Under review as a conference paper at ICLR 2026

FROM SOLO TO SYMPHONY: ORCHESTRATING
MULTI-AGENT COLLABORATION WITH SINGLE-
AGENT DEMOS

Anonymous authors
Paper under double-blind review

ABSTRACT

Training a team of agents from scratch in multi-agent reinforcement learning
(MARL) is highly inefficient, much like asking beginners to play a symphony
together without first practicing solo. Existing methods, such as offline or trans-
ferable MARL, can ease this burden, but they still rely on costly multi-agent data,
which often becomes the bottleneck. In contrast, solo experiences are far easier
to obtain in many important scenarios, e.g., collaborative coding, household co-
operation, and search-and-rescue. To unlock their potential, we propose Solo-to-
Collaborative RL (SoCo), a framework that transfers solo knowledge into cooper-
ative learning. SoCo first pretrains a shared solo policy from solo demonstrations,
then adapts it for cooperation during multi-agent training through a policy fusion
mechanism that combines an MoE-like gating selector and an action editor. Ex-
periments across diverse cooperative tasks show that SoCo significantly boosts
the training efficiency and performance of backbone algorithms. These results
demonstrate that solo demonstrations provide a scalable and effective comple-
ment to multi-agent data, making cooperative learning more practical and broadly
applicable.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) has emerged as a core paradigm for sequential decision
making in environments that require coordination (Shoham & Leyton-Brown, 2008}, |[Lowe et al.,
2017; |Gronauer & Diepold, 2022). By interacting with the environment and receiving feedback,
MARL enables agents to learn cooperative policies, providing a principled framework for solving
complex decision-making problems such as autonomous driving (Zhang et al.| 2024), large-scale
network optimization (Stepanov et al.||2024)), and collaborative robotics (Tang et al., [2025)).

However, compared to single-agent RL, MARL faces inherent challenges (Busoniu et al., 2008;
Hernandez-Leal et all |[2019), including dimensionality explosion, coordination difficulty, and en-
vironmental non-stationarity. As a result, training joint policies from scratch is often inefficient,
much like asking novices to rehearse a symphony without prior practice: difficult, time-consuming,
and unlikely to yield good results. This inefficiency poses a major obstacle to applying MARL
effectively in practice.

To address these challenges, a growing line of research has explored offline MARL (Pan et al., 2022
Shao et al.| |2023} |Li et al. [2023} [Liu et al., 2024b) and offline-to-online fine-tuning (Zhong et al.,
20235)). These methods learn from pre-collected task-specific cooperative trajectories to avoid costly
exploration, and refine pretrained policies with limited online rollouts when interaction is allowed.
More recent studies have attempted to relax the data assumption by leveraging multi-task cooperative
datasets (Zhang et al.,2023a; |Chen et al.,2024; |L1iu et al.| |2025)) or even non-cooperative multi-agent
datasets (Wang et al.l[2023). These efforts broaden the scope of usable data and represent important
progress, but they remain fundamentally tied to multi-agent trajectories.

Actually, in many cooperative problems, there often exists a corresponding solo version whose
demonstrations are much easier to obtain and learn from. For example, in collaborative coding
(Dong et al.,[2025b)) a single coder writes a short piece of code, in household cooperation (Kannan
et al.,2024) a single robot performs an individual chore, and in search-and-rescue (Cao et al., [2024)

Under review as a conference paper at ICLR 2026

a single drone searches for one target. Although such demonstrations deviate from the target coop-
erative setting, they are far from useless. Such as in orchestral performance, it is more effective to
let each novice player first master the basics of solo play before attempting a full ensemble. Yet, the
potential of solo demonstrations to accelerate MARL remains underexplored. This gap motivates an
important but underexplored question:

Can solo demonstrations be effectively leveraged to accelerate the collaborative MARL?

An affirmative answer to this hypothesis will validate solo data as a scalable and cost-effective
resource. This will be instrumental in fostering efficient learning in settings where cooperative data
are limited but solo demonstrations are plentiful (Kannan et al.| 2024} |Cao et al., 2024; |Dong et al.,
2025b), consequently making MARL a more viable solution for practical applications.

However, addressing this problem is non-trivial and involves two major challenges. The first is
observation mismatch: differences in observation dimensionality hinder the direct transfer of solo
demonstrations to multi-agent training (Hu et al., 2021; [Zhang et al.l 2023a; [Liu et al. 2025; Yu
et al.,|2025). In some cases, a single local observation may even correspond to multiple distinct solo
views, creating ambiguity for policy reuse. The second is domain shift: unlike multi-agent data,
whether joint or agent-specific, that inherently encode cooperation (Wang et al., 2023), solo data
contain no such information. In addition, discrepancies in environment dynamics between solo and
cooperative settings (e.g., individual attributes and observation noise) further exacerbate the gap.
These challenges hinder direct policy transfer, highlighting the need to distill knowledge from solo
demonstrations and integrate it into cooperative learning. Recently, PegMARL (Yu et al [2025)
has explored leveraging personalized demonstrations to guide MARL training. However, it mainly
operates via individual reward shaping, making it difficult to directly apply to most centralized-
training-with—decentralized-execution (CTDE) methods, which typically rely on a central critic and
a shared team reward. Moreover, it does not naturally extend to settings with multiple solo views.

To tackle these challenges, we propose Solo-to-Collaborative RL (SoCo) framework, which trans-
fers knowledge from solo demonstrations to cooperative MARL. SoCo first pretrains a shared solo
policy from solo demonstrations via imitation learning, providing a common skill prior for all agents.
During cooperative training, local observations are decomposed into solo views aligned with the
demonstrations, allowing the reuse of the solo policy to obtain candidate actions. Then, a policy
fusion module selects and refines these actions for each agent, adapting them to the cooperative set-
ting and mitigating domain shift. Specifically, inspired by MoE (Cai et al., 2025) and action fusion
in single-agent RL (Dong et al.| [2025a)), a learnable gating selector chooses the most suitable can-
didate, while an action editor refines it for effective cooperation. This design not only tackles the
challenge of solo-to-cooperative transfer but also provides flexibility for task-specific customization.

We validate SoCo across diverse cooperative benchmarks, and the results show that it markedly
improves training efficiency while achieving competitive or superior performance. These findings
highlight the potential of solo demonstrations as a scalable resource for cooperative MARL.

Our main contributions are summarized as follows:

* We investigate an important yet underexplored problem of leveraging solo demonstrations
to benefit cooperative MARL, and show that such data, though lacking explicit cooperative
information, can substantially accelerate multi-agent training.

* We develop Solo-to-Collaborative RL (SoCo), a framework for solo-to-cooperative trans-
fer. It decomposes local observations to reuse a pretrained shared solo policy, and employs
a policy fusion module trained from cooperative interactions that combines a gating selec-
tor for choosing solo actions with an action editor for refining them, enabling more efficient
cooperation.

* We validate SoCo on cooperative benchmarks with diverse characteristics and difficulty,
showing that it effectively addresses observation ambiguity and domain shift, boosts train-
ing efficiency, and achieves competitive or superior performance, highlighting the potential
of solo demonstrations as a scalable resource for MARL.

Under review as a conference paper at ICLR 2026

2 PRELIMINARY

2.1 MULTI-AGENT REINFORCEMENT LEARNING

We model multi-agent reinforcement learning (MARL) within the decentralized partially observ-
able Markov decision process (Dec-POMDP) framework (Oliehoek et al., 2016). Formally, a Dec-
POMDP is defined as M = (N,S,A,0,P,R,v), where N' = {1,..., N} denotes the set of
agents, S is the global state space, and .4 and O are the joint action and observation spaces, each
formed from the agents’ local action {A;}Y | and observation spaces {O;},. At each time step,
every agent receives a local observation generated from the current global state. Based on the joint
action a = (aq,...,an), the environment transitions to the next state according to P, and a shared
reward R(s,a) is returned. The goal of MARL is to learn a joint policy @ = (m1,...,7y) that
maximizes the expected discounted return:J(m) = Ex[>,° 7' R(s, a;)]. The solo case naturally
arises when |[NV| = 1. In this paper, we mainly focus on scenarios with continuous action spaces.

2.1.1 CTDE PARADIGM AND DETERMINISTIC POLICY GRADIENT METHOD

Centralized Training with Decentralized Execution (CTDE) (Oliehoek et al., 2008 |Amato} 2024; |L1
et al., 2025b) is a widely adopted paradigm in cooperative MARL. In CTDE, each agent executes
its policy in a decentralized manner, relying only on its own local observation during interaction
with the environment. During training, however, the learning process can leverage additional global
information (e.g., global states or joint actions) through centralized critics. This design improves
training stability and coordination, while keeping execution scalable and realistic.

A representative CTDE algorithm is MADDPG (Lowe et al.| [2017). It extends the deterministic
policy gradient (DPG) framework to multi-agent settings by introducing a centralized critic for each
agent, while keeping actors decentralized. Formally, let agent ¢ have policy 7;(0;; 8;) parameterized
by 6;, and the deterministic policy gradient for agent ¢ is:

Vo, J (1) = Es.anp [Vo, i (0) Va, Qi(s, a;9")

where Q;(s,a;?) denotes the centralized critic for agent i, parameterized by v'. In practice,
however, the critics often share a single parameter set 1) across agents, whereas each agent maintains
its own policy network.

Building on MADDPG, MATD3 (Ackermann et al., 2019) incorporates the improvements of TD3
(Fujimoto et al.,[2018]), including twin critics, target smoothing, and delayed policy updates. HATD3
(Zhong et al., 2024])) further extends MATD3 by introducing a heterogeneous sequential optimiza-
tion. In this paper, we focus primarily on the DPG family under the CTDE paradigm, as repre-
sented by MATD3 and HATD3. Nevertheless, the proposed framework is, in principle, extendable to
stochastic policy methods, such as HASAC (Liu et al.| [2024a). We present an extension to HASAC
in Appendix [E] Moreover, this work primarily focuses on off-policy algorithms. For less sample-
efficient on-policy methods (e.g., MAPPO (Yu et al.}|2022)), we discuss them in Appendix

H.l:ﬂl(oi)} ’

3 SoOLO-TO-COLLABORATIVE RL

To bridge the gap between solo demonstrations and multi-agent cooperation, and to tackle observa-
tion mismatch and domain shift, we propose the Solo-to-Collaborative RL (SoCo) framework. SoCo
first learns a shared solo policy from solo demonstrations. Then, during cooperative training, local
observations are decomposed into solo views, allowing the reuse of the solo policy to obtain can-
didate actions. Finally, a per-agent policy-fusion module selects the most suitable candidate policy
and refines it for each agent, adapting it to the cooperative setting and mitigating domain shift. We
next present each component in detail. The full algorithm is shown in Algorithm [T}in Appendix

3.1 SoLo PoLicY EXTRACTION

A solo policy is learned by imitation from solo demonstrations Dy and shared by all the agents. For
simplicity, our implementation uses standard behavior cloning, minimizing the mean-squared error
between the policy’s action and the action recorded in D; to obtain a deterministic behavioral policy:

min E(y 0, | () ~ ;. v

Under review as a conference paper at ICLR 2026

(L (1, Active
% (0 0% m Observation |_ Frozen
~ Solo Views Decomposer)
] I} P
[]
Policy Fusion
Solo Policy Candidates

A
Imitation |

I
I I cooperative al ‘
‘ > . “ r('

Gate Selector Action Editor Multl- Agent
Solo Demos Environment

Figure 1: SoCo framework. A shared solo policy is pretrained from demonstrations and kept frozen,
then reused through observation decomposition during cooperative training. Coordination ability is
injected by the Policy Fusion module, where the Gating Selector selects suitable solo actions and
the Action Editor fine-tunes them to mitigate domain shift.

This design choice is flexible rather than mandatory: one could instead adopt a stochastic imitation
model that learns 3,,(a | o), for example, parameterizations based on VAE (Kingma & Welling,
2013)), diffusion models (Yang et all 2023), or flow matching (Lipman et al., 2022)), by simply
switching to a likelihood-based objective without altering the subsequent components of the frame-
work. Finally, the solo policy is shared across agents, and its parameters are frozen during the
cooperative learning phase.

3.2 OBSERVATION DECOMPOSITION

Given the settings of the cooperative tasks and their corresponding solo tasks considered in this
paper, we make a reasonable assumption that the observations in these cooperative tasks are well-
defined, structured, and decomposable. Specifically, each observation consists of own features (e.g.,
velocity, position) and stacked features of all other entities (e.g., teammates or target states). The
observation space of the corresponding solo tasks can then be constructed from these feature units
(e.g., controlling one HalfCheetah vs. multiple coupled HalfCheetahs).

Hence, following prior works (Liu et al., [2020; (Wu et al., 2024; |Liu et al., |2025), we introduce a
rule-based observation decomposer Concretely, we decompose the observation of the ¢-th agent at

time step ¢, denoted as of, into the self-related component oy’ 9 and the entity-related components

{al’k}kK 1> where K; denotes the total number of entities observable by agent ¢. When deployed
in cooperative environments, depending on the specific task, we may reassemble the decomposed
feature units into G; valid solo views {ot f;l for agent 7 by concatenation, zero-padding, and so
on, thereby addressing the issue of inconsistent observation spaces. To more clearly illustrate the

observation decomposition process, we provide a concrete example in Appendix [D.2.3]for reference.

3.3 PoLicy FusioN

In the cooperative training phase, the pretrained solo policy cannot be directly transferred. The main
obstacles are twofold: (i) a single local observation may map to multiple solo views, producing
several candidate actions (e.g., toward different targets) that must be disambiguated; and (ii) domain
shift between solo and multi-agent settings often degrades performance, necessitating fine-tuning
for effective adaptation.

Therefore, inspired by Mixture-of-Experts (MoE) (Cai et al.} |2025)) and action fusion techniques in
single-agent RL (Dong et al.| 2025a), we propose a novel learnable policy fusion module. Notably,
our design operates at the agent level and is trained directly on multi-agent samples with standard

Under review as a conference paper at ICLR 2026

MARL optimization, thereby injecting cooperative adaptability into solo policies. Within this mod-
ule, each agent employs a Gating Selector to resolve ambiguity by selecting suitable solo actions,
and an Action Editor to fine-tune the chosen action for coordination, together enabling effective
solo-to-cooperative transfer.

3.3.1 GATING SELECTOR

As discussed in Section the local observation o} of the i-th agent corresponds to G; solo views
{éz’k}g;'o. By applying the solo policy, these yield G; candidate actions:

at =B, k=1,...,G;. 2)

However, due to the solo-to-cooperative gap, not all candidate actions are suitable for the current
cooperative context, and some may even conflict with each other. To resolve this, SoCo equips each
agent with a weight assigner g;, : O; — R that, conditioned on the current local observation

oi, evaluates the candidate solo actions and assigns weights to them, thereby selecting the most
appropriate one for coordination.

To enable learnable action selection, we adopt the Gumbel-Softmax reparameterization (Jang et al.,
2017) with the straight-through estimator. The gating weights gfa(oj;) define a categorical distribu-
tion, from which a one-hot action is drawn: the forward pass takes the most probable action, while
the backward pass propagates gradients through the soft sample. The resulting action for agent ¢ is:

i = <GumbelSoftmax(gfp(oi)), ay), 3)

where ai = (ai’l7 RN ai’Gi) is the set of candidate actions derived from the solo policy.

Moreover, this module is designed to be both general and flexible, allowing adaptation to different
scenarios. For instance, the gating function may be rule-based instead of learned, and in the special
case of G; = 1, the selector can be omitted entirely.

Remark: When G; varies across different observations, a feasible solution for the gating selector is
i,k] i ~i,k . .

10 output a scalar wy" = g',(0},0,") for each candidate, rather than a vector over all solo views at

once. These weights can then be collected and normalized without truncating gradient propagation.

3.3.2 ACTION EDITOR

To leverage the prior knowledge in solo actions while overcoming transfer difficulties from domain
shift, we design an action editor that injects cooperative information through residual corrections.
Specifically, we introduce a coordination policy mp : O; — A; that produces a raw residual ad-
justment to the solo action. To keep this correction bounded and scale-invariant while avoiding
gradient saturation, we squash the policy output with fr(x) = L tanh(xz/L). Given the current
local observation oi, the adjustment is:

76(0})

L-tanh(> if L >0
0 ifL=0

where L is a hyperparameter that controls the strength of the correction. By tuning L, the framework
can trade off between leveraging solo priors and adapting to multi-agent dynamics.

Adl = @)

Then, the final cooperative action is defined as:
a; = Clip(a, + Aaj}) (5)

where @: denotes the solo action selected by the gating selector, and Clip(+) is a clipping operator to
prevent action overflow. In our implementation, we adopt a tanh-based operator, but the design is
modular and allows substituting other operators depending on the task.

3.4 COLLABORATIVE POLICY OPTIMIZATION

For notational simplicity, we denote the fused policy as IL4, where ¢ = {¢, 8} collects the learnable
parameters of the gating selector and action editor. Since SoCo is fully decoupled from the backbone

Under review as a conference paper at ICLR 2026

algorithm, this policy can be optimized with any MARL method. Here we instantiate it with MATD3
(Ackermann et al.l|2019) for concreteness.

In MATD3, each agent 4 maintains two shared centralized critics @y, , @, and an individual actor
I1,4,. Given a batch of transition B = {(s¢, 0¢, @¢, 7+, S¢41, 0¢41) }, the critic loss is:

2 :
E(%) = E(St,ot7at,7‘{,,ot+1)’\18 |:(Q1/)] (sta at) - yt) i| , J=]-7 2; (6)
where the target y; is defined as

Yt =Tt + Y kH:Iiln2 Q@k (St+17 a;+1)7 (a;+1)i = HQEI (07t;+1) + €, (7)

with {&k}izl and ¢; denoting target networks and e being clipped Gaussian noise for policy
smoothing. The actors are optimized by maximizing the Q-value estimated by the first critic:

£(65) = ~F(s, 0018 [Qus (51 T, (0}) | ®)

For algorithms with stochastic policies, it suffices to compute the log-probability of the fused action
according to Eq. (5) and substitute it into the policy loss.

In this way, SoCo provides a plug-and-play bridge between solo demonstrations and cooperative
learning, turning single-agent demonstrations into a scalable and effective complement to multi-
agent data, making cooperative learning more practical and broadly applicable. We provide an
extension to HASAC (Liu et al.}[20244a) to show how SoCo can be combined with a stochastic policy
backbone in Appendix[E.I] We also discuss the applicability of SoCo to more general settings (e.g.,
discrete-action environments and unstructured tasks) and the associated challenges in Appendix [F}

4 EXPERIMENTS

To evaluate the proposed SoCo framework, we conduct experiments on a variety of cooperative
tasks. Our goals are to investigate the following questions: (i) Can SoCo improve the sample effi-
ciency of multi-agent algorithms? (ii) Can SoCo enhance the ultimate performance of multi-agent
algorithms? (iii) How do the individual components of SoCo contribute to its effectiveness? (iv)
How does the quality of solo demonstrations affect the performance of SoCo?

4.1 SETUP

Environments and Tasks. Following prior works (Sun et al., 2023} [Kontogiannis et al., 2025
Zeng et al., 2025)), our experiments cover nine tasks from four representative cooperative scenarios:
(1) Spread (Lowe et al., 2017 [Terry et al., 2021), where agents must cover distinct landmarks.
This setting introduces target ambiguity but involves little domain shift. (ii) LongSwimmer (Peng
et al.| [2021}; /de Lazcano et al., [2024), where a multi-segment worm must swim forward, with each
agent controlling two consecutive joints. These tasks do not involve target ambiguity but introduce
domain shift due to altered dynamics. (iii) MultiHalfCheetah (Peng et al.| 2021} |de Lazcano et al.,
2024), where multiple HalfCheetahs are connected in a chain and must run forward together. These
tasks avoid target ambiguity but involve noticeable domain shift and present a non-trivial control
challenge. (iv) MultiWalker (Gupta et al., 2017} [Terry et al., 2021}, where multiple bipedal robots
jointly carry a package forward. These tasks avoid target ambiguity, but are inherently very difficult,
with severe domain shift on top of coordination challenges.

Considering the characteristics and difficulty of these environments, we evaluate tasks with 3, 4,
and 5 agents in Spread and LongSwimmer, 2 and 3 agents in MultiHalfCheetah, and 2 agents in
MultiWalker. Details on these environments and tasks are provided in Appendix

Data Collection. To collect solo demonstration data, we first train policies with TD3 (Fujimoto
et al.,2018)) on the corresponding solo tasks until convergence to an expert level, and then record 1M
transition samples. The corresponding solo tasks are: (i) a single agent navigating to one landmark,
(ii) a 3-segment worm with 2 joints swimming forward, (iii) a HalfCheetah with altered attributes
running forward, and (iv) a single bipedal robot carrying the long package forward. When trans-
ferred to multi-agent settings, these lead to (i) goal ambiguity, (ii) domain shift, (iii) notable domain

Under review as a conference paper at ICLR 2026

shift and cooperative difficulty, and (iv) severe domain shift coupled with substantial cooperative
difficulty. More details can be found in Appendix [D.2}

Baselines. We adopt two representative DPG algorithms, MATD3 (Ackermann et al., 2019) and
HATD3 (Zhong et al), 2024), and a stochastic policy algorithm, HASAC (Liu et al.| [2024a) as
our backbone baselines. Their implementations are taken from the HARL codebase (Zhong et al.,
2024), on top of which we also build our SoCo variants. The results on HASAC are presented in
Appendix In addition to the within-backbone comparison, we also include recent solo-to-multi
method PegMARL (Yu et al.| |2025) and representative MARL method MAPPO (Yu et al.| [2022)
in our baselines, enabling a cross-method evaluation of these SoCo variants. For the adaptation of
PegMARL to our setting and other implementation details, please refer to Appendix [D.3}

Experiment Setup. SoCo first undergoes imitation learning to obtain the solo policy (5k steps for
Spread, 100k steps for the others). During cooperative learning, all algorithms perform 10k random
interaction steps for warm-up, followed by policy optimization with the same number of environ-
ment steps (2M steps for LongSwimmer and MultiHalfCheetah, 5M steps for Spread, and 10M for
MultiWalker). Except for the correction strength L in SoCo, all hyperparameters are identical to the
default settings. For evaluation, each trained policy is tested over 40 episodes, and the average re-
turn is reported. All experiments are repeated with 3 random seeds to account for variance. Detailed
hyperparameter settings are provided in Appendix[D.4]

4.2 EVALUATION RESULTS AND ANALYSIS

We evaluate SoCo on nine tasks across four scenarios with varying characteristics and difficulty.
Across both backbone algorithms, SoCo improves training efficiency and achieves competitive or
superior performance, demonstrating its effectiveness.

Spread. In the Spread tasks, agents must learn not only to navigate to landmarks but also to resolve
target assignment and avoid collisions, with difficulty growing rapidly as the number of agents
increases. As shown in Figures training from scratch becomes highly inefficient under this
setting. With SoCo, however, agents first acquire basic navigation skills from solo demonstrations,
and during cooperative training, they only need to master target selection and collision avoidance
via policy fusion. This significantly improves both training efficiency and final performance. For
example, in the 5-agent task, SoCo converges faster and outperforms both backbone algorithms by
more than 20% in final performance, demonstrating its effectiveness in mitigating the challenge of
goal ambiguity.

LongSwimmer. In the LongSwimmer task, agents collaboratively control a multi-segment worm
to swim forward. As shown in Figures 2d}2f} although the control difficulty is moderate and both
backbone algorithms and SoCo eventually reach similar performance, our framework effectively
speeds up training. For example, in the 3-agent task, HATD3-SoCo attains an average return of
about 300 at roughly 1.0M steps, while vanilla HATD3 only reaches a comparable level around
1.6M steps, saving nearly 40% of training samples. These results highlight that SoCo successfully
leverages solo demonstrations as a scalable prior to accelerate cooperative learning.

MultiHalfcheetah. The MultiHalfCheetah task requires multiple HalfCheetah agents connected by
elastic tendons to run forward in coordination. The tendon coupling already introduces instability,
while the intrinsic difficulty of HalfCheetah control further compounds the challenge. Unlike Spread
or LongSwimmer, this scenario also alters the agents’ mass, creating domain shifts that make solo
policies non-transferable. Nevertheless, SoCo leverages action editor to adapt solo priors to the
shifted dynamics while retaining their basic control skills. As shown in Figures[2g|and[2h] this leads
to markedly improved training efficiency for the backbone algorithms. In particular, on the 3-agent
task, HATD3-SoCo improves the final performance by approximately 83.91% over the backbone,
highlighting the strength of SoCo in leveraging solo demonstrations to boost both efficiency and
effectiveness of cooperative training.

MultiWalker. The MultiWalker task is the most challenging among the four scenarios. Agents must
not only stabilize multiple walkers but also coordinate to carry a long, unstable package under noisy
observations. The reward structure is harsh, and the domain shifts are severe, making direct transfer
highly difficult. In this setting, backbone MARL algorithms struggle to learn effective package
transport within the training budget. By contrast, SoCo leverages policy fusion to refine solo priors

Under review as a conference paper at ICLR 2026

—— MATD3-SoCo —= MATD3 —— PegMARL —— MATD3-S0Co —~ MATD3 —— PegMARL —— MATD3-SoCo —= MATD3 —— PegMARL

—— HATD3SoCo -~ HATD3 MAPPO —— HATD3SoCo —- HATD3 MAPPO —— HATD3.SoCo — - HATD3 MAPPO
—140
c c-100 o=kt c
= L et 2 -160
3 5 ~ 3
& & _150 AN &
v P v 180
s g S
3 3 0 4 AANYY AN 2 200
8 g-140] | K AMANMY &
1 =220
-160
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Environment Steps le6 Environment Steps leb Environment Steps le6
(a) Spread (3 agents). (b) Spread (4 agents). (c) Spread (5 agents).
—— MATD3.SoCo —~— MATD3 —— PegMARL — MATD3SoCo = MATD3 —— PegMARL
—— MATD3SoCo - MATD3 — PegMARL —— HATD3S0Co =~ HATD3 MAPPO —— HATD3SoCo =~ HATD3 MAPPO

~—— HATD3-SoCo == HATD3 MAPPO

Episode Return

N

S

3
Episode Return
Episode Return

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
Environment Steps 1le6 Environment Steps le6 Environment Steps le6
(d) LongSwimmer (3 agents). (e) LongSwimmer (4 agents). (f) LongSwimmer (5 agents).

—— MATD3-SoCo —= MATD3 —— PegMARL —— MATD3.SoCo =~ MATD3 —— PegMARL —— MATD3-SoCo —= MATD3 —— PegMARL
—— HATD3-SoCo == HATD3 MAPPO —— HATD3-SoCo == HATD3 MAPPO —— HATD3-SoCo == HATD3 MAPPO

4000 3000 200

3000

2000 200

2000

-
o
o
o

Episode Return
Episode Return
Episode Return

i
o
=3
S

o

|
—200

0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0 0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps le6 Environment Steps leb Environment Steps le7

(g) MultiHalfcheetah (2 agents). (h) MultiHalfcheetah (3 agents). (i) MultiWalker (2 agents).

o

Figure 2: Training curves on nine tasks. Results are averaged over three random seeds, with solid and
dashed lines indicating the mean performance and shaded areas representing one standard deviation.

and adapt them to unstable multi-agent dynamics, enabling faster discovery of transport strategies
and yielding clear gains in both training speed and final performance. Notably, as shown in
SoCo improves the final performance by 160.71% on HATD3 and 10.24% on MATD3 compared
to their vanilla counterparts. This shows that SoCo can transfer solo knowledge even under extreme
conditions, substantially improving both training efficiency and performance.

Cross-method Comparison. The results show that the two DPG-based SoCo variants outperform
both PegMARL and MAPPO on almost all tasks (except that, on MultiWalker, MATD3-SoCo is
slightly surpassed by MAPPO around 8M steps). This further indicates that the performance gains
of SoCo are not only relative improvements over its backbone algorithms, but also competitive com-
pared to other MARL methods. However, it is important to note that this lateral comparison is not
entirely fair, since off-policy algorithms are inherently more sample-efficient. In fact, we find that
using less sample-efficient on-policy algorithms as the backbone of SoCo can still be challenging.
Moreover, as discussed earlier, PegMARL is more suitable for fully decentralized methods and not
directly applicable to our setting. Nevertheless, it still achieves performance comparable to, or even
better than, CTDE-based MAPPO, and we view it as an orthogonal and potentially compatible line
of work to SoCo. Please refer to Appendices [F.3]and [F4]for a more detailed discussion.

4.3 ABLATION STUDY
4.3.1 COMPONENT ABLATION

Gating Selector. 'We conduct an ablation study on the 3-agent Spread task to isolate the effect of
the gating selector. Given the environment structure, setting the correction strength to zero (L = 0)
already yields strong performance, so we focus exclusively on the gating component. We com-
pare three variants: (i) Random Gating (RG), where targets are sampled randomly at each step;
(ii) Episode-wise Random Gating (ERG), where targets are randomly fixed at the start of each
episode; and (iii) Fixed Gating (FG), where distinct targets are deterministically assigned by agent

Under review as a conference paper at ICLR 2026

5000 4000

|
I3
=)

4000 3000

|
N
o

2000

|
©
=]

N oW
o o
S o
S o

Episode Return
Episode Return
Episode Return

— =20

oy
o
=3
=]

1000 — =19
— Tanh — 18
— Hard L=0

o — Norm

0 1 2 3 4 5 0 1 2 3 4 5 0.0 0.5 1.0 15 2.0
Environment Steps le6 Environment Steps leb Environment Steps le6

|
©
o

o

(a) Ablation on Gating Selector. (b) Ablation on Clip Operator. (c) Ablation on Strength L.

Figure 3: Ablation study of SoCo. Results are averaged over three random seeds, with solid and
dashed lines indicating the mean performance and shaded areas representing one standard deviation.

index at the beginning of each episode, serving as an oracle assignment in this scenario. As shown
in Figure[3a] randomized gating (RG / ERG) suffers from frequent target conflicts and poor coordi-
nation, whereas our learned gating selector can avoid conflicts and perform competitively to FG.

Clip Operator. As discussed in Section [3.3.2] we adopt a tanh-based clip operator to prevent
fused actions from exceeding valid ranges. Nevertheless, SoCo is designed as a general framework,
and different clipping strategies can be customized for specific tasks. To examine this flexibility and
assess the suitability of our choice, we conduct experiments on the 2-agent MultiHalfCheetah task,
evaluating how alternative operators affect both training efficiency and final performance. Using
MATD?3 as the backbone, we compare two variants:

(i) Norm, which normalizes the action as Clip(ai + Aa}) = (@i + Aal)/(L + 1);
(ii) Hard, which directly truncates actions via clamp(a: + Aat, —1,1).

As shown in Figure [3b] the Norm operator accelerates early learning but suffers from weak asymp-
totic performance, as normalization continuously shrinks the effective action magnitude and reduces
policy expressiveness. The Hard operator, on the other hand, truncates actions abruptly, suppress-
ing gradient signals and leading to slow and unstable training. In contrast, our tanh-based design
achieves a smoother balance between boundedness and gradient flow, since gradients are only com-
pressed near the action boundaries. This enables both stable learning dynamics and stronger final
performance, making the tanh-based operator a natural and effective default choice for SoCo. That
said, the framework remains flexible to alternative operators when required by task dynamics.

4.3.2 HYPERPARAMETER SENSITIVITY

An important hyperparameter in the SoCo framework is the correction strength L, which controls
the degree to which the algorithm leverages knowledge from solo demonstrations. We conduct ex-
periments on the 2-agent MultiHalfCheetah task with L € {0,1.8,1.9,2.0}. Since this environment
does not involve multi-goal settings, we can effectively isolate the influence of the gating selector
and focus on the impact of this hyperparameter on SoCo’s performance. The results in Table
show that when L is too small, SoCo relies excessively on solo demonstrations, which limits its
training efficiency. In contrast, when L is too large, SoCo adapts quickly to environmental changes
in the early stage, but insufficient use of solo knowledge makes it difficult to discover better strate-
gies later, leading to suppressed final performance. Thus, an appropriate choice of L is essential for
maximizing the effectiveness of SoCo. In addition, we also examined the case of L = (0, where solo
policies are directly applied in the multi-agent environment. The results reveal that domain shift
prevents the agents from being successfully controlled, underscoring the necessity of policy fusion.

4.4 EFFECT OF DEMONSTRATION QUALITY

The quality of solo demonstrations plays a crucial role in the performance of the solo policy, and
thus affects both the starting point and the final performance of cooperative training. Therefore,
in this section we investigate how demonstration quality influences the performance of SoCo. The
experiments conduct on the 2-agent MultiHalfCheetah task. Specifically, using the same proce-
dure, we additionally collect solo demonstrations at two quality levels, medium and poor, and train
HATD3-SoCo separately on them. In the medium demonstrations, the agent learns stable but slow

Under review as a conference paper at ICLR 2026

locomotion, whereas in the poor demonstrations, the agent fails to run stably. The training results
are shown in Figure [

Intuitively, poor demonstrations make SoCo rely more 4000

heavily on the coordination policy to correct suboptimal

behaviors, leading to slower training and lower final _3000

performance. Interestingly, with medium demonstra- 3

tions, SoCo starts with slower initial progress than with & g0

expert demonstrations. However, the smoother control %

pattern better matches the dynamics of the cooperative fﬁll 000

task (where each agent is effectively lighter), resulting oo Soraeh

in higher final performance than when pretrained with — SoComediim

expert demonstrations. 0 ~ SoCo-Poor
0.0 0.5 1.0 15 2.0

These results highlight a subtle relationship between Environment Steps 1e6

solo demonstrations and downstream cooperative train-
ing: the expert policy in the solo environment is not
always the most beneficial for the cooperative task, and
raising an interesting open question: how should one
design solo demonstrations that are best aligned with
the downstream multi-agent objective?

Figure 4: SoCo under different demon-
stration qualities. Solid and dashed
lines indicate the mean performance, and
shaded areas represent one standard devi-
ation.

5 RELATED WORK

MARL. Multi-Agent Reinforcement Learning (MARL) has advanced rapidly, giving rise to diverse
paradigms. Fully decentralized methods train and execute policies without centralized information
(Tampuu et all, 2017} |de Witt et al. [2020), but often suffer from limited coordination. By contrast,
the Centralized Training with Decentralized Execution (CTDE) paradigm (Ackermann et al, 2019}
[Rashid et al.} [2020; [Yu et al} 2022} [Zhong et al.| 2024} [Li et al.} 2025b) has become dominant, en-
abling centralized training for coordination while preserving decentralized execution. In this paper,
we focus on deterministic policy gradient methods under CTDE.

Transferable MARL. To mitigate the high cost of training from scratch, transferable MARL aims
to reuse experience from source tasks to accelerate learning in target tasks with limited interac-

tion. Existing approaches include offline-to-online (Zhong et all, [2025), multi-task (Chen et al,

[2024} [Liu et al}, 2025}, Jha et al 2025)), ad-hoc teamwork (Zhang et al., [2023D} [Li et al., 2025al),
and mixed-component (Wang et al. 2023). While these methods broaden MARL’s applicability,

they still assume sufficient data aligned with multi-agent environment. In contrast, exploiting solo
demonstrations, abundant yet lacking cooperative signals, remains underexplored. Recent work
PegMARL attempts to leverage personalized data for individual reward shaping
to guide cooperation, but it still suffers from several limitations. Our work further fills this gap,
showing that such data can be more effectively leveraged to improve both the training efficiency and
performance of cooperative learning.

More detailed discussions are provided in Appendix [B]

6 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we studied an underexplored problem: how to exploit solo demonstrations to accel-
erate MARL. We propose a novel Solo-to-Collaborative RL (SoCo) framework, which leverages
solo demonstrations by pretraining a shared solo policy and adapting it during cooperative train-
ing through policy fusion with a gating selector and an action editor. Experiments across diverse
tasks show that SoCo improves training efficiency and achieves competitive or even superior per-
formance, highlighting that solo demonstrations provide a scalable and effective complement to
multi-agent data, making cooperative learning more practical and broadly applicable.

This work also opens several avenues for future research, including extending SoCo to heteroge-
neous demonstrations with skill discovery, applying it to more complex and general environments
leveraging large language models, exploring policy fusion in discrete action spaces, investigating the
theoretical foundations, and designing more suitable solo demonstrations for cooperative learning.

10

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we detail our experimental setup in Section] and Appendix [D} covering
environment configuration, solo demonstration collection, implementation details, and hyperparam-
eters. The source code will be made publicly available upon publication.

REFERENCES

Johannes Ackermann, Volker Gabler, Takayuki Osa, and Masashi Sugiyama. Reducing overes-
timation bias in multi-agent domains using double centralized critics, 2019. URL https:
//arxiv.org/abs/1910.01465.

Christopher Amato. An Introduction to Centralized Training for Decentralized Execution in Cooper-
ative Multi-Agent Reinforcement Learning, 2024. URL https://arxiv.org/abs/2409.
03052.

Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive survey of multiagent rein-
forcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 38(2):156-172, 2008.

Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang, Sunghun Kim, and Jiayi Huang. A survey on
mixture of experts in large language models. IEEE Transactions on Knowledge and Data Engi-
neering, 2025.

Xiao Cao, Mingyang Li, Yuting Tao, and Peng Lu. Hma-sar: Multi-agent search and rescue for
unknown located dynamic targets in completely unknown environments. IEEE Robotics and
Automation Letters, 9(6):5567-5574, 2024. doi: 10.1109/LRA.2024.3396097.

Yuji Cao, Huan Zhao, Yuheng Cheng, Ting Shu, Yue Chen, Guolong Liu, Gaoqi Liang, Junhua
Zhao, Jinyue Yan, and Yun Li. Survey on large language model-enhanced reinforcement learning:
Concept, taxonomy, and methods. IEEE Transactions on Neural Networks and Learning Systems,
36(6):9737-9757, 2025. doi: 10.1109/TNNLS.2024.3497992.

Jiayu Chen, Tian Lan, and Vaneet Aggarwal. Variational offline multi-agent skill discovery. arXiv
preprint arXiv:2405.16386, 2024.

Rodrigo de Lazcano, Kallinteris Andreas, Jun Jet Tai, Seungjae Ryan Lee, and Jordan
Terry. Gymnasium robotics, 2024. URL http://github.com/Farama-Foundation/
Gymnasium—-Robotics.

Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS
Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you need in the starcraft
multi-agent challenge? arXiv preprint arXiv:2011.09533, 2020.

Perry Dong, Qiyang Li, Dorsa Sadigh, and Chelsea Finn. Expo: Stable reinforcement learning with
expressive policies. arXiv preprint arXiv:2507.07986, 2025a.

Yihong Dong, Xue Jiang, Jiaru Qian, Tian Wang, Kechi Zhang, Zhi Jin, and Ge Li. A survey on code
generation with llm-based agents, 2025b. URL https://arxiv.org/abs/2508.00083.

Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan,
Jakob Nicolaus Foerster, and Shimon Whiteson. SMACv2: An improved benchmark for coop-
erative multi-agent reinforcement learning. In Thirty-seventh Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2023. URL https://openreview.
net/forum?id=50jLGiJW3u.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th In-
ternational Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 1587-1596. PMLR, 10-15 Jul 2018. URL https://proceedings.mlr.
press/v80/fujimotol8a.html.

11

https://arxiv.org/abs/1910.01465
https://arxiv.org/abs/1910.01465
https://arxiv.org/abs/2409.03052
https://arxiv.org/abs/2409.03052
http://github.com/Farama-Foundation/Gymnasium-Robotics
http://github.com/Farama-Foundation/Gymnasium-Robotics
https://arxiv.org/abs/2508.00083
https://openreview.net/forum?id=5OjLGiJW3u
https://openreview.net/forum?id=5OjLGiJW3u
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html

Under review as a conference paper at ICLR 2026

Sven Gronauer and Klaus Diepold. Multi-agent deep reinforcement learning: a survey. Artificial
Intelligence Review, 55(2):895-943, 2022.

Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent control using
deep reinforcement learning. In International Conference on Autonomous Agents and Multiagent
Systems, pp. 66-83. Springer, 2017.

Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor. A survey and critique of multiagent deep
reinforcement learning. Autonomous Agents and Multi-Agent Systems, 33(6):750-797, 2019.

Jian Hu, Siying Wang, Siyang Jiang, and Weixun Wang. Rethinking the Implementation Tricks
and Monotonicity Constraint in Cooperative Multi-agent Reinforcement Learning. In ICLR Blog-
posts 2023, 2023. URL https://iclr-blogposts.github.10/2023/blog/2023/
riit/| https://iclr-blogposts.github.i0o/2023/blog/2023/riit/.

Siyi Hu, Fengda Zhu, Xiaojun Chang, and Xiaodan Liang. UPDeT: Universal Multi-agent RL via
Policy Decoupling with Transformers. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=v9c7hr9ADKx.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=rkE3y85eel

Kunal Jha, Wilka Carvalho, Yancheng Liang, Simon Shaolei Du, Max Kleiman-Weiner, and Natasha
Jaques. Cross-environment cooperation enables zero-shot multi-agent coordination. In Forty-
second International Conference on Machine Learning, 2025. URL https://openreview.
net/forum?id=zBBYsSVGKuUB.

Shyam Sundar Kannan, Vishnunandan L. N. Venkatesh, and Byung-Cheol Min. Smart-1lm: Smart
multi-agent robot task planning using large language models. In 2024 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 12140-12147, 2024. doi: 10.1109/
IROS58592.2024.10802322.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Andreas Kontogiannis, Konstantinos Papathanasiou, Yi Shen, Giorgos Stamou, Michael M. Za-
vlanos, and George Vouros. Enhancing cooperative multi-agent reinforcement learning with state
modelling and adversarial exploration. In Forty-second International Conference on Machine
Learning, 2025. URL |https://openreview.net/forum?id=TCsdlgzZNL.

Karol Kurach, Anton Raichuk, Piotr Stanczyk, Michal Zajac, Olivier Bachem, Lasse Espeholt,
Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, and Sylvain Gelly.
Google research football: A novel reinforcement learning environment, 2020. URL https:
//arxiv.org/abs/1907.11180.

Lihe Li, Lei Yuan, Pengsen Liu, Tao Jiang, and Yang Yu. LLM-assisted semantically diverse
teammate generation for efficient multi-agent coordination. In Forty-second International Con-
ference on Machine Learning, 2025a. URL https://openreview.net/forum?id=
Vhktpw6bvidl.

Yueheng Li, Guangming Xie, and Zongqing Lu. Revisiting cooperative off-policy multi-agent re-
inforcement learning. In Forty-second International Conference on Machine Learning, 2025b.
URL https://openreview.net/forum?id=JPkJAyutWO.

Zhuoran Li, Ling Pan, and Longbo Huang. Beyond conservatism: Diffusion policies in offline
multi-agent reinforcement learning. arXiv preprint arXiv:2307.01472, 2023.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

12

https://iclr-blogposts.github.io/2023/blog/2023/riit/
https://iclr-blogposts.github.io/2023/blog/2023/riit/
https://openreview.net/forum?id=v9c7hr9ADKx
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=zBBYsVGKuB
https://openreview.net/forum?id=zBBYsVGKuB
https://openreview.net/forum?id=TCsdlqzZNL
https://arxiv.org/abs/1907.11180
https://arxiv.org/abs/1907.11180
https://openreview.net/forum?id=Vhktpw6Vid
https://openreview.net/forum?id=Vhktpw6Vid
https://openreview.net/forum?id=JPkJAyutW0

Under review as a conference paper at ICLR 2026

Iou-Jen Liu, Raymond A. Yeh, and Alexander G. Schwing. Pic: Permutation invariant critic for
multi-agent deep reinforcement learning. In Leslie Pack Kaelbling, Danica Kragic, and Komei
Sugiura (eds.), Proceedings of the Conference on Robot Learning, volume 100 of Proceedings
of Machine Learning Research, pp. 590-602. PMLR, 30 Oct-01 Nov 2020. URL https://
proceedings.mlr.press/v100/11u20a.html,

Jiarong Liu, Yifan Zhong, Siyi Hu, Haobo Fu, QIANG FU, Xiaojun Chang, and Yaodong Yang.
Maximum Entropy Heterogeneous-Agent Reinforcement Learning. In The Twelfth Interna-
tional Conference on Learning Representations, 2024a. URL https://openreview.net/
forum?id=tmgOhBC4ab.

Sicong Liu, Yang Shu, Chenjuan Guo, and Bin Yang. Learning Generalizable Skills from Of-
fline Multi-Task Data for Multi-Agent Cooperation. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
HRI1uJVROigl

Zongkai Liu, Qian Lin, Chao Yu, Xiawei Wu, Yile Liang, Donghui Li, and Xuetao Ding. Offline
Multi-Agent Reinforcement Learning via In-Sample Sequential Policy Optimization, 2024b. URL
https://arxiv.org/abs/2412.07639.

Ryan Lowe, YI WU, Aviv Tamar, Jean Harb, OpenAlI Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/68a9750337a418a86fe06cl991ald6d4c—Paper.pdfl

Laetitia Matignon, Laurent Jeanpierre, and Abdel-Illah Mouaddib. Coordinated Multi-Robot Explo-
ration Under Communication Constraints Using Decentralized Markov Decision Processes. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 26(1):2017-2023, Sep. 2021. doi: 10.
1609/aaai.v26i1.8380. URL https://ojs.aaai.org/index.php/AAAI/article/
view/8380.

Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. Optimal and approximate Q-value func-
tions for decentralized POMDPs. Journal of Artificial Intelligence Research, 32:289-353, 2008.

Frans A Oliehoek, Christopher Amato, et al. A concise introduction to decentralized POMDPs,
volume 1. Springer, 2016.

Ling Pan, Longbo Huang, Tengyu Ma, and Huazhe Xu. Plan Better Amid Conservatism: Offline
Multi-Agent Reinforcement Learning with Actor Rectification. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th
International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pp. 17221-17237. PMLR, 17-23 Jul 2022. URL https://proceedings.mlr.
press/v162/pan22a.html.

Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
Wendelin Boehmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy
gradients. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 12208-12221. Cur-
ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/
paper/2021/file/65b%eeabelccbobb9f0cd2a47751al86f-Paper.pdf.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Farquhar, Jakob Fo-
erster, and Shimon Whiteson. Monotonic Value Function Factorisation for Deep Multi-Agent
Reinforcement Learning. Journal of Machine Learning Research, 21(178):1-51, 2020. URL
http://Jmlr.org/papers/v21/20-081.html.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas
Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philip H. S. Torr, Jakob Foerster, and Shimon

13

https://proceedings.mlr.press/v100/liu20a.html
https://proceedings.mlr.press/v100/liu20a.html
https://openreview.net/forum?id=tmqOhBC4a5
https://openreview.net/forum?id=tmqOhBC4a5
https://openreview.net/forum?id=HR1ujVR0ig
https://openreview.net/forum?id=HR1ujVR0ig
https://arxiv.org/abs/2412.07639
https://proceedings.neurips.cc/paper_files/paper/2017/file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/8380
https://ojs.aaai.org/index.php/AAAI/article/view/8380
https://proceedings.mlr.press/v162/pan22a.html
https://proceedings.mlr.press/v162/pan22a.html
https://proceedings.neurips.cc/paper_files/paper/2021/file/65b9eea6e1cc6bb9f0cd2a47751a186f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/65b9eea6e1cc6bb9f0cd2a47751a186f-Paper.pdf
http://jmlr.org/papers/v21/20-081.html

Under review as a conference paper at ICLR 2026

Whiteson. The StarCraft Multi-Agent Challenge. In Proceedings of the 18th International Con-
ference on Autonomous Agents and MultiAgent Systems, AAMAS 19, pp. 2186-2188, Rich-
land, SC, 2019. International Foundation for Autonomous Agents and Multiagent Systems. ISBN
9781450363099.

Jianzhun Shao, Yun Qu, Chen Chen, Hongchang Zhang, and Xiangyang Ji. Counterfactual Con-
servative Q Learning for Offline Multi-agent Reinforcement Learning. In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=62zm0O4mv38X.

Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: Algorithmic, game-theoretic, and
logical foundations. Cambridge University Press, 2008.

EP Stepanov, RL Smeliansky, AV Plakunov, AV Borisov, Xia Zhu, Jianing Pei, and Zhen Yao.
On fair traffic allocation and efficient utilization of network resources based on marl. Computer
Networks, 250:110540, 2024.

Peter Stone, Gal Kaminka, Sarit Kraus, and Jeffrey Rosenschein. Ad hoc autonomous agent
teams: Collaboration without pre-coordination. Proceedings of the AAAI Conference on Arti-
ficial Intelligence, 24(1):1504—-1509, Jul. 2010. doi: 10.1609/aaai.v24i1.7529. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/7529.

Shaoqi Sun, Yuanzhao Zhai, Kele Xu, Dawei Feng, and Bo Ding. Progressive diversifying policy for
multi-agent reinforcement learning. In ICASSP 2023 - 2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 1-5, 2023. doi: 10.1109/ICASSP49357.
2023.10096125.

Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus, Juhan Aru, Jaan
Aru, and Raul Vicente. Multiagent cooperation and competition with deep reinforcement learning.
PLOS ONE, 12(4):1-15, 04 2017. doi: 10.1371/journal.pone.0172395. URL https://doi.
org/10.1371/journal.pone.0172395.

Chen Tang, Ben Abbatematteo, Jiaheng Hu, Rohan Chandra, Roberto Martin-Martin, and Peter
Stone. Deep reinforcement learning for robotics: A survey of real-world successes. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 28694-28698, 2025.

J Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sullivan, Luis S
Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo Perez-Vicente, et al. Pettingzoo: Gym
for multi-agent reinforcement learning. Advances in Neural Information Processing Systems, 34:
15032-15043, 2021.

Caroline Wang, Ishan Durugkar, Elad Liebman, and Peter Stone. Dm?: Decentralized multi-agent
reinforcement learning via distribution matching. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pp. 11699-11707, 2023.

Tonghan Wang, Tarun Gupta, Anuj Mahajan, Bei Peng, Shimon Whiteson, and Chongjie
Zhang. RODE: Learning Roles to Decompose Multi-Agent Tasks. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
TTUVg6vkNiK.

Jizhou Wu, Jianye Hao, Tianpei Yang, Xiaotian Hao, Yan Zheng, Weixun Wang, and Matthew E.
Taylor. PORTAL: Automatic Curricula Generation for Multiagent Reinforcement Learning. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 38(14):15934—15942, Mar. 2024.
doi: 10.1609/aaai.v38i14.29524. URL https://ojs.aaai.org/index.php/AAATI/
article/view/29524l

Hao Xiaotian, Hao Jianye, Mao Hangyu, Wang Weixun, Yang Yaodong, Li Dong, Zheng Yan, and
Wang Zhen. Boosting multi-agent reinforcement learning via permutation invariant and permuta-
tion equivariant networks. The Eleventh International Conference on Learning Representations.,
2023.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
applications. ACM computing surveys, 56(4):1-39, 2023.

14

https://openreview.net/forum?id=62zmO4mv8X
https://openreview.net/forum?id=62zmO4mv8X
https://ojs.aaai.org/index.php/AAAI/article/view/7529
https://ojs.aaai.org/index.php/AAAI/article/view/7529
https://doi.org/10.1371/journal.pone.0172395
https://doi.org/10.1371/journal.pone.0172395
https://openreview.net/forum?id=TTUVg6vkNjK
https://openreview.net/forum?id=TTUVg6vkNjK
https://ojs.aaai.org/index.php/AAAI/article/view/29524
https://ojs.aaai.org/index.php/AAAI/article/view/29524

Under review as a conference paper at ICLR 2026

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and YI WU.
The Surprising Effectiveness of PPO in Cooperative Multi-Agent Games. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems, volume 35, pp. 24611-24624. Curran Associates, Inc., 2022.
URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
9c1535a02f0ce079433344e14d910597-Paper-Datasets_and_Benchmarks.
pdf.

Peihong Yu, Manav Mishra, Alec Koppel, Carl Busart, Priya Narayan, Dinesh Manocha, Am-
rit Singh Bedi, and Pratap Tokekar. Beyond joint demonstrations: Personalized expert guidance
for efficient multi-agent reinforcement learning. Transactions on Machine Learning Research,
2025. ISSN 2835-8856. URL https://openreview.net/forum?id=kzPNHQ8ByY.

Xianghua Zeng, Hang Su, Zhengyi Wang, and Zhiyuan LIN. Graph diffusion for robust multi-
agent coordination. In Forty-second International Conference on Machine Learning, 2025. URL
https://openreview.net/forum?id=T5IZ32ImAB.

Fuxiang Zhang, Chengxing Jia, Yi-Chen Li, Lei Yuan, Yang Yu, and Zongzhang Zhang. Discovering
Generalizable Multi-agent Coordination Skills from Multi-task Offline Data. In The Eleventh
International Conference on Learning Representations, 2023a. URL https://openreview.
net/forum?id=53FyUAdP7d.

Ruiqi Zhang, Jing Hou, Florian Walter, Shangding Gu, Jiayi Guan, Florian Rohrbein, Yali Du,
Panpan Cai, Guang Chen, and Alois Knoll. Multi-agent reinforcement learning for autonomous
driving: A survey. arXiv preprint arXiv:2408.09675, 2024.

Zigian Zhang, Lei Yuan, Lihe Li, Ke Xue, Chengxing Jia, Cong Guan, Chao Qian, and Yang Yu. Fast
Teammate Adaptation in the Presence of Sudden Policy Change. In Robin J. Evans and Ilya Sh-
pitser (eds.), Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence,
volume 216 of Proceedings of Machine Learning Research, pp. 2465-2476. PMLR, 31 Jul-04
Aug 2023b. URL https://proceedings.mlr.press/v216/zhang23a.htmll

Hai Zhong, Xun Wang, Zhuoran Li, and Longbo Huang. Offline-to-online multi-agent reinforcement
learning with offline value function memory and sequential exploration. In Proceedings of the
24th International Conference on Autonomous Agents and Multiagent Systems, pp. 2373-2381,
2025.

Yifan Zhong, Jakub Grudzien Kuba, Xidong Feng, Siyi Hu, Jiaming Ji, and Yaodong Yang.
Heterogeneous-agent reinforcement learning. Journal of Machine Learning Research, 25(32):
1-67,2024. URL http://Jmlr.org/papers/v25/23-0488.html.

15

https://proceedings.neurips.cc/paper_files/paper/2022/file/9c1535a02f0ce079433344e14d910597-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9c1535a02f0ce079433344e14d910597-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9c1535a02f0ce079433344e14d910597-Paper-Datasets_and_Benchmarks.pdf
https://openreview.net/forum?id=kzPNHQ8ByY
https://openreview.net/forum?id=T5IZ32ImAB
https://openreview.net/forum?id=53FyUAdP7d
https://openreview.net/forum?id=53FyUAdP7d
https://proceedings.mlr.press/v216/zhang23a.html
http://jmlr.org/papers/v25/23-0488.html

Under review as a conference paper at ICLR 2026

Technical Appendices

A V[Usag 16
16

[C Algorithm Pseudocode] 17
[D Experiments Details| 17
ID.1_Environmentsl e e 17
[D.2_Solo Demonstration| e e e e e e e 19
ID.3 Implementation Details| 20
ID.4 Hyperparameters| e e e e 21

[E Additional Results with Stochastic Policy] 21
ET Extensionto HASAQ 21
IE.2 ExperimentResults| 22
[F__Discussions] 23
[F.1 Extension to Discrete-action Environmentl 23
IE2__Extension to General MARI Tasksl 23
[F.3 Comparison with PegMARL) 24
[F.4 Applicability of SoCo to On-policy Methods|. 24

A LLM USAGE

In this paper, we use the LLM to polish writing and check grammar issues.

B DETAILED RELATED WORK

MARL. Multi-Agent Reinforcement Learning (MARL) has advanced rapidly in recent years, giv-
ing rise to diverse paradigms and methods. Fully decentralized approaches train and execute policies
without centralized information (Tampuu et all, 2017 [de Witt et all, [2020), but their performance
is often constrained by the absence of communication among agents. By contrast, the Centralized
Training with Decentralized Execution (CTDE) paradigm (Olichoek et al.| 2008} [Matignon et al.}
2021}, [Amatol, 2024} [Li et all, 2025b) has become the mainstream, enabling agents to learn with
centralized information for coordination while still executing policies in a decentralized manner.
Representative algorithms include HASAC (Liu et al.,[20244), HARL (Zhong et al., 2024), MAPPO
2022), QMIX (Rashid et al., 2020), and MATD3 (Ackermann et al., 2019). In this work,
we adopt deterministic policy gradient methods within the CTDE paradigm, with particular focus
on MATD3 and HATD3.

Transferable MARL. Since training MARL from scratch is often sample-inefficient and costly,
transferable MARL seeks to reuse experience from source settings to accelerate learning in target
tasks with limited additional interaction. Existing approaches span several directions: offline-to-
online MARL (Zhong et al. [2025]), which leverages offline pretraining to speed up online explo-
ration and correct distributional shift; multi-task MARL (Hu et al} 2021, [Wang et al}, 2021}, [Zhang]

16 |

Under review as a conference paper at ICLR 2026

et al.| 2023a; /Chen et al., [2024; [Liu et al., 2025} Jha et al.| [2025)), which extracts transferable knowl-
edge from multiple source tasks and applies it to unseen ones; ad-hoc teamwork (Stone et al., 2010;
Zhang et al, 2023b; |L1 et al., 2025a)), which exposes agents to diverse teammates to improve ro-
bustness when coordinating with unseen partners; and MARL with mixed-component data (Wang
et al |2023), which constructs datasets from individual trajectories generated by different coopera-
tive policies, enriching training diversity while preserving per-step consistency. While these methods
broaden the applicability of MARL, they all rely on sufficient multi-agent data. In contrast, the po-
tential of exploiting solo demonstrations, abundant but lacking cooperative signals remains largely
unexplored.

Recent work PegMARL (Yu et al., 2025) attempts to leverage personalized data for individual re-
ward shaping to guide cooperation. However, it still suffers from several limitations, such as not
being directly applicable to standard CTDE algorithms and being unable to effectively handle set-
tings with multiple solo views. Our work further addresses this gap, showing that such data can
be more effectively leveraged to accelerate cooperative training, thereby opening a promising new
avenue.

C ALGORITHM PSEUDOCODE

Algorithm 1 Solo-to-Collaborative Reinforcement Learning (SoCo)

Input: Datasets of solo demonstration D and edit strength L.
Initialize the parameters w for solo policy 3,,, ¢ = {¢, 0} for weight assigner g,, and coordination
policy mg, {1 }5_, for {Q;}3_,, and ¥y, ¥, ¢ for target networks.
Train solo policy ,, with D according to Eq. (T)).
Initialize the replay buffer B.
for: = 11to T, do
Obtain the joint observation o, from the environment.
/I Agent-wise Solo-to-Collaborative Transfer
forn =1to N do
/I Observation Decomposition
Decompose local observation o}’ into solo views {oﬁ’k}kagl.
// Policy Fusion
Calculate a? = 8,,({0}'}) and obtain solo action a}* by Eq.
Calculate editing action Aaj* by Eq. (@).
Obtain final action a}’ by combining aj* and Aa}* according to Eq. @)

end for
/I Cooperative MARL Training
Use a; = (a}, ..., al) to interact with the environment and save (s, 0¢, a¢, ¢, 041 1) into B.

Sample a batch of transitions { (s, o, a¢, 1, 0411) } from B.
Update critics ()1, @2 and fused policy I14 through standard MARL algorithms.
end for

D EXPERIMENTS DETAILS

D.1 ENVIRONMENTS

We evaluate SoCo on nine tasks across four representative cooperative scenarios:

Spread (Lowe et al.| 2017} [Terry et al.,2021). As shown in Figures in this environment,
N agents are initialized at random positions in a bounded 2D plane, while K = N landmarks are
also randomly placed without overlap. Agents must navigate to distinct landmarks while avoiding
collisions. The per-step reward for each agent ¢ is defined as the average of a global and a local
component:

i __ 1 (, global local,?
ri = (rET).

17

Under review as a conference paper at ICLR 2026

(a) Spread (3 agents).

(g) MultiHalfcheetah (2 agents). (h) MultiHalfcheetah (3 agents). (i) MultiWalker (2 agents).

Figure 5: All the cooperative tasks in our experiments.

The global reward is shared across agents and encourages coverage of landmarks:

K
lobal . j
rE = =3 mig ol = e

where p{ is the position of agent 7, and [, is the position of landmark k.

The local reward penalizes collisions:

ocal,i | —C4, if agent i collides with C} other agents,
¢ 0, otherwise.

Finally, the environment reward is the sum over all agents’ individual rewards:

Rt: Z’f‘;

iEN
We evaluate on tasks with 3, 4, and 5 agents.

LongSwimmer (Peng et al., 2021; |[de Lazcano et al.,[2024). As shown in Figures [5d] and [51]
in this environment, a (2N + 1)-segment worm must be controlled to swim forward. Each pair
of adjacent segments is connected by a joint, and each agent is responsible for controlling two
consecutive joints in sequence. The worm’s initial state is sampled from a uniform distribution
within a predefined range, while its initial velocity is drawn from Gaussian noise to diversify the
dynamics. The per-step reward for each agent 7 is:

ri = v, —0.0001- > [aj 3,
1EN

18

Under review as a conference paper at ICLR 2026

where v; is the forward velocity of the worm, a is the action taken by agent i.

The environment reward is defined as the average of all agents’ rewards:

1 Z i
Rt = N ! T e
We evaluate on tasks with 3, 4, and 5 agents.

MultiHalfCheetah (Peng et al., 2021}; |de Lazcano et al), 2024). As shown in Figures [5¢g| and
[3hl in this environment, N HalfCheetah agents are connected in series by elastic tendons and must
collaboratively run forward. Each agent’s initial state is sampled from a uniform distribution within
a predefined range, and its initial velocity is drawn from Gaussian noise to diversify dynamics. The
per-step reward for each agent i is:

ri =vp — 0.1 [lag3,

where v} is the forward velocity of agent 7, a! is its action.

The environment reward is defined as the average of all agents’ rewards:

Rt:%ZT‘i.

iEN
We evaluate on tasks with 2 and 3 HalfCheetahs.

MultiWalker (Gupta et al.,[2017; |Terry et al.,2021). As shown in Figure@ in this environment,
N bipedal robots must collaboratively lift and carry a long package forward. The terrain has a
randomly undulating profile at the start of each episode. Walkers are initialized at fixed, equally
spaced positions in standing poses; to diversify initial conditions, a small random external force is
applied to each walker’s head at t = 0. The package length scales proportionally with the number
of walkers, and each walker’s observation is corrupted with noise.

At each step, each walker receives a progress reward equal to the forward displacement of the pack-
age, plus a small shaping penalty for head tilting and a —10 penalty if a walker falls:

rio= AzPE 5L Aghedt 10 1{walker i falls}.

Episodes terminate if the package falls, leaves the left edge, or if any walker falls, in which case all
walkers receive —100. If the package exits the right edge, termination occurs with reward 0.

The environment reward at each step is the sum of individual rewards:

We evaluate on task with 2 walkers.

D.2 SOLO DEMONSTRATION
D.2.1 DATA COLLECTION
For each cooperative scenario, we first train a policy on its corresponding solo task using TD3

(Fujimoto et al.| [2018)), and then collect 1M transitions to learn the solo policy. TableE] summarizes
the average episode returns of the solo task demonstrations.

19

Under review as a conference paper at ICLR 2026

(a) Spread. (b) LongSwimmer. (c) MultiHalfcheetah. (d) MultiWalker.

Figure 6: Solo tasks corresponding to each cooperative scenario.

Table 1: Average episode return of collected solo demonstrations.

Scenario Spread LongSwimmer MultiHalfcheetah MultiWalker
Average Episode Return -14.77 119.44 7054.87 197.18

D.2.2 SoLO TASKS VvS. COOPERATIVE SCENARIOS

These solo tasks, illustrated in Figure[6] exhibit noticeable gaps from their cooperative counterparts,
ranging from goal ambiguity (Spread), to moderate domain shift (LongSwimmer), to notable domain
shift and cooperative difficulty (MultiHalfCheetah), and to severe domain shift with substantial co-
operative difficulty (MultiWalker).

Specifically, in the Spread scenario, the solo task allows an agent to observe only a single target,
whereas in the cooperative setting, multiple targets are visible simultaneously. In the LongSwimmer,
the motion of the worm is affected by the actions of other agents, introducing a moderate domain
shift. In MultiHalfCheetah, the solo task doubles the agent’s mass and removes tendon constraints,
making it simpler than the coupled cooperative case. Finally, in MultiWalker, the solo task differs
drastically from the cooperative environment: the package length and walker positions change, ob-
servations are noisy, and interference from teammates is absent in solo but present in multi-agent
training, resulting in severe domain shift and substantially higher cooperative difficulty.

D.2.3 A SMALL EXAMPLE FOR OBSERVATION DECOMPOSITION

We use the 3-agent Spread task as an example to illustrate the observation decomposition process.

In the solo demonstration, there is only one agent and one landmark, so the agent’s observation
consists of [own_pos, own_vel, landmark _pos_r|, where these components respectively denote the
agent’s position, velocity, and the relative position of the landmark.

In the 3-agent cooperative environment, each agent additionally observes other agents
and landmarks: [own_pos, own_vel, pos.r_1, posr2, landmark posr_1, landmark_pos.r_2,
landmark_pos_r_3, comm_1, comm_2], where pos_r_i is the position of the i-th agent relative to
itself, landmark _pos_r_i is the relative position of the ¢-th landmark, and comm_i represents the com-
munication message from agent ¢ (set to 0 in our experiments as communication is disabled). We
then decompose each local observation into three solo views:

[own_pos, own_vel, landmark _pos_r_1]
[own_pos, own_vel, landmark _pos_r_2]
[own_pos, own_vel, landmark_pos_r_3]

each of which is passed to the solo policy to generate corresponding action candidates. This illus-
trative example has been added to the appendix for clarity.

D.3 IMPLEMENTATION DETAILS

Our implementation and experiments are based on the HARL codebase (Zhong et al|, [2024). The
additional components introduced by SoCo, i.e., the solo policy, gating selector, and action editor,
share the same architecture as the backbone actor network, implemented as 2-layer MLPs with ReL.U
activations. For action fusion, we adopt a tanh-based clip operator: when Aa = 0, no constraint
is applied; otherwise, the fused action is bounded through a tanh transformation. We use Adam

20

Under review as a conference paper at ICLR 2026

(Kingma, for optimization. Additionally, in the 3-agent MultiHalfCheetah environment, the
tendon structure can destabilize the MuJoCo simulator. To mitigate this, we impose an additional
constraint on the output of HATD3-SoCo, clipping it to the range [—0.85,0.85].

For the PegMARL baseline, its official implementation is designed for discrete action spaces (both
discrete-state gridworld and continuous-state MPE environments) and relies on individual reward
shaping. As a result, it cannot be directly adapted to off-policy DPG algorithms that depend on a
centralized Critic, and it is also not straightforward to apply to one-to-many settings such as Spread.
Therefore, based on the HARL codebase, we make the following modifications: (i) modify the
inputs and outputs of the actor—critic and discriminator to support continuous actions; (ii) following
the original paper, use individual critics; and (iii) for Spread, where multiple solo views are available,
randomly select one solo view as the personal observation. Further discussion of PegMARL can be
found in Appendix[F3]

D.4 HYPERPARAMETERS

Except for the correction strength L in SoCo, all hyperparameters follow the default or recom-
mended (when available) settings in HARL to ensure fair comparison. The detailed configurations
are reported in Table

Table 2: Shared hyperparameters for DPG algorithms.

Hyperparameter Value Hyperparameter Value
Batch Size 1000 Buffer Size 1000000
Hidden Size 256 (128 for Spread) Discount Factor ~y 0.99
n-step TD 10 (1 for Spread) Explore Noise 0.1
Policy Noise 0.2 Noise Clip 0.5
Policy Delay 2 Soft Update Coefficient 0.005
Actor Learning Rate 0.0005 Critic Learning Rate 0.001

For SoCo, L is an important hyperparameter that controls the extent to which knowledge from
solo demonstrations is leveraged. The values of L used for each task and backbone algorithm are
summarized in Table[3] Different tasks require different L values, as the optimal balance depends on
factors such as the degree of domain shift and the inherent difficulty of the cooperative environment.

Table 3: Correction strength L used in SoCo for each task and backbone algorithm.

Task MATD3-SoCo HATD3-SoCo
Spread-3 0 0
Spread-4 0 0
Spread-5 0 0
LongSwimmer-3 3.15 2.20
LongSwimmer-4 3.10 2.90
LongSwimmer-5 2.10 2.85
MultiHalfCheetah-2 1.90 2.00
MultiHalfCheetah-3 1.90 1.90
MultiWalker-2 3.00 3.00

E ADDITIONAL RESULTS WITH STOCHASTIC POLICY

E.1 EXTENSION TO HASAC
HASAC (Liu et al.|[20244a) is a recently proposed advanced stochastic-policy MARL algorithm that

extends SAC to heterogeneous-agent training. When adapting SoCo to this backbone, the main
modification lies in how we compute the entropy regularization term log w(a |).

21

Under review as a conference paper at ICLR 2026

-80
-60
c -0 o100 c
2 2 2
& -80 { & _120 &
)] @ @
° I s °
g =901 [2 2
a { ‘8 -140 a PN
I f I Iy / A
-100 /! —-200 V4 VNG Smman =
1 —— HASAC-SoCo -1601 / —— HASAC-SoCo 2 —— HASAC-SoCo
—1109 / —~ = HASAC — = HASAC —220 == HASAC
0 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Environment Steps le6 Environment Steps le6 Environment Steps le6
(a) Spread (3 agents). (b) Spread (4 agents). (c) Spread (5 agents).
400 400
300 300
£ £ £
s 5 s
2 2 2 200
K 8 200 3
) @ @
3 8 100 g 100
@ @ @
& & & 0
0
-100{
—— HASACS0Co / —— HASAC-S0C0 —— HASACS0Co
-100 —~ HASAC —1007 # —~ HASAC 200 14 —— HASAC
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0
Environment Steps le6 Environment Steps le6 Environment Steps le6

(d) LongSwimmer (3 agents). (e) LongSwimmer (4 agents). (f) LongSwimmer (5 agents).

3000 3000 400
2500 2500 300
c c c
52000 52000 5 200
E E: 3
% 1500 3 1500 5 100
% K g
21000 21000 2 o
I w w
500 500 -100
/ —— HASACS0Co 0 24 —— HASAC-S0Co —— HASACS0Co
0 Ll == HASAC == HASAC =200 == HASAC
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0 0.0 0.2 0.4 0.6 0.8 1.
Environment Steps le6 Environment Steps le6 Environment Steps le7

(g) MultiHalfcheetah (2 agents). (h) MultiHalfcheetah (3 agents). (i) MultiWalker (2 agents).

Figure 7: Training curves on nine tasks with HASAC. Results are averaged over three random
seeds, with solid and dashed lines indicating the mean performance and shaded areas representing
one standard deviation.

Recall that in Section 3.3} we first use the gating weights w = g, (0}) to select an action candidate,
and then combine it with the residual adjustment Aa’ from the coordination policy 74 via the action
editor. Therefore, we can derive the distribution of the fused action from GumbelSoftmax (g, (o))

and mg.

Specifically, we assume that, given any observation, the gate selector and the action editor act in-
dependently. Let a* € {a®! sees a»%i} denote the candidate action selected by the gate. Then the
density of the fused action a’ can be written as

G
My(a’ [0') = P(@’ =a"* | o') P(Ad’ = a' — a™* | o).
k=1

For the squashed policy and the differentiable clipping operator, we just need to introduce the
Jacobian correction appropriately.

Given II,, we can compute the entropy of the fused action in the standard way. The same construc-
tion naturally extends to other stochastic-policy MARL algorithms.

E.2 EXPERIMENT RESULTS

Similar to the setup in Section [l we evaluate the performance of SoCo with HASAC on nine tasks
across four continuous-control scenarios. All experiments are run with three random seeds, using
the hyperparameter configurations recommended by HARL whenever applicable. The values of
correction strength L used in SoCo for each task are listed in Table[d] The training results are shown
in Figure[J}

The results show that, for a recent advanced stochastic-policy algorithm, SoCo can still consistently
accelerate multi-agent training and achieve competitive or even superior final performance compared

22

Under review as a conference paper at ICLR 2026

to the baseline. This further demonstrates the plug-and-play nature of SoCo and its strong potential
to leverage solo demonstrations to improve cooperative training.

Table 4: Correction strength L used in SoCo for each task with HASAC.

Task Value Task Value Task Value

Spread-3 0 LongSwimmer-3 2.6 MultiHalfCheetah-2 2.0
Spread-4 0 LongSwimmer-4 2.5 MultiHalfCheetah-3 2.5
Spread-5 0 LongSwimmer-5 3.2 MultiWalker-2 3.00

F DISCUSSIONS

F.1 EXTENSION TO DISCRETE-ACTION ENVIRONMENT

While the idea behind SoCo is indeed insightful, this work only explicitly demonstrates its effec-
tiveness in continuous action spaces. However, the intrinsic characteristics of discrete-action spaces
make a direct extension of SoCo non-trivial. The challenge mainly involves two aspects:

Action Mismatch. A straightforward extended implementation would apply SoCo at the logits
level. However, since discrete actions rely on argmax-based sampling, fine-tuning logits to adjust
the final action is extremely difficult. For instance, in our preliminary attempts on the Protoss 8v8
environment in SMAC-v2 [2023), early-stage coordination policy tried to adjust over
50% of actions, yet fewer than 10% of those adjustments successfully changed the executed actions.
The mismatch between intended and executed actions limits the exploration, and the alignment only
appeared at later training stages.

Near-saturated Benchmark. Moreover, the continuous-control MARL tasks we study, though
appearing simpler, actually provide more optimization headroom and clearer insight into SoCo’s
effect on coordination efficiency. In contrast, we have observed that existing MARL algorithms,
such as QMIX-style methods and MAPPO, already achieve very high efficiency and performance in

most discrete-action benchmarks (e.g., SMAC-v1 (Samvelyan et al 2019)/-v2 (Ellis et al.| [2023),
Google Research Football (Kurach et al.| [2020)) under implementations like MAPPO’s official im-

plementation (Yu et al [2022), PYMARL2 [2023), PYMARLS3 (Xiaotian et al] [2023) and
HARL (Xiaotian et al.l 2023). Although these tasks seem to be “more difficult”, their efficiency

gap compared with SoCo’s “intention-matching process” could be minimal, leaving little room for
SoCo to bring further improvement. Establishing more complex discrete-action tasks remains an

important direction for MARL community.

F.2 EXTENSION TO GENERAL MARL TASKS

Unstructured Observation Although this work assumes that the observation space is structured
and decomposable, many practical scenarios involve unstructured observations where it is difficult
to manually design decomposition rules. One promising direction for handling such scenarios is
to employ LLMs/VLMs as information processors to convert raw, unstructured
inputs into structured representations suitable for SoCo.

Non-decomposable Coordination Another interesting topic is extending SoCo to inherently non-
decomposable tasks, for which proxy solo tasks can be designed to capture relevant individual be-
haviors. For instance, in MultiWalker environment, where two walkers must cooperate to lift a heavy
object, it is difficult to decompose the cooperative task into solo ones directly. As described in Ap-
pendix [D] we collect solo demonstrations by constructing a proxy single-walker task in which the
agent lifts a lighter object to learn basic standing and lifting behaviors. As shown in Figure 2i] even
though these solo demonstrations differ significantly in their dynamics from those of the cooperative
task, SoCo still substantially improves the backbone algorithm’s training efficiency.

23

Under review as a conference paper at ICLR 2026

Spread (3 agents) Spread (4 agents) Spread (5 agents) MultiHalfCheetah (2 agents) MultiHalfCheetah (3 agents)

W — WrRo5oco
~~ w0

5 1 [5 1

5 3 & 5 5 3 & % 3 3 i 3 00 05 1o 15 20
Environment Steps 1e6 Environment Steps 1e6 Environment Steps 1e5

Environment t Steps les

Figure 8: Training curves on five tasks with MAPPO. Results are averaged over three random seeds,
with solid and dashed lines indicating the mean performance and shaded areas representing one
standard deviation.

Heteregenous Agents For heterogeneous agents with different observation or action spaces, SoCo
can be extended by incorporating an attention-based mechanism to handle variable-sized inputs
et al]l 2021} [Zhang et al.l [2023a; [Liu et al.| [2025)). For agents with specialized roles, SoCo can train
cooperative policies with heterogeneous MARL algorithms, thereby enabling the training of het-
erogeneous agents. As to the heterogeneity of the solo policy, one possible approach is to leverage
techniques from multi-task offline RL, e.g., skill-discovery (Zhang et al} 20234} [Liu et al [2023),
to train role-conditioned solo policies that adapt SoCo’s coordination process to heterogeneous set-
tings.

F.3 COMPARISON WITH PEGMARL

PegMARL 2025)) guides MARL training with personalized demonstratinos, which is
highly related to the problem studied in SoCo. However, PegMARL and SoCo are based on funda-
mentally different assumptions:

PegMARL mainly achieves individual reward reshaping via distribution matching to obtain expert
guidance, where its personalized behavior and transition discriminators (Egs. (9)—(10) in
(2025))) require the personalized observation structure to be consistent with that of the cooperative
environment. Although, when the cooperative environment involves multiple agents, like SoCo,
PegMARL uses a decomposer to extract observations that are compatible with the single-agent set-
ting (e.g., in the MultiHalfCheetah scenario), it still cannot handle multiple solo views (e.g., in the
Spread scenario), whereas SoCo resolves this issue via a learnable gating selector.

Moreover, the individual reward shaping mechanism of PegMARL makes it difficult to directly inte-
grate with standard CTDE algorithms that rely on a centralized critic and a shared team reward (e.g.,
MADDPG (Lowe et al.| 2017), MATD3 (Ackermann et al} 2019), HATD3 (Zhong et all [2024),
HASAC (Liu et al| [2024a)), and it is instead more naturally suited to decentralized methods (e.g.,
Independent PPO [2022)). By contrast, SoCo is primarily designed for CTDE algorithms.
Thus, the two should be regarded as orthogonal techniques, and a direct comparison between Peg-
MARL and SoCo under our setting is not entirely appropriate. Nevertheless, we believe PegMARL
and SoCo are compatible rather than conflicting, and exploring how to combine them on certain
tasks is an interesting direction for future work.

F.4 APPLICABILITY OF SOCO TO ON-POLICY METHODS

While SoCo can effectively improve the performance of off-policy MARL algorithms through the
gating selector and action editor, our experiments indicate that directly combining SoCo with less
sample-efficient on-policy methods such as MAPPO can be challenging. To illustrate these chal-
lenges, we evaluate MAPPO and its SoCo variants on five tasks across the Spread and Multi-
HalfCheetah scenarios in Figure [§] We find that, although the gating mechanism still performs
well on Spread, directly applying the action editor in the MultiHalfCheetah tasks is ineffective. In
particular, because MAPPO relies on clipped importance ratios to constrain the magnitude of each
policy update, merely tuning the correction strength L is insufficient for SoCo to quickly adapt the
solo policy to a new cooperative environment; alleviating this issue requires enlarging the clipping
range (e.g., tuning clipping parameter e to 0.5). Moreover, the lower sample efficiency of on-policy
methods further hinders rapid policy transfer in some settings. Therefore, designing more suitable
ways to exploit solo demonstrations specifically for on-policy algorithms is an important direction
for future work.

24

	Introduction
	Preliminary
	Multi-Agent Reinforcement Learning
	CTDE Paradigm and Deterministic Policy Gradient Method

	Solo-to-Collaborative RL
	Solo Policy Extraction
	Observation Decomposition
	Policy Fusion
	Gating Selector
	Action Editor

	Collaborative Policy Optimization

	Experiments
	Setup
	Evaluation Results and Analysis
	Ablation Study
	Component Ablation
	Hyperparameter Sensitivity

	Effect of Demonstration Quality

	Related Work
	Conclusion and Future Directions
	LLM Usage
	Detailed Related Work
	Algorithm Pseudocode
	Experiments Details
	Environments
	Solo Demonstration
	Implementation Details
	Hyperparameters

	Additional Results with Stochastic Policy
	Extension to HASAC
	Experiment Results

	Discussions
	Extension to Discrete-action Environment
	Extension to General MARL Tasks
	Comparison with PegMARL
	Applicability of SoCo to On-policy Methods

