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Abstract

Computer vision seeks to infer a wide range of information
about objects and events. However, vision systems based
on conventional imaging are limited to extracting informa-
tion only from the visible surfaces of scene objects. For
instance, a vision system can detect and identify a Coke
can in the scene, but it cannot determine whether the can
is full or empty. In this paper, we aim to expand the scope of
computer vision to include the novel task of inferring the
hidden liquid levels of opaque containers by sensing the
tiny vibrations on their surfaces. Our method provides a
first-of-a-kind way to inspect the fill level of multiple sealed
containers remotely, at once, without needing physical ma-
nipulation and manual weighing. First, we propose a novel
speckle-based vibration sensing system for simultaneously
capturing scene vibrations on a 2D grid of points. We use
our system to efficiently and remotely capture a dataset of
vibration responses for a variety of everyday liquid contain-
ers. Then, we develop a transformer-based approach for
analyzing the captured vibrations and classifying the con-
tainer type and its hidden liquid level at the time of measure-
ment. Our architecture is invariant to the vibration source,
vielding correct liquid level estimates for controlled and
ambient scene sound sources. Moreover, our model gen-
eralizes to unseen container instances within known classes
(e.g., training on five Coke cans of a six-pack, testing on a
sixth) and fluid levels. We demonstrate our method by re-
covering liquid levels from various everyday containers.

1. Introduction

Since its inception in the 1960s, computer vision has sought
to enable machines to infer a wide range of information
about scene objects and events. In industrial settings, this
capability enables the automation of various inspection and
monitoring tasks involving manufactured goods, mechani-
cal parts, or stored items across a range of environments.
Today, much like in its early days, most computer vision
systems rely on sensing using conventional cameras de-

y-axis shifts

sound
source

Vibration
Transformer

container
class
prediction:

camera

r

fill-level
laser prediction: 80% 20% 60%

Figure 1. Learning to ‘see’ the fill level of opaque containers.
We develop a novel system to capture the surface vibrations of
multiple liquid containers at multiple surface points. We vibrate
the containers using a nearby speaker and train a novel Vibra-
tion Transformer to infer the container class and the hidden liquid
level, expressed as a percentage of total capacity, from the mea-
sured multi-point surface vibrations.

signed to replicate the human eye. However, using conven-
tional cameras limits the scope of retrievable scene informa-
tion. For instance, an image or video can be used to detect
and identify a scene object, but the object’s internal proper-
ties, like its content or material composition, are mostly in-
determinable from its captured surface appearance. In this
paper, we focus on revealing one commonplace hidden ob-
ject property: the fill level of opaque liquid containers.

Our work joins a rich body of previous vision research
focused on retrieving hidden object properties by leverag-
ing unconventional imaging. Clever hyperspectral scene
probing and polarization cues were used to classify [27, 42—
44] and segment [28, 50] scene object materials. Material
properties were also probed by thermal imaging [10, 12, 33,
37, 41] and structured light methods [30]. While effective,
these methods can only probe object properties that are op-
tically accessible at the object’s surface.
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To probe deeper, one must use a signal that permeates the
object’s interior but can be optically sensed at the object’s
surface. One such signal is object vibrations. In a series of
seminal works, Bounman, Davis et al., captured the minute
vibrations of simple objects like rods and fabrics using high-
speed cameras to extract properties like object density and
Young’s modulus [6, 13]. Later, Feng et al., extended the
vibrometry-based method to infer volumetric stiffness and
density [19, 35]. However, capturing high-frequency, low-
amplitude vibrations on general object surfaces using high-
speed cameras is challenging due to bandwidth and opti-
cal magnification constraints. To address these challenges,
Sheinin et al., recently demonstrated modal analysis using
a dual-shutter camera prototype that leverages laser speckle
to capture vibrations at high speeds for colinear scene points
[46]. Later, Zhang et al., used the same system to recover
the anisotropy of different-material planar objects [58].

The visual vibration works described above focused on
recovering low-level object properties like motion spectra,
material stiffness, or density. In this paper, we seek to
infer a higher-level object semantic property: the amount
of liquid it presently holds. Specifically, similar to Davis
et al. [13], we excite the scene using a nearby speaker
and measure the resulting object vibrations using a novel
speckle-based imaging system. Our system is inspired by
prior speckle-based vibration works [5, 7, 46, 55-57]. How-
ever, unlike previous works, it can capture a 2D grid of
scene points simultaneously, enabling vibration measure-
ment of multiple objects at once, with each object probed
at multiple points on its surface (see Figs. | and 3). No-
tably, several prior works tackled the liquid level recovery
task by either recording the sound of liquid pouring [4, 54],
or recording the sound resulting from a physical knock on
the container [21]. Conversely, our approach eliminates the
need for any physical interaction with the container or re-
liance on nearby microphones, enabling passive, remote in-
ference of liquid content using only visual measurements.

Inferring the hidden liquid level from a container’s vibra-
tions is a challenging task. The vibrational response of an
object having a simple shape and material composition can
be modeled using a small set of material parameters (e.g.,
mass and stiffness). As shown in prior works, these param-
eters can be recovered by observing the object’s resonant
frequencies and mode shapes [13, 19]. While some liquid
containers, such as certain wine glasses, exhibit a simple
relationship between the fluid level and the resulting reso-
nant frequencies, most everyday containers feature complex
geometries and heterogeneous materials, resulting in a non-
trivial relationship between the liquid level and the resulting
vibrations. The challenge becomes substantial when infer-
ring fluid levels of unseen containers from the same class, as
slight manufacturing variations can shift resonant frequen-
cies even among identical-looking items (e.g., cans in a six-

pack). To address this challenge, we develop a learning-
based approach introducing a novel physics-inspired ‘Vi-
bration Transformer’ to classify the fluid level of various
everyday liquid containers. The Vibration Transformer re-
ceives a spectral decomposition of the recorded two-axis,
multi-point surface vibrations. It is, thus, invariant to the
speaker excitation (content and duration).’

Our approach introduces a novel way to remotely assess
the fill levels of multiple sealed containers at once without
requiring any physical handling or manual weighing. We
believe our method could facilitate the inspection of large
warehouses storing consumer liquid products (e.g., soda
cans, shampoos), heavy containers impractical to weigh,
and containers holding hazardous, toxic, flammable, or ra-
dioactive liquids (e.g., heavy or tritiated water). The lat-
ter, long-storage containers, are especially susceptible to
spillage and evaporation over time—issues that are further
exacerbated by repeated physical handling and inspection.

To evaluate our approach, we gather a dataset of vari-
ous everyday liquid containers and measure their vibration
response at three surface points per container for multiple
speaker positions and short (two-second) excitations (e.g., a
logarithmic chirp, a segment of a popular song, and ambient
noises). We show that our approach can accurately classify
the hidden liquid levels of the dataset containers for novel
speaker positions and fluid levels not seen during training.
Moreover, we show that if trained on multiple same-class
containers (e.g., five Coke cans), the model can infer the
hidden liquid levels of containers outside the training set
(i.e., a sixth Coke can).

2. Background
2.1. Modeling object vibrations

Under small deformations, most objects can be approxi-
mated as linear elastic, meaning they exhibit a proportional
relationship between stress and strain and return to their
original shape once the disturbance is removed. The vi-
brations of objects in this regime can be modeled using a
second-order linear differential equation called the equation
of motion, which depends on the object’s material properties
(i.e., mass, stiffness, and damping), boundary conditions,
and external forces (i.e., the vibration excitation) [9, 14].
In certain conditions, the vibrations of linear elastic ob-
jects can be expressed as a linear combination of their reso-
nant frequencies, or vibration modes [ 14]. Measuring these
modes—defined by a set of independent natural frequen-
cies and mode shapes—enables inference of the equation
of motion parameters mentioned above [13, 19]. For ev-
eryday liquid containers, the equation of motion must ac-
count for the coupled interaction between the container and
the liquid inside. The presence of liquid introduces added

1 As long as the excitation signal is sufficiently broadband.
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Figure 2. Variations in container responses. (a) Setup showing vi-
bration measurements from a resonant wine glass (clear for illus-
tration) and a standard beverage container. We record responses
from two identical items at different fill levels using a single sur-
face point per object. (b) The wine glass exhibits a distinct res-
onance that shifts with fill level. In contrast, the coconut water
container exhibits a complex frequency response that is difficult to
relate to its fill level. We train a transformer to infer fill levels from
such signals by analyzing vibrations at multiple surface points.

mass, increasing inertia and lowering resonant frequencies
(see Fig. 2). Additionally, fluid-structure interactions alter
stiffness and damping, resulting in complex vibrations with
a non-trivial relationship to the container’s liquid level. Fur-
thermore, slight manufacturing differences in the same con-
tainer type may yield different resonance frequencies even
for the same fluid level (Fig. 7(a)). Therefore, in this work,
we use a learning-based approach to infer this complex re-
lation, for various container types and instances.

2.2. Measuring surface vibrations

Surface vibrations can be measured using various princi-
ples, including high-speed imaging [9, 13, 19], interferom-
etry (e.g., Laser Doppler Vibrometers (LDV)) [39], contact-
based piezoelectric transducers [29], and more. In this pa-
per, we rely on speckle-based vibrometry, which consists of
illuminating an object’s surface points with a laser and cap-
turing a defocused video of the illuminated point [47, 57].
Due to the laser light coherency, the defocused laser spot
will contain a random interference pattern called speckle [1,
57]. This speckle pattern is highly sensitive to small surface
tilts, causing it to shift within the point’s defocused spot
[46, 57]. Thus, unlike LDV, speckle-based vibrometry ob-
viates the need for expensive specialized hardware and sim-

rows not read out

rows not read out

rows not read out

rows not read out

rows not read out

% rows not read out

7 =2 - (G- £5- 63 ) 62-&2.
& 59 B - ;
(a) simplified prototype (b) full resolution

rows not read out

(c) defined ROIs

Figure 3. Capturing vibrations on a 2D grid. (a) Our system con-
sists of a laser projecting a 2D grid of points on the scene, and a
single defocused camera. The camera image, shown in (b), cap-
tures the speckle interference for all grid points. (b) We define a
set of regions of interest (ROIs) centered on the middle of each de-
focused row of laser points (ROI centers marked in yellow), with
each ROI having a height of a few pixels (e.g., six). (¢) The camera
outputs only the concatenated ROIs, enabling high sampling rates
of speckle vibrations (e.g., 57 kHz for six ROIs of 6 pixels each).

plifies vibration sensing to computing image-domain shifts.
In Sec. 3, we describe a novel vibration-sensing method al-
lowing vibration capture for a 2D grid of surface points.

3. Sensing rapid vibrations on a 2D grid

Our vibration sensing system measures vibrations for a 2D
grid of scene surface points. As such, it enables simulta-
neous multi-point vibration sensing for multiple scene con-
tainers. For simplicity, Sec. 3 and 4 focus on a single con-
tainer, though the same method is independently applied to
each scene container. Our system operates on a simple yet
effective principle, capturing speckle vibrations robustly at
high speeds in previously undemonstrated configurations.
As shown in Fig. 3(a), our prototype consists of a single
laser and a camera. The laser illuminates the scene through
a custom diffractive beam splitter that splits the beam into
a 2D grid (e.g., 6 X 6). The split beam then passes through
an anamorphic prism pair, configured to widen the beam
angles along the horizontal axis, thereby aligning the laser
points with the scene’s container arrangement (see Fig. 5).
The camera is defocused to yield a grid of speckle
patches (Fig. 3(b)). Recovering the two-axis vibrations
at each sensed laser grid point involves computing the
image-domain shifts of the speckle within each point’s
patch [57]. However, at full resolution, the camera’s band-
width severely limits the maximum frame rate, resulting
in insufficiently fast vibration sampling rates. Therefore,
to achieve high sampling rates, we configure the camera’s
readout to output only M regions of interest (ROIs) of size
W x P pixels, which speeds up the camera’s FPS by approx-
imately a factor of H/(MP), where H and W are the cam-
era’s full image resolution height and width, respectively.
For example, the camera in Fig. 3 can operate at 2247 Hz at
full resolution. However, for M =6 ROIs of height P =6 pix-
els, the camera FPS jumps to 57 699 Hz, a rate sufficient for
most mechanical and acoustic vibration applications. See



Sec. 5 for full hardware details and Sec. 7 for a discussion
relating our system to prior works.

To robustly compute the two-axis image-domain shifts,
v € R?, between every two consecutive frames, we develop
an ad-hoc method that first uses phase-correlation (PC)
[26, 36] to recover integer-pixel shifts, followed by a Lukas-
Kanade (LK) [31] estimation of the residual sub-pixel trans-
lation (similar to [17]). To handle the high volume of shift
computations for recovering multiple laser points at high
frame rates (e.g., 1.44 million calls for 2 sec at 20 kHz with
a 6 x 6 grid), we implement a parallelized batched GPU
version of PCLK, called PCLK+, to streamline vibration
recovery. Our GPU implementation is x20 faster.

Let v; € R>N denote the two-axis image-domain
speckle shifts recovered by our camera at surface point i,
where i € {0, 1,2} and N is the number of time samples at
camera sampling rate feam [Hz].?> The measured signal v;
has units of pixels and can be converted to surface tilts by
multiplying with a per-axis scalar [46]. However, since our
method does not require such calibration, for simplicity, we
will refer to v; as the object vibrations at point i. Next, we
describe how to extract the container’s fill level given the
set of measured container vibrations {vg, v{, v2}.

4. Learning to infer a container’s liquid level

We aim to recover the container’s liquid level from raw
vibration signals {wvg,v1,v;} recorded at three surface
points. Here, we describe the Vibration Transformer — a
transformer-based model that takes the multi-point vibra-
tion signals v; and outputs the liquid level as a percentage
of the container’s total capacity (e.g., 20 % full).

While prevailing signal processing frameworks operate
in the temporal (e.g. [38, 51]) or the short time Fourier trans-
form (STFT) domains (e.g. [2, 8, 18, 22]), motivated by
classic modal analysis, where an object’s vibrational modes
are recovered to infer low-level object material characteris-
tics, we operate solely in the Fourier domain. That is, the
input to our model is

Vi [f] = 1F{vi} | € R%, f € Fixed (1)

where F{} denotes the Discrete Fourier Transform, f is
frequency, and F™d is a predefined frequency set (e.g.,
Ffixed — 140,41,42, ..,2500} [Hz]). Note that the definition
of Eq. (1) allows for v; of an arbitrary duration, content and
sampling frequency fiump > 2 max(F fixedy

The complexity of regressing the multi-point multi-axis
Fourier response V; [ f],i € {0, 1,2}, to the container’s lig-
uid level can vary greatly between different container types.
In rare cases, a container’s Fourier analysis can easily relate
to the liquid level. For example, some wine glasses have a
highly resonant response, yielding a distinct high-frequency

ZWLOG, we assume each container is illuminated with 3 laser points.

audible tone that predictably decreases in frequency as the
glass is filled (see Fig. 2(a)). However, none of the contain-
ers in our dataset have such simple characteristics. Rather,
we found that most everyday containers exhibit complex
spectral responses that are difficult to interpret and regress
using classical methods (e.g., Fig. 2(b)). Therefore, we base
our model on the popular Transformer architecture [52], let-
ting the model learn the non-trivial relation between the vi-
brations at multiple points and the liquid level.

Further inspired by modal analysis, our Vibration Trans-
former comprises two main components. In the first stage,
a shared PointTransformer independently processes the sig-
nal from each point, analyzing the frequency responses
and local resonance characteristics (i.e., mode frequencies).
Then, a subsequent ShapeTransformer fuses the informa-
tion from these local features, enabling the model to reason
about the mode shapes. Ultimately, the Vibration Trans-
former’s latent representation captures both liquid level and
container type from the raw vibration input.

Vibration Transformer architecture. A schematic of
our model is shown in Fig. 4. The frequency representation
for each point V; is divided into fixed-sized non-overlapping
tokens via a Tokenizer module, where each token encodes
information about a specific frequency band Af. A learn-
able positional encoding is added to each token, and the se-
quence of input frequency tokens is supplemented with a
trainable [pnt] token [15]. The PointTransformer uses self-
attention to extract information from all frequency bands
into the [pnt] token per point i, independently.

Then, the ShapeTransformer processes the sequence of
three ‘transformed’ tokens [pnt];. Here, additional posi-
tional encoding is added to each token [pnt];, encoding
the grid position of point i on the container. A train-
able [cls] token is added to integrate the information from
all measured points. We use two MLPs, one to infer the
container type, represented as a discrete label ¢, and an-
other for the discrete liquid level /. In this work, we set
leL ={0.0,0.2,0.4,0.6,0.8, 1.0}.

We train our model using supervised learning. Each col-
lected training sample includes {vy(t),v(f),v2(¢);c,1}.
Our network produces two probability distribution vectors:
one for the container class ¢ € R« and one for the liquid
fill level p € RS. Let h=1,2,..,6 denote the index within
vector p and the corresponding index within the ordered
set L. In contrast to the container class prediction, which we
optimize using a standard cross-entropy loss, the inherently
ordinal nature of the liquid fill level leads us to employ a
variation of the Sorted ORDinals (SORD) Loss [16, 20, 40].
For a given true fill level [ € L, we define a soft target dis-
tribution vector ¢; € R®, where

qilh] = (6,50(,,L[h])2) > e~ OU-LUD’ ()
7
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Figure 4. Vibration Transformer network architecture. Our model processes the signals after conversion to the Fourier domain. The
signal from each surface point is processed separately by a shared PointTransformer that extracts information from the spectrum of each
point. Then, the added [pnt] tokens produced by each PointTransformer are processed by a second, ShapeTransformer which integrates the
information between all the surface points. Finally, the ShapeTransformer output token is passed through two MLPs where one classifies
the container type and the other the liquid fill level. Here LPE stands for ‘learned positional encoding’.

The SORD Loss is then given by:
3)

The overall loss is a weighted sum of the cross-entropy loss
for ¢ and the SORD Loss for /.

We use the output logits vector p to predict the liquid
level in two ways. We use a Maximum a posteriori (MAP)
estimator to predict the most likely discrete liquid level

Lsorp = —q; -log (p).

“4)

Imap = L{hmap], hmap = arg m}?xﬁ[h].

Additionally, we wish to test the model’s behavior for liquid
levels in between the levels of L. In such cases, we compute
the expectation over the prediction
fa=>"L[n]- plh] (5)
h
Note that the model is trained to predict the discrete levels
Imap, while /g can be used to output values € [0, 1].

5. Implementation details

5.1. Hardware details

Our system comprises an EoSens2.0MCX12 camera [32]
and a Coherent Sapphire 532 nm 500 mW laser [11]. The
laser is passed through a HOLO-OR beamsplitter, yielding
a 6x6 point grid with a separation angle of 2.75<2.75 degrees
[23]. Thus, at 500 mW, each point has a 13.9 mW power. To
illuminate a row of six containers at once, we pass the laser
grid through an unpaired Thorlabs anamorphic prism pair
[49]. The pair is adjusted to create the desired horizontal
spread, turning the square laser grid into a rectangular one.
To probe the row of containers, we create an array of
six Creative Pebble V2 speakers [48], which can be individ-
ually activated via a ten-channel MOTU UltraLite-mk5 au-
dio interface [34]. The speakers are mounted on a frame de-
tached from the containers, which sit on a vibration-isolated
optical breadboard, thus minimizing the transition of me-
chanical vibrations through the table (see Fig. 5(a)).

5.2. Training the Vibration Transformer

First, we compute the DFT magnitude, per axis, for each
vibration signal v; on the predefined frequency set Fi**d =
{100, 100.5, ...,2500 Hz}. The resulting V; is a 2 x 4800
matrix of Fourier magnitude coefficients. We then divide
this matrix into non-overlapping patches of size 2x 100 (i.e.,
each patch contains 200 coefficients). For each patch, we
apply a linear projection to map the 200-dimensional coef-
ficient vector into a 512-dimensional token. This produces a
sequence of 48 tokens, which are subsequently fed into our
PointTransformer. We add learnable position encoding to
the tokens. Our PointTransformer and ShapeTransformer
have eight transformer layers each, with four heads in the
self-attention layers. There are about 25 million trainable
parameters in each transformer. The prediction MLPs have
one hidden layer with 64 dimensions and ReLU activation.
We use the Adam [25] optimizer with a learning rate
A=1073 to train the model for 7500 epochs. During train-
ing, we augment the data by simulating random smooth
frequency responses that modulate the magnitudes of the
Fourier coefficients (i.e., filters) — mimicking variations in
speaker type and acoustic environmental characteristics —
and randomly drop 50 % of the PointTransformer input to-
kens. We give Lsorp a weight of 0.9 and 0.1 for Lcg.

6. Experimental evaluation

To gather data for training and testing our model, we built
an experimental rig comprised of our camera, a set of
six speakers positioned on a beam above the test table,
and a set of six kitchen scales to measure the amount of
liquid we add to each container (see Fig. 5). In each
data sampling iteration, we place a set of six contain-
ers on the scales filled to one of the liquid levels in
Lstendard — 10 0,0.2,0.4,0.6,0.8,1.0}. Then, we continu-
ously capture their vibrations at three surface points per
container while playing multiple short audio sequences us-
ing one or more of the six speakers. While the cam-
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Figure 5. Experimental setup. (a) We acquire vibrations for multi-
ple containers, at multiple points per container at once, for various
fill levels. The containers are excited by six different speakers po-
sitioned on a beam separated from the container set to avoid trans-
ferring mechanical vibrations. Our setup allows simulating sound
coming from various directions and amplitudes. We use scales
to measure the added liquid level. (b) Vibration sensing system.
(c) We additionally test our system on a large industrial container
weighing about 100 kg when full.

era can capture at much higher speeds, we set its frame
rate to 5100Hz, having observed that most containers
have little energy at frequencies higher than 2000Hz. A
subset of containers were captured with extra fill level
Linerm = £0.25,0.50,0.75}.

In addition to the small-sized everyday containers de-
scribed above, our dataset also includes one large 100-liter
industrial container (see Fig. 5(c)). This container has a
0.53-meter diameter and weighs about 100kg when full,
and thus cannot be easily placed on any off-the-shelf scale.
In total, our dataset contained 5910 individual data samples.
Please see the supplementary materials for a full dataset
breakdown and visualization.

We partitioned the container dataset into subsets to test
the model’s prediction for several increasingly complex in-
ference tasks. We train our model on 23 unique container
types to predict the levels in L8444 ysing two types of ex-
citations: a two-second logarithmic chirp with start and end
frequencies of 100 and 2500Hz, respectively, and a two-
second segment of a popular song. Then, we test our model
in six validation categories: (a) within-distribution, (b) un-
seen instances, (c) unseen liquid levels, (d) ambient sound,
(e) unseen levels at ambient sound and (f) unseen instances
at ambient sound. *

3Since the container of Fig. 5(c) is a single unique instance, it was only
included in tests (a) and (d). See the supplementary for more details.

Level Pred. Container

Test name Acc. T MAE | Acc. T
(a) within distribution 0.98 0.01 20.03 1.00

CNN baseline 0.17 0.33 10.22 0.86
(b) unseen instances 0.79 0.09 0.19 0.95
(c) unseen lig. levels N/A 0.12 10.11 0.81
(d) ambient sound 0.92 0.04 0.12 0.97
(e) unseep lig. levels N/A 0.15 40,15 067

+ ambient sound
() unseen instances | 5916 053 | 077

+ ambient sound

Table 1. Experimental validation results. MAE denotes the mean
absolute error. Liquid levels in our settings are bounded between
0 (empty) and 1.0 (full). Thus, an MAE of e.g. 0.01 is equivalent
to 1% error (chance ~ 30%). Container classification accuracy is
computed over 23 classes, while level accuracy treats level pre-
diction as classification into the predefined set Lstandard (no gp-
plicable to unseen levels). Test scenarios are presented in order
of increasing difficulty, where each subsequent test after (a) re-
quires the model to generalize to additional factors not present in
the training set. See the supplementary for detailed results.

Test (a): within-distribution. Here we test the model’s
ability to predict the fill level of containers included in the
training set, but for novel speaker positions never seen by
the model during training. This corresponds to a task of
measuring the liquid level of non-disposable containers that
have been previously ‘seen’ by the system and require re-
peated testing (e.g., in factories or offices where fill levels
must be monitored regularly). To effect this test, we ran-
domly exclude one of the six speakers for each of the train-
ing set containers. This designates about 20% of our data
for testing. Tab. 1 shows that our model excels at this task,
yielding only 1% mean absolute error (MAE) on the test set.

Test (b): unseen instances. Here we test the model on
five new containers, each similar in type to those in the
training set but not seen during training (e.g., training on
five cans of a six-pack, and testing on the sixth). The train
set contained three to seven examples for each tested con-
tainer. Our model achieves good predictions, with 9% error
over the test set. Notably, as shown in Fig. 7, we found
there could be manufacturing variations between seemingly
identical containers, yielding a deviation in the spectral re-
sponses. Thus, for category (b), we expect that more train-
ing examples should better capture class statistics and im-
prove performance.

Test (c): unseen liquid levels. Here, we test how well
our model generalizes to liquid levels outside the train-
ing distribution. Despite only being trained to predict lev-
els in L%@ndard " we hypothesized that the ordinal nature of
our prediction would lead to reasonable predictions outside
Lsandard Ty test this category, we applied the model to con-



Test name Full model | Single point

(a) within distribution | 0.02 0.05 0.03 20.07

(b) unseen instances 0.09 20.15 0.11 #0.19

® unseen Instances 0.16 10.21 0.18 0.21
+ ambient sound

Table 2. Ablation comparing the full model to a variant that uses
only a single surface point measurement.

tainers with L™e™ predicting the fill level using the [z es-
timator (Eq. (5)). Results show 12% test error.

Test (d): ambient sound. Our model was trained on con-
tainers actively excited by a nearby speaker. However, most
environments already contain ambient noises. In this cat-
egory, we tested the model by playing ambient supermar-
ket background noise. Simulating the ambient sounds using
speakers was necessary because our lab is quiet by design.
Evaluation on this unseen, structureless excitation yields
good predictions (4% error), suggesting our Fourier-based
approach is largely invariant to the excitation audio.

Lastly, for completion, tests (e) and (f) contain addi-
tional combinations of cases (b),(c), and (d) with increas-
ingly complex inference tasks. Nevertheless, our model per-
forms reasonably, even under these edge scenarios (e.g., un-
seen liquid levels tested using ambient sound). Overall, our
model provides good liquid level predictions despite being
trained on a relatively small dataset. Therefore, we believe
that increasing the dataset by orders of magnitude would
improve all the tests in Tab. 1.

CNN-based baseline. We tested several naive approaches
before adopting the transformer architecture in Fig. 4. No-
tably, we implemented an eight-layer convolutional neural
network (CNN) applied independently to each v;, followed
by eight more layers on the concatenated hidden representa-
tions. Each layer uses a kernel size of 15, BatchNorm [24],
and ReLU activation. The first three layers in each compo-
nent also perform stride-2 average pooling with a 3x-sized
kernel. Overall, the CNN had 27M parameters in the first
component and 40M in the second, roughly matching the
Vibration Transformer’s parameter count. Tab. 1 shows this
approach classifies container types reasonably well but fails
to recover liquid levels, performing no better than chance.

Discrete vs. continuous liquid level prediction. Replac-
ing classification over L levels trained with Lgorp by a sin-
gle continuous output trained with £; loss raises the MAE
from 0.01 to 0.20 on the within-distribution test.

Does phase play a pivotal role? The input to our net-
work is the signal magnitude, discarding phase information
(Eq. (1)). We explored versions where we retain the phase
by either concatenating it to the magnitude or by processing
the raw complex ¥ {v;}. Neither performed better than our
base model. See the supplementary for detailed results.
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Figure 6. We explore the learned latent space by projecting [CIS]
token representations using PCA. Marker size reflects liquid level;
color indicates container type. Solid markers (training samples)
form distinct fill-level clusters with smooth container-type transi-
tions along the z-axis. Faded markers (“unseen liq. levels” test
set) appear interpolated between clusters.
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How many points? Our prototype collects three vibra-
tion measurements per container. To evaluate the impact
of multi-point data, we trained models using only one mea-
surement while having the same number of transformer lay-
ers. Tab. 2 shows that while a single point suffices in a
within-distribution setting, harder cases — like unseen in-
stances of known containers — can benefit from multi-point
data which encapsulates the mode shapes.

Exploring the learned latent space. Fig. 6 visualizes our
model’s internal representation of the input data. The plot
is generated by extracting the [clS] tokens from all the train-
ing samples and applying PCA to project these embeddings
onto three principal components. The result reveals six dis-
tinct, elongated vertical clusters matching the six discrete
liquid fill levels present in our training set. Within each
cluster, container types are not randomly scattered; instead,
they exhibit an organized shift along the z-axis, with a grad-
ual transition from one container type to another. The plot
also contains the samples from the “unseen liquid levels”
test (displayed as faded markers). Their position between
clusters suggests that, despite training on discrete levels, the
model learns a latent representation capturing the continu-
ous spectrum of liquid fill levels. The clear structure shown
in Fig. 6 suggests the model learned meaningful features
rather than overfitting to individual training examples, de-
spite our dataset’s relatively small scale.

7. Discussion and limitations

Advantages and limitations relative to prior speckle vi-
brometry systems: Our system was inspired by many
prior works that reduced the image domain to increase cap-
ture speed [3, 45, 53]. Closest to our work is the dual-shutter
camera of Sheinin et al., which can capture multiple surface
points on a single container. However, since it senses only
a single row, capturing multiple containers requires scan-
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Figure 7. Challenging inference examples. (a) Two visually simi-
lar empty containers that exhibit different resonant frequency pro-
files, suggesting subtle manufacturing differences. (b) A different
container shows nearly identical frequency responses across fill
levels, indicating minimal resonance change due to thick insula-
tion. However, noticeable differences do appear in the 100-150 Hz
range, enabling inference.

ning. Conversely, our system can sense multiple contain-
ers at once, making it more practical for applications that
require scanning large item sets (e.g., supermarkets, assem-
bly lines). Beyond scanning 2D grids, our system obviates
the two-camera calibration of [46], avoids light loss from
beam splitting, and suffers no rolling-shutter inter-frame
dead times. Nevertheless, combining both approaches (i.e.,
adding a second reference camera) can enable reducing the
ROI heights to a single pixel, maximizing camera speed.

Performance analysis on various container types: Our
experiments offer insights into the model’s performance
across container types. Firstly, we observed that highly res-
onant containers are more difficult to infer for unseen same-
class containers. This is because their frequency response
may be dominated by a strong resonant peak, whose fre-
quency position can shift due to manufacturing differences
(see Fig. 7(a)). For example, consider a hypothetical limit-
ing case where two same-class containers have distinct res-
onant frequencies of 450 Hz and 400 Hz, respectively. In
this scenario, the model would be unable to distinguish be-
tween an empty second bottle and the first containing some
liquid, as liquid lowers the resonant frequency. Real con-
tainers, however, do not exhibit perfect delta-like frequency
responses, making them amenable to our approach (as in
Fig. 7(a)). We also observed that some vacuum flasks yield
similar vibrations across fill levels due to double-wall insu-
lation (Fig. 7(b)). Fortunately, the response differs enough
at lower frequencies, allowing for a reasonable inference.

Container materials, laser safety, and audio level: We
tested our method on everyday containers and captured
speckle interference in most cases without modifying the
packaging. However, some materials, like glass, polished
metals, and ones having a very low albedo, will be less
amenable to speckle-based vibrometry. For such materials,
like the wine glass in Fig. 2, we placed a small sticker on the
container’s surface to capture the speckle. Such augmenta-
tion can be readily applied for sensing non-disposable con-
tainers (e.g., in industrial factory settings). Each laser point
in our prototype had 14 mW power, making direct eye ex-
posure unsafe. * Thus, eye safety must be considered due to
potential direct exposure from specular surfaces. We eval-
uated how sound volume affects vibration signal SNR (see
supplementary). Results show good SNR at low volumes,
suggesting the method works with minimal sound sources
(e.g., small compact speakers).

Generalizing to novel container classes: We present a
proof-of-concept for generalizing liquid inference to unseen
speaker positions, fluid levels, input sounds, and containers
of the same class. However, our dataset is too small to ex-
plore broader questions: Can a model trained on enough
data generalize to entirely new container classes? Classify
liquid types (e.g., water, soda, oil) or extend to granular ma-
terials (e.g., sand)? Can vibrations serve as a ‘container fin-
gerprint’ for identifying the same container across scenes?
We leave these fascinating questions for future work.

8. Conclusion

We introduced a novel system that “sees” inside opaque
liquid containers by combining a novel imaging system
based on high-speed laser speckle vibrometry with a new
deep learning architecture — the Vibration Transformer —
for semantic analysis of vibration signals. We conducted an
extensive experimental evaluation and provided insightful
analysis of the results to validate our approach and demon-
strate a proof of concept for this novel computer vision
task. Our work also yielded a novel container vibration
dataset that may be beneficial to the vision community be-
yond the scope of the current work. We hope our work in-
spires further research on the semantic inference of hidden
scene properties, such as detecting the contents of closed
packages, fruit ripeness, spoilage in sealed foods, chemical
composition, and other latent attributes.
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