
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FROM SOLO TO SYMPHONY: ORCHESTRATING
MULTI-AGENT COLLABORATION WITH SINGLE-
AGENT DEMOS

Anonymous authors
Paper under double-blind review

ABSTRACT

Training a team of agents from scratch in multi-agent reinforcement learning
(MARL) is highly inefficient, much like asking beginners to play a symphony
together without first practicing solo. Existing methods, such as offline or trans-
ferable MARL, can ease this burden, but they still rely on costly multi-agent data,
which often becomes the bottleneck. In contrast, solo experiences are far easier
to obtain in many important scenarios, e.g., collaborative coding, household co-
operation, and search-and-rescue. To unlock their potential, we propose Solo-to-
Collaborative RL (SoCo), a framework that transfers solo knowledge into cooper-
ative learning. SoCo first pretrains a shared solo policy from solo demonstrations,
then adapts it for cooperation during multi-agent training through a policy fusion
mechanism that combines an MoE-like gating selector and an action editor. Ex-
periments across diverse cooperative tasks show that SoCo significantly boosts
the training efficiency and performance of backbone algorithms. These results
demonstrate that solo demonstrations provide a scalable and effective comple-
ment to multi-agent data, making cooperative learning more practical and broadly
applicable.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) has emerged as a core paradigm for sequential decision
making in environments that require coordination (Shoham & Leyton-Brown, 2008; Lowe et al.,
2017; Gronauer & Diepold, 2022). By interacting with the environment and receiving feedback,
MARL enables agents to learn cooperative policies, providing a principled framework for solving
complex decision-making problems such as autonomous driving (Zhang et al., 2024), large-scale
network optimization (Stepanov et al., 2024), and collaborative robotics (Tang et al., 2025).

However, compared to single-agent RL, MARL faces inherent challenges (Busoniu et al., 2008;
Hernandez-Leal et al., 2019), including dimensionality explosion, coordination difficulty, and en-
vironmental non-stationarity. As a result, training joint policies from scratch is often inefficient,
much like asking novices to rehearse a symphony without prior practice: difficult, time-consuming,
and unlikely to yield good results. This inefficiency poses a major obstacle to applying MARL
effectively in practice.

To address these challenges, a growing line of research has explored offline MARL (Pan et al.,
2022; Shao et al., 2023; Li et al., 2023; Liu et al., 2024b) and offline-to-online fine-tuning (Zhong
et al., 2025). These methods learn from pre-collected task-specific cooperative trajectories to avoid
costly exploration, and refine pretrained policies with limited online rollouts when interaction is
allowed. More recent studies have attempted to relax the data assumption by leveraging multi-task
cooperative datasets (Zhang et al., 2023a; Chen et al., 2024; Liu et al., 2025) or even non-cooperative
multi-agent datasets (Wang et al., 2023; Yu et al., 2025). These efforts broaden the scope of usable
data and represent important progress, but they remain fundamentally tied to multi-agent trajectories.

Actually, in many cooperative problems, there often exists a corresponding solo version whose
demonstrations are much easier to obtain and learn from. For example, in collaborative coding
(Dong et al., 2025b) a single coder writes a short piece of code, in household cooperation (Kannan
et al., 2024) a single robot performs an individual chore, and in search-and-rescue (Cao et al., 2024)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

a single drone searches for a target. Although such demonstrations deviate from the target coopera-
tive setting, they are far from useless. Such as in orchestral performance, it is more effective to let
each novice player first master the basics of solo play before attempting a full ensemble. Yet, the
potential of solo demonstrations to accelerate MARL remains underexplored. This gap motivates an
important but underexplored question:

Can solo demonstrations be effectively leveraged to accelerate the collaborative MARL?

An affirmative answer to this hypothesis will validate solo data as a scalable and cost-effective
resource. This will be instrumental in fostering efficient learning in settings where cooperative data
are limited but solo demonstrations are plentiful (Kannan et al., 2024; Cao et al., 2024; Dong et al.,
2025b), consequently making MARL a more viable solution for practical applications.

However, addressing this problem is non-trivial and involves two major challenges. The first is
observation mismatch: differences in observation dimensionality hinder the direct transfer of solo
demonstrations to multi-agent training (Hu et al., 2021; Zhang et al., 2023a; Liu et al., 2025). In
some cases, a single local observation may even correspond to multiple distinct solo views, creating
ambiguity for policy reuse. The second is domain shift: unlike multi-agent data, whether joint or
agent-specific, that inherently encode cooperation (Wang et al., 2023; Yu et al., 2025), solo data
contain no such information. In addition, discrepancies in environment dynamics between solo and
cooperative settings (e.g., individual attributes and observation noise) further exacerbate the gap.
These challenges hinder direct policy transfer, highlighting the need to distill knowledge from solo
demonstrations and integrate it into cooperative learning.

To tackle these challenges, we propose Solo-to-Collaborative RL (SoCo) framework, which trans-
fers knowledge from solo demonstrations to cooperative MARL. SoCo first pretrains a shared solo
policy from solo demonstrations via imitation learning, providing a common skill prior for all agents.
During cooperative training, local observations are decomposed into solo views aligned with the
demonstrations, allowing the reuse of the solo policy to obtain candidate actions. Then, a policy
fusion module selects and refines these actions for each agent, adapting them to the cooperative set-
ting and mitigating domain shift. Specifically, inspired by MoE (Cai et al., 2025) and action fusion
in single-agent RL (Dong et al., 2025a), a learnable gating selector chooses the most suitable can-
didate, while an action editor refines it for effective cooperation. This design not only tackles the
challenge of solo-to-cooperative transfer but also provides flexibility for task-specific customization.

We validate SoCo across diverse cooperative benchmarks, and the results show that it markedly
improves training efficiency while achieving competitive or superior performance. These findings
highlight the potential of solo demonstrations as a scalable resource for cooperative MARL.

Our main contributions are summarized as follows:

• We investigate an important yet underexplored problem of leveraging solo demonstrations
to benefit cooperative MARL, and show that such data, though lacking explicit cooperative
information, can substantially accelerate multi-agent training.

• We develop Solo-to-Collaborative RL (SoCo), a framework for solo-to-cooperative trans-
fer. It decomposes local observations to reuse a pretrained shared solo policy, and employs
a policy fusion module trained from cooperative interactions that combines a gating selec-
tor for choosing solo actions with an action editor for refining them, enabling more efficient
cooperation.

• We validate SoCo on cooperative benchmarks with diverse characteristics and difficulty,
showing that it effectively addresses observation ambiguity and domain shift, boosts train-
ing efficiency, and achieves competitive or superior performance, highlighting the potential
of solo demonstrations as a scalable resource for MARL.

2 PRELIMINARY

2.1 MULTI-AGENT REINFORCEMENT LEARNING

We model multi-agent reinforcement learning (MARL) within the decentralized partially observ-
able Markov decision process (Dec-POMDP) framework (Oliehoek et al., 2016). Formally, a Dec-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

POMDP is defined as M = ⟨N ,S,A,O, P,R, γ⟩, where N = {1, . . . , N} denotes the set of
agents, S is the global state space, and A and O are the joint action and observation spaces, each
formed from the agents’ local action {Ai}Ni=1 and observation spaces {Oi}Ni=1. At each time step,
every agent receives a local observation generated from the current global state. Based on the joint
action a = (a1, . . . , aN), the environment transitions to the next state according to P , and a shared
reward R(s,a) is returned. The goal of MARL is to learn a joint policy π = (π1, . . . , πN) that
maximizes the expected discounted return:J(π) = Eπ[

∑∞
t=0 γ

tR(st,at)]. The solo case naturally
arises when |N | = 1.

2.1.1 CTDE PARADIGM AND DETERMINISTIC POLICY GRADIENT METHOD

Centralized Training with Decentralized Execution (CTDE) (Oliehoek et al., 2008; Amato, 2024; Li
et al., 2025b) is a widely adopted paradigm in cooperative MARL. In CTDE, each agent executes
its policy in a decentralized manner, relying only on its own local observation during interaction
with the environment. During training, however, the learning process can leverage additional global
information (e.g., global states or joint actions) through centralized critics. This design improves
training stability and coordination, while keeping execution scalable and realistic.

A representative CTDE algorithm is MADDPG (Lowe et al., 2017). It extends the deterministic
policy gradient (DPG) framework to multi-agent settings by introducing a centralized critic for each
agent, while keeping actors decentralized. Formally, let agent i have policy πi(oi; θi) parameterized
by θi, and the deterministic policy gradient for agent i is:

∇θiJ(πi) ≈ Es,a∼D
[
∇θiπi(oi)∇aiQi(s,a;ψ

i)
∣∣
ai=πi(oi)

]
,

where Qi(s,a;ψi) denotes the centralized critic for agent i, parameterized by ψi. In practice,
however, the critics often share a single parameter set ψ across agents, whereas each agent maintains
its own policy network.

Building on MADDPG, MATD3 (Ackermann et al., 2019) incorporates the improvements of TD3
(Fujimoto et al., 2018), including twin critics, target smoothing, and delayed policy updates. HATD3
(Zhong et al., 2024) further extends MATD3 by introducing a heterogeneous sequential optimiza-
tion. In this paper, we focus primarily on the DPG family under the CTDE paradigm, as repre-
sented by MATD3 and HATD3. Nevertheless, the proposed framework is, in principle, extendable
to stochastic policy methods, such as MAPPO (Yu et al., 2022) or HASAC (Liu et al., 2024a).

3 SOLO-TO-COLLABORATIVE RL

To bridge the gap between solo demonstrations and multi-agent cooperation, and to tackle obser-
vation mismatch and domain shift, we propose the Solo-to-Collaborative RL (SoCo) framework.
SoCo first learns a shared solo policy from solo demonstrations. Then, during cooperative training,
local observations are decomposed into solo views, allowing the reuse of the solo policy to obtain
candidate actions. Finally, a per-agent policy-fusion module selects the most appropriate candidate
policy and refines it for each agent, adapting it to the cooperative setting and mitigating domain shift.
In the following, we present each component in detail. The full algorithm is presented in Algorithm
1 in Appendix C.

3.1 SOLO POLICY EXTRACTION

A solo policy is learned by imitation from the demonstration dataset Ds and shared by all the agents.
For simplicity, our implementation uses standard behavior cloning, minimizing the mean-squared
error between the policy’s action and the action recorded in Ds to obtain a deterministic behavioral
policy:

min
w

E(o,a)∼Ds

∥∥βw(o)− a
∥∥2
2
. (1)

This design choice is flexible rather than mandatory: one could instead adopt a stochastic imitation
model that learns βw(a | o), for example, parameterizations based on VAE (Kingma & Welling,
2013), diffusion models (Yang et al., 2023), or flow matching (Lipman et al., 2022), by simply

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Solo Views

Multi-Agent
Environment

(𝑜!	
#,%, … , 𝑜!

#,&!)

🔥
❄

Active

Frozen

Imitation
Coordination

Policy

𝑎"!"	

🔥

Gate Selector

Weight
Assigner

Candidates

Action Editor

🔥

Observation
Decomposer

Δ𝑎!"	 𝒐!
𝒂!

Policy Fusion

Solo Policy
❄

Solo Demos

cooperative 𝑎!"	

Figure 1: SoCo framework. A shared solo policy is pretrained from demonstrations and kept frozen,
then reused through observation decomposition during cooperative training. Coordination ability is
injected by the Policy Fusion module, where the Gating Selector selects suitable solo actions and
the Action Editor fine-tunes them to mitigate domain shift.

switching to a likelihood-based objective without altering the subsequent components of the frame-
work. Finally, the solo policy is shared across agents, and its parameters are frozen during the
cooperative learning phase.

3.2 OBSERVATION DECOMPOSITION

Given the settings of the cooperative tasks and their corresponding solo tasks considered in this
paper, we make a reasonable assumption that the observations in these cooperative tasks are well-
defined, structured, and decomposable. Specifically, each observation consists of own features (e.g.,
velocity, position) and stacked features of all other entities (e.g., teammates or target states). The
observation space of the corresponding solo tasks can then be constructed from these feature units
(e.g., controlling one HalfCheetah vs. multiple coupled HalfCheetahs).

Hence, following prior works (Liu et al., 2020; Wu et al., 2024; Liu et al., 2025), we introduce a
rule-based observation decomposer. Concretely, we decompose the observation of the i-th agent at
time step t, denoted as oit, into the self-related component oi,0t and the entity-related components
{oi,kt }Ki

k=1, where Ki denotes the total number of entities observable by agent i. When deployed
in cooperative environments, depending on the specific task, we may reassemble the decomposed
feature units into Gi valid solo views {õi,kt }Gi

k=0 for agent i by concatenation, zero-padding, and so
on, thereby addressing the issue of inconsistent observation spaces.

3.3 POLICY FUSION

In the cooperative training phase, the pretrained solo policy cannot be directly transferred. The main
obstacles are twofold: (i) a single local observation may map to multiple solo views, producing
several candidate actions (e.g., toward different targets) that must be disambiguated; and (ii) domain
shift between solo and multi-agent settings often degrades performance, necessitating fine-tuning
for effective adaptation.

Therefore, inspired by Mixture-of-Experts (MoE) (Cai et al., 2025) and action fusion techniques in
single-agent RL (Dong et al., 2025a), we propose a novel learnable policy fusion module. Notably,
our design operates at the agent level and is trained directly on multi-agent samples with standard
MARL optimization, thereby injecting cooperative adaptability into solo policies. Within this mod-
ule, each agent employs a Gating Selector to resolve ambiguity by selecting suitable solo actions,
and an Action Editor to fine-tune the chosen action for coordination, together enabling effective
solo-to-cooperative transfer.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3.1 GATING SELECTOR

As discussed in Section 3.2, the local observation oit of the i-th agent corresponds to Gi solo views
{õi,kt }Gi

k=0. By applying the solo policy, these yield Gi candidate actions:

ai,kt = β(õi,kt), k = 1, . . . , Gi. (2)

However, due to the solo-to-cooperative gap, not all candidate actions are suitable for the current
cooperative context, and some may even conflict with each other. To resolve this, SoCo equips each
agent with a weight assigner giφ : Oi → RGi that, conditioned on the current local observation
oit, evaluates the candidate solo actions and assigns weights to them, thereby selecting the most
appropriate one for coordination.

To enable learnable action selection, we adopt the Gumbel–Softmax reparameterization (Jang et al.,
2017) with the straight-through estimator. The gating weights giφ(o

i
t) define a categorical distribu-

tion, from which a one-hot action is drawn: the forward pass takes the most probable action, while
the backward pass propagates gradients through the soft sample. The resulting action for agent i is:

ãit =
〈
GumbelSoftmax

(
giφ(o

i
t)
)
, ait

〉
, (3)

where ait = (ai,1t , . . . , ai,Gi

t) is the set of candidate actions derived from the solo policy.

Moreover, this module is designed to be both general and flexible, allowing adaptation to different
scenarios. For instance, the gating function may be rule-based instead of learned, and in the special
case of Gi = 1, the selector can be omitted entirely.

3.3.2 ACTION EDITOR

To leverage the prior knowledge in solo actions while overcoming transfer difficulties from domain
shift, we design an action editor that injects cooperative information through residual corrections.
Specifically, we introduce a coordination policy πθ : Oi → Ai that produces a raw residual ad-
justment to the solo action. To keep this correction bounded and scale-invariant while avoiding
gradient saturation, we squash the policy output with fL(x) = L tanh(x/L). Given the current
local observation oit, the adjustment is:

∆ait =

L · tanh
(
πθ(o

i
t)

L

)
if L > 0

0 if L = 0
(4)

where L is a hyperparameter that controls the strength of the correction. By tuning L, the framework
can trade off between leveraging solo priors and adapting to multi-agent dynamics.

Then, the final cooperative action is defined as:

ait = Clip
(
ãit +∆ait

)
(5)

where ãit denotes the solo action selected by the gating selector, and Clip(·) is a clipping operator to
prevent action overflow. In our implementation, we adopt a tanh-based operator, but the design is
modular and allows substituting other operators depending on the task.

3.4 COLLABORATIVE POLICY OPTIMIZATION

For notational simplicity, we denote the fused policy as Πϕ, where ϕ = {φ, θ} collects the learnable
parameters of the gating selector and action editor. Since SoCo is fully decoupled from the backbone
algorithm, this policy can be optimized with any MARL method; here we instantiate it with MATD3
(Ackermann et al., 2019) for concreteness.

Each agent i maintains two shared centralized critics Qψ1
, Qψ2

and an individual actor Πϕi
. Given

a batch of transition B = {(st,ot,at, rt, st+1,ot+1)}, the critic loss is:

L(ψj) = E(st,ot,at,rt,ot+1)∼B

[(
Qψj

(st,at)− yt
)2]

, j = 1, 2, (6)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where the target yt is defined as

yt = rt + γ min
k=1,2

Qψ̄k

(
st+1,a

′
t+1

)
, (a′

t+1)i = Πϕ̄i
(oit+1) + ϵ, (7)

with {ψ̄k}2k=1 and ϕ̄i denoting target networks and ϵ being clipped Gaussian noise for policy
smoothing. The actors are optimized by maximizing the Q-value estimated by the first critic:

L(ϕi) = −E(st,ot)∼B

[
Qψ1

(
st,Πϕi

(oit)
)]
. (8)

For algorithms with stochastic policies, it suffices to compute the log-probability of the fused action
according to Eq. (5) and substitute it into the policy loss.

In this way, SoCo provides a plug-and-play bridge between solo demonstrations and cooperative
learning, turning single-agent demonstrations into a scalable and effective complement to multi-
agent data, making cooperative learning more practical and broadly applicable.

4 EXPERIMENTS

To evaluate the proposed SoCo framework, we conduct experiments on a variety of cooperative
tasks. Our goals are to investigate the following questions: (i) Can SoCo improve the sample effi-
ciency of multi-agent algorithms? (ii) Can SoCo enhance the ultimate performance of multi-agent
algorithms? (iii) How do the individual components of SoCo contribute to its effectiveness?

4.1 SETUP

Environments and Tasks. Following prior works (Sun et al., 2023; Kontogiannis et al., 2025;
Zeng et al., 2025), our experiments cover nine tasks from four representative cooperative scenarios:
(i) Spread (Lowe et al., 2017; Terry et al., 2021), where agents must cover distinct landmarks.
This setting introduces target ambiguity but involves little domain shift. (ii) LongSwimmer (Peng
et al., 2021; de Lazcano et al., 2024), where a multi-segment worm must swim forward, with each
agent controlling two consecutive joints. These tasks do not involve target ambiguity but introduce
domain shift due to altered dynamics. (iii) MultiHalfCheetah (Peng et al., 2021; de Lazcano et al.,
2024), where multiple HalfCheetahs are connected in a chain and must run forward together. These
tasks avoid target ambiguity but involve noticeable domain shift and present a non-trivial control
challenge. (iv) MultiWalker (Gupta et al., 2017; Terry et al., 2021), where multiple bipedal robots
jointly carry a package forward. These tasks avoid target ambiguity, but are inherently very difficult,
with severe domain shift on top of coordination challenges.

Considering the characteristics and difficulty of these environments, we evaluate tasks with 3, 4,
and 5 agents in Spread and LongSwimmer, 2 and 3 agents in MultiHalfCheetah, and 2 agents in
MultiWalker. Details on these environments and tasks are provided in Appendix D.1.

Data Collection. To collect solo demonstration data, we first train policies with TD3 (Fujimoto
et al., 2018) on the corresponding solo tasks until convergence, and then record 1M transition sam-
ples. The corresponding solo tasks are: (i) a single agent navigating to one landmark, (ii) a 3-
segment worm with 2 joints swimming forward, (iii) a HalfCheetah with altered attributes running
forward, and (iv) a single bipedal robot carrying the long package forward. When transferred to
multi-agent settings, these lead to (i) goal ambiguity, (ii) domain shift, (iii) notable domain shift and
cooperative difficulty, and (iv) severe domain shift coupled with substantial cooperative difficulty.
More details can be found in Appendix D.2.

Baselines. We adopt two representative DPG algorithms, MATD3 (Ackermann et al., 2019) and
HATD3 (Zhong et al., 2024), as our baselines. Their implementations are taken from the HARL
codebase (Zhong et al., 2024), on top of which we also build our SoCo variants.

Experiment Setup. SoCo first undergoes imitation learning to obtain the solo policy (5k steps
for Spread, 100k steps for the others). During cooperative learning, all algorithms perform 10k
random interaction steps for warm-up, followed by policy optimization with the same number of
environment steps (2M steps for LongSwimmer and MultiHalfCheetah, 5M steps for the others).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
Environment Steps 1e6

−110

−100

−90

−80

−70

−60

Ep
iso

de
 R

et
ur

n
MATD3-SoCo
HATD3-SoCo
MATD3
HATD3

(a) Spread (3 agents).

0 1 2 3 4 5
Environment Steps 1e6

−160

−140

−120

−100

Ep
iso

de
 R

et
ur

n

MATD3-SoCo
HATD3-SoCo
MATD3
HATD3

(b) Spread (4 agents).

0 1 2 3 4 5
Environment Steps 1e6

−220

−200

−180

−160

−140

Ep
iso

de
 R

et
ur

n

MATD3-SoCo
HATD3-SoCo
MATD3
HATD3

(c) Spread (5 agents).

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0

100

200

300

400

Ep
iso

de
 R

et
ur

n

MATD3-SoCo
HATD3-SoCo
MATD3
HATD3

(d) LongSwimmer (3 agents).

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

−100

0

100

200

300

400

Ep
iso

de
 R

et
ur

n

MATD3-SoCo
HATD3-SoCo
MATD3
HATD3

(e) LongSwimmer (4 agents).

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

−100

0

100

200

300

400

Ep
iso

de
 R

et
ur

n

MATD3-SoCo
HATD3-SoCo
MATD3
HATD3

(f) LongSwimmer (5 agents).

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0

1000

2000

3000

4000

Ep
iso

de
 R

et
ur

n

MATD3-SoCo
HATD3-SoCo
MATD3
HATD3

(g) MultiHalfcheetah (2 agents).

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0

500

1000

1500

2000

2500

3000

Ep
iso

de
 R

et
ur

n

MATD3-SoCo
HATD3-SoCo
MATD3
HATD3

(h) MultiHalfcheetah (3 agents).

0 1 2 3 4 5
Environment Steps 1e6

−200

−100

0

100

200

Ep
iso

de
 R

et
ur

n

MATD3-S2M
HATD3-S2M
MATD3
HATD3

(i) MultiWalker (2 agents).

Figure 2: Training curves on nine tasks. Results are averaged over three random seeds, with solid and
dashed lines indicating the mean performance and shaded areas representing one standard deviation.

Except for the correction strengthL in SoCo, all hyperparameters are identical to the default settings.
For evaluation, each trained policy is tested over 40 episodes, and the average return is reported. All
experiments are repeated with 3 random seeds to account for variance. Detailed hyperparameter
settings are provided in Appendix D.4.

4.2 EVALUATION RESULTS AND ANALYSIS

We evaluate SoCo on nine tasks across four scenarios with varying characteristics and difficulty.
Across both backbone algorithms, SoCo improves training efficiency and achieves competitive or
superior performance, demonstrating its effectiveness.

Spread. In the Spread tasks, agents must learn not only to navigate to landmarks but also to resolve
target assignment and avoid collisions, with difficulty growing rapidly as the number of agents
increases. As shown in Figures 2a–2c, training from scratch becomes highly inefficient under this
setting. With SoCo, however, agents first acquire basic navigation skills from solo demonstrations,
and during cooperative training, they only need to master target selection and collision avoidance
via policy fusion. This significantly improves both training efficiency and final performance. For
example, in the 5-agent task, SoCo converges faster and outperforms both backbone algorithms by
more than 20% in final performance, demonstrating its effectiveness in mitigating the challenge of
goal ambiguity.

LongSwimmer. In the LongSwimmer task, agents collaboratively control a multi-segment worm
to swim forward. As shown in Figures 2d-2f, although the control difficulty is moderate and both
backbone algorithms and SoCo eventually reach similar performance, our framework effectively
speeds up training. For example, in the 3-agent task, HATD3-SoCo attains an average return of
about 300 at roughly 1.0M steps, while vanilla HATD3 only reaches a comparable level around

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
Environment Steps 1e6

−90

−80

−70

−60

Ep
iso

de
 R

et
ur

n

MATD3-SoCo
GR
EGR
FG

(a) Ablation on Gating Selector.

0 1 2 3 4 5
Environment Steps 1e6

0

1000

2000

3000

4000

5000

Ep
iso

de
 R

et
ur

n

Tanh
Hard
Norm

(b) Ablation on Clip Operator.

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0

1000

2000

3000

4000

Ep
iso

de
 R

et
ur

n

L=2.0
L=1.9
L=1.8
L=0

(c) Ablation on Strength L.

Figure 3: Ablation study of SoCo. Results are averaged over three random seeds, with solid and
dashed lines indicating the mean performance and shaded areas representing one standard deviation.

1.6M steps, saving nearly 40% of training samples. These results highlight that SoCo successfully
leverages solo demonstrations as a scalable prior to accelerate cooperative learning.

MultiHalfcheetah. The MultiHalfCheetah task requires multiple HalfCheetah agents connected
by elastic tendons to run forward in coordination. The tendon coupling already introduces instability,
while the intrinsic difficulty of HalfCheetah control further compounds the challenge. Unlike Spread
or LongSwimmer, this scenario also alters the agents’ mass, creating domain shifts that make solo
policies non-transferable. Nevertheless, SoCo leverages action editor to adapt solo priors to the
shifted dynamics while retaining their basic control skills. As shown in Figures 2g and 2h, this leads
to markedly improved training efficiency for the backbone algorithms. In particular, on the 3-agent
task, HATD3-SoCo improves the final performance by approximately 83.91% over the backbone,
highlighting the strength of SoCo in leveraging solo demonstrations to boost both efficiency and
effectiveness of cooperative training.

MultiWalker. The MultiWalker task is the most challenging among the four scenarios. Agents
must not only stabilize multiple walkers but also coordinate to carry a long, unstable package under
noisy observations. The reward structure is harsh, and the domain shifts are severe, making direct
transfer highly difficult. In this setting, backbone MARL algorithms struggle to learn effective
package transport within the training budget. By contrast, SoCo leverages policy fusion to refine
solo priors and adapt them to unstable multi-agent dynamics, enabling faster discovery of transport
strategies and yielding clear gains in both training speed and final performance. Notably, as shown in
2i, SoCo improves the final performance by 91.51% on HATD3 and 11.97% on MATD3 compared
to their vanilla counterparts. This shows that SoCo can transfer solo knowledge even under extreme
conditions, substantially improving both training efficiency and performance.

4.3 ABLATION STUDY

4.3.1 COMPONENT ABLATION

Gating Selector. We conduct an ablation study on the 3-agent Spread task to isolate the effect of
the gating selector. Given the environment structure, setting the correction strength to zero (L = 0)
already yields strong performance, so we focus exclusively on the gating component. We com-
pare three variants: (i) Random Gating (RG), where targets are sampled randomly at each step;
(ii) Episode-wise Random Gating (ERG), where targets are randomly fixed at the start of each
episode; and (iii) Fixed Gating (FG), where distinct targets are deterministically assigned by agent
index at the beginning of each episode, serving as an oracle assignment in this scenario. As shown
in Figure 3a, randomized gating (RG / ERG) suffers from frequent target conflicts and poor coordi-
nation, whereas our learned gating selector can avoid conflicts and perform competitively to FG.

Clip Operator. As discussed in Section 3.3.2, we adopt a tanh-based clip operator to prevent
fused actions from exceeding valid ranges. Nevertheless, SoCo is designed as a general framework,
and different clipping strategies can be customized for specific tasks. To examine this flexibility and
assess the suitability of our choice, we conduct experiments on the 2-agent MultiHalfCheetah task,
evaluating how alternative operators affect both training efficiency and final performance. Using
MATD3 as the backbone, we compare two variants:

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(i) Norm, which normalizes the action as Clip(ãit +∆ait) = (ãit +∆ait)/(L+ 1);

(ii) Hard, which directly truncates actions via clamp(ãit +∆ait,−1, 1).

As shown in Figure 3b, the Norm operator accelerates early learning but suffers from weak asymp-
totic performance, as normalization continuously shrinks the effective action magnitude and reduces
policy expressiveness. The Hard operator, on the other hand, truncates actions abruptly, suppress-
ing gradient signals and leading to slow and unstable training. In contrast, our tanh-based design
achieves a smoother balance between boundedness and gradient flow, since gradients are only com-
pressed near the action boundaries. This enables both stable learning dynamics and stronger final
performance, making the tanh-based operator a natural and effective default choice for SoCo. That
said, the framework remains flexible to alternative operators when required by task dynamics.

4.3.2 HYPERPARAMETER SENSITIVITY

An important hyperparameter in the SoCo framework is the correction strength L, which controls
the degree to which the algorithm leverages knowledge from solo demonstrations. We conduct ex-
periments on the 2-agent MultiHalfCheetah task with L ∈ {0, 1.8, 1.9, 2.0}. Since this environment
does not involve multi-goal settings, we can effectively isolate the influence of the gating selector
and focus on the impact of this hyperparameter on SoCo’s performance. The results in Table 3c
show that when L is too small, SoCo relies excessively on solo demonstrations, which limits its
training efficiency. In contrast, when L is too large, SoCo adapts quickly to environmental changes
in the early stage, but insufficient use of solo knowledge makes it difficult to discover better strate-
gies later, leading to suppressed final performance. Thus, an appropriate choice of L is essential for
maximizing the effectiveness of SoCo. In addition, we also examined the case of L = 0, where solo
policies are directly applied in the multi-agent environment. The results reveal that domain shift
prevents the agents from being successfully controlled, underscoring the necessity of policy fusion.

5 RELATED WORK

MARL. Multi-Agent Reinforcement Learning (MARL) has advanced rapidly, giving rise to di-
verse paradigms. Fully decentralized methods train and execute policies without centralized in-
formation (Tampuu et al., 2017; de Witt et al., 2020), but often suffer from limited coordination.
By contrast, the Centralized Training with Decentralized Execution (CTDE) paradigm (Ackermann
et al., 2019; Rashid et al., 2020; Yu et al., 2022; Zhong et al., 2024; Li et al., 2025b) has become
dominant, enabling centralized training for coordination while preserving decentralized execution.
In this paper, we focus on deterministic policy gradient methods under CTDE.

Transferable MARL. To mitigate the high cost of training from scratch, transferable MARL aims
to reuse experience from source tasks to accelerate learning in target tasks with limited interaction.
Existing approaches include offline-to-online (Zhong et al., 2025), multi-task (Chen et al., 2024;
Liu et al., 2025; Jha et al., 2025), ad-hoc teamwork (Zhang et al., 2023b; Li et al., 2025a), and
mixed-component or personalized data (Wang et al., 2023; Yu et al., 2025). While these methods
broaden MARL’s applicability, they still assume sufficient multi-agent data. In contrast, exploiting
solo demonstrations, abundant yet lacking cooperative signals, remains underexplored. Our work
fills this gap by showing that such data can be effectively leveraged to improve both the training
efficiency and performance of cooperative learning.

More detailed discussions are provided in Appendix B.

6 CONCLUSION

In this paper, we studied an underexplored problem: how to exploit solo demonstrations to accel-
erate MARL. We propose a novel Solo-to-Collaborative RL (SoCo) framework, which leverages
solo demonstrations by pretraining a shared solo policy and adapting it during cooperative train-
ing through policy fusion with a gating selector and an action editor. Experiments across diverse
tasks show that SoCo improves training efficiency and achieves competitive or even superior per-
formance, highlighting that solo demonstrations provide a scalable and effective complement to
multi-agent data, making cooperative learning more practical and broadly applicable.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we detail our experimental setup in Section 4 and Appendix D, covering
environment configuration, solo demonstration collection, implementation details, and hyperparam-
eters. The source code will be made publicly available upon publication.

REFERENCES

Johannes Ackermann, Volker Gabler, Takayuki Osa, and Masashi Sugiyama. Reducing overes-
timation bias in multi-agent domains using double centralized critics, 2019. URL https:
//arxiv.org/abs/1910.01465.

Christopher Amato. An Introduction to Centralized Training for Decentralized Execution in Cooper-
ative Multi-Agent Reinforcement Learning, 2024. URL https://arxiv.org/abs/2409.
03052.

Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive survey of multiagent rein-
forcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 38(2):156–172, 2008.

Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang, Sunghun Kim, and Jiayi Huang. A survey on
mixture of experts in large language models. IEEE Transactions on Knowledge and Data Engi-
neering, 2025.

Xiao Cao, Mingyang Li, Yuting Tao, and Peng Lu. Hma-sar: Multi-agent search and rescue for
unknown located dynamic targets in completely unknown environments. IEEE Robotics and
Automation Letters, 9(6):5567–5574, 2024. doi: 10.1109/LRA.2024.3396097.

Jiayu Chen, Tian Lan, and Vaneet Aggarwal. Variational offline multi-agent skill discovery. arXiv
preprint arXiv:2405.16386, 2024.

Rodrigo de Lazcano, Kallinteris Andreas, Jun Jet Tai, Seungjae Ryan Lee, and Jordan
Terry. Gymnasium robotics, 2024. URL http://github.com/Farama-Foundation/
Gymnasium-Robotics.

Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS
Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you need in the starcraft
multi-agent challenge? arXiv preprint arXiv:2011.09533, 2020.

Perry Dong, Qiyang Li, Dorsa Sadigh, and Chelsea Finn. Expo: Stable reinforcement learning with
expressive policies. arXiv preprint arXiv:2507.07986, 2025a.

Yihong Dong, Xue Jiang, Jiaru Qian, Tian Wang, Kechi Zhang, Zhi Jin, and Ge Li. A survey on code
generation with llm-based agents, 2025b. URL https://arxiv.org/abs/2508.00083.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th In-
ternational Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 1587–1596. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.
press/v80/fujimoto18a.html.

Sven Gronauer and Klaus Diepold. Multi-agent deep reinforcement learning: a survey. Artificial
Intelligence Review, 55(2):895–943, 2022.

Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent control using
deep reinforcement learning. In International Conference on Autonomous Agents and Multiagent
Systems, pp. 66–83. Springer, 2017.

Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor. A survey and critique of multiagent deep
reinforcement learning. Autonomous Agents and Multi-Agent Systems, 33(6):750–797, 2019.

10

https://arxiv.org/abs/1910.01465
https://arxiv.org/abs/1910.01465
https://arxiv.org/abs/2409.03052
https://arxiv.org/abs/2409.03052
http://github.com/Farama-Foundation/Gymnasium-Robotics
http://github.com/Farama-Foundation/Gymnasium-Robotics
https://arxiv.org/abs/2508.00083
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Siyi Hu, Fengda Zhu, Xiaojun Chang, and Xiaodan Liang. UPDeT: Universal Multi-agent RL via
Policy Decoupling with Transformers. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=v9c7hr9ADKx.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=rkE3y85ee.

Kunal Jha, Wilka Carvalho, Yancheng Liang, Simon Shaolei Du, Max Kleiman-Weiner, and Natasha
Jaques. Cross-environment cooperation enables zero-shot multi-agent coordination. In Forty-
second International Conference on Machine Learning, 2025. URL https://openreview.
net/forum?id=zBBYsVGKuB.

Shyam Sundar Kannan, Vishnunandan L. N. Venkatesh, and Byung-Cheol Min. Smart-llm: Smart
multi-agent robot task planning using large language models. In 2024 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 12140–12147, 2024. doi: 10.1109/
IROS58592.2024.10802322.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Andreas Kontogiannis, Konstantinos Papathanasiou, Yi Shen, Giorgos Stamou, Michael M. Za-
vlanos, and George Vouros. Enhancing cooperative multi-agent reinforcement learning with state
modelling and adversarial exploration. In Forty-second International Conference on Machine
Learning, 2025. URL https://openreview.net/forum?id=TCsdlqzZNL.

Lihe Li, Lei Yuan, Pengsen Liu, Tao Jiang, and Yang Yu. LLM-assisted semantically diverse
teammate generation for efficient multi-agent coordination. In Forty-second International Con-
ference on Machine Learning, 2025a. URL https://openreview.net/forum?id=
Vhktpw6Vid.

Yueheng Li, Guangming Xie, and Zongqing Lu. Revisiting cooperative off-policy multi-agent re-
inforcement learning. In Forty-second International Conference on Machine Learning, 2025b.
URL https://openreview.net/forum?id=JPkJAyutW0.

Zhuoran Li, Ling Pan, and Longbo Huang. Beyond conservatism: Diffusion policies in offline
multi-agent reinforcement learning. arXiv preprint arXiv:2307.01472, 2023.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Iou-Jen Liu, Raymond A. Yeh, and Alexander G. Schwing. Pic: Permutation invariant critic for
multi-agent deep reinforcement learning. In Leslie Pack Kaelbling, Danica Kragic, and Komei
Sugiura (eds.), Proceedings of the Conference on Robot Learning, volume 100 of Proceedings
of Machine Learning Research, pp. 590–602. PMLR, 30 Oct–01 Nov 2020. URL https://
proceedings.mlr.press/v100/liu20a.html.

Jiarong Liu, Yifan Zhong, Siyi Hu, Haobo Fu, QIANG FU, Xiaojun Chang, and Yaodong Yang.
Maximum Entropy Heterogeneous-Agent Reinforcement Learning. In The Twelfth Interna-
tional Conference on Learning Representations, 2024a. URL https://openreview.net/
forum?id=tmqOhBC4a5.

Sicong Liu, Yang Shu, Chenjuan Guo, and Bin Yang. Learning Generalizable Skills from Of-
fline Multi-Task Data for Multi-Agent Cooperation. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
HR1ujVR0ig.

Zongkai Liu, Qian Lin, Chao Yu, Xiawei Wu, Yile Liang, Donghui Li, and Xuetao Ding. Offline
Multi-Agent Reinforcement Learning via In-Sample Sequential Policy Optimization, 2024b. URL
https://arxiv.org/abs/2412.07639.

11

https://openreview.net/forum?id=v9c7hr9ADKx
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=zBBYsVGKuB
https://openreview.net/forum?id=zBBYsVGKuB
https://openreview.net/forum?id=TCsdlqzZNL
https://openreview.net/forum?id=Vhktpw6Vid
https://openreview.net/forum?id=Vhktpw6Vid
https://openreview.net/forum?id=JPkJAyutW0
https://proceedings.mlr.press/v100/liu20a.html
https://proceedings.mlr.press/v100/liu20a.html
https://openreview.net/forum?id=tmqOhBC4a5
https://openreview.net/forum?id=tmqOhBC4a5
https://openreview.net/forum?id=HR1ujVR0ig
https://openreview.net/forum?id=HR1ujVR0ig
https://arxiv.org/abs/2412.07639

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ryan Lowe, YI WU, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf.

Laetitia Matignon, Laurent Jeanpierre, and Abdel-Illah Mouaddib. Coordinated Multi-Robot Explo-
ration Under Communication Constraints Using Decentralized Markov Decision Processes. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 26(1):2017–2023, Sep. 2021. doi: 10.
1609/aaai.v26i1.8380. URL https://ojs.aaai.org/index.php/AAAI/article/
view/8380.

Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. Optimal and approximate Q-value func-
tions for decentralized POMDPs. Journal of Artificial Intelligence Research, 32:289–353, 2008.

Frans A Oliehoek, Christopher Amato, et al. A concise introduction to decentralized POMDPs,
volume 1. Springer, 2016.

Ling Pan, Longbo Huang, Tengyu Ma, and Huazhe Xu. Plan Better Amid Conservatism: Offline
Multi-Agent Reinforcement Learning with Actor Rectification. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th
International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pp. 17221–17237. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.
press/v162/pan22a.html.

Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
Wendelin Boehmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy
gradients. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 12208–12221. Cur-
ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/
paper/2021/file/65b9eea6e1cc6bb9f0cd2a47751a186f-Paper.pdf.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Farquhar, Jakob Fo-
erster, and Shimon Whiteson. Monotonic Value Function Factorisation for Deep Multi-Agent
Reinforcement Learning. Journal of Machine Learning Research, 21(178):1–51, 2020. URL
http://jmlr.org/papers/v21/20-081.html.

Jianzhun Shao, Yun Qu, Chen Chen, Hongchang Zhang, and Xiangyang Ji. Counterfactual Con-
servative Q Learning for Offline Multi-agent Reinforcement Learning. In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=62zmO4mv8X.

Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: Algorithmic, game-theoretic, and
logical foundations. Cambridge University Press, 2008.

EP Stepanov, RL Smeliansky, AV Plakunov, AV Borisov, Xia Zhu, Jianing Pei, and Zhen Yao.
On fair traffic allocation and efficient utilization of network resources based on marl. Computer
Networks, 250:110540, 2024.

Peter Stone, Gal Kaminka, Sarit Kraus, and Jeffrey Rosenschein. Ad hoc autonomous agent
teams: Collaboration without pre-coordination. Proceedings of the AAAI Conference on Arti-
ficial Intelligence, 24(1):1504–1509, Jul. 2010. doi: 10.1609/aaai.v24i1.7529. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/7529.

Shaoqi Sun, Yuanzhao Zhai, Kele Xu, Dawei Feng, and Bo Ding. Progressive diversifying policy for
multi-agent reinforcement learning. In ICASSP 2023 - 2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5, 2023. doi: 10.1109/ICASSP49357.
2023.10096125.

Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus, Juhan Aru, Jaan
Aru, and Raul Vicente. Multiagent cooperation and competition with deep reinforcement learning.
PLOS ONE, 12(4):1–15, 04 2017. doi: 10.1371/journal.pone.0172395. URL https://doi.
org/10.1371/journal.pone.0172395.

12

https://proceedings.neurips.cc/paper_files/paper/2017/file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/8380
https://ojs.aaai.org/index.php/AAAI/article/view/8380
https://proceedings.mlr.press/v162/pan22a.html
https://proceedings.mlr.press/v162/pan22a.html
https://proceedings.neurips.cc/paper_files/paper/2021/file/65b9eea6e1cc6bb9f0cd2a47751a186f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/65b9eea6e1cc6bb9f0cd2a47751a186f-Paper.pdf
http://jmlr.org/papers/v21/20-081.html
https://openreview.net/forum?id=62zmO4mv8X
https://openreview.net/forum?id=62zmO4mv8X
https://ojs.aaai.org/index.php/AAAI/article/view/7529
https://ojs.aaai.org/index.php/AAAI/article/view/7529
https://doi.org/10.1371/journal.pone.0172395
https://doi.org/10.1371/journal.pone.0172395

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Chen Tang, Ben Abbatematteo, Jiaheng Hu, Rohan Chandra, Roberto Martı́n-Martı́n, and Peter
Stone. Deep reinforcement learning for robotics: A survey of real-world successes. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 28694–28698, 2025.

J Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sullivan, Luis S
Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo Perez-Vicente, et al. Pettingzoo: Gym
for multi-agent reinforcement learning. Advances in Neural Information Processing Systems, 34:
15032–15043, 2021.

Caroline Wang, Ishan Durugkar, Elad Liebman, and Peter Stone. Dm2: Decentralized multi-agent
reinforcement learning via distribution matching. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pp. 11699–11707, 2023.

Tonghan Wang, Tarun Gupta, Anuj Mahajan, Bei Peng, Shimon Whiteson, and Chongjie
Zhang. RODE: Learning Roles to Decompose Multi-Agent Tasks. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
TTUVg6vkNjK.

Jizhou Wu, Jianye Hao, Tianpei Yang, Xiaotian Hao, Yan Zheng, Weixun Wang, and Matthew E.
Taylor. PORTAL: Automatic Curricula Generation for Multiagent Reinforcement Learning. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 38(14):15934–15942, Mar. 2024.
doi: 10.1609/aaai.v38i14.29524. URL https://ojs.aaai.org/index.php/AAAI/
article/view/29524.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
applications. ACM computing surveys, 56(4):1–39, 2023.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and YI WU.
The Surprising Effectiveness of PPO in Cooperative Multi-Agent Games. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems, volume 35, pp. 24611–24624. Curran Associates, Inc., 2022.
URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
9c1535a02f0ce079433344e14d910597-Paper-Datasets_and_Benchmarks.
pdf.

Peihong Yu, Manav Mishra, Alec Koppel, Carl Busart, Priya Narayan, Dinesh Manocha, Am-
rit Singh Bedi, and Pratap Tokekar. Beyond joint demonstrations: Personalized expert guidance
for efficient multi-agent reinforcement learning. Transactions on Machine Learning Research,
2025. ISSN 2835-8856. URL https://openreview.net/forum?id=kzPNHQ8ByY.

Xianghua Zeng, Hang Su, Zhengyi Wang, and Zhiyuan LIN. Graph diffusion for robust multi-
agent coordination. In Forty-second International Conference on Machine Learning, 2025. URL
https://openreview.net/forum?id=T5IZ32ImAB.

Fuxiang Zhang, Chengxing Jia, Yi-Chen Li, Lei Yuan, Yang Yu, and Zongzhang Zhang. Discovering
Generalizable Multi-agent Coordination Skills from Multi-task Offline Data. In The Eleventh
International Conference on Learning Representations, 2023a. URL https://openreview.
net/forum?id=53FyUAdP7d.

Ruiqi Zhang, Jing Hou, Florian Walter, Shangding Gu, Jiayi Guan, Florian Röhrbein, Yali Du,
Panpan Cai, Guang Chen, and Alois Knoll. Multi-agent reinforcement learning for autonomous
driving: A survey. arXiv preprint arXiv:2408.09675, 2024.

Ziqian Zhang, Lei Yuan, Lihe Li, Ke Xue, Chengxing Jia, Cong Guan, Chao Qian, and Yang Yu. Fast
Teammate Adaptation in the Presence of Sudden Policy Change. In Robin J. Evans and Ilya Sh-
pitser (eds.), Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence,
volume 216 of Proceedings of Machine Learning Research, pp. 2465–2476. PMLR, 31 Jul–04
Aug 2023b. URL https://proceedings.mlr.press/v216/zhang23a.html.

Hai Zhong, Xun Wang, Zhuoran Li, and Longbo Huang. Offline-to-online multi-agent reinforcement
learning with offline value function memory and sequential exploration. In Proceedings of the
24th International Conference on Autonomous Agents and Multiagent Systems, pp. 2373–2381,
2025.

13

https://openreview.net/forum?id=TTUVg6vkNjK
https://openreview.net/forum?id=TTUVg6vkNjK
https://ojs.aaai.org/index.php/AAAI/article/view/29524
https://ojs.aaai.org/index.php/AAAI/article/view/29524
https://proceedings.neurips.cc/paper_files/paper/2022/file/9c1535a02f0ce079433344e14d910597-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9c1535a02f0ce079433344e14d910597-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9c1535a02f0ce079433344e14d910597-Paper-Datasets_and_Benchmarks.pdf
https://openreview.net/forum?id=kzPNHQ8ByY
https://openreview.net/forum?id=T5IZ32ImAB
https://openreview.net/forum?id=53FyUAdP7d
https://openreview.net/forum?id=53FyUAdP7d
https://proceedings.mlr.press/v216/zhang23a.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yifan Zhong, Jakub Grudzien Kuba, Xidong Feng, Siyi Hu, Jiaming Ji, and Yaodong Yang.
Heterogeneous-agent reinforcement learning. Journal of Machine Learning Research, 25(32):
1–67, 2024. URL http://jmlr.org/papers/v25/23-0488.html.

14

http://jmlr.org/papers/v25/23-0488.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Technical Appendices

A LLM Usage 15

B Detailed Related Work 15

C Algorithm Pseudocode 16

D Experiments Details 16

D.1 Environments . 16

D.2 Solo Demonstration . 18

D.3 Implementation Details . 19

D.4 Hyperparameters . 19

A LLM USAGE

In this paper, we use the LLM to polish writing and check grammar issues.

B DETAILED RELATED WORK

MARL. Multi-Agent Reinforcement Learning (MARL) has advanced rapidly in recent years, giv-
ing rise to diverse paradigms and methods. Fully decentralized approaches train and execute policies
without centralized information (Tampuu et al., 2017; de Witt et al., 2020), but their performance
is often constrained by the absence of communication among agents. By contrast, the Centralized
Training with Decentralized Execution (CTDE) paradigm (Oliehoek et al., 2008; Matignon et al.,
2021; Amato, 2024; Li et al., 2025b) has become the mainstream, enabling agents to learn with
centralized information for coordination while still executing policies in a decentralized manner.
Representative algorithms include HASAC (Liu et al., 2024a), HARL (Zhong et al., 2024), MAPPO
(Yu et al., 2022), QMIX (Rashid et al., 2020), and MATD3 (Ackermann et al., 2019). In this work,
we adopt deterministic policy gradient methods within the CTDE paradigm, with particular focus
on MATD3 and HATD3.

Transferable MARL. Since training MARL from scratch is often sample-inefficient and costly,
transferable MARL seeks to reuse experience from source settings to accelerate learning in target
tasks with limited additional interaction. Existing approaches span several directions: offline-to-
online MARL (Zhong et al., 2025), which leverages offline pretraining to speed up online explo-
ration and correct distributional shift; multi-task MARL (Hu et al., 2021; Wang et al., 2021; Zhang
et al., 2023a; Chen et al., 2024; Liu et al., 2025; Jha et al., 2025), which extracts transferable knowl-
edge from multiple source tasks and applies it to unseen ones; ad-hoc teamwork (Stone et al., 2010;
Zhang et al., 2023b; Li et al., 2025a), which exposes agents to diverse teammates to improve robust-
ness when coordinating with unseen partners; and MARL with mixed-component or personalized
data (Wang et al., 2023; Yu et al., 2025), which constructs datasets from individual trajectories
generated by different cooperative policies, enriching training diversity while preserving per-step
consistency. While these methods broaden the applicability of MARL, they all rely on sufficient
multi-agent data. In contrast, the potential of exploiting solo demonstrations, abundant but lacking
cooperative signals, remains largely unexplored. Our work addresses this gap by showing that such
data can be effectively leveraged to accelerate cooperative training, thereby opening a promising
new avenue.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C ALGORITHM PSEUDOCODE

Algorithm 1 Solo-to-Collaborative Reinforcement Learning (SoCo)

Input: Datasets of solo demonstration D and edit strength L.
Initialize the parametersw for solo policy βw, ϕ = {φ, θ} for weight assigner gφ and coordination
policy πθ, {ψj}2j=1 for {Qj}2j=1, and ψ̄1, ψ̄2, ϕ̄ for target networks.
Train solo policy βw with D according to Eq. (1).
Initialize the replay buffer B.
for i = 1 to Tmax do

Obtain the joint observation ot from the environment.
// Agent-wise Solo-to-Collaborative Transfer
for n = 1 to N do

// Observation Decomposition
Decompose local observation ont into solo views {on,kt }Gn

k=1.
// Policy Fusion
Calculate ant = βw({ont }) and obtain solo action ãnt by Eq. (3)
Calculate editing action ∆ant by Eq. (4).
Obtain final action ant by combining ãnt and ∆ant according to Eq. (5).

end for
// Cooperative MARL Training
Use at = (a1t , . . . , a

N
t) to interact with the environment and save (st,ot,at, rt,ot+1) into B.

Sample a batch of transitions {(st,ot,at, rt,ot+1)} from B.
Update critics Q1, Q2 and fused policy Πϕ through standard MARL algorithms.

end for

D EXPERIMENTS DETAILS

D.1 ENVIRONMENTS

(a) Spread (3 agents). (b) Spread (4 agents). (c) Spread (5 agents).

(d) LongSwimmer (3 agents). (e) LongSwimmer (4 agents). (f) LongSwimmer (5 agents).

(g) MultiHalfcheetah (2 agents). (h) MultiHalfcheetah (3 agents). (i) MultiWalker (2 agents).

Figure 4: All the cooperative tasks in our experiments.

We evaluate SoCo on nine tasks across four representative cooperative scenarios:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Spread (Lowe et al., 2017; Terry et al., 2021). As shown in Figures 4a-4c, in this environment,
N agents are initialized at random positions in a bounded 2D plane, while K = N landmarks are
also randomly placed without overlap. Agents must navigate to distinct landmarks while avoiding
collisions. The per-step reward for each agent i is defined as the average of a global and a local
component:

rit =
1
2

(
rglobal
t + rlocal,i

t

)
.

The global reward is shared across agents and encourages coverage of landmarks:

rglobal
t = −

K∑
k=1

min
j∈N

∥pjt − lk∥2,

where pjt is the position of agent j, and lk is the position of landmark k.

The local reward penalizes collisions:

rlocal,i
t =

{
−Cit , if agent i collides with Cit other agents,
0, otherwise.

Finally, the environment reward is the sum over all agents’ individual rewards:

Rt =
∑
i∈N

rit.

We evaluate on tasks with 3, 4, and 5 agents.

LongSwimmer (Peng et al., 2021; de Lazcano et al., 2024). As shown in Figures 4d and 4f,
in this environment, a (2N + 1)-segment worm must be controlled to swim forward. Each pair
of adjacent segments is connected by a joint, and each agent is responsible for controlling two
consecutive joints in sequence. The worm’s initial state is sampled from a uniform distribution
within a predefined range, while its initial velocity is drawn from Gaussian noise to diversify the
dynamics. The per-step reward for each agent i is:

rit = vt − 0.0001 ·
∑
i∈N

∥ait∥22,

where vt is the forward velocity of the worm, ait is the action taken by agent i.

The environment reward is defined as the average of all agents’ rewards:

Rt =
1

N

∑
i∈N

rit.

We evaluate on tasks with 3, 4, and 5 agents.

MultiHalfCheetah (Peng et al., 2021; de Lazcano et al., 2024). As shown in Figures 4g and
4h, in this environment, N HalfCheetah agents are connected in series by elastic tendons and must
collaboratively run forward. Each agent’s initial state is sampled from a uniform distribution within
a predefined range, and its initial velocity is drawn from Gaussian noise to diversify dynamics. The
per-step reward for each agent i is:

rit = vit − 0.1 · ∥ait∥22,

where vit is the forward velocity of agent i, ait is its action.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

The environment reward is defined as the average of all agents’ rewards:

Rt =
1

N

∑
i∈N

rit.

We evaluate on tasks with 2 and 3 HalfCheetahs.

MultiWalker (Gupta et al., 2017; Terry et al., 2021). As shown in Figure 4i, in this environment,
N bipedal robots must collaboratively lift and carry a long package forward. The terrain has a
randomly undulating profile at the start of each episode. Walkers are initialized at fixed, equally
spaced positions in standing poses; to diversify initial conditions, a small random external force is
applied to each walker’s head at t = 0. The package length scales proportionally with the number
of walkers, and each walker’s observation is corrupted with noise.

At each step, each walker receives a progress reward equal to the forward displacement of the pack-
age, plus a small shaping penalty for head tilting and a −10 penalty if a walker falls:

rit = ∆xpackage
t − 5 ·∆θhead,i

t − 10 · 1{walker i falls}.

Episodes terminate if the package falls, leaves the left edge, or if any walker falls, in which case all
walkers receive −100. If the package exits the right edge, termination occurs with reward 0.

The environment reward at each step is the sum of individual rewards:

Rt =
∑
i∈N

rit.

We evaluate on task with 2 walkers.

D.2 SOLO DEMONSTRATION

(a) Spread. (b) LongSwimmer. (c) MultiHalfcheetah. (d) MultiWalker.

Figure 5: Solo tasks corresponding to each cooperative scenario.

D.2.1 DATA COLLECTION

For each cooperative scenario, we first train a policy on its corresponding solo task using TD3
(Fujimoto et al., 2018), and then collect 1M transitions to learn the solo policy. Table 1 summarizes
the average episode returns of the solo task demonstrations.

Table 1: Average episode return of collected solo demonstrations.

Scenario Spread LongSwimmer MultiHalfcheetah MultiWalker
Average Episode Return -14.77 119.44 7054.87 197.18

D.2.2 SOLO TASKS VS. COOPERATIVE SCENARIOS

These solo tasks, illustrated in Figure 5, exhibit noticeable gaps from their cooperative counterparts,
ranging from goal ambiguity (Spread), to moderate domain shift (LongSwimmer), to notable domain

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

shift and cooperative difficulty (MultiHalfCheetah), and to severe domain shift with substantial co-
operative difficulty (MultiWalker).

Specifically, in the Spread scenario, the solo task allows an agent to observe only a single target,
whereas in the cooperative setting, multiple targets are visible simultaneously. In the LongSwimmer,
the motion of the worm is affected by the actions of other agents, introducing a moderate domain
shift. In MultiHalfCheetah, the solo task doubles the agent’s mass and removes tendon constraints,
making it simpler than the coupled cooperative case. Finally, in MultiWalker, the solo task differs
drastically from the cooperative environment: the package length and walker positions change, ob-
servations are noisy, and interference from teammates is absent in solo but present in multi-agent
training, resulting in severe domain shift and substantially higher cooperative difficulty.

D.3 IMPLEMENTATION DETAILS

Our implementation and experiments are based on the HARL codebase (Zhong et al., 2024). The
additional components introduced by SoCo, i.e., the solo policy, gating selector, and action editor,
share the same architecture as the backbone actor network, implemented as 2-layer MLPs with ReLU
activations. For action fusion, we adopt a tanh-based clip operator: when ∆a ≡ 0, no constraint
is applied; otherwise, the fused action is bounded through a tanh transformation. We use Adam
(Kingma, 2014) for optimization. Additionally, in the 3-agent MultiHalfCheetah environment, the
tendon structure can destabilize the MuJoCo simulator. To mitigate this, we impose an additional
constraint on the output of HATD3-SoCo, clipping it to the range [−0.85, 0.85].

D.4 HYPERPARAMETERS

Except for the correction strength L in SoCo, all hyperparameters follow the default or recom-
mended (when available) settings in HARL to ensure fair comparison. The detailed configurations
are reported in Table 2.

Table 2: Shared hyperparameters for all algorithms.

Hyperparameter Value Hyperparameter Value
Batch Size 1000 Buffer Size 1000000
Hidden Size 256 (128 for Spread) Discount Factor γ 0.99
n-step TD 10 (1 for Spread) Explore Noise 0.1
Policy Noise 0.2 Noise Clip 0.5
Policy Delay 2 Soft Update Coefficient 0.005
Actor Learning Rate 0.0005 Critic Learning Rate 0.001

For SoCo, L is an important hyperparameter that controls the extent to which knowledge from
solo demonstrations is leveraged. The values of L used for each task and backbone algorithm are
summarized in Table 3. Different tasks require different L values, as the optimal balance depends on
factors such as the degree of domain shift and the inherent difficulty of the cooperative environment.

Table 3: Correction strength L used in SoCo for each task and backbone algorithm.

Task MATD3-SoCo HATD3-SoCo
Spread-3 0 0
Spread-4 0 0
Spread-5 0 0
LongSwimmer-3 3.15 2.20
LongSwimmer-4 3.10 2.90
LongSwimmer-5 2.10 2.85
MultiHalfCheetah-2 1.90 2.00
MultiHalfCheetah-3 1.90 1.90
MultiWalker-2 2.00 2.00

19

	Introduction
	Preliminary
	Multi-Agent Reinforcement Learning
	CTDE Paradigm and Deterministic Policy Gradient Method

	Solo-to-Collaborative RL
	Solo Policy Extraction
	Observation Decomposition
	Policy Fusion
	Gating Selector
	Action Editor

	Collaborative Policy Optimization

	Experiments
	Setup
	Evaluation Results and Analysis
	Ablation Study
	Component Ablation
	Hyperparameter Sensitivity

	Related Work
	Conclusion
	LLM Usage
	Detailed Related Work
	Algorithm Pseudocode
	Experiments Details
	Environments
	Solo Demonstration
	Implementation Details
	Hyperparameters

