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ABSTRACT1

Version Identification aims to recognize distinct renditions2

of the same underlying musical work, a task central to3

catalog management, copyright enforcement, and recom-4

mendation. While state-of-the-art systems rely on com-5

plex audio pipelines, they remain computationally costly,6

opaque, and difficult to scale. We propose a lightweight7

and interpretable alternative: Lyrics-Informed Embeddings8

(LIE), audio representations trained to align directly with9

a lyric-derived semantic space. Our framework lever-10

ages advances in automatic speech recognition (Whisper)11

and multilingual sentence encoders to construct a robust12

target embedding space from transcribed lyrics. An au-13

dio encoder is then trained to project raw audio into this14

space, optimizing both instance-level alignment and struc-15

tural consistency. LIE achieves retrieval accuracy on par16

with, or exceeding, transcription-based and state-of-the-art17

audio systems, while cutting inference latency by more18

than 3× relative to transcription pipelines. Our musi-19

cally grounded framework is lightweight, reproducible,20

and yields interpretable embeddings that extend beyond21

version identification to broader music retrieval tasks.22

1. INTRODUCTION23

Version Identification—also known as Cover Detec-24

tion—aims to recognize distinct renditions or perfor-25

mances of the same underlying musical composition [1].26

Robust VI systems are critical for catalog management,27

copyright enforcement, cross-platform track linking, and28

music recommendation.29

Historically, VI research has been dominated by audio-30

based approaches that seek invariance to variations in31

tempo, instrumentation, pitch or structure. Early systems32

relied on hand-crafted musical descriptors [2–5], while33

modern methods employ multimodal deep learning archi-34

tectures operating on generic audio representations such35

as the Constant-Q Transform [6–15]. Although effective,36

these models require extensive training time and compu-37

tational resources, limiting scalability and reproducibility.38

Moreover, the learned embedding spaces are often opaque,39

© F. Author, S. Author, and T. Author. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: F. Author, S. Author, and T. Author, “Learning Audio Em-
beddings via Lyrics Alignment for Scalable Version Identification 2025”,
submitted to ISMIR, 2025.

making it difficult to interpret or transfer them to other mu-40

sic retrieval tasks [16].41

We propose a paradigm shift: replacing complex,42

generic audio pipelines with a lightweight, lyrics-centered43

framework grounded in a musically meaningful and se-44

mantically stable signal. Lyrics are typically preserved45

across renditions, offering a robust anchor for identifying46

versions and enabling the learning of interpretable, trans-47

ferable representations. By operating directly in a lyrics-48

informed embedding space, we reduce model complexity,49

improve scalability, and enhance interpretability.50

We build on recent advances in ASR and text em-51

bedding models to unlock new opportunities for lyrics-52

based version identification. First, we benchmark pre-53

trained sentence encoders on clean lyrics to establish an54

upper bound on retrieval performance. We then incorpo-55

rate Whisper to transcribe lyrics directly from raw audio56

and evaluate the robustness of these encoders to transcrip-57

tion noise. Finally, to eliminate the dependency on ASR at58

inference time, we introduce Lyrics-Informed Embeddings59

(LIE)—a lightweight audio encoder trained to project raw60

audio into a lyrics-derived embedding space previously61

validated for version identification.62

2. FRAMEWORK63

We introduce an audio representation learning frame-64

work for producing Lyrics-Informed Embeddings65

(LIE)—representations trained to capture lyrics infor-66

mation while eliminating the need for automatic speech67

recognition at inference. The approach follows a two-stage68

process. First, a fixed target space is constructed from em-69

beddings of transcribed lyrics. Second, an audio encoder70

is trained to map raw audio into this space, optimizing its71

outputs to match the corresponding lyrics embeddings.72

2.1 Training Objective73

We define the objective guiding the audio encoder to pro-74

duce embeddings aligned with their corresponding textual75

representations under cosine similarity. Given a training76

pair (xi, ti) ∈ X × Rd, where xi denotes a 30-second77

raw audio segment and ti its target textual embedding,78

the goal is to learn an audio encoder fθ that maps xi to79

ai = fθ(xi) ∈ Rd such that cos(ai, ti) is maximized.80

Unlike standard multimodal representation learn-81

ing—which jointly optimizes audio and text encoders to82

learn a joint embedding space [17–19]—our approach83



projects audio directly into an existing, semantically struc-84

tured textual space. Since each audio sample is paired with85

an explicit target embedding, traditional contrastive objec-86

tives can introduce noise into the learning signal. More87

importantly, this setup allows the learning process to ex-88

ploit the geometric structure of the target space, rather than89

relying solely on in-batch negatives.90

To this end, we adopt a criterion combining instance-91

level alignment with structure preservation:92

Ltotal = αLcos + (1− α)Lstruct,

Lcos =
1

B

B∑
i=1

(
1− cos(ai, ti)

)
Lstruct =

1

B2

B∑
i,j=1

(
cos(ai, aj)− cos(ti, tj)

)2
,

where B is the batch size and α ∈ [0, 1] an hyperparameter.93

The cosine term Lcos provides an explicit instance-level94

alignment signal, pulling each audio embedding ai toward95

its textual counterpart ti and directly optimizing the re-96

trieval metric. In contrast, the geometry-preserving term97

Lstruct enforces global structural consistency by encour-98

aging pairwise similarities in the learned audio space to99

match those in the fixed textual space, thereby transferring100

its semantic structure to the learned space.101

2.2 Target Space Creation102

A key challenge in leveraging lyrics is the limited accessi-103

bility of clean, time-aligned transcriptions for large mu-104

sic collections. Such resources are often unavailable at105

scale and typically require third-party licensing. To over-106

come this limitation, we construct the target embedding107

space—serving as the supervision signal for training the108

audio encoder—directly from audio, thus removing re-109

liance on external lyric datasets. This is achieved through110

a two-stage pipeline: (1) transcribing vocal segments using111

a pre-trained automatic speech recognition (ASR) model,112

and (2) encoding the resulting text into dense vectors with113

a multilingual sentence encoder already fine-tuned for se-114

mantic textual similarity.115

As the framework is inherently lyrics-centered, its116

scope is restricted to non-instrumental tracks. In addition,117

because ASR models are trained primarily on speech, they118

tend to hallucinate in non-vocal sections, generating spu-119

rious outputs despite the absence of linguistic content. A120

dedicated preprocessing stage is therefore introduced to fil-121

ter out tracks with insufficient lyrical content and to ex-122

tract vocal-only segments prior to transcription, thereby123

improving both transcription accuracy and the representa-124

tiveness of the resulting embeddings.125

Data Preprocessing. We employ a proprietary deep126

learning model to estimate a vocalness probability v for127

each non-overlapping 3-second audio window. The global128

vocalness score of a track is computed as the mean v over129

all windows, and recordings with a score below 0.5 are ex-130

cluded to ensure sufficient lyrical content. Windows with131

v ≥ 0.5 are retained as vocal segments and concatenated132

into contiguous regions, which are then truncated or zero-133

padded to a fixed length of 30 seconds, meeting the input134

requirements of the downstream ASR model.135

Transcription. We adopt Whisper [20], a multilingual136

encoder–decoder Transformer widely regarded as state-of-137

the-art in ASR, noted for its robustness to noise and other138

real-world acoustic variability—making it a natural choice139

for the heterogeneous and noisy conditions of music audio.140

Specifically, we use the whisper-large-v3-turbo141

model, a variant which offers strong transcription accuracy142

with fast inference.143

Text Encoding. We use Alibaba-NLP/gte-144

multilingual-base [21], an encoder-only Trans-145

former fine-tuned for semantic similarity, supporting over146

70 languages and producing 768-dimensional sentence147

embeddings. The model, selected after benchmarking sev-148

eral multilingual text encoders [22–24], consistently out-149

performed alternatives on both clean and ASR-generated150

lyrics in the version identification task, and showed151

stronger robustness to noise introduced by transcription.152

2.3 Audio Encoder Architecture153

We present the architecture of the proposed Lyrics-154

Informed Embeddings (LIE) model, which consists of155

three main components: (1) a frozen Whisper encoder156

serving as a high-level feature extractor, (2) a learnable157

attention-based temporal pooling mechanism to aggre-158

gate frame-level features, and (3) a multi-layer perceptron159

(MLP) projection head mapping aggregated audio features160

into the textual embedding space. An overview is shown161

in Figure 1. Training configuration and inference time es-162

timation results are provided in Appendix E and C.163

Audio Encoder. We adopt the encoder of164

openai/whisper-large-v3-turbo—also used165

in the target space construction—as our audio backbone.166

Given an 80-channel log-Mel spectrogram computed167

by Whisper’s feature extractor, the encoder produces a168

sequence of hidden states H ∈ RL×dw , where dw = 1280169

is the embedding dimension and L = 1500 corresponds to170

the number of frames for a 30-second input.171

Our choice of Whisper is motivated by two key con-172

siderations. First, its internal representations are expected173

to capture phonetic and linguistic information as a conse-174

quence of its ASR training objective, which makes them175

suitable for alignment with textual embeddings. Second,176

the same Whisper model is used in constructing the target177

space through transcription, creating an inherent structural178

compatibility between the audio and text modalities. As a179

consequence, we keep the encoder frozen throughout train-180

ing to preserve this alignment and maintain the structure of181

the latent space learned during Whisper’s large-scale train-182

ing.183

Attention-based Temporal Pooling. The Whisper en-184

coder produces a sequence of frame-level hidden states185

H = [h1, . . . , hL] ∈ RL×dw , which must be aggregated186

into a single fixed-dimensional vector to enable projection187

into the target text embedding space. Rather than rely-188

ing on mean pooling—which treats all frames equally—we189



Figure 1. Overview of the LIE framework.

employ a learnable attention-based pooling layer inspired190

by [25]. A formal description is provided in Appendix A.191

Projection Head. The pooled vector h̃ is projected into192

the 768-dimensional target lyric embedding space through193

a four-layer MLP with hidden sizes [3072, 2048, 2048,194

1536]. Each intermediate layer is followed by LayerNorm195

and a ReLU activation, while the final layer outputs the196

lyrics-informed embedding used in our downstream task.197

This projection head serves as the bridge between modali-198

ties, learning the transformation that aligns audio features199

with their textual counterparts.200

3. EMPIRICAL STUDIES201

Datasets. We base our experiments on the recently intro-202

duced Discogs-VI dataset [26]. For this work, we match203

Discogs-VI entries to a proprietary catalog to retrieve cor-204

responding .mp3 audio files using metadata matching, fol-205

lowed by filtering and validation to ensure high-confidence206

matches. This process yields a subset of 679,692 tracks207

with associated audio. To train our model, we construct208

paired data (z, t) consisting of 30-second log-Mel spec-209

trograms precomputed offline using Whisper’s feature ex-210

tractor, and lyric embeddings obtained via the target space211

construction pipeline (see Section 2.2). We retain only un-212

padded 30-second segments to accelerate training, result-213

ing in 1.67M audio–text pairs. The dataset is split 80/10/10214

into training, validation, and test sets, yielding 1.34M pairs215

for training.216

Evaluation. We evaluate on three benchmarks differ-217

ing in scale, language coverage, and difficulty. While218

Covers80 [27] and SHS100K-TEST [28] remain standard219

benchmarks in the field, Discogs-VI corresponds to the220

matched subset described in Section 3 restricted to en-221

tries with an available YouTube link. All datasets follow222

the same preprocessing pipeline presented in Appendix223

B. This results in 116, 167, and 4,623 tracks for Cov-224

ers80, SHS100K, and Discogs-VI, respectively. For larger-225

scale evaluation, we additionally construct XL variants of226

SHS100K and Discogs-VI by removing the clean-lyrics227

constraint (see Appendix B for reference), resulting in228

datasets of 1,086 and 121,729 tracks.229

In the retrieval setup, embeddings are precomputed for230

all catalog items C. Given a query q ∈ C, each candidate231

x ∈ C \ q is scored by cosine similarity cos(eq, ex), and232

results are ranked in descending order. We report the hit233

rate at rank 1 (HR@1) and the mean average precision at234

rank 10 (MAP@10).235

3.1 Clean and Transcribed Lyrics Benchmarking236

We benchmarked a range of multilingual sentence text en-237

coders to evaluate their capacity to transfer their knowl-238

edge to the version identification task in a zero-shot set-239

ting. For conciseness, we report only the results of the240

model ultimately selected to define the target embedding241

space, gte-multilingual-base.242

Table 1. Text embedding model performance on clean and
transcribed lyrics

Dataset Metric Clean lyrics Transcription

Covers80 HR@1 1.000 0.975
MAP@10 1.000 0.979

SHS100K HR@1 0.917 0.909
MAP@10 0.863 0.852

Discogs-VI HR@1 0.934 0.929
MAP@10 0.913 0.893

Clean lyrics provide a strong upper bound, with243

gte-multilingual-base achieving perfect accu-244

racy on Covers80 and strong results on SHS100K and245

Discogs-VI. Equally noteworthy is the robustness to tran-246

scription noise. Substituting clean text with Whisper-247

generated transcriptions leads to only limited degradation248

in performance, indicating that transcription errors, while249

unavoidable, do not substantially compromise the discrim-250

inative capacity of the textual embeddings.251

These findings confirm that (i) lyrics are a highly effec-252

tive modality for version identification; and (ii) that pre-253

trained multilingual encoders, combined with Whisper-254

based ASR, provide a robust solution capable of scaling255

to diverse datasets without task-specific fine-tuning.256

3.2 Audio-to–Text Alignment257

We assess the alignment between learned audio embed-258

dings (LIE) and their corresponding textual embeddings259

at both the segment and track levels. First, we compute260

the cosine similarity for each of the 167,484 audio–text261

pairs from the test set, where the audio embedding corre-262

sponds to the model output for a 30-second segment and263

the text embedding to its paired target. Second, for tracks264

containing at least two such segments, we form a global265



audio representation by averaging their segment-level em-266

beddings and compare it to the track-level text embedding267

derived from the full transcription.268

Segment-level embeddings yield a mean similarity of269

0.8574 (std: 0.0757), whereas aggregated track-level em-270

beddings reach 0.9109 (std: 0.0379). The higher mean and271

lower variance at the track level show that the model cap-272

tures segment-level signals and integrates them into sta-273

ble, global representations. These results provide com-274

pelling evidence that our approach achieves tight au-275

dio–text alignment, offering cross-modal correspondence276

through a compact and efficient architecture.277

3.3 Downstream Version Identification278

Comparison with Transcription Baselines. We com-279

pare LIE to transcription-based baselines used to derive280

target textual embeddings. LIE track-level representations281

are obtained by averaging embeddings from 30-second vo-282

cal segments. For the transcription baseline, we evaluate283

two settings: (1) global embeddings from full transcrip-284

tions, approximating an upper bound and aligning with285

Section 3.1; (2) averaged embeddings from transcriptions286

of the same 30-second vocal segments used as LIE inputs,287

providing a direct basis for comparison.288

Table 2. Comparison of LIE and transcription baselines
Dataset Metric Transc. Transc. LIE

Covers80 HR@1 0.975 0.937 0.949
MAP@10 0.979 0.945 0.966

SHS100k-XL HR@1 0.954 0.925 0.935
MAP@10 0.910 0.870 0.875

Discogs-VI-XL HR@1 0.856 0.843 0.853
MAP@10 0.832 0.817 0.923

Across all benchmarks, LIE consistently outperforms289

transcription-based embeddings extracted from averaged290

30-second segments, both in terms of HR@1 and291

MAP@10. Moreover, for all three datasets, results ob-292

tained with LIE embeddings closely approach the upper293

bound defined by the full-transcription pipeline, with LIE294

even surpassing it on MAP@10 for Discogs-VI-XL. On295

this dataset, however, LIE performance drops compared to296

smaller benchmarks, but this drop is not unique to LIE:297

the transcription-based model with full lyrics also sees re-298

duced accuracy. Although the scale and diversity of the299

benchmark likely contribute to these challenges, manual300

analysis of 200 errors on full transcriptions indicated that301

roughly 60% arose from data inconsistencies in Discogs-302

VI.303

Comparison with Audio Baselines. To assess the304

broader effectiveness of LIE, we compare it against sev-305

eral state-of-the-art audio-only systems: ByteCover2 [9],306

CLEWS [13], CQTNet [14], and DViNet [15], using the307

official implementations and pretrained checkpoints re-308

leased by the authors of CLEWS [13]. Full results are re-309

ported in Appendix D, while only top-2 audio baselines are310

presented below.311

Table 3. Comparison of LIE with audio baselines
Dataset Metric ByteCover2 CLEWS LIE

Covers80 HR@1 0.865 0.835 0.949
MAP@10 0.877 0.880 0.966

SHS100k-XL HR@1 0.953 0.931 0.935
MAP@10 0.884 0.847 0.875

Discogs-VI-XL HR@1 0.843 0.816 0.853
MAP@10 0.812 0.790 0.823

LIE delivers competitive performance across all bench-312

marks, achieving particularly strong results on Covers80313

and Discogs-VI-XL, where it outperforms all audio base-314

lines in HR@1 and MAP@10. On SHS100k-XL, Byte-315

Cover2 achieves the top results, with LIE ranking closely316

behind, but the difference is marginal and partially ex-317

plained by dataset characteristics: SHS100k contains a318

notable fraction of parodies—covers that retain the same319

melody but feature ironic or entirely different lyrics, which320

are not addressable by lyrics-centered models like LIE.321

Overall, these results underscore that LIE generalizes322

effectively to the version identification task, achieving per-323

formance comparable to state-of-the-art audio-based mod-324

els without relying on textual input or task-specific fine-325

tuning. Unlike ByteCover2, which benefits from large-326

scale training and complex architectures, LIE relies on a327

lightweight architecture, making the model more efficient328

and easy to reproduce. Yet, its competitiveness across all329

datasets highlights the effectiveness of a lyrics-informed330

approach in producing robust and generalizable audio em-331

beddings, opening a promising new direction for version332

identification.333

4. CONCLUSION334

This work has introduced Lyrics-Informed Embeddings335

(LIE), a lightweight and reproducible framework for ver-336

sion identification that departs from the prevailing trend337

towards increasingly complex, multimodal, and resource-338

intensive architectures. By grounding audio represen-339

tations in a lyric-derived semantic space, LIE lever-340

ages musically meaningful supervision while remaining341

lightweight and easy to deploy.342

The approach, however, is subject to limitations. The343

reliance on a vocal detector introduces an additional com-344

putational step and constrains the method to tracks with345

sufficient lyrical content. In addition, the use of a general-346

purpose text encoder not explicitly optimized for version347

identification highlights opportunities for refinement. Fu-348

ture research will address these directions by fine-tuning349

the text encoder to enhance discriminability in the tar-350

get space, by improving the efficiency of vocal detec-351

tion, and by integrating LIE within multimodal systems352

to handle instrumental tracks. Taken together, this con-353

tribution positions lyrics-informed representation learning354

as a promising direction for version identification, offering355

an interpretable, generalizable, and scalable alternative to356

complexity-heavy systems in music information retrieval.357
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A. ATTENTION MECHANISM DETAILS487

A learnable [CLS] token qcls ∈ Rdw is prepended to H488

and acts as the sole query in a single-head self-attention489

mechanism over the sequence. Rotary positional embed-490

dings (RoPE) are applied to both queries and keys to en-491

code relative position information.492

Q = qclsWQ, K = HWK , V = HWV ,

A = softmax

(
QK⊤
√
dk

)
∈ R1×L, h̃ = AV ∈ R1×dv .

Here, WQ,WK ,WV ∈ Rdw×dk are learnable projection493

matrices. In this formulation, the attention weights A494

quantify the relevance of each frame-level hidden state in495

H with respect to the prepended [CLS] token. These496

weights are then used to compute an attention-weighted497

mean over the value projections V , yielding the updated498

[CLS] representation h̃. The aggregated representation h̃499

is then passed through a residual feed-forward block with500

LayerNorm to produce the final pooled embedding.501

B. EVALUATION BENCHMARKS502

PREPROCESSING503

The three evaluated benchmarks are standardized via the504

following preprocessing pipeline: (i) match tracks to a505

proprietary catalog via fingerprinting after downloading506

YouTube audio with provided links, (ii) retain only tracks507

with clean and valid lyrics in the catalog, with lyric va-508

lidity checked by comparing them to ASR transcriptions509

(both encoded with gte-multilingual-base, discarding pairs510

with cosine similarity < 0.6), and (iii) remove tracks with511

insufficient vocal content (global vocalness score ≤ 0.5, as512

defined in Section 2.2).513

C. TRAINING CONFIGURATION514

Model training is performed for 3 epochs with a batch size515

of 128 on a single NVIDIA RTX A5000 GPU (24 GB516

VRAM, CUDA 12.2), requiring approximately 33 hours.517

We adopt the AdamW optimizer, with weight decay set to518

0.01 and β coefficients to (0.9, 0.98). The learning rate519

is fixed at 1 × 10−4 with a linear warmup over the first520

10, 000 steps to stabilize early training. Mixed precision521

(AMP) and torch.compile are enabled for the Whisper en-522

coder to accelerate computation and reduce memory usage,523

while the rest of the model is trained in standard precision.524

D. COMPARISON OF LIE WITH AUDIO525

BASELINES: ADDITIONAL RESULTS526

Table 4. Comparison of LIE with audio baselines
Dataset Metric CQTNet DViNet LIE

Covers80 HR@1 0.848 0.861 0.949
MAP@10 0.856 0.886 0.966

SHS100k-XL HR@1 0.900 0.931 0.935
MAP@10 0.789 0.859 0.875

Discogs-VI-XL HR@1 0.641 0.751 0.853
MAP@10 0.568 0.719 0.823

E. INFERENCE TIME527

One of the primary motivations behind LIE was to remove528

the inference bottleneck imposed by the transcription stage529

in the baseline pipeline used to generate target textual em-530

beddings. To quantify the efficiency gains of LIE, we mea-531

sured inference time for both pipelines on 2,000 randomly532

selected tracks from the Discogs-VI benchmark.533

In the baseline, Whisper-based vocal transcription alone534

accounts for 4.398s (std: 3.243) of the 6.072s (std: 3.416)535

total average inference time, making large-scale deploy-536

ment impractical. LIE, on the other hand, achieves an av-537

erage inference time of 1.895s (std: 0.513) per track, cor-538

responding to a 3.2× speed-up over the baseline. When539

excluding preprocessing—1.661s (std: 0.443) for the base-540

line and 1.673s (std: 0.415) for LIE—the advantage be-541

comes even more pronounced: the LIE forward pass re-542

quires only 0.221s (std: 0.117), compared to 4.410s (std:543

1.220) for the baseline’s Whisper-dependent stage.544


