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Abstract

Layer pruning has become a popular technique
for compressing large language models (LLMs)
due to its simplicity. However, existing layer
pruning methods often suffer from significant
performance drops. We identify that this degra-
dation stems from the mismatch of activation
magnitudes across layers and tokens at the
pruning interface. To address this, we propose
LINEARPATCH, a simple plug-and-play tech-
nique to revive the layer-pruned LLMs. Our
method introduces Hadamard transformation
to suppress massive outliers in particular to-
kens, and channel-wise scaling to align the ac-
tivation magnitudes. These operations can be
ingeniously fused into a real symmetric ma-
trix using the spectral theorem, i.e., the pro-
posed LINEARPATCH at the pruning interface
with negligible inference overhead. Our ex-
periments demonstrate that LINEARPATCH re-
tains up to 94.15% performance of the original
model when pruning 5 layers of LLaMA-3-8B
on the question answering benchmark, surpass-
ing existing state-of-the-art methods by 4%.
Additionally, with the proposed offline knowl-
edge distillation using only 5K samples, LIN-
EARPATCH can be further boosted to 95.16 %
within 30 minutes on a single computing card.
Code will be released upon acceptance.

1 Introduction

Recent large language models (LLMs) have
achieved remarkable success towards the artificial
general intelligence (Achiam et al., 2023; Jiang
et al., 2023; Yang et al., 2024a; Dubey et al., 2024;
Team et al., 2025; Liu et al., 2024a; Guo et al.,
2025). However, the large size of LLMs also brings
significant computational and memory overhead
for the deployment. Various model compression
methods are thereon proposed, including quantiza-
tion (Xiao et al., 2023a; Ashkboos et al., 2024b;
Sun et al., 2024b) and pruning (Ashkboos et al.,
2024a; van der Ouderaa et al., 2023; Xia et al.,
2023; Sarah et al., 2024; Hu et al., 2024).

Among these methods, layer pruning is a popular
solution as it can be readily applied without hard-
ware or low-level dependencies (Song et al., 2024;
Kim et al., 2024; Chen et al., 2024a; Men et al.,
2024; Gromov et al., 2024). This is different from
unstructured pruning (Han et al., 2015; Frantar and
Alistarh, 2023; Sun et al., 2023) which cannot be
efficiently accelerated due to the irregular memory
access. The structured sparsity (Ashkboos et al.,
2024a; van der Ouderaa et al., 2023) or N:M spar-
sity (Frantar and Alistarh, 2023; Sun et al., 2023;
Zhang et al., 2024) also rely on hacking the model
architectures or low level kernels. However, despite
the simplicity of layer pruning, a critical challenge
is the sharp drop of performance.

In this work, we discover a new phenomenon
that explains the degradation by layer pruning, i.e.,
the mismatch of activation magnitudes across lay-
ers and tokens at the pruning interface. Specif-
ically, when layers are pruned in LLMs, the ac-
tivations from the remaining layers often exhibit
different scales. The magnitude of activations in
the layer preceding the pruning interface may not
match those in the following layer after pruning.
The mismatch is exacerbated by the presence of
massive outliers in the activations of special to-
kens (e.g., [BOS] or delimiter tokens), which are
common in LLMs (Liu et al., 2024b; Sun et al.,
2024a). As a result, the pruned LLMs may suf-
fer from efficient forward propagation as before,
which ultimately leads to the drop in performance.

To this end, we propose LINEARPATCH, a plug-
and-play technique to compensate the mismatch of
activation magnitudes. The proposed method can
be orthogonally integrated with various pruning
metrics. Specifically, LINEARPATCH first applies
Hadamard transformation to suppress the massive
outliers from special tokens (e.g., [BOS] or delim-
iter tokens), a well-known issue in LLMs (Liu et al.,
2024b; Sun et al., 2024a). A channel-wise scaling
parameter is then introduced to bridge the gap of



activation magnitudes. By leveraging the spectrum
theory, both the Hadamard matrices and diagonal-
ized channel-wise scaling can be integrated into
a real symmetric matrix, i.e., the proposed LIN-
EARPATCH to be inserted at the pruning interface.
The proposed approach introduces negligible infer-
ence overhead, and is shown to effectively align
the activation magnitudes. To further enhance the
pruned LLMs, we explore the potential of offline
knowledge distillation. Specifically, we fine-tune
only the linear patch introduced by LINEARPATCH
while freezing all other parameters. This efficient
training process requires only 5K samples and can
be completed within 30 minutes on a single com-
puting card for the LLaMA-2-7B model.

Our empirical results demonstrate the effective-
ness of LINEARPATCH across various LLMs and
tasks. For instance, LINEARPATCH achieves a re-
tained performance ratio of up to 94.15% when
pruning 5 layers for LLaMA-3-8B on the ques-
tion answering benchmark, significantly higher
than existing state-of-the-art (SOTA) methods such
as LLM-Streamline (90.84%). Moreover, with
efficient knowledge distillation, LINEARPATCH
can further boost the retained performance to
95.16% . These results highlight the potential of
LINEARPATCH as a powerful solution for reviv-
ing layer-pruned LLMs with minimal overhead and
significant performance gains.

2 Related work

Recently, layer pruning has emerged as a promising
approach for compressing Large Language Models
(LLMs). Unlike width pruning that often results in
irregular network structures, layer pruning removes
entire Transformer layers, including attention and
MLP modules, making it easier to deploy. Re-
cent studies, such as LaCo (Yang et al., 2024b),
ShortGPT (Men et al., 2024), UIDL (Gromov et al.,
2024), SLEB (Song et al., 2024), Shortened LL.aMa
(Kim et al., 2024), and LLM-Streamline (Chen
et al., 2024a), have demonstrated the effectiveness
of layer pruning in compressing LLMs.

LoCo (Yang et al., 2024b) merges rear model
layers into a prior layer using reserving differences
while seeking common (RDSC) strategy, with co-
sine similarity of the model’s output as the guid-
ing metric. ShortGPT (Men et al., 2024) employs
cosine similarity between the inputs and outputs
of each layer to assess layer importance, subse-
quently removing the least critical layers. UIDL

(Gromov et al., 2024) introduces an angular dis-
tance metric to evaluate and remove consecutive
layers, followed by QLoRA fine-tuning to mitigate
pruning-induced damage. SLEB (Song et al., 2024)
iteratively identifies and eliminates redundant lay-
ers based on perplexity degradation on a calibration
dataset. Shortened LLaMa (Kim et al., 2024) ex-
plores Taylor-based metrics and perplexity degra-
dation as pruning criteria, restoring pruned model
performance through LoRA fine-tuning. LLM-
Streamline (Chen et al., 2024a) identifies the least
important consecutive layers using cosine similar-
ity and replaces them with a lightweight network,
claiming that fine-tuning this network with MSE
loss outperforms LoRA fine-tuning.

Despite the demonstrated effectiveness of these
layer pruning methods, they all overlook the signifi-
cant magnitude mismatch that occurs after pruning,
which we find detrimental to model performance.
LINEARPATCH addresses this issue by introducing
a simple yet effective magnitude alignment patch.
While LLM-Streamline also inserts a lightweight
network at the pruning site, their network is ran-
domly initialized and fails to address magnitude
alignment. In contrast, LinearPatch achieves su-
perior performance under both training-free and
post-training conditions compared to concurrent
layer pruning methods.

3 Method

We introduce LINEARPATCH, a plug-and-play
method to enhance the layer-pruned LLMs. We
find that channel magnitude matters both across dif-
ferent layers (Section 3.2) and tokens (Section 3.3).
In Section 3.4, we introduce that all these issues
can be resolved by a linear patch, which can be
efficiently fine-tuned for further improvement.

3.1 Preliminaries on LLM Layer Pruning

Layer pruning has emerged as a promising tech-
nique for compressing the redundant layers in large
language model. LLMs primarily adopt the Trans-
former architecture, which consists of a series of
Transformer decoder layers and each layer adopts a
residual structure. We denote the ¢-th Transformer
layer as f(X©);0©)), with X and #¥) represent-
ing its input activations and associated parameters,
respectively. Due to the prevalent pre-norm archi-
tecture of LLMs, the input to the (¢ + 1)-th layer
X (+1) can thus be obtained by

X+ — x (0 4 f(X(f)7 9(4))‘ (1)
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Figure 1: Visualization of the identified layer-wise channel mismatch and token-wise channel mismatch in layer-
pruned LLMs. (a) and (b) identify the layer-wise channel mismatch at the pruning interface and the validity of
channel scaling. (c) and (d) identify the token-wise channel mismatch and the validity of Hadamard transformation.

Cosine Similarity for Layer Pruning. We
choose the prevalent cosine similarity as the prun-
ing metric, despite that the proposed approach is
agnostic to the pruning metric. Recent efforts find
cosine similarity particularly effective in identi-
fying redundant Transformer layers (Men et al.,
2024; Gromov et al., 2024). For example, LLM-
Streamline (Chen et al., 2024a) identifies and re-
moves n contiguous layers with the highest cosine
similarities among their input activations. The opti-
mal layer index £* is thus determined by:

X | xe+n)
(&) 5 (£4m) T
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where D denotes the input activations of layers ob-
tained with calibration samples, and XEZ) € RLxC
represents the input of the /-th layer for the i-th
sample, and L and C' are the sequence length and
hidden dimension, respectively.

Consider that removing transformer layers con-
tiguously from ¢*-th layer to (¢* + n)-th layer, the
(£* + n)-th layer takes the input of the ¢*-th layer
as its own input, i.e.,

X () — (), ge7m).

X 4 f(x 3)

However, we find layer pruning brings a large
gap on the channel magnitude at the pruning in-
terface, which negatively impacts the model per-
formance, as shown in Figure 1. In Section 3.2
and Section 3.3, we investigate the root causes two
aspects, and propose our solutions accordingly.

3.2 Channel Magnitude Alignment

Layer-wise Channel Mismatch. We find that the
mismatch of channel magnitude would directly af-
fect the performance of pruned LLMs. As shown in
Figure 1 (a), the magnitude of hidden states in dif-
ferent layers of LLM varies, while the removal of

contiguous layers brings a significant gap between
the channel magnitude.

For LLM to remove its layer with index in
[£*, " 4+ n), we statistically compute channel-wise
scaling parameters as follows. For activation of
each channel k, we compute the ratio of mean acti-
vation magnitude between the input of (£* 4 n)-th
layer and £*-th layer over the calibration set and
derive the channel-wise scaling parameter d € R®,
where dj, is defined as

| B
dp (05, 0" +n) = B—;g

Quantitative Evaluation. It can be found from
Figure 1 (b) that X (). d matches the magnitude di-
rectly, together with the improved perplexity scores.
Additionally, we also perturb the input X** around
the scaling parameter d € R® with the perturba-
tion coefficient o, i.e.,

K* +7l) ’
,J k

“
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From Figure 1 (b), finding the optimal scaling pa-
rameter d yields lower perplexity than vanilla layer-
pruning without scaling. By varying «, the model
suffers from the performance drop dramatically.

Remarks. The issue of channel magnitude mis-
match has been neglected by the prevalent metric
of cosine similarity, given that the scalings over in-
put are cancelled out, i.e., cos(a, b) = cos(za, yb)
foranya,b € R"and z,y € R*.

3.3 Token Magnitude Smoothing

Token-wise Scaling Mismatch. As suggested
by recent research (Liu et al., 2024b; Xiao et al.,
2023b), there are massive outliers specific to par-
ticular tokens (e.g., [BOS] and delimiter tokens)
with magnitudes over 1e3, as shown in Figure 1 (c).
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Figure 2: Overview of LINEARPATCH. In stepl, we remove layers contiguously with cosine similarity metric. In
step2, we obtain channel-wise scaling parameters in the Hadamard rotation space. In step3, we fuse the channel-wise
scaling parameters and the Hadamard transformations to obtain LINEARPATCH, which allows further fine-tuning.

Consequently, the scaling parameter dy, may not
fit all tokens along the k-th channel, given the to-
kens within this channel also exhibit large variance
of magnitude. Specifically, we calculate the stan-
dard deviations of magnitude gap averaged over all
tokens, i.e.,

ca(l' ) =5 0| "], O
k=1 X5

where o (+) is the standard deviation. A small oq is
usually preferred to share the scaling parameter for
all tokens. However, due to the presence of outliers,
we observe o4 = 2137.75 when pruning 9 layers
from LLaMA-2-7B.

Hadamard Transformation. Inspired by recent
research (Lin et al., 2024; Liu et al., 2024c; Ashk-
boos et al., 2024b; Sun et al., 2024b), Hadamard
transformation over activations can effectively sup-
press outliers, as shown in Figure 1 (d). A Walsh-
Hadamard matrix (Horadam, 2012) is a specific
type of Hadamard matrix with size C' = 2", which
can be constructed recursively as:

N L
2T Vel (6)
H2n == H2 ® H2n—1,

whereas for cases C' # 2™, we follow Ashkboos
et al. (2024b) to factorize C' = 2"m and use a
Kronecker construction Ho = Hon ® H,,,. The

orthogonality of Hadamard matrix (i.e., H' H = I)
makes the following transformations equivalent:

X&) — (

>
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where X (“)H denotes the rotated activations of £*-
th layer. As shown in Figure 1 (d), the rotation thus
effectively redistributes outliers among all channels.
With the rotated activations, it is thus more friendly
to share the same scaling parameter d for all tokens,
with o4 down to 230.32.

3.4 LINEARPATCH: the Ultimate Recipe

From Figure 2, LINEARPATCH can be obtained by
fusing the proposed channel-wise scaling d and
Hadamard transformations H, which both reduces
the transformation overhead and allows efficient
fine-tuning to enhance the pruned LLMs.

Formulation under Spectral Theorem. Com-
bining Section 3.2 and Section 3.3, we first apply
the Hadamard transformation on the input X (),
over which we apply the channel-wise scaling on
the rotated space. A key ingredient of the LIN-
EARPATCH is to fuse all operations into a single
matrix A, i.e.,

Xpew'!) = XEHDHT = XA, (8)

where D = diag(d) € R*¢ and A = HDH'.
The last equality stems from the spectral theorem
(Helson, 2006), which states that any real symmet-
ric matrix can be decomposed into an orthogonal



matrix of eigenvectors (i.e., H) and a diagonal ma-
trix of real eigenvalues (i.e., D).

As shown in Figure 2, LINEARPATCH is a plug-
and-play method by inserting A into the pruned
layers, which effectively bridges the gap induced
by layer-pruning. Additionally, this also reduces
the inference overhead by launching only a single
GEMM operation for the matrix multiplication in-
stead of three. Overall LINEARPATCH has negligi-
ble overhead during the inference and more latency
analysis can be found in 6.

Offline Knowledge Distillation. Initialized from
Equation (8), we show that LINEARPATCH can be
efficiently fine-tuned via offline knowledge distil-
lation to enhance the pruned LLMs. Specifically,
given a tiny training corpus X € 7T (e.g., only
5,000 training samples), we collect the output log-
its o, € REXLXV of the original teacher model,
where B, L,V denote the batch size, sequence
length, and the vocabulary size, respectively. How-
ever, saving the entire o; is extremely memory con-
sume due to the huge vocabulary size. To reduce
the storage, we save top-K logits o € REXLxK
with their indices from the vocabulary, which helps
to focus on the most informative candidate to-
kens. Meanwhile, we also collect the output logits
ol ¢ RBXLXK from the student model (i.e., the
pruned LLLM), with the same indices of the vocab-
ulary from the teacher model. Thus we minimize
the Kullback-Leibler (KL) divergence (Chen et al.,
2024c,b) between the output distributions as

min Exer KL (2(0f)), 2(0X)), (9

where z(-) indicates the softmax function. By freez-
ing all the rest parameters except for the linear
patch A, the training paradigm sufficiently reduces
the memory consumption and a single 24GB GPU
can meet the fine-tuning of LLMs with size 7B
within 30 minutes.

Apart from knowledge distillation with
Kullback-Leibler divergence loss, we also tried
to minimize the mean squared error (MSE) of
the pruned layers following (Chen et al., 2024a).
However, the MSE empirically leads to over-fitting
and thus brings sub-optimal solutions.

4 Experiments

4.1 Setup

Models. We evaluate the proposed LIN-
EARPATCH on various open-sourced LLMs,

including LLaMA-2-7B/13B (Touvron et al,
2023), and LLaMA-3-8B (Dubey et al., 2024).
Download links to officially released LLMs can be
found in Table 8 in the Appendix B.

Baselines. We mainly compare our methods with
state-of-the-art layer-wise pruning approaches with
different pruning metrics, including the gradient-
base LLM-Pruner (Ma et al., 2023), perplexity-
based SLEB (Song et al., 2024), cosine similarity-
based ShortGPT (Men et al., 2024) and LLM-
Streamline (Chen et al., 2024a). For LLM-Pruner,
we use block-wise pruning configuration with C4
calibration set to reproduce all results. For SLEB,
we use the official code ! or the indices of pruned-
layers for reproduction. For LLM-Streamline and
ShortGPT, we reproduce the methods following the
description of the publications.

Evaluation. Three benchmarks are used for eval-
uation: perplexity (PPL), Massive Multitask Lan-
guage Understanding (MMLU), and commonsense
question answering (QA). For PPL, we measure
language generation on WikiText2 (Merity et al.,
2016), C4 (Raffel et al., 2020), and PTB (Marcus
et al., 1993) datasets. For MMLU, we test five-
shot performance on MMLU datasets (Hendrycks
et al., 2020). For QA, we assess on 9 commonsense
QA tasks and report the average (AVG) for PPL,
weighted average (Weighted AVG) for MMLU, and
both AVG and retained performance (RP) for QA.
More details can be found in Appendix C.

4.2 Implementation Details

Calibration and Fine-tuning. To decide the
pruned layer and initialize the channel-wise scaling
parameter, we randomly select 128 sentences with
sequence length 2048 from WIKITEXT-2 datasets
for all models as few-shot calibration samples. We
conducted ablation on the size of calibration set
in Appendix D. To fine-tune the LINEARPATCH,
we use AdamW optimizer with learning rate le-4,
using 5000 sentences with sequence length 2048
from WIKITEXT-2 datasets for 1 epoch.

Resource Dependence. Our implementation is
based on the PyTorch framework. All experiments
are conducted on a server with a 24GB GPU. For
model size 7B, the initialization process of LIN-
EARPATCH is about 30 seconds and the optional
fine-tuning process is about 30 minutes.

"https://github.com/jiwonsong-dev/SLEB



Model | n/N | Method | Ratio | ARC-c ARC-e BoolQ HeSw PIQA WG WSC Race-h CoPa| AVG | RP
0/32 | Dense | - | 4625 7458 7774 7597 79.11 6898 8059 39.62  87.00 | 69.98 | 100
9/32 | LLMPruner 2699 | 3191 5290 6242 5441 7133 5320 6557 2852  79.00 | 5547 | 78.14
9/32 | SLEB 27.03 | 3191 5231 4609 5828 69.59 5825 6923 3225  79.00 | 55.21 | 78.41
" 9/32 | ShortGPT 27.03 | 3276 4861 6217 56.17 6436 6433 71.06 3225  77.00 | 56.52 | 80.29
& 9/32 | LLM-Streamline(None) | 27.03 | 32.76  48.61  62.17 56.17 6436 6433 71.06 3225  77.00 | 56.52 | 80.29
: 9/32 | LINEARPATCHg/[ 2678 | 3345 5522 6214 57.67 6746 6511 7729 3493  79.00 | 59.14 | 84.08
§ 7/32 | LLMPruner 20.56 | 3524  60.61 6242 61.66 7541 5478 7143 31.67  80.00 | 59.25 | 83.80
a 7/32 | SLEB 21.02 | 33.02 5657 6391 6249 73.07 5896 6923 3206  84.00 | 59.26 | 83.66
7/32 | ShortGPT 21.02 | 36.18 5589  62.17 62.66 7040 6598 7729 3378  81.00 | 60.59 | 86.06
7/32 | LLM-Streamline(None) | 21.02 | 36.18  55.89  62.17 62.66 7040 6598 77.29 33.78  81.00 | 60.59 | 86.06
7/32 | LINEARPATCH g/ 2078 | 37.63 6124 6214 6349 7046 6590 79.49 36.46  85.00 | 62.42 | 88.88
0/40 | Dense | - | 4906 7740 80.61 7935 8052 7238 86.81 4048  91.00 | 73.07 | 100
10/40 | LLMPruner 2390 | 39.51 6726 6584 7224 7791 5730 7326 3359  85.00 | 63.55 | 86.32
10/40 | SLEB 2437 | 3993 6604 6676 6824 7563 63.61 7546 3694  84.00 | 64.07 | 87.54
o 10/40 | ShortGPT 2437 | 43.00 63.51 5820 69.29 7252 69.85 8132 36.84  87.00 | 64.61 | 88.45
o 10/40 | LLM-Streamline(None) | 24.37 | 43.00  63.51 5820 69.29 7252 69.85 81.32 36.84  87.00 | 64.61 | 88.45
: 10/40 | LINEARPATCH[g/1 24.17 | 4420 6553 6239 70.15 73.83 69.61 81.68 38.09  89.00 | 66.05 | 90.49
= 8/40 | LLMPruner 19.48 | 4198  67.51 6333 68.76 7650 56.51 68.86 32.06  85.00 | 62.28 | 84.78
= 8/40 | SLEB 19.50 | 3643  61.83 6232 67.03 75.08 62.51 78.02 3483  83.00 | 62.34 | 84.74
8/40 | ShortGPT 19.50 | 44.03 6738 57.00 7238 7524 69.61 79.85 38.18  89.00 | 65.85 | 90.27
8/40 | LLM-Streamline(None) | 19.50 | 44.03  67.38  57.00 7238 7524 69.61 79.85 38.18  89.00 | 65.85 | 90.27
8/40 | LINEARPATCH[g,p) 1930 | 4454  69.53 6774 73.02 7568 6938 8278 39.71  92.00 | 68.26 | 93.45
0/32 | Dense | - | 5341 7778 8128 79.16 8085 72.85 8645 40.19  89.00 | 73.44 | 100
7/32 | LLMPruner 1937 [ 3532 5930 5523 5148 7258 59.98 67.03 3139  81.00 | 57.03 | 77.12
7/32 | SLEB 19.01 | 3404 6006 4517 6201 7405 5501 6740 3282  45.17 | 52.86 | 72.48
7/32 | ShortGPT 19.01 | 4241 5665 6526 6470 70.89 71.19 73.63 34.16  75.00 | 61.54 | 83.79
" 7/32 | LLM-Streamline(None) | 19.01 | 28.92 3956  38.07 3326 5947 5556 5971 24.02  60.00 | 44.29 | 59.99
3 7/32 | LINEARPATCHg) 18.80 | 43.17 60.82 7566 66.74 72.85 70.17 7582 3751  77.00 | 64.42 | 87.82
2 7/32 | LINEARPATCH[y 18.80 | 3439 5126  57.52 4931 63.33 6322 7253 2995  67.00 | 54.28 | 73.57
§ 5/32 | LLMPruner 1339 | 39.51  68.10 7128 64.69 7633 6448 7436 3560  78.00 | 63.59 | 86.23
3 5/32 | SLEB 1358 | 39.68  66.16 5471 6739 7590 6251 73.63 34.16  83.00 | 61.90 | 83.88
5/32 | ShortGPT 13.58 | 4556  63.51  73.12 70.13 7492 71.19 75.09 3694  79.00 | 65.50 | 89.27
5/32 | LLM-Streamline(None) | 13.58 | 47.35 6620  73.52 71.10 7427 71.03 7656 36.65  84.00 | 66.74 | 90.84
5/32 | LINEARPATCHg) 1337 | 4573 6860 7330 7071 76.01 73.09 79.85 38.18  82.00 | 67.50 | 91.91
5/32 | LINEARPATCH(y 1337 | 4855 7071 7425 7252 7671 7395 8132 3837  86.00 | 69.15 | 94.15

Table 1: Comparison on QA benchmark with training-free methods. n denotes the number of pruned layers and
N denotes the total number of layers of the model. The Ratio column represents the proportion(%) of pruning
parameters to the total parameters of the model. AVG column denotes the average accuracy(%) and RP column
denotes the retained performance(%). Same interpretation is adopted in all the tables.

Pruning Configurations. We set pruning ratios
below 30% to be consistent with prior studies. De-
tailed pruning configurations, including the number
and indices of pruned layers for each method, are
provided in Table 9 in the Appendix B.

4.3 Main Results

Our LINEARPATCH can be seamlessly inte-
grated with layer-wise pruning methods that
remove contiguous layers. We denote LIN-
EARPATCH combined with ShortGPT and LLM-
Streamline pruning methods as LINEARPATCH|g;
and LINEARPATCH| ), respectively. In most cases,
they prune the same set of layers and are collec-
tively labeled as LINEARPATCHg, .

4.3.1 Comparison on Training-free Methods

We first evaluate the performance in a training-free
setting on commonsense QA benchmarks. For the

sake of fairness, all the methods do not include fine-
tuning. For LLM Pruner, we discard the process
of fine-tuning using LoRA. For LLM-Streamline,
according to its publication, discarding layer re-
placement and the process of offline distillation is
denoted by LLM-Streamline(None). For results of
LINEARPATCH on more models and benchmarks,
please refer to Appendix E.

As shown in Table 1, LINEARPATCH achieves
superior performance on QA benchmark evalua-
tion compared to other methods. Specifically, on
the LLaMA-2-7B model with a 7/32 pruning ra-
tio, LINEARPATCH achieves the retained perfor-
mance ratio of 88.88%, outperforming LLMPruner
(83.80%) and SLEB (83.66%). On the LLaMA-3-
8B model with a 5/32 pruning ratio, LINEARPATCH
achieves the retained performance ratio of 94.15%,
significantly higher than LLMPruner (86.23%)
and SLEB (83.88%). When ShortGPT/LLM-



Model | n/N | Method | Ratio | ARC-c ARC-e BoolQ HeSw PIQA WG WSC Race-h CoPa | AVG | RP
0/32 Dense 0 4625 7458 7774 7597 79.11 6898 80.59 39.62  87.00 | 69.98 | 100

LLaMa27p | 732 | LLM-Streamline(FFN) + FT | 1901 | 3823 6048  70.18 6375 69.86 6748 8095 3751  79.00 | 63.05 | 90.00
avas 7/32 | LINEARPATCH|z 2078 | 37.63 6124 6214 6349 7046 6590 79.49 3646  85.00 | 6242 | 88.88

7/32  LINEARPATCH[z) + FT 2078 3823 6435 6532 6933 7323 6740 8388 3837  87.00 | 65.23 | 92.83

0/32 Dense 0 5341 7778 8128 79.16 8085 7285 8645 40.19  89.00 | 73.44 | 100

LLaMA3.gp | 32 | LLM-Streamline(FFN) + FT | 1139 | 3003 3994 6532 4919 5979 67.80 8132 3139  71.00 | 5509 | 74.34
5/32 | LINEARPATCH]z, 1337 | 4855 7071 7425 7252 7671 7395 8132 3837  86.00 | 69.15 | 94.15

5/32  LINEARPATCH[z) + FT 1337 48.12 7277 7098 7463 7742 7403 8462 3856  89.00 | 70.01 | 95.16

Table 2: Comparison on QA benchmark with SOTA post-training method LLM-Streamline.

Model | n/N | Method | Ratio | WIKI-2 C4 PTB | AVG
0/32 | Dense 0 5.47 697 2251 | 1165
7/32 | LLM-Streamline(FFN) + FT | 19.01 | 9.60 17.10  47.04 | 24.58

LLaMA-278 | 7735 | Linsarparchyy, 2078 | 1322 1458 4597 | 24.59
7/32 | LINEARPATCH ;) + FT 20.78 | 8.09 1125 3248 |17.27
0/32 | Dense - 6.14 888 1059 | 854

LLaMA3.gR | 32 | LLM-Streamline(FEN) + FT | 11.39 | 383.15  201.60 101.35 | 228.70
5/32 | LINEARPATCHy 1337 | 1513 1741 1930 |17.28
5/32 | LINEARPATCH(f) + FT 1337 | 9.00 1334 1434 | 1223

Table 3: Comparison on PPL benchmark with SOTA post-training method LLM-Streamline.

Streamline is employed as the baselined pruning
method, LINEARPATCH|g, ) achieves significant
performance improvement compared with its base-
line. For example, on the LLaMA-2-7B model with
a 9/32 pruning ratio, LINEARPATCH|g/ ] achieves
the retained performance ratio of 84.08%, leading
both ShortGPT and LLM-Streamline with 3.79%.
On the LLaMa-13B model with a 8/40 pruning ra-
tio, LINEARPATCH|g,) achieves the retained per-
formance ratio of 93.45%, leading both ShortGPT
and LLM-Streamline with 3.18%.

4.3.2 Comparison on Post-training Methods

We present a comprehensive comparison of our
proposed LINEARPATCH method against the state-
of-the-art post-training method, LLM-Streamline.
For fair comparison, we used the same dataset,
samples, and learning rate for fine-tuning.

Results on QA Benchmark. For QA benchmark,
results in Table 2 demonstrate the superior perfor-
mance of LINEARPATCH, especially when com-
bined with fine-tuning. For instance, on LLaMA-2-
7B with 7/32 layers pruned, LINEARPATCH[7)+FT
achieves an average accuracy of 65.23%, out-
performing LLM-Streamline (63.05%). Simi-
larly, on LLaMA-3-8B with 5/32 layers pruned,
LINEARPATCH|+FT attains an average accu-
racy of 70.01%, significantly outperforming LLM-
Streamline, which yields suboptimal results due to
its randomly initialized replacement networks. No-
tably, our method achieved a retained performance
(RP) of 95.16% on LLaMA-3-8B with 5/32 layers

pruned.

Results on PPL Benchmark. For PPL bench-
mark, LINEARPATCH{z, consistently outperforms
or matches LLM-Streamline, as shown in Table
3. For instance, on LLaMA-2-7B with 7/32 layers
pruned, LINEARPATCH|+FT achieves an average
perplexity of 17.27, significantly outperforming
LLM-Streamline (24.58). Similarly, on LLaMA-3-
8B with 5/32 layers pruned, LINEARPATCH 1 +FT
attains an average perplexity of 12.23, demonstrat-
ing its robustness and effectiveness.

4.4 Discussions

Tunable parameters and Loss Functions. We
conducted a series of comprehensive experiments
on LLaMA-2-7B with 9/32 layers pruned to system-
atically evaluate how different training configura-
tions influence the performance of LINEARPATCH,
as detailed in Table 4. The results indicate that
the choice of training settings significantly affects
the performance of LINEARPATCH. Specifically,
LINEARPATCH with model logits as the distilla-
tion target and the KL divergence loss function
achieved the best overall performance. This con-
figuration attained the lowest average perplexity
(19.58) on language modelling tasks and the high-
est average accuracy (61.71%) on QA tasks, with a
relative performance improvement of 2.13% over
LLM-Streamline. Our analysis suggests that using
replaced layer output for distillation may lead to
overfitting issues and inferior performance. Fur-



Model | Parameters | Distillation Target | Loss | Ratio | WIKI-2 C4  PTB | PPL AVG | QA AVG | QA RP

Dense - - - 5.47 6.97 2251 | 11.65 69.98 100
LLM-Streamline(FFN) + FT | FFN Replaced layer ouput | MSE | 25.02 | 13.00 27.22 6897 | 36.40 59.44 84.74
LLM-Streamline(FFN) + FT | FFN Model logits KL 25.02 | - - - - - NaN
LINEARPATCH[f) + FT LINEARPATCH | Replaced layer ouput | MSE | 26.78 | 15.26 19.54 5433 | 29.71 59.58 84.80
LINEARPATCH[f) + FT Diagonal Model logits KL 26.78 | 17.51 18.64 51.64 | 29.26 59.40 84.45
LINEARPATCH[) + FT LINEARPATCH | Model logits KL 26.78 | 8.60 12.98 37.16 | 19.58 61.71 88.15

Table 4: Comparisons on tunable parameters, distillation target and loss functions. FT denotes fine-tuning.

| WIKI-2 C4  PTB | AVG | ARCc ARC-e BoolQ

HeSw PIQA WG  WSC Race-h CoPa | AVG | RP

Dense | 5.47 697 2251 | 11.65 | 4625 7458 77.74

7597 79.11 6898 80.59 39.62  87.00 ‘ 69.98‘ 100

Vanilla | 35.68 36.10 96.52 | 56.10 | 32.76  48.61  62.17
+d 20.68 22775 57.67 | 33770 | 35.07 5497  62.17
+A 18.60 19.28 53.00 | 30.29 | 33.53 5522  62.14
+FT 8.60 1298 37.16 | 19.58 | 34.81 60.65 62.48

56.17 6436 6433 71.06 3225 77.00 | 56.52 | 80.29
5693 66.76 63.77 75.09 34.83  78.00 | 58.62 | 83.56
57.69 67.41 65.04 7729 3493  79.00 | 59.14 | 84.09
64.52 7029 66.69 7692 39.04 80.00 | 61.71 | 88.15

Table 5: Ablation study on the ingredients of LINEARPATCH over LLaMA-2-7B with 9/32 layers pruned. +d applies
channel scaling, +A (i.e., HDH") refers to the LINEARPATCH, and +FT denotes fine-tuning with knowlede
distillation. Note that we omit ablating H since Hadamard transformation alone is an equivalent operation.

thermore, LLM-Streamline’s approach of incorpo-
rating a randomly initialized lightweight network
introduces instability during logits distillation, po-
tentially causing performance degradation and di-
verse training. These findings highlight that LIN-
EARPATCH offers a more effective initialization to
enable more reliable performance recovery through
lightweight training paradigms.

The Ingredients of Linear Patch. Table 5 ab-
lates the impact of components of the proposed
LINEARPATCH. The results show that each compo-
nent of LINEARPATCH contributes significantly to
the overall performance. Pruned model suffer from
substantial performance degradation, with an aver-
age perplexity of 56.10 and a retained performance
of 80.29% on QA tasks. When scaling parameters
d is introduced, the performance improves, with an
average perplexity of 33.70 and a retained perfor-
mance of 83.56%. Further incorporating Hadamard
rotation to create LINEARPATCH A achieves an
average perplexity of 30.29 and a retained perfor-
mance of 84.09%, with a relative performance im-
provement of 3.8% over the baseline. Fine-tuning
can yield significant additional benefits, with a rel-
ative retained performance gain of 4.06%.

Inference Overhead. As LINEARPATCH is a sin-
gle linear layer inserted at the pruning interface,
there is empirically no difference on the end-to-
end inference latency. Here we study the overhead
of LINEARPATCH alone and compare it with the
existing baseline, i.e., LLM-Streamline with feed-
forward-network. We conduct experiments using

a batch size of 16 and a sequence length of 2048,
with 1000 iterations to measure the average infer-
ence time for the single additional layer. The hid-
den size was set to 4096, aligning with the configu-
rations of LLaMA-2-7B. All calculations are based
on floatl6 precision. As shown in Table 6, LIN-
EARPATCH is ~8x smaller in size and ~190x faster
than LLM-Streanline (FFN). We also conducted
overhead analysis on offline storage overhead in
Appendix A.

Method Parameters (M) Time cost (s)
LLM-Streamline (FFN) 135.27 0.094927
LINEARPATCH 16.78 0.000576

Table 6: Online inference time overhead.

5 Conclusion

In conclusion, we introduce LINEARPATCH, a sim-
ple yet effective plug-and-play technique that ad-
dresses the critical issue of activation magnitude
mismatch in layer-pruned large language models
(LLMs). By leveraging the Hadamard transfor-
mation and channel-wise scaling, LINEARPATCH
efficiently aligns activations across layers, signif-
icantly enhancing model performance with neg-
ligible inference overhead. Extensive empirical
evaluations are conducted to demonstrate the effec-
tiveness of the proposed approach. We hope the
proposed LINEARPATCH can shed more light on
simple and light-weight algorithms of LLM com-
pression without compromising the performance.



6 Limitations

Layer pruning can streamline LLMs for efficiency,
but it may unevenly degrade model performance
across different tasks. For example, while some
text generation tasks might remain robust, com-
plex reasoning or context-dependent tasks could
suffer. Although we conduct extensive experiments
on several benchmarks, such as PPL, MMLU, and
commonsense QA, it might not be enough to assess
all abilities of LLMs. Therefore, in future work,
a comprehensive evaluation framework is neces-
sary to thoroughly assess the trade-offs between
efficiency gains from layer pruning and potential
performance degradation across diverse tasks and
contexts.

7 Ethics Statement

Layer pruning methods can significantly reduce the
computational costs of deploying Large Language
Models (LLMs), making them more accessible to a
broader range of users. However, these methods do
not address the social biases embedded in LLMs,
which often stem from the training data and can
affect fairness and inclusivity. It is crucial to ensure
ethical deployment of LL.Ms.
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A Offline Storage Overhead Analysis.

As demonstrated in Table 7, assuming that the train-
ing samples with batch size B and sequence length
L, LINEARPATCH achieves a substantial reduc-
tion in offline storage overhead, reaching up to
40x for a hidden size of 4096, compared to LLM-
Streamline during offline fine-tuning.

Method Stored input size  Stored target size
LLM-Streamline B x L x 4096 B x L x 4096
LINEARPATCH B x L B x L x 100

Table 7: Offline storage overhead.

B Details on Pruned Models

We obtain the officially released LLMs from the
sources listed in Table 8 for our experiments. Ad-
ditionally, Table 9 provides a detailed illustration
of the specific pruned layer indices for various con-
figurations across different models.

Model Download Link

LLaMA-2-7B  https://huggingface.co/meta-llama/Llama-2-7B
LLaMA-2-13B  https://huggingface.co/meta-llama/Llama-2-13B
LLaMA-3-8B  https://huggingface.co/meta-llama/Llama-3.1-8B

Baichuan-2-7B  https://huggingface.co/baichuan-inc/Baichuan2-7B-Base

Table 8: Download links to officially released LLMs.

Model n/N Method Ratio Pruned layer
Py 9/32  LINEARPATCH[g/p) 26.78% [21,30)
LLaMA27B 230 LINEARPATCHIg/;; 2078%  [23,30)
10/40  LINEARPATCH[g/r; 24.17% [26,36)
LLaMA-2-13B 10 LiNEARPATCHIg/;; 1930%  [28.36)
7/32  LINEARPATCHig;  18.80% [22,29)
7132 LINEARPATCH[L] 18.80% [23,30)
LLaMA-3-8B 5/32  LINEARPATCHg 13.37% [24,29)
5/32  LINEARPATCHj;  13.37% [23,28)
I 9/32  LINEARPATCH[g/p) 24.04% [22,31)
Baichuan-2-78 75y LINEARPATCHig);, 18.65% [23.30)

Table 9: Details of pruning settings.

C Details of Evaluation Benchmarks

We use a variety of benchmarks for model eval-
uation, including the perplexity (PPL) bench-
mark (measured by the average perplexity score),
the Massive Multitask Language Understanding
(MMLU) benchmark and the question answering
(QA) benchmark for model evaluation.

PPL. For PPL benchmarks, we report the per-
plexity of language generation on WikiText2 (Mer-

12

ity et al., 2016), C4 (Raffel et al., 2020), and PTB
(Marcus et al., 1993) datasets.

MMLU. For MMLU benchmark, we test the
five-shot performance on the Massively Multi-
task Language Understanding (MMLU) datasets
(Hendrycks et al., 2020).

Commonsense QA. For QA benchmark, we eval-
uate methods on 9 commonsense QA tasks: ARC-
Challenge (ARC-c), ARC-Easy (ARC-e) (Clark
et al., 2018), BoolQ (Clark et al., 2019), HellaSwag
(HeSw) (Zellers et al., 2019), PIQA (Bisk et al.,
2020), WinoGrande (WG) (ai2, 2019), WSC273
(WSCO) (Levesque et al., 2012), Race-high (Race-h)
(Lai et al., 2017) and CoPA (Sarlin et al., 2020).
We report the average (AVG) for the PPL bench-
mark, weighted average (Weighted AVG) for the
MMLU benchmark, and average (AVG) as well as
the retained performance (RP) for the QA bench-
mark.

For MMLU benchmark, we use the official code.
For PPL and QA benchmarks, we use the Im_eval
library from https://github.com/EleutherAl/Im-
evaluation-harness.

D Ablation on Size of Calibration Set

We vary the size of the calibration set to evaluate
its impact on the performance of LINEARPATCH in
Table 10. The results show that a larger calibration
set leads to better scaling parameters and improved
performance, but the gains diminish beyond a cer-
tain size. A calibration set of 128 samples provides
a good balance between computational efficiency
and performance.

Num of samples WIKI-2 C4 PTB

64 18.61 19.29 53.03
128 18.60 19.28 53.00
256 18.60 19.28 53.00
512 18.61 19.28 53.01

Table 10: Ablation on the number of calibration samples
for scaling parameters statistics.

E Results on More Models and
Benchmarks

E.1 Comparison on PPL Benchmarks with
Training-free Methods

We also evaluate LINEARPATCH on the Perplexity
(PPL) benchmarks, a critical metric for assessing



the language modeling capabilities of pruned mod-
els. Lower PPL values signify superior language
modeling performance.

As illustrated in Table 11, SLEB with the PPL-
based metric demonstrates a slight advantage over
other methods whereas it underperforms in the
QA benchmarks. Among approaches utilizing co-
sine similarity-based metrics, the proposed LIN-
EARPATCH consistently surpasses other methods
across various models and pruning ratios. For in-
stance, on the LLaMA-2-13B model with an 8/40
pruning ratio, LINEARPATCH achieves an average
PPL of 18.10, significantly outperforming LLM-
Pruner (35.06) and SLEB (36.61).

Notably, on the LLaMA-3-8B model with a
7/32 pruning ratio, LLM-Streamline nearly fails,
yielding an average PPL of 2839.3. In contrast,
LINEARPATCH ;) successfully revives the model
without additional training, restoring its perfor-
mance to a functional level. This highlights the
robustness of LINEARPATCH and its ability to de-
liver stable performance improvements across di-
verse pruning strategies.

E.2 Comparison on MMLU Benchmarks with
Training-free Methods

We evaluate the proposed LINEARPATCH method
on the MMLU tasks across multiple models in Ta-
ble 12. Overall, LINEARPATCH demonstrates sig-
nificant improvements in weighted average accu-
racy across different models and pruning ratios. For
example, it attains weighted average accuracies of
63.84% for LLaMA-3-8B with 5/32 layers pruned,
outperforming the best results from other methods.
Similarly, on LLaMA-2-13B, it reaches 53.96%
and 54.01% for 10/40 and 8/40 layers pruned, re-
spectively, where SLEB almost collapsed in the
same case. These results highlight the robustness
and effectiveness of LINEARPATCH in enhancing
the performance of layer-pruned large language
models on MMLU tasks, demonstrating its poten-
tial as a simple yet powerful solution for reviving
pruned models.

E.3 Results on Baichuan-2-7B in
Training-free Case

Besides LLaMA series models, we also provide
results on Baichuan-2-7B (Yang et al., 2023) in
training-free case to verify the robustness of LIN-
EARPATCH across different model architectures.
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Results on PPL Benchmark. Table 13 shows
the results on PPL benchmarks on Baichuan-2-
7B model. Except for the advance performance
of SLEB which uses a PPL-based metric, LIN-
EARPATCH achieves the best performance across
the cosine similarity-based metrics methods. Under
the pruning ratio of 9/32 and 7/32, LINEARPATCH
achieves an average perplexity of 44.50 and 23.80
respectively, significantly lower than the 78.22
and 115.38 achieved by ShortGPT and LLM-
Streamline.

Results on QA Benchmark. Table 14 shows
the results on QA benchmarks. On the
Baichuan-2-7B model with a 7/32 pruning ra-
tio, LINEARPATCH|g/ ] achieves a retained perfor-
mance ratio of 87.27%, leading both ShortGPT and
LLM-Streamline with 3.39%. When it comes to
the pruning ratio of 9/32, LINEARPATCHg, r; still
maintains the 81.66% of the original performance,
outperforming ShortGPT and LLM-Streamline by
4.56%.

Results on MMLU Benchmark. Table 15 shows
the results on MMLU benchmarks. LINEARPATCH
attains weighted average accuracies of 50.77% and
52.00% for Baichuan-2-7B with 9/32 and 7/32 lay-
ers pruned, respectively, significantly outperform-
ing the best results from other methods.

F Visualization of The Magnitude of
LLM Layer outputs

See Figure 3 for more visualization of the magni-
tude of LLM layer output activations. All layer-
pruned model exhibit magnitude mismatch.



Model | n/N | Method | Ratio | Metric | WIKI-2 C4 PTB | PPLAVG
0/32 | Dense | - | - | 5.47 6.97 2251 | 11.65
9/32 | LLMPruner 26.99 | Grad 20.50 16.61 83.02 40.04
9/32 | SLEB 27.03 | PPL 11.99 13.93 45.24 23.72
- 9/32 | ShortGPT 27.03 | Cos 35.68 36.10 96.52 56.10
o 9/32 | LLM-Streamline(None) | 27.03 | Cos 35.68 36.10 96.52 56.10
: 9/32 | LINEARPATCHg/ 26.78 | Cos 18.60 19.28 53.00 30.29
% 7/32 | LLMPruner 20.56 | Grad 20.50 16.61 83.02 40.04
- 7/32 | SLEB 21.02 | PPL 9.14 11.21 38.45 19.60
7/32 | ShortGPT 21.02 | Cos 18.45 20.99 62.18 33.87
7/32 | LLM-Streamline(None) | 21.02 | Cos 18.45 20.99 62.18 33.87
7/32 | LINEARPATCHg/ 20.78 | Cos 13.22 14.58 45.97 24.59
0/40 | Dense | - | - 4.88 6.47 28.87 | 1341
10/40 | LLMPruner 23.90 | Grad 9.28 9.87 62.84 27.33
10/40 | SLEB 24.37 | PPL 7.60 9.62 69.97 29.06
m 10/40 | ShortGPT 24.37 | Cos 9.77 12.06 49.94 23.92
2. 10/40 | LLM-Streamline(None) | 24.37 | Cos 9.77 12.06 49.94 23.92
2 10/40 | LINEARPATCH(g/ 24.17 | Cos 8.69 10.70 39.12 19.50
= 8/40 | LLMPruner 19.48 | Grad 11.05 11.20 82.93 35.06
= 8/40 | SLEB 19.50 | PPL 8.17 10.07 91.58 36.61
8/40 | ShortGPT 19.50 | Cos 8.30 10.36 44.96 21.21
8/40 | LLM-Streamline(None) | 19.50 | Cos 8.30 10.36 44,96 21.21
8/40 | LINEARPATCH[g/p; 19.30 | Cos 7.63 9.58 37.08 18.10
0/32 | Dense | - | - 6.14 8.88 1059 | 8.54
7/32 | LLMPruner 19.37 | Grad 15.08 18.54 24.15 19.26
7/32 | SLEB 19.01 | PPL 13.12 16.76 21.04 16.97
7/32 | ShortGPT 19.01 | Cos 57.76 50.13 67.39 58.43
7/32 | LLM-Streamline(None) | 19.01 | Cos 2287.73 1491.37 4738.81 | 2839.30
3.3 7/32 | LINEARPATCH(g 18.80 | Cos 25.67 28.38 31.22 28.42
o 7/32 | LINEARPATCH 18.80 | Cos 69.82 96.68 88.79 85.10
E—s 5/32 | LLMPruner 13.39 | Grad 10.33 13.79 15.68 13.27
— 5/32 | SLEB 13.58 | PPL 9.88 13.47 16.37 13.24
5/32 | ShortGPT 13.58 | Cos 27.33 27.06 31.81 28.73
5/32 | LLM-Streamline(None) | 13.58 | Cos 21.14 24.13 37.41 27.56
5/32 | LINEARPATCH(g) 13.37 | Cos 16.51 19.42 20.18 18.70
5/32 | LINEARPATCH 13.37 | Cos 15.13 17.41 19.30 17.28

Table 11: Comparison on PPL benchmark with training-free methods.
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Model | n/N | Method | Ratio | STEM  Humanities Social Sciences Others | Weighed AVG

0/32  Dense - 36.98 43.25 51.77 52.47 45.90
9/32 | SLEB 27.03 | 26.31 25.18 27.75 28.19 26.68
o 9/32 | ShortGPT 27.03 | 36.88 41.00 50.73 50.96 44.54
= 9/32 | LLM - Streamline(None) | 27.03 | 36.88 41.00 50.73 50.96 44.54
:-1' 9/32  LINEARPATCH[g/r; 26.78 | 34.76 40.38 49.89 50.00 43.48
% 7/32 | SLEB 21.02 | 2647 25.10 25.18 29.02 26.32
j 7/32 | ShortGPT 21.02 | 31.75 37.90 4472 46.18 39.98
7/32 | LLM - Streamline(None) | 21.02 | 31.75 37.90 44.72 46.18 39.98
7/32  LINEARPATCH[g/r; 20.78 | 31.71 39.26 45.82 47.07 40.88
0/40  Dense - 44.14 54.35 63.44 60.80 55.63
10/40 | SLEB 24.37 | 29.49 32.48 34.02 35.13 32.78
M 10/40 | ShortGPT 24.37 | 43.20 50.41 62.98 60.95 54.05
Ql 10/40 | LLM - Streamline(None) | 24.37 | 43.20 50.41 62.98 60.95 54.05
: 10/40 LINEARPATCH[g/p 24.17 | 4291 50.31 62.43 61.54 53.96
% 8/40 | SLEB 19.50 | 27.40 27.56 28.44 30.57 28.41
= 8/40 | ShortGPT 19.50 | 42.80 50.13 62.78 61.19 53.88
8/40 | LLM - Streamline(None) | 19.50 | 42.80 50.13 62.78 61.19 53.88
8/40  LINEARPATCH[g 19.30 | 43.07 50.61 62.56 61.04 54.01
0/32  Dense - 55.20 59.00 75.95 71.56 64.80
7/32 | SLEB 19.01 | 28.69 23.72 29.57 28.62 27.20
7/32 | ShortGPT 19.01 | 50.27 57.56 73.19 68.57 61.96
= 7/32 | LLM - Streamline(None) | 19.01 | 32.24 38.70 47.03 40.06 39.45
o0 7/32  LINEARPATCH(g) 18.80 | 45.96 51.90 66.98 63.11 56.52
2 7/32  LINEARPATCH| 18.80 | 37.61 40.57 46.31 49.23 43.19
% 5/32 | SLEB 13.58 | 30.25 25.50 31.82 30.60 29.08
— 5/32 | ShortGPT 13.58 | 46.92 53.92 65.65 65.42 57.64
5/32 | LLM - Streamline(None) | 13.58 | 53.47 56.08 74.58 68.32 62.40
5/32  LINEARPATCH[g) 13.37 | 44.67 50.31 65.91 61.91 55.19
5/32  LINEARPATCH|f 13.37 | 54.24 57.15 75.40 71.50 63.84

Table 12: Comparison on MMLU benchmark with training-free methods.
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Model | n/N | Method | Ratio | Metric | WIKI-2 C4 PTB | PPL AVG
| 0/32 | Dense - - 6.03 896 1898 | 11.32
9/32 | LLMPruner 2329 | Grad | 27.83 2367 134.00 | 61.83
9/32 | SLEB 2426 | PPL | 1502  21.08 5956 | 31.89
@ 9/32 | ShortGPT 2426 | Cos | 49.88  56.64 128.14 | 7822
Z 9/32 | LLM-Streamline(None) | 24.26 | Cos 49.88 56.64 128.14 | 78.22
£ 9/32 | LINEARPATCHs, 2404 | Cos 2436 3242 7671 |44.50
=
5 7/32 | LLMPruner 1847 | Grad | 17.54 1875 81.54 |39.28
& 7/32 | SLEB 1887 | PPL | 1078 1609 42.08 | 22.98
7/32 | ShortGPT 18.87 | Cos 1035 15205 90.58 | 115.38
7/32 | LLM-Streamline(None) | 18.87 | Cos 1035 15205 90.58 | 115.38
7/32 | LINEARPATCH g/ [ 18.65 | Cos 1387 1908 3844 | 2380

Table 13: Comparison on PPL benchmark with training-free methods on Baichuan-2-7B.

Model | n/N | Method | Ratio | ARC-c ARC-e BoolQ HeSw PIQA WG WSC Race-h CoPa | AVG | RP
| 0/32  Dense | - | 4249 7298 7391 7219 7720 6843 79.85 3828  85.00 | 67.81 | 100
9/32 | LLMPruner 2329 | 3242 5636 59.82 5411 69.70 5320 5934 28.04  78.00 | 54.55 | 79.64
9/32 | SLEB 2426 | 29.18 4891 6229 5214 68.88 5509 6630 3043  75.00 | 54.25 | 79.19
@ 9/32 | ShortGPT 2426 | 28.67 4255  67.19 47.09 6268 6219 69.23 2938  65.00 | 52.66 | 77.10
) 9/32 | LLM-Streamline(None) | 24.26 | 28.67 4255  67.19 47.09 62.68 62.19 69.23 29.38  65.00 | 52.66 | 77.10
E 9/32  LINEARPATCHg)y 24.04 | 30.80  50.04 6245 5231 6572 6511 7143 3158  72.00 | 55.72 | 81.66
fj 7/32 | LLMPruner 18.47 | 36.86  62.63 6223  61.25 7203 54.06 63.74 29.00  80.00 | 57.98 | 84.85
3 7/32 | SLEB 18.87 | 31.31 5539 6547 56.93 71.65 59.12 72.89 3321  73.00 | 57.66 | 84.46
7/32 | ShortGPT 18.87 | 3490 5181 6239 5527 6556 6472 7473 3177  72.00 | 57.02 | 83.88
7/32 | LLM-Streamline(None) | 18.87 | 34.90  51.81 6239 5527 6556 64.72 7473 3177  72.00 | 57.02 | 83.88
7/32  LINEARPATCH[g)y) 18.65 | 35.15 5720 6291 59.02 6855 66.61 76.19 3445  73.00 | 59.23 | 87.27
Table 14: Comparison on QA benchmark with training-free methods on Baichuan-2-7B.
Model | n/N | Method | Ratio | STEM Humanities Social Sciences Others | Weighed AVG
0/32 | Dense - 44.53 51.30 61.23 60.85 54.23
9/32 | SLEB 2426 | 29.03 26.37 28.37 28.50 27.87
m 9/32 | ShortGPT 24.26 | 39.07 40.66 50.70 50.31 44.74
) 9/32 | LLM-Streamline(None) | 24.26 | 39.07 40.66 50.70 50.31 44.74
z'a 9/32 | LINEARPATCH(g/ 24.04 | 42.25 46.80 58.73 56.90 50.77
=
S 7/32 | SLEB 18.87 | 33.00 30.67 37.70 37.23 34.23
a 7/32 | ShortGPT 18.87 | 42.01 45.48 58.17 55.71 49.88
7/32 | LLM-Streamline(None) | 18.87 | 42.01 4548 58.17 55.71 49.88
7/32 | LINEARPATCH[g/1) 18.65 | 42.84 48.42 59.60 58.70 52.00

Table 15: Comparison on MMLU benchmark with training-free methods on Baichuan-2-7B.
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(b) LLaMA-2-7B Pruned 7 layers (23-30)
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(c) LLaMA-2-13B Pruned 10 layers (26-36)

(d) LLaMA-2-13B Pruned 8 layers (28-36)
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(g) Baichuan-2-7B Pruned 9 layers (22-31)

(h) Baichuan-2-7B Pruned 7 layers (23-30)

Figure 3: Visualization of the magnitude of LLM layer output activations, where pruned layers are represented in
grey. All layer-pruned model exhibit magnitude mismatch.
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