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ABSTRACT
Contrastive vision-language pre-training has shown great promise
in representation transfer learning and cross-modality learning in
the medical �eld. However, without fully exploiting the intrinsic
properties and correlations of multimodal medical data within pa-
tient studies, current research fails to explore all the potential of
available data, leading to suboptimal performance on representation
learning. In this paper, we propose a novel pre-training framework
for learning better medical vision-language embedding, oriented
on patients’ study-level data. Based on the order-agnostic prop-
erty of radiology report, we adopt a two-stage feature extraction
method for more representative textual characterization. Then,
by leveraging momentum encoders and memory queues, study-
level semantics are explored with three contrastive objectives to
provide comprehensive supervision from three perspectives, i.e.,
cross-modal, multi-modal, and uni-modal, such that the potential
information neglected by previous research can be fully exploited.
The superiority of the proposed framework is demonstrated by
the impressive improvements on four typical downstream tasks,
including zero-shot/data-e�cient image classi�cation, image seg-
mentation, and cross-modal retrieval.
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There is no focal conso-
lidation or pneumothorax. 
The cardiomediastinal
silhouette is normal.
Imaged osseousstructures 
are intact.

The lungs are clear with-
out focal consolidation or 
pneumothorax. The heart 
size is normal. The imaged 
osseous structures appear 
intact.

Similar

(b) Different studies can share similar semantics

There is no pleural 
effusion or pneumothorax. 
Heart size and mediastinal 
contours are normal.
Osseous structures are 
intact.

(a) Multiple CXRs can share one report in a study

Study #1 Study #2

CXR #1 CXR #2 CXR #3
Report

Figure 1: In current patients’ CXR data, there are two im-
portant but easily overlooked properties where (a) multiple
CXR images can correspond to one report in a study and (b)
di�erent studies can share similar semantics.

1 INTRODUCTION
The recent success of deep learning relies heavily on the large
amount of annotated data. However, acquiring a su�cient amount
of labeled data is particularly di�cult in medical �elds due to its
expertise-demanding and time-consuming nature. To address this is-
sue, many e�orts [20, 28, 32, 51] have beenmade on vision-language
contrastive pre-training to leverage the existing radiology reports.
With the supervision of contrastive loss between images and their
corresponding reports, the pre-trained network brings superior per-
formance on many downstream tasks, including both multi-modal
(e.g., cross-modal retrieval) and uni-modal tasks (e.g., image classi�-
cation), demonstrating the e�ectiveness of contrastive pre-training
in learning better representations on multi-modal data.

However, despite the improvement they have achieved, current
methods share three weaknesses, limiting their potential. (1) Less
precise data structure: in current datasets, particularly regarding
chest X-ray (CXR), a collection of images can correspond to a single
report, which is referred to as a patient study as shown in Figure 1
(a). Most prior methods [28, 51] directly dissociate this study into
several image-report pairs whose reports are the same, resulting
in false negatives during cross-modal alignment; (2) Neglected se-
mantic similarity: unlike natural image captions, patient studies
of similar disease status share many semantic similarities in terms
of both images and reports (cf. Figure 1(b)), which are not fully
exploited by previous methods; and (3) Under-explored uni-modal
information: most methods focus on leveraging the cross-modal
contrast as the only source of supervision for representation learn-
ing, as shown in Figure 2(a), neglecting the intrinsic information of
each modality (Figure 2(c)).

https://doi.org/10.1145/3664647.3681531
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(c) Uni-modal Contrast
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Figure 2: Our proposed study-level contrasts for improving medical vision-language joint embeddings: (a) cross-modal, (b)
multi-modal, and (c) uni-modal.

To address the aforementioned issues, we propose a study-oriented
semantic exploration (SENSE) framework to improve the medical
vision-language joint embedding learning via three contrastive ob-
jectives. Firstly, unlike many previous studies [20, 28, 51] which
directly apply the feature extractionmethods of contrastive learning
for general tasks to medical �eld and neglect the intrinsic prop-
erty of radiology reports, we adopt a two-step method for better
textual feature extraction. As illustrated in Figure 4, the seman-
tics of each sentence in a radiology report is independent, and
the overall semantics of the report is irrelevant to the order of
sentences. Based on such observation, we propose to encode each
sentence separately and fuse them with a Max-Max method to
acquire better semantic representation. Then, the momentum en-
coders are introduced for each modality along with three study-
level supervisions (Figure 2), i.e., cross-modal, multi-modal, and
uni-modal supervisions, to provide su�cient guidance for better
representation learning. In particular, (1) for conducting study-level
cross-modal contrast (S-CMC) (Figure 2(a)), we generate a single
image-report pair for each patient study by randomly sampling
one image (in case one study contains multiple ones) during each
training iteration (shown in the left block of Figure 2). Then, normal
instance-level contrast is performed. Moreover, with the momen-
tum encoders and memory queues, S-CMC can sample negative
pairs from the distribution of the whole dataset, e�ectively prevent-
ing representation collapse [16, 43]; (2) to fully exploit the semantic
similarity between di�erent studies, study-level multi-modal con-
trast (S-MMC) �rst performs K-means clustering on multi-modal
study representations to encode semantic structures explicitly and
enforces each image-report pair closer to its corresponding clus-
tering centroid for semantic preservation (Figure 2(b)); (3) study-
level uni-modal contrast (S-UMC) introduces additional supervision
signals by conducting contrastive learning within each modality
through momentum encoders and data augmentation (Figure 2(c)).
Actually, with the centroid of multi-modal embeddings as the com-
parison target, introduced S-MMC explicitly bridges S-CMC and

S-UMC, not only further increasing the intra-modality similarities
(i.e., image-to-image and report-to-report), but also encouraging
the inter-modality similarities (i.e., image-to-report and report-to-
image). To verify the e�ectiveness of the proposed method and its
components, we conduct comprehensive experiments along with
extensive ablation studies, covering single-modal (e.g., data-e�cient
image classi�cation and segmentation) and multi-modal tasks (e.g.,
zero-shot image classi�cation and cross-modal retrieval). The im-
pressive improvements over state-of-the-art methods on all these
tasks demonstrate the superiority of our framework.

The contributions of this paper can be summarized as:

• We propose a study-oriented contrastive learning frame-
work to improve medical vision-language joint embeddings.
By introducing three levels of contrastive supervision, i.e.,
cross-modal, multi-modal, and uni-modal, the semantics of
patients’ study-level data can be fully explored.

• To better exploit the multi-modal semantic similarities be-
tween di�erent studies, we propose to encode di�erent se-
mantic structures through K-means clustering and force the
network to learn the similarities by pushing the representa-
tions toward their corresponding centroids.

• For better characterizing the radiology reports, we propose a
two-step textual feature extraction method. By �rst encoding
sentence-wise features separately and deriving report-level
representations later, order-agnostic representations can be
obtained.

2 RELATEDWORK
Medical Image-Report Joint Learning. In recent years, increasing

studies focus on leveraging clinical reports as supervision signals to
improve the learning of visual representations [5, 10, 19, 20, 28, 37,
39, 41, 44, 51]. Most methods can be categorized into two streams
according to the architecture of the pre-training frameworks, i.e.,
encoder-decoder-based and dual-encoder-based. For the encoder-
decoder-based methods [14, 44], the general paradigm is to employ
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Figure 3: Proposed SENSE framework to improve the medical vision-language joint embedding via three contrastive objectives.

a textual decoder to translate the visual features extracted by an im-
age encoder into reports, with an objective tominimize the variation
between the generated and true reports. For the dual-encoder-based
paradigm [2, 20, 28, 32, 41, 51], the pretraining objective is to align
visual and textual features extracted by two separate encoders in the
embedding space. Speci�cally, ConVIRT [51] pulls the global embed-
dings of paired medical image and report closer while pushing those
of non-paired ones away. Following ConVIRT, BioViL [2] improves
the text modeling by adding clinical vocabulary and report-speci�c
augmentation. GLoRIA [20] and LoVT [32] further propose to con-
duct contrastive learning on local representations of image-report
pairs to capture the �ne-grained alignment in addition to the global
representations. Besides, SAT [28] and MGCA [41] take similarities
between di�erent image-report pairs into consideration. However,
all these methods neglect the intrinsic properties of patients’ study
data. We propose a study-oriented pre-training framework to ex-
plore such information fully through three introduced objectives.
Recently, large multimodal models [25, 48, 52] have achieved im-
pressive performance, especially for medical tasks [21, 30, 50]. Our
pre-trained visual extractor can be incorporated by these models to
better extract visual features, improving the overall performance.

Contrastive Self-supervised Learning. Self-supervised learning
aims to endow deep neural networks with generic representations
in an unsupervised manner, where contrastive learning [40] is
one of the most representative paradigms. With the supervision
of contrastive loss, better representation can be learned with less
annotated data. For visual embedding learning, existing methods
[6, 7, 16, 17, 29] utilize momentum encoder and various data aug-
mentations for representation contrasting. In addition, to encode
semantic relationships among images, [4, 27] propose to introduce

semantics-wise contrast through clustering [3, 11]. For textual em-
bedding learning, most e�orts have been made to generate highly
e�ective positive or negative samples, such as back-translation[13,
38], token-level transformations[31, 42, 46], and semantics-level
augmentations[15]. Recently, multi-modal contrastive learning [23,
26, 33, 47, 49] draws increasing attention. By pulling the paired
image-text closer and pushing the non-paired ones away, better
performance can be achieved for not only cross-modal tasks (e.g.,
cross-modal retrieval), but also uni-modal ones (e.g., image classi�-
cation). However, directly applying these methods to medical tasks
can hardly achieve optimal performance due to their neglect of
speci�c properties of typical medical vision-language data. In this
paper, we design a radiology-speci�c pre-training framework that
fully exploits the semantics of patients’ study-level data toward
better embedding for medical images and reports.

3 METHODOLOGY
3.1 Pre-training Framework Overview
The overview of the SENSE framework is shown in Figure 3. Given
an image-report pair (GE, GC ) sampled from a patient study (cf.
Figure 2), we propose to use dual encoders for feature extrac-
tion with a visual encoder 5+ (·) for medical image GE and a tex-
tual encoder 5) (·) for radiology report GC , followed by a series of
projectors to generate representations for dense semantic explo-
rations, i.e., our proposed three contrastive objectives. Meanwhile,
a momentum encoder is introduced in addition to each uni-modal
encoder, and updated through a moving average strategy as in
MoCo [17]. Particularly, the momentum image encoder is updated
with \ 5̂+  U\ 5̂+

+ (1 � U)\ 5+ , where \ denotes model parameters,

5̂+ is momentum visual encoder, and U is a momentum coe�cient.
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Figure 4: The proposed Max-Max method for order-agnostic
radiology report representation, motivated by the character-
istic that the semantics of a report is usually invariant to the
sentence order.

Similarly, we denote momentum textual encoder as 5̂) (·). The ad-
vantage of incorporating such dual momentum encoders for medi-
cal vision-language contrastive learning will be elaborated in the
following sections. After pre-training, the robust visual and textual
encoders can be readily �ne-tuned for downstream tasks, including
uni- and multi-modal ones.

3.2 Uni-modal Feature Extraction
3.2.1 Medical Image Representation. For the input radiology image
GE , a set of data augmentations, including resizing with random
crop, horizontal �ipping, and color jittering, which complies with
the premise of preserving the semantic consistency within image-
report pairs, is applied to generate two semantically correlated
views G1E and G2E . Following previous studies [2, 20, 51], we utilize
the ResNet-50 pre-trained on ImageNet (before logits layer) [18] as
image encoder 5+ (·) (as well as momentum encoder 5̂+ (·)), followed
by an adaptive average pooling layer outputting radiology image
features v = 5+ (G1E ) (momentum features v̂ = 5+ (G2E )).

3.2.2 Radiology Report Representation. Distinct from natural im-
age captions, the radiology report GC has speci�c intrinsic proper-
ties: it usually consists of several semantically independent sentences
and its semantics is irrelevant to the order of sentences (Figure 4).
Therefore, unlike prior study [2] which embraces it with a data
augmentation method by randomly permuting each sentence, we
propose a more powerful order-agnostic textual feature extraction
method, namedMax-Max. Speci�cally, due to the presence of po-
sitional embedding in BERT-like language models, report represen-
tations gained from traditional methods [2, 20, 51] (i.e., encoding
the whole report directly) are related to the order of sentences,
which does not suit the radiology reports. To reduce the negative
impact of sentence position feature for downstream tasks, such as
cross-modal retrieval, we �rst decompose the radiology report into
sentences and then send each sentence into the encoder individ-
ually to extract sentence-level semantics without the a�ection of
other sentences, keeping itself intact semantically. Here, we em-
ploy BioClinicalBERT [1] as the textual encoder 5) (·) (momentum
version 5̂) (·)) [20, 51] to extract the word-wise semantics. To ob-
tain sentence-level representations ( ={B1, ..., B# }, where # is the
number of sentences, we apply the �rst max-pooling layer after
5) (·) to all word embeddings of each sentence. Then, we derive
the report-level representation t = Max-Max(GC ) through the next

max-pooling layer over ( , getting salient features for better multi-
modal interaction. Similarly, we get the momentum textual features
t̂ by using our Max-Max method on momentum encoder 5̂) (·) with
the same input GC . The detailed comparison between our Max-Max
method and randomly sentence permutation proposed by [2] can
be found in Section 4.2.1.

3.3 Study-oriented Semantic Exploration
3.3.1 Study-level Cross-modal Contrast (S-CMC). After sampling
one image-report pair per patient study, we can gather a total of #
pairs corresponding to # studies in each iteration. Considering that
paired medical image and report have the highest similarity, similar
to [20, 51], the S-CMC objective aims to maximize the alignment
between the paired image and report (positive pair) while mini-
mizing the unpaired ones (negative pairs) via contrastive loss [40],
as shown in Figure 2(a). To address the limitation that prior stud-
ies only sample negative pairs from the current mini-batch with
dozens of samples, we adopt the momentum encoder and memory
queue [17, 26] to simulate the whole training dataset, which can
e�ectively enlarge the scope of negative samples and prevent rep-
resentation collapse [43]. Experimental demonstration and detailed
discussion can be found in Section 4.2.1.

Speci�cally, we de�ne the radiology image feature v from the
normal encoder as anchor and its paired textual feature t̂+ from
the momentum encoder as positive. The & negative textual features
{t̂�j }&9=1 are a dynamic set of momentum features maintained as a
�rst-in-�rst-out (FIFO) memory queue. To achieve robust represen-
tation for downstream tasks, we follow [6] to conduct contrastive
learning in the projection space, and formulate the image-to-report
(82A ) training objective as:

L82A = � log exp(sim(v, t̂+)/g)Õ&
9=1 exp(sim(v, t̂�j )/g)

, (1)

where sim(E, Ĉ) = cos(?E2A> . (E), ?̂C2A> . (Ĉ)) with two non-linear MLP
projection heads ?E2A> . (·) and ?̂C2A> . (·), and cosine similarity score.
g is a temperature hyper-parameter. In practice, we update the
memory queue using the momentum textual features from former
mini-batches [17].

Similarly, as the symmetrical term of Eq. 1, we can get the report-
to-image (A28) contrastive loss LA28 where sim(C, Ê) = cos(?C2A> . (C),
?̂E2A> . (Ê)) with two non-linear MLP projection heads ?C2A> . (·) and
?̂E2A> . (·) of the textual and the visual features, respectively. Thus
our S-CMC loss (Figure 3 (a)) can be formulated as:

L(�⇠"⇠ = L82A + LA28 , (2)

where a pair of report GC and image GE are aligned twice (i.e., 82A
and A28) in the presence of di�erent augmentations, providing extra
supervision.

3.3.2 Study-level Multi-modal Contrast (S-MMC). Unlike natural
image-caption datasets, the variations between di�erent patient
studies can be rather small, especially for the radiology reports of
subjects with the same disease status. However, former studies did
not fully explore these semantic relationships. In this section, we
propose a novel method to acquire inter-study semantics explicitly
and take advantage of them for extra supervision.
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Semantic Structure Mining. Due to the di�culty in �nding direct
metrics to measure similarities between study data, we propose to
employ unsupervised clustering to learn the semantic structure.
Speci�cally, we �rst derive informative representations of a pa-
tient study from its selected image-report pair by averaging the
momentum features generated from the cross-modal projectors,
i.e., m̂ = (?̂E2A> . (v̂) + ?̂C2A> . ( t̂))/2, which contains the intrinsic infor-
mation of both the report and image. Then, we perform K-means
clustering to cluster all patient studies in the training set into  
groups based on m̂ (Figure 3(d)). Note that we cluster the momen-
tum features instead of the normal ones, as the former is expected
to yield more consistent clusters during the training process for
better stability. The clusters are updated once after each epoch of
training.

Semantic Structure Preservation. The images and reports belong-
ing to the same cluster group share large semantic relevance, which
can be exploited to learn better embeddings by forcing their rep-
resentations close to the cluster centroid, as shown in Figure 2 (b).
Particularly, for each image, its feature v and the corresponding
cluster centroid ĉ+ are adopted as a positive pair, while the combi-
nations of v and the rest  � 1 cluster centroid {ĉ�} are treated
as negative pairs. For computational e�ciency, we only sample
! negative cluster centroid randomly for image-to-centroid (822)
contrast in practice:

L822 = � log exp(sim(v, ĉ+)/`)Õ!
9=1 exp(sim(v, ĉ�j )/` 9 )

, (3)

where sim(E, 2̂) = cos(?E2A> . (E), 2̂), and ` is a cluster-speci�c scaling
factor. If we use {<̂? }%?=1 to represent the set of feature points in
each cluster, and 2+ to denote its centroid, following [27], the ` of
a cluster can be formulated as follows to re-balance each cluster:

` =

Õ%
?=1 k<̂? � 2+k2
% log(% + n) , (4)

where n > 0. For a loose cluster, a large ` will scale down the simi-
larity between the images (reports) to its centroid (Eq. 3), pulling
the samples belonging to the cluster closer. On the contrary, a small
` will scale up similarity, preventing the feature embeddings from
collapsing into a single point and losing semantic structure.

Similarly, we have the text-to-centroid (C22) training objective
LC22 for the report feature t with sim(C, 2̂) = cos(?C2A> . (C), 2̂). The
multi-modal contrast L(�""⇠ (Figure 3 (b)) can be written as:

L(�""⇠ = L822 + LC22 . (5)

3.3.3 Study-level Uni-modal Contrast (S-UMC). Due to the limited
amount of medical image-report data, e�ciently utilizing the avail-
able ones is critical for the quality of contrastive pre-training. To
this end, we propose to introduce additional supervision signals
within each modality via uni-modal contrast between the normal
and the momentum encoders as shown in Figure 2 (c).

For visual modality, we follow [7] to align semantically correlated
views G1E and G2E , and the image-to-image (828) loss is written as:

L828 = � log
exp(sim(v, v̂+)/g)Õ&
9=1 exp(sim(v, v̂�j )/g)

, (6)

where sim(E, Ê) = cos(?ED=8 . (E), ?̂ED=8 . (Ê)) with another two non-
linear MLP projection heads ?ED=8 . (·) and ?̂ED=8 . (·). Note that unlike
[47] which directly aligns (E, Ê) from the projector heads (?E2A> . (·),
?̂E2A> . (·)) for cross-modal contrast, we introduce additional MLP
projection heads for uni-modal alignment in a separate embedding
space, avoiding interference with the cross-modal projection heads
and preventing potential performance degradation on downstream
cross-modal tasks. Naturally, we maintain another memory queue
to store & unpaired visual momentum features.

For textual modality, we do not directly apply augmentation
to the input data like the common back translation [38] or EDA
methods (random insertion, random deletion, etc.) [45], due to
the potential distortion of particular medical vocabularies, e.g.,
“cardiomediastinal silhouetter” is converted to “heart mediastinum
silhouette” by back translation. Instead, we feed the same input GC to
both normal and momentum encoders and conduct semantics-level
augmentation by dropout mask [15]. Similar to Eq. 6, we can get our
text-to-text (C2C ) loss LC2C with sim(C, Ĉ) = cos(?CD=8 . (C), ?̂CD=8 . (Ĉ)).
Finally, our S-UMC objective (Figure 3(c)) can be obtained by:

L(�*"⇠ = L828 + LA2A . (7)

Overall, we formulate our study-oriented semantic exploration
loss as:

L(⇢#(⇢ = _L(�⇠"⇠ + VL(�""⇠ + WL(�*"⇠ , (8)

where _, V and W are loss balancing coe�cients.

4 EXPERIMENTS
4.1 Pre-training Setup

Dataset. Wepretrain our framework on the training set ofMIMIC-
CXR (version 2)1 [24], the largest publicly available chest X-ray
dataset to date. Following previous studies, we focus on the frontal
view of MIMIC-CXR and leave out the other views in each patient
study. Totally it contains about 146K studies for training, 1, 151
for validation, and 2, 210 for testing. In statistics, there are mainly
149,496 studies, 133,160 (89.07%) studies have only one front im-
age, 15,596 studies have two front images (10.43%), and 740 (0.5%)
studies have three or more front views. For each image, we resize
the longer side to 256 pixels and use zero padding on the shorter
side, making the �nal image size of 256 ⇥ 256 pixels. For each ra-
diology report, we only keep the Findings section which contains
detailed descriptions of the corresponding image. We preprocess
all the reports by dropping special characters and symbols, such
as newlines, underscores, etc., and the subjects with reports of less
than three words are excluded.

Implementation Details. All the projection heads are 2-layerMLPs
with ReLU activation, outputting 512-dimensional features. For Bio-
ClinicalBERT, we freeze the parameters of the �rst 6 layers during
pre-training and only �ne-tune the last 6 layers as [51]. We pre-
train the whole framework for 100 epochs on 4 NVIDIA-A100 GPUs
with a batch size of 128 and mixed-precision training. The network
is warmed up in the �rst 20 epochs with a linear learning rate from
2.5 ⇥ 10�6 to 5 ⇥ 10�4, which further decays by cosine schedule in
the remaining iterations. The optimizer is AdamW with a weight

1https://physionet.org/content/mimic-cxr/2.0.0/

https://physionet.org/content/mimic-cxr/2.0.0/
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Table 1: Results of cross-modal retrieval on the test set of MIMIC-CXR [24]. Recall@: (%) is used as the evaluation metrics. The
best and second best results are bolded and underlined, respectively.

Image-to-Report Retrieval Report-to-Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

VSE++ [12] 9.3 27.4 39.8 8.9 27.2 40.3
ConVIRT [51] 14.9 37.8 49.0 15.7 38.5 50.0
GLoRIA [20] 15.4 40.5 53.4 16.0 41.4 53.9
SAT [28] 16.5 42.4 55.3 17.5 42.6 55.0

SENSE (Ours) - only L(�⇠"⇠ (Max) 15.9 39.9 52.2 16.9 40.2 52.5
SENSE (Ours) - only L(�⇠"⇠ (Max+Seq. Exc. [2]) 16.3 41.4 52.7 16.8 40.7 52.1

SENSE (Ours) - only L(�⇠"⇠ (Max-Max) 16.7 42.1 53.6 17.2 42.4 54.1
SENSE (Ours) - L(�⇠"⇠ + L(�""⇠ 19.0 45.0 56.3 19.6 45.6 57.2

SENSE (Ours) - Full 19.5 45.1 57.3 19.8 46.2 57.5

decay of 1 ⇥ 10�6. During each iteration, several image augmen-
tations are applied, including random cropping with a scale from
[0.8, 1.0] and then resizing to 224 ⇥ 224 pixels, horizontal �ipping
with a probability of 0.5, and color jittering with brightness and con-
trast ranging from [0.8, 1.3]. Note that in order to ensure semantic
consistency between images and reports, all image transformations
are mild and some popular augmentations are excluded due to the
potential of causing semantic inconsistency, such as Gaussian blur
and excessive a�ne transformations, which may obscure the ap-
pearance of lesions. In terms of the hyper-parameters, we set the
momentum coe�cient U = 0.999 and temperature g = 0.1 following
[17], queue length & = 2048, cluster number  = 10, 000, negative
cluster centroid number ! = 2048, and loss balancing coe�cient
_ = 1, V = 1,W = 0.2. For more details on implementation (even for
downstream tasks), please refer to the Appendix.

Comparison Methods. In this section, we compare the proposed
framework with four state-of-the-art medical contrastive vision-
language pre-training approaches, ConVIRT [51], GLoRIA [20],
BioViL [2], and SAT [28], on four common downstream tasks. Con-
VIRT is the �rst study focusing on contrastive vision-language
pre-training in the medical domain, which simply aligns global
representations of paired images and reports. GLoRIA proposes
to additionally align local representations of image-report pairs.
Based on ConVIRT, BioViL improves text modeling by introducing
radiology-speci�c text encoder and augmentations. Given the same
dataset used for pre-training, we can directly compare our results
to the o�cial version. SAT removes possible falsely negative sam-
ples by calculating the cosine similarity between reports within the
mini-batch. Most baseline results are cited from SAT unless other-
wise speci�ed. In addition, we also compare some other methods,
which will be explained in corresponding subsections.

4.2 Downstream Tasks
4.2.1 Cross-modal Retrieval. This task consists of two symmet-
rical parts: Image-to-Report Retrieval and Report-to-Image
Retrieval. Speci�cally, given an image (report), the model attempts
to identify the corresponding report (image). The pretrained nor-
mal image and report encoders with cross-projectors (?E2A> . (E) and
?C2A> . (C)) are directly used for cross-modal retrieval without further
�ne-tuning. We verify the performance on the o�cial test set of

Table 2: Test AUROC score (%) of linear classi�cation on
CheXpert [22] and RSNA [35] datasets with di�erent por-
tions of training data. The baseline results are cited from
SAT [28] and BioViL [2].

Pre-training
Type Models CheXpert RSNA

1% 10% 100% 1% 10% 100%

Contrastive

Random 56.1 62.6 65.7 58.9 69.4 74.1
ImageNet 74.4 79.1 81.4 74.9 74.5 76.3
VSE++ 50.3 51.2 52.4 49.4 57.2 67.9

ConVIRT 85.7 87.0 87.5 85.4 87.4 88.0
GLoRIA 86.3 87.9 88.2 86.2 87.6 88.9
BioViL - - - 88.1 88.4 89.1
SAT 86.9 88.3 88.6 87.4 89.2 90.2

SENSE - 25% 86.1 86.9 87.9 86.7 88.6 90.1
SENSE - 50% 87.2 88.0 89.2 87.1 89.0 90.5
SENSE - 75% 87.3 88.1 89.2 87.3 89.1 90.7
SENSE - 100% 87.6 88.5 89.3 88.0 89.6 90.7

Masked PTUni�er 88.7 89.0 90.1 - - -
M3AE 84.0 86.4 88.9 86.7 88.0 89.5

MIMIC-CXR [24] with a total of 2461 image-report pairs (i.e., there
are multiple pairs with the same report) and use Recall@: as eval-
uation metrics, where : = 1, 5, 10. Besides, the result of VSE++ [12]
is also presented for its outstanding performance on cross-modal
retrieval task in the general domain.

From the results in Table 1, we have the following observations.
(1) The �rst variant of our method (‘only L(�⇠"⇠ (Max)’) can be
considered as an extended version of ConVIRT enhanced by the
dual momentum encoders. Its superior performance to the original
ConVIRT demonstrates the e�ectiveness of the dual momentum
encoder architecture for medical contrastive vision-language pre-
training. (2) The proposed Max-Max strategy can better extract
textual representations for the retrieval tasks, leading to improved
performance compared to single Max pooling and sequence ex-
change (denoted as Seq. Exc.) data augmentation [2] on all eval-
uations. (3) When further incorporating the semantic similarities
through the clustering-based S-MMC, we achieve signi�cant im-
provements on both retrieval tasks (at least ⇠ 2.3% on all metrics),
and substantially outperform all existing methods. (4) When lastly
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Table 3: Test results (%) of RSNA Pneumonia [35] zero-shot
classi�cation task. Accuracy and F1 score are reported.

Metrics ConVIRT GLoRIA SAT BioViL SENSE
Accuracy 66.6 70.8 72.4 73.2 74.1
F1 Macro 61.6 56.7 62.0 66.5 67.3

adding the uni-modal contrast to compose our full model, the opti-
mal performance is achieved on both retrieval tasks and all metrics.

4.2.2 Data-e�icient Image Classification. To evaluate the data e�-
ciency of our framework, we pre-train the network with di�erent
amounts of data (i.e., 25%, 50%, 75%, and 100%). Following the clas-
si�cation protocol in previous studies, we freeze the weights of
the pre-trained image encoder and �ne-tune a randomly initialized
linear classi�er with 1%, 10%, and 100% training data to evaluate the
e�ectiveness of visual representation learning. We conduct classi�-
cation on two datasets: (1) CheXpert is a multi-label chest X-ray
dataset where each image is labeled based on the appearance of 14
kinds of disease symptoms. We follow the same experimental set-
tings in [20, 28, 51] to use the validation set for evaluation because
the original test set has not been made publicly available. Moreover,
we randomly pick 5, 000 images from the training set for validation;
(2) RSNA Pneumonia consists of two types of chest X-ray images,
i.e., health and pneumonia. We use the same preprocessing pro-
cedure and experimental setting as in [20, 28]. Speci�cally, about
30,000 front view images are split into training/validation/test sets
with a ratio of 70%/15%/15%. For both datasets, we resize the image
to 256 ⇥ 256 pixels

The area under the receiver operating characteristic curve (AU-
ROC) results are displayed in Table 2. The results suggest that our
method achieves state-of-the-art results on both datasets in most
settings (only 0.1% lower than BioViL on RSNA with 1% data). Re-
markably, with only 50% pre-training data, our method has already
achieved comparable results with the previous best results except
for BioViL on RSNA 1% data setting, demonstrating the excellent
data e�ciency characteristics of our framework. Besides the com-
parison with methods in contrastive paradigm, we also compare
two representative methods in masked pre-training, PTUni�er [8]
and M3AE [9]. It shows that our SENSE can achieve higher or com-
parable results. The reason why our SENSE is slightly lower than
PTUni�er [8] may be because PTUni�er [8] used more pre-training
data.

4.2.3 Zero-shot Image Classification. Inspired by CLIP [33], we
treat the zero-shot image classi�cation task as identifying the most
similar description among a set of class-speci�c prompt descrip-
tions for a given image. The pre-trained normal image and report
encoders with cross-projectors (?E2A> . (E) and ?C2A> . (C)) are directly
used for zero-shot image classi�cation. Following the settings of
BioViL [2], which achieves the best performance among previous
studies, we evaluate the model’s zero-shot recognition ability on
the test set of RSNA Pneumonia [35], where class prompts for
the healthy and unhealthy are set as “no evidence of pneumonia”
and “�ndings suggesting pneumonia”, respectively.

Table 4: Test Dice score (%) of pneumothorax segmentation
on the SIIM[36] dataset with di�erent portions of training
data.

Initialization Method Pneumothorax Segmentation
1% 10% 100%

Random 14.5 48.7 58.8
ImageNet 49.7 62.6 73.3

ConVIRT [51] 57.0 67.4 72.3
GLoRIA [20] 58.1 67.5 73.1

SAT 59.2 68.2 74.7
SENSE (Ours) 60.0 69.5 75.2

Table 5: Results of image-to-report retrieval on the test set
of MIMIC-CXR [24] with di�erent report feature extraction
methods. Recall@: (%) is used here as the evaluation metric.

Base method Image-to-Report Retrieval
SENSE - only L(�⇠"⇠ R@1 R@5 R@10
One-step:

+ Mean Pooling 14.8 38.0 48.0
+ Token Pooling 14.9 37.7 49.3
+ Max Pooling 15.9 39.9 52.2

Two-step:
+ Max-Mean Pooling 15.7 39.3 50.7
+ Max-Max Pooling 16.7 42.1 53.6

As presented in Table 3, our method achieves the best results on
both accuracy and F1 metrics, demonstrating that the learned joint
embeddings are e�ective for zero-shot classi�cation.

4.2.4 Medical Image Segmentation. Following SAT [28], we uti-
lize the pre-trained visual encoder as the encoder for U-Net [34]
and �ne-tune the whole network with the supervision of anno-
tated pathological chest X-ray images under 1%, 10%, and 100%
training data. The dataset used in this task is SIIM-ACR Pneu-
mothorax [36], which contains 12, 047 chest radiographs and is
split into training/validation/test sets in a ratio of 70%/15%/15%.

We report the Dice score for evaluation in Table 4. The results
show that the network pre-trained with our SENSE is more e�ective
than the others in all settings, especially at the 1% and 10% training
data settings, demonstrating the superiority of our pretraining
framework.

4.3 Analysis and Ablation Study
In this part, we conduct ablation studies and analyses to verify the
e�ectiveness of each component of the framework. More experi-
ments can be found in Appendix.

4.3.1 E�ect of Di�erent Report Feature Extraction Methods. Be-
cause the output of the textual encoder (i.e., BioClinicalBERT [1]) is
a feature matrix consisting of the representations of all tokens, we
evaluate the performance of di�erent pooling methods to obtain re-
port representations. To avoid the interference of other factors, we
only use the L(�⇠"⇠ objective here because it has the most direct
impact on the cross-modal retrieval task. As displayed in Table 5,
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Comparison is made to previous study from __. There is again seen a right-sided PICC line 
and left-sided chest tubes which are unchanged in position. There remains a small left 
apical pneumothorax. There is again seen some consolidation at the left lung base with 
prominence of the pulmonary vascular markings throughout the left lung. The right lung 
appears relatively clear. No pneumothorax on the right side is seen. There has been 
improved aeration of the atelectasis at the right lung base.

Comparison is made to the prior study from __. There is a right-sided PICC line with distal 
lead tip at the cavoatrial junction. There has been removal of the left IJ central venous
 line since the prior study. Chest tubes are seen along the left chest. The heart size 
is upper limits of normal. There is again seen increased density at the right mid to lower
 lung field and left-sided pleural effusion. The right lung is relatively clear.

Residual extravasated contrast seen posterior to the distal aspect of the esophageal stent. 
1 right-sided chest drain in situ. 1 chest drain has been removed. The left hilar 
pneumothorax is slightly increased in size compared to prior. Left lower lobe pathology 
persists. Right-sided PICC line in situ with the tip in the proximal right atrium. The right 
lung is clear.

Clustering Space

Study #1

Study #2

Study #3

Figure 5: Example patient studies with contained image-report pair in MIMIC-CXR [24] sampled from clusters generated by
the proposed SENSE (in terms of L(�""⇠ ). The texts in the same color describe similar �ndings.

Table 6: Test AUROC score (%) of linear image classi�cation
(100% pre-training data) on CheXpert [22] and RSNA [35]
datasets with various combinations of SENSE pre-training
objectives.

Pre-training Objectives CheXpert RSNA
L(�⇠"⇠ L(�*"⇠ L(�""⇠ 1% 10% 100% 1% 10% 100%
X 86.3 87.3 88.0 87.0 88.3 90.1
X X 87.0 87.7 88.8 87.3 88.8 90.0
X X 87.2 88.1 88.9 87.6 89.1 90.5
X X X 87.6 88.5 89.3 88.0 89.6 90.7

max pooling can perform better than the others in the one-step
method, and the proposed two-step methodMax-Max achieves the
best results on all three metrics.

4.3.2 Impact of Di�erent Pre-training Objectives. As we have ex-
plored the impact of di�erent pre-training objectives on cross-modal
retrieval in Section 4.2.1, here we investigate the impact on the trans-
fer learning task (e.g., image classi�cation). As reported in Table 6,
both L(�*"⇠ and L(�""⇠ could enhance visual representations,
demonstrating that the introduced uni-modal and multi-modal
supervisions can e�ectively supplement the cross-modal interac-
tions.2 When combining all of L(�⇠"⇠ , L(�*"⇠ and L(�""⇠
as our proposed SENSE, optimal performance can be achieved.

2As the foundation for contrastive vision-language pre-training, the cross-modal
contrast (L(�⇠"⇠ ) cannot be ablated.

4.4 Qualitative Evaluation
To gain insight into the qualitative understanding of what our
model has learned during training, particularly with the incorpo-
ration of L(�""⇠ , we present pairs of images and corresponding
reports from each patient study in MIMIC-CXR [24], sampled from
one cluster as depicted in Figure 5. It can be seen that the images
(reports) belonging to the same cluster present (describe) highly
similar symptoms although they do not belong to the same patient
study, demonstrating that our SENSE does capture meaningful se-
mantics structure with the proposed study-level clustering.

5 CONCLUSION
In this paper, we proposed a study-oriented pre-training framework
to improve medical vision-language joint embeddings. Leveraging
the order-agnostic property of radiology report, a two-step feature
extraction method was adopted to obtain better texture represen-
tations. Moreover, through the momentum encoders and memory
queues, three patients’ study-level contrastive objectives, includ-
ing uni-modal, cross-modal, and multi-modal were introduced to
provide su�cient guidance for semantics exploring from limited
data. Extensive experiments on four downstream tasks, covering
single-modal and multi-modal tasks, demonstrated the superior-
ity of the proposed framework for better medical vision-language
representation learning.

Limitations and Future Work. This work mainly focuses on visual
representation learning and ignores validating the e�ectiveness of
textual ones, which can be seen as a limitation. More experiments
about the performance of textual encoder on downstream tasks,
such as report classi�cation, will be conducted in future work.
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