length797

L, LINEARPATCH achieves a substantial reduc-798

tion in offline storage overhead, reaching up to799

40× for a hidden size of 4096, compared to LLM-800

Streamline during offline fine-tuning.801

Method Stored input size Stored target size

LLM-Streamline B × L× 4096 B × L× 4096
LINEARPATCH B × L B × L× 100

Table 7: Offline storage overhead.

B Details on Pruned Models802

We obtain the officially released LLMs from the803

sources listed in Table 8 for our experiments. Ad-804

ditionally, Table 9 provides a detailed illustration805

of the specific pruned layer indices for various con-806

figurations across different models.807

Model Download Link

LLaMA-2-7B https://huggingface.co/meta-llama/Llama-2-7B
LLaMA-2-13B https://huggingface.co/meta-llama/Llama-2-13B
LLaMA-3-8B https://huggingface.co/meta-llama/Llama-3.1-8B
Baichuan-2-7B https://huggingface.co/baichuan-inc/Baichuan2-7B-Base

Table 8: Download links to officially released LLMs.

Model n/N Method Ratio Pruned layer

LLaMA-2-7B
9/32 LINEARPATCH[S/L] 26.78% [21,30)
7/32 LINEARPATCH[S/L] 20.78% [23,30)

LLaMA-2-13B
10/40 LINEARPATCH[S/L] 24.17% [26,36)
8/40 LINEARPATCH[S/L] 19.30% [28,36)

LLaMA-3-8B

7/32 LINEARPATCH[S] 18.80% [22,29)
7/32 LINEARPATCH[L] 18.80% [23,30)
5/32 LINEARPATCH[S] 13.37% [24,29)
5/32 LINEARPATCH[L] 13.37% [23,28)

Baichuan-2-7B
9/32 LINEARPATCH[S/L] 24.04% [22,31)
7/32 LINEARPATCH[S/L] 18.65% [23,30)

Table 9: Details of pruning settings.

C Details of Evaluation Benchmarks808

We use a variety of benchmarks for model eval-809

uation, including the perplexity (PPL) bench-810

mark (measured by the average perplexity score),811

the Massive Multitask Language Understanding812

(MMLU) benchmark and the question answering813

(QA) benchmark for model evaluation.814

PPL. For PPL benchmarks, we report the per-815

plexity of language generation on WikiText2 (Mer-816

ity et al., 2016), C4 (Raffel et al., 2020), and PTB 817

(Marcus et al., 1993) datasets. 818

MMLU. For MMLU benchmark, we test the 819

five-shot performance on the Massively Multi- 820

task Language Understanding (MMLU) datasets 821

(Hendrycks et al., 2020). 822

Commonsense QA. For QA benchmark, we eval- 823

uate methods on 9 commonsense QA tasks: ARC- 824

Challenge (ARC-c), ARC-Easy (ARC-e) (Clark 825

et al., 2018), BoolQ (Clark et al., 2019), HellaSwag 826

(HeSw) (Zellers et al., 2019), PIQA (Bisk et al., 827

2020), WinoGrande (WG) (ai2, 2019), WSC273 828

(WSC) (Levesque et al., 2012), Race-high (Race-h) 829

(Lai et al., 2017) and CoPA (Sarlin et al., 2020). 830

We report the average (AVG) for the PPL bench- 831

mark, weighted average (Weighted AVG) for the 832

MMLU benchmark, and average (AVG) as well as 833

the retained performance (RP) for the QA bench- 834

mark. 835

For MMLU benchmark, we use the official code. 836

For PPL and QA benchmarks, we use the lm_eval 837

library from https://github.com/EleutherAI/lm- 838

evaluation-harness. 839

D Ablation on Size of Calibration Set 840

We vary the size of the calibration set to evaluate 841

its impact on the performance of LINEARPATCH in 842

Table 10. The results show that a larger calibration 843

set leads to better scaling parameters and improved 844

performance, but the gains diminish beyond a cer- 845

tain size. A calibration set of 128 samples provides 846

a good balance between computational efficiency 847

and performance. 848

Num of samples WIKI-2 C4 PTB

64 18.61 19.29 53.03
128 18.60 19.28 53.00
256 18.60 19.28 53.00
512 18.61 19.28 53.01

Table 10: Ablation on the number of calibration samples
for scaling parameters statistics.

E Results on More Models and 849

Benchmarks 850

E.1 Comparison on PPL Benchmarks with 851

Training-free Methods 852

We also evaluate LINEARPATCH on the Perplexity 853

(PPL) benchmarks, a critical metric for assessing 854

12

the language modeling capabilities of pruned mod-855

els. Lower PPL values signify superior language856

modeling performance.857

As illustrated in Table 11, SLEB with the PPL-858

based metric demonstrates a slight advantage over859

other methods whereas it underperforms in the860

QA benchmarks. Among approaches utilizing co-861

sine similarity-based metrics, the proposed LIN-862

EARPATCH consistently surpasses other methods863

across various models and pruning ratios. For in-864

stance, on the LLaMA-2-13B model with an 8/40865

pruning ratio, LINEARPATCH achieves an average866

PPL of 18.10, significantly outperforming LLM-867

Pruner (35.06) and SLEB (36.61).868

Notably, on the LLaMA-3-8B model with a869

7/32 pruning ratio, LLM-Streamline nearly fails,870

yielding an average PPL of 2839.3. In contrast,871

LINEARPATCH[L] successfully revives the model872

without additional training, restoring its perfor-873

mance to a functional level. This highlights the874

robustness of LINEARPATCH and its ability to de-875

liver stable performance improvements across di-876

verse pruning strategies.877

E.2 Comparison on MMLU Benchmarks with878

Training-free Methods879

We evaluate the proposed LINEARPATCH method880

on the MMLU tasks across multiple models in Ta-881

ble 12. Overall, LINEARPATCH demonstrates sig-882

nificant improvements in weighted average accu-883

racy across different models and pruning ratios. For884

example, it attains weighted average accuracies of885

63.84% for LLaMA-3-8B with 5/32 layers pruned,886

outperforming the best results from other methods.887

Similarly, on LLaMA-2-13B, it reaches 53.96%888

and 54.01% for 10/40 and 8/40 layers pruned, re-889

spectively, where SLEB almost collapsed in the890

same case. These results highlight the robustness891

and effectiveness of LINEARPATCH in enhancing892

the performance of layer-pruned large language893

models on MMLU tasks, demonstrating its poten-894

tial as a simple yet powerful solution for reviving895

pruned models.896

E.3 Results on Baichuan-2-7B in897

Training-free Case898

Besides LLaMA series models, we also provide899

results on Baichuan-2-7B (Yang et al., 2023) in900

training-free case to verify the robustness of LIN-901

EARPATCH across different model architectures.902

Results on PPL Benchmark. Table 13 shows 903

the results on PPL benchmarks on Baichuan-2- 904

7B model. Except for the advance performance 905

of SLEB which uses a PPL-based metric, LIN- 906

EARPATCH achieves the best performance across 907

the cosine similarity-based metrics methods. Under 908

the pruning ratio of 9/32 and 7/32, LINEARPATCH 909

achieves an average perplexity of 44.50 and 23.80 910

respectively, significantly lower than the 78.22 911

and 115.38 achieved by ShortGPT and LLM- 912

Streamline. 913

Results on QA Benchmark. Table 14 shows 914

the results on QA benchmarks. On the 915

Baichuan-2-7B model with a 7/32 pruning ra- 916

tio, LINEARPATCH[S/L] achieves a retained perfor- 917

mance ratio of 87.27%, leading both ShortGPT and 918

LLM-Streamline with 3.39%. When it comes to 919

the pruning ratio of 9/32, LINEARPATCH[S/L] still 920

maintains the 81.66% of the original performance, 921

outperforming ShortGPT and LLM-Streamline by 922

4.56%. 923

Results on MMLU Benchmark. Table 15 shows 924

the results on MMLU benchmarks. LINEARPATCH 925

attains weighted average accuracies of 50.77% and 926

52.00% for Baichuan-2-7B with 9/32 and 7/32 lay- 927

ers pruned, respectively, significantly outperform- 928

ing the best results from other methods. 929

F Visualization of The Magnitude of 930

LLM Layer outputs 931

See Figure 3 for more visualization of the magni- 932

tude of LLM layer output activations. All layer- 933

pruned model exhibit magnitude mismatch. 934

13

Model n/N Method Ratio Metric WIKI-2 C4 PTB PPL AVG

0/32 Dense - - 5.47 6.97 22.51 11.65

9/32 LLMPruner 26.99 Grad 20.50 16.61 83.02 40.04
9/32 SLEB 27.03 PPL 11.99 13.93 45.24 23.72
9/32 ShortGPT 27.03 Cos 35.68 36.10 96.52 56.10
9/32 LLM-Streamline(None) 27.03 Cos 35.68 36.10 96.52 56.10
9/32 LINEARPATCH[S/L] 26.78 Cos 18.60 19.28 53.00 30.29

7/32 LLMPruner 20.56 Grad 20.50 16.61 83.02 40.04
7/32 SLEB 21.02 PPL 9.14 11.21 38.45 19.60
7/32 ShortGPT 21.02 Cos 18.45 20.99 62.18 33.87
7/32 LLM-Streamline(None) 21.02 Cos 18.45 20.99 62.18 33.87

L
L

aM
A

-2
-7

B

7/32 LINEARPATCH[S/L] 20.78 Cos 13.22 14.58 45.97 24.59

0/40 Dense - - 4.88 6.47 28.87 13.41

10/40 LLMPruner 23.90 Grad 9.28 9.87 62.84 27.33
10/40 SLEB 24.37 PPL 7.60 9.62 69.97 29.06
10/40 ShortGPT 24.37 Cos 9.77 12.06 49.94 23.92
10/40 LLM-Streamline(None) 24.37 Cos 9.77 12.06 49.94 23.92
10/40 LINEARPATCH[S/L] 24.17 Cos 8.69 10.70 39.12 19.50

8/40 LLMPruner 19.48 Grad 11.05 11.20 82.93 35.06
8/40 SLEB 19.50 PPL 8.17 10.07 91.58 36.61
8/40 ShortGPT 19.50 Cos 8.30 10.36 44.96 21.21
8/40 LLM-Streamline(None) 19.50 Cos 8.30 10.36 44.96 21.21

L
L

aM
A

-2
-1

3B

8/40 LINEARPATCH[S/L] 19.30 Cos 7.63 9.58 37.08 18.10

0/32 Dense - - 6.14 8.88 10.59 8.54

7/32 LLMPruner 19.37 Grad 15.08 18.54 24.15 19.26
7/32 SLEB 19.01 PPL 13.12 16.76 21.04 16.97
7/32 ShortGPT 19.01 Cos 57.76 50.13 67.39 58.43
7/32 LLM-Streamline(None) 19.01 Cos 2287.73 1491.37 4738.81 2839.30
7/32 LINEARPATCH[S] 18.80 Cos 25.67 28.38 31.22 28.42
7/32 LINEARPATCH[L] 18.80 Cos 69.82 96.68 88.79 85.10

5/32 LLMPruner 13.39 Grad 10.33 13.79 15.68 13.27
5/32 SLEB 13.58 PPL 9.88 13.47 16.37 13.24
5/32 ShortGPT 13.58 Cos 27.33 27.06 31.81 28.73
5/32 LLM-Streamline(None) 13.58 Cos 21.14 24.13 37.41 27.56
5/32 LINEARPATCH[S] 13.37 Cos 16.51 19.42 20.18 18.70

L
L

aM
a-

3-
8B

5/32 LINEARPATCH[L] 13.37 Cos 15.13 17.41 19.30 17.28

Table 11: Comparison on PPL benchmark with training-free methods.

14

Model n/N Method Ratio STEM Humanities Social Sciences Others Weighed AVG

0/32 Dense - 36.98 43.25 51.77 52.47 45.90
9/32 SLEB 27.03 26.31 25.18 27.75 28.19 26.68
9/32 ShortGPT 27.03 36.88 41.00 50.73 50.96 44.54
9/32 LLM - Streamline(None) 27.03 36.88 41.00 50.73 50.96 44.54
9/32 LINEARPATCH[S/L] 26.78 34.76 40.38 49.89 50.00 43.48

7/32 SLEB 21.02 26.47 25.10 25.18 29.02 26.32
7/32 ShortGPT 21.02 31.75 37.90 44.72 46.18 39.98
7/32 LLM - Streamline(None) 21.02 31.75 37.90 44.72 46.18 39.98

L
L

aM
A

-2
-7

B

7/32 LINEARPATCH[S/L] 20.78 31.71 39.26 45.82 47.07 40.88

0/40 Dense - 44.14 54.35 63.44 60.80 55.63
10/40 SLEB 24.37 29.49 32.48 34.02 35.13 32.78
10/40 ShortGPT 24.37 43.20 50.41 62.98 60.95 54.05
10/40 LLM - Streamline(None) 24.37 43.20 50.41 62.98 60.95 54.05
10/40 LINEARPATCH[S/L] 24.17 42.91 50.31 62.43 61.54 53.96

8/40 SLEB 19.50 27.40 27.56 28.44 30.57 28.41
8/40 ShortGPT 19.50 42.80 50.13 62.78 61.19 53.88
8/40 LLM - Streamline(None) 19.50 42.80 50.13 62.78 61.19 53.88

L
L

aM
A

-2
-1

3B

8/40 LINEARPATCH[S/L] 19.30 43.07 50.61 62.56 61.04 54.01

0/32 Dense - 55.20 59.00 75.95 71.56 64.80
7/32 SLEB 19.01 28.69 23.72 29.57 28.62 27.20
7/32 ShortGPT 19.01 50.27 57.56 73.19 68.57 61.96
7/32 LLM - Streamline(None) 19.01 32.24 38.70 47.03 40.06 39.45
7/32 LINEARPATCH[S] 18.80 45.96 51.90 66.98 63.11 56.52
7/32 LINEARPATCH[L] 18.80 37.61 40.57 46.31 49.23 43.19

5/32 SLEB 13.58 30.25 25.50 31.82 30.60 29.08
5/32 ShortGPT 13.58 46.92 53.92 65.65 65.42 57.64
5/32 LLM - Streamline(None) 13.58 53.47 56.08 74.58 68.32 62.40
5/32 LINEARPATCH[S] 13.37 44.67 50.31 65.91 61.91 55.19

L
L

aM
A

-3
-8

B

5/32 LINEARPATCH[L] 13.37 54.24 57.15 75.40 71.50 63.84

Table 12: Comparison on MMLU benchmark with training-free methods.

15

Model n/N Method Ratio Metric WIKI-2 C4 PTB PPL AVG

0/32 Dense - - 6.03 8.96 18.98 11.32

9/32 LLMPruner 23.29 Grad 27.83 23.67 134.00 61.83
9/32 SLEB 24.26 PPL 15.02 21.08 59.56 31.89
9/32 ShortGPT 24.26 Cos 49.88 56.64 128.14 78.22
9/32 LLM-Streamline(None) 24.26 Cos 49.88 56.64 128.14 78.22
9/32 LINEARPATCH[S/L] 24.04 Cos 24.36 32.42 76.71 44.50

7/32 LLMPruner 18.47 Grad 17.54 18.75 81.54 39.28
7/32 SLEB 18.87 PPL 10.78 16.09 42.08 22.98
7/32 ShortGPT 18.87 Cos 103.5 152.05 90.58 115.38
7/32 LLM-Streamline(None) 18.87 Cos 103.5 152.05 90.58 115.38

B
ai

ch
ua

n-
2-

7B

7/32 LINEARPATCH[S/L] 18.65 Cos 13.87 19.08 38.44 23.80

Table 13: Comparison on PPL benchmark with training-free methods on Baichuan-2-7B.

Model n/N Method Ratio ARC-c ARC-e BoolQ HeSw PIQA WG WSC Race-h CoPa AVG RP

0/32 Dense - 42.49 72.98 73.91 72.19 77.20 68.43 79.85 38.28 85.00 67.81 100

9/32 LLMPruner 23.29 32.42 56.36 59.82 54.11 69.70 53.20 59.34 28.04 78.00 54.55 79.64
9/32 SLEB 24.26 29.18 48.91 62.29 52.14 68.88 55.09 66.30 30.43 75.00 54.25 79.19
9/32 ShortGPT 24.26 28.67 42.55 67.19 47.09 62.68 62.19 69.23 29.38 65.00 52.66 77.10
9/32 LLM-Streamline(None) 24.26 28.67 42.55 67.19 47.09 62.68 62.19 69.23 29.38 65.00 52.66 77.10
9/32 LINEARPATCH[S/L] 24.04 30.80 50.04 62.45 52.31 65.72 65.11 71.43 31.58 72.00 55.72 81.66

7/32 LLMPruner 18.47 36.86 62.63 62.23 61.25 72.03 54.06 63.74 29.00 80.00 57.98 84.85
7/32 SLEB 18.87 31.31 55.39 65.47 56.93 71.65 59.12 72.89 33.21 73.00 57.66 84.46
7/32 ShortGPT 18.87 34.90 51.81 62.39 55.27 65.56 64.72 74.73 31.77 72.00 57.02 83.88
7/32 LLM-Streamline(None) 18.87 34.90 51.81 62.39 55.27 65.56 64.72 74.73 31.77 72.00 57.02 83.88

B
ai

ch
ua

n-
2-

7B

7/32 LINEARPATCH[S/L] 18.65 35.15 57.20 62.91 59.02 68.55 66.61 76.19 34.45 73.00 59.23 87.27

Table 14: Comparison on QA benchmark with training-free methods on Baichuan-2-7B.

Model n/N Method Ratio STEM Humanities Social Sciences Others Weighed AVG

0/32 Dense - 44.53 51.30 61.23 60.85 54.23
9/32 SLEB 24.26 29.03 26.37 28.37 28.50 27.87
9/32 ShortGPT 24.26 39.07 40.66 50.70 50.31 44.74
9/32 LLM-Streamline(None) 24.26 39.07 40.66 50.70 50.31 44.74
9/32 LINEARPATCH[S/L] 24.04 42.25 46.80 58.73 56.90 50.77

7/32 SLEB 18.87 33.00 30.67 37.70 37.23 34.23
7/32 ShortGPT 18.87 42.01 45.48 58.17 55.71 49.88
7/32 LLM-Streamline(None) 18.87 42.01 45.48 58.17 55.71 49.88

B
ai

ch
ua

n-
2-

7B

7/32 LINEARPATCH[S/L] 18.65 42.84 48.42 59.60 58.70 52.00

Table 15: Comparison on MMLU benchmark with training-free methods on Baichuan-2-7B.

16

(g) Baichuan-2-7B Pruned 9 layers (22-31) (h) Baichuan-2-7B Pruned 7 layers (23-30)

(e) LLaMA-3-8B Pruned 7 layers (23-30) (f) LLaMA-3-8B Pruned 5 layers (23-28)

(c) LLaMA-2-13B Pruned 10 layers (26-36) (d) LLaMA-2-13B Pruned 8 layers (28-36)

(a) LLaMA-2-7B Pruned 9 layers (21-30) (b) LLaMA-2-7B Pruned 7 layers (23-30)

Figure 3: Visualization of the magnitude of LLM layer output activations, where pruned layers are represented in
grey. All layer-pruned model exhibit magnitude mismatch.

17

	Introduction
	Related work
	Method
	Preliminaries on LLM Layer Pruning
	Channel Magnitude Alignment
	Token Magnitude Smoothing
	LinearPatch: the Ultimate Recipe

	Experiments
	Setup
	Implementation Details
	Main Results
	Comparison on Training-free Methods
	Comparison on Post-training Methods

	Discussions

	Conclusion
	Limitations
	Ethics Statement
	Offline Storage Overhead Analysis.
	Details on Pruned Models
	Details of Evaluation Benchmarks
	Ablation on Size of Calibration Set
	Results on More Models and Benchmarks
	Comparison on PPL Benchmarks with Training-free Methods
	Comparison on MMLU Benchmarks with Training-free Methods
	Results on Baichuan-2-7B in Training-free Case

	Visualization of The Magnitude of LLM Layer outputs

