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Abstract

Diffusion models have achieved impressive performance in generating high-quality
and diverse synthetic data. However, their success typically assumes a class-
balanced training distribution. In real-world settings, multi-class data often follow
a long-tailed distribution, where standard diffusion models struggleproducing low-
diversity and lower-quality samples for tail classes. While this degradation is
well-documented, its underlying cause remains poorly understood. In this work,
we investigate the behavior of diffusion models trained on long-tailed datasets and
identify a key issue: the latent representations (from the bottleneck layer of the
U-Net) for tail class subspaces exhibit significant overlap with those of head classes,
leading to feature borrowing and poor generation quality. Importantly, we show
that this is not merely due to limited data per class, but that the relative class im-
balance significantly contributes to this phenomenon. To address this, we propose
COntrastive Regularization for Aligning Latents (CORAL), a contrastive latent
alignment framework that leverages supervised contrastive losses to encourage
well-separated latent class representations. Experiments demonstrate that CORAL
significantly improves both the diversity and visual quality of samples generated
for tail classes relative to state-of-the-art methods. The implementation code is
available at https://github.com/SankarLab/coral-lt-diffusion.

1 Introduction

Diffusion models (DMs) [1, 2] have achieved impressive performance in generating high-quality and
diverse samples across a range of domains. However, their success typically relies on class-balanced
training data. In practice, many real-world datasets exhibit long-tailed class distributions, where a
small number of head classes contain the majority of samples, while many tail classes are significantly
underrepresented [3]. Under such imbalance, DMs often fail to generate faithful and diverse outputs
for tail classes, instead exhibiting feature borrowing, where samples from rare classes display a mix
of tail and head features [4].

Recent work has sought to improve generative models under long-tailed class distributions by
addressing sampling imbalance and promoting class-aware generation. Class-Balancing Diffusion
Models (CBDMs) [5] introduce a regularizer that encourages balanced sampling across classes by
penalizing deviations from a target distribution. In particular, the approach enhances tail generation
based on the model prediction on the head class. This increased reliance on the model prediction
and conditional priors introduces bias and can potentially reduce robustness (e.g., lead to class
entanglement) during training. To address these limitations, Zhang et al. [6] propose a Bayesian
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framework with weighted denoising score-matching and a gating mechanism to selectively transfer
information from head to tail classes. Other works incorporate contrastive learning [7], a key
technique in metric learning [8], to improve class separability. For example, Yan et al. [4] propose
a probabilistic contrastive approach that reduces overlap among class-conditional distributions to
enhance tail-class generation. While these approaches have improved performance in imbalanced
settings, they primarily operate in the ambient image space or introduce latent representations
external to the denoising process. In contrast, relatively little attention has been given to structuring
class representations within the latent space of the denoising network itself, highlighting a key gap in
current methods.

The core generative process relies on a neural architecture that processes data through a lower-
dimensional latent space. Current models predominantly use the U-Net architecture [2, 9], which
incorporates an encoder-bottleneck-decoder structure consisting of convolutional neural networks
to downsample, followed by a multilayer perceptron, and then upsampling by further convolutional
neural networks back into image space. There are skip connections from the encoder to the decoder
to preserve data and feature information and mitigate vanishing gradients. It has been shown that
the U-Net’s bottleneck output carries semantic meaning [10]. One of our key observations is that,
under long-tailed distributions, tail-class samples tend to occupy regions in this latent space that
overlap heavily with head classes. This overlap — which we refer to as representation entanglement
— undermines model’s the ability to preserve class-specific features, leading to poor generative
performance for tail classes. We base this observation on extensive visualizations of long-tailed
datasets for diffusion using various distance-preserving mappings. Figure 1 illustrates this effect for
t-SNE [11] and shows how tail-class representations are absorbed into dominant clusters.

To address this, we propose COntrastive Regularization for Aligning Latents (CORAL), a contrastive
latent alignment method that operates directly on the latent representations within the denoising
network. Inspired by metric learning and its applications to learning representations [12, 13, 14],
CORAL augments the encoder of the denoising U-Net with a projection head applied to the bottleneck
output. The resulting projected embeddings are trained using a supervised contrastive loss, which
is then combined with the standard diffusion objective. This encourages the model to pull together
representations of samples from the same class while pushing apart those from different classes,
thereby promoting class-wise separation in the latent space. In contrast to prior work that applies
contrastive losses in the ambient or auxiliary latent spaces, CORAL regularizes the internal feature
space of the diffusion model itselfprecisely where representation entanglement arises.

Our contributions are summarized as follows:

• Empirical analysis of long-tailed diffusion behavior: We provide evidence that diffusion models
trained on long-tailed data are prone to representation entanglement in the latent space of the
denoising U-Net, particularly at the bottleneck layer, which contributes to low-quality tail-class
generation.

• Identification of representation entanglement as a root cause: We show that the generation
failure for tail classes stems from entanglement in the models latent feature representations induced
by severe class imbalance, revealing a previously unexplored failure mode.

• Proposal of CORAL: We introduce COntrastive Regularization for Aligning Latents (CORAL), a
contrastive latent alignment method that encourages separation between class-wise latent represen-
tations by augmenting the diffusion model with a supervised contrastive loss applied to projected
bottleneck features.

• Improved tail-class generation: Through extensive experiments on several long-tailed datasets
(CIFAR10-LT, CIFAR100-LT [15], CelebA5 [16], ImageNet-LT[17]), we demonstrate that CORAL
significantly improves both the diversity and visual fidelity of tail-class samples, outperforming prior
approaches. Moreover, we provide qualitative and quantitative evidence that CORAL promotes
class-wise separation in the latent space of the denoising network, directly addressing the class
entanglement that impairs tail-class generation.

1.1 Related Work

Diffusion Models for Imbalanced Data Standard methods for class-conditioned diffusion sampling
include classifier guidance (CG) [19], which requires a separately trained classifier, and classifier-free
guidance (CFG) [18], which jointly trains conditional and unconditional denoisers. While widely
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Figure 1: t-SNE visualizations of U-Net bottleneck features. The dataset visualized is CIFAR10-LT
where the tail-to-head ratio is 0.01, i.e., the head class (airplane) is 100 times more represented than
the tail class (truck), with an exponential decay in-between. Real CIFAR10-LT samples are passed
through models trained under different settings. Shown are (left) DDPM [18] trained on the original
balanced CIFAR-10 dataset, (middle) DDPM trained on CIFAR10-LT with an imbalance ratio of
0.01, and (right) CORAL trained under the same imbalanced setting. In the balanced case, class
representations are moderately separated, though some overlap remains. Under imbalance, DDPM
exhibits substantial overlap between head and tail classes, an effect we refer to as representation
entanglement, which degrades generation quality for tail classes. CORAL mitigates this effect by
promoting class-wise separation in the latent space.

used, both CG and CFG struggle to generate diverse, high-quality samples for underrepresented tail
classes [4].

Several recent approaches have been proposed to improve tail-class performance in diffusion models,
most of which operate in the ambient (image) space. For example, Class-Balancing Diffusion Models
(CBDMs) [5] introduce a regularizer that penalizes deviations from a balanced class distribution,
guiding the model to allocate more capacity to underrepresented classes during training. Time-
dependent importance weighting [20] adjusts the loss based on sampling time to mitigate bias,
while oriented calibration [6] uses Bayesian gating mechanisms to transfer knowledge from head to
tail classes (H2T) during unconditional generation and from tail to head (T2H) during conditional
generation. DiffROP [4] applies a contrastive regularization based on KL divergence to reduce
class-conditional overlap at the output level.

In contrast to these ambient-space approaches, CORAL operates directly in the latent space of
the diffusion model. Specifically, CORAL introduces a supervised contrastive loss on projected
bottleneck features from the denoising U-Net, encouraging class-wise separation through metric
learning. This latent-space regularization provides a more direct and structured means of disentangling
class representations.

Relatedly, Han et al. [21] propose LDMLR, which generates synthetic latent features for long-tailed
datasets using a DDIM trained on encoder representations from a fixed model. While effective for
long-tailed recognition, LDMLR operates as a post hoc feature augmentation method and does not
modify the generative process. For the same objective of long-tailed recognition, Shao et al. [22]
use a chosen classifier’s feature space to guide the diffusion model for the tail classes and filter out
out-of-distribution samples during generation. In contrast, CORAL directly regularizes the latent
space during training, promoting class separation within the diffusion model without relying on a
separate inference model.

Contrastive Learning in Latent-Variable Generative Models Contrastive learning (CL) is a
widely adopted technique for structuring embedding spaces in supervised, self-supervised, and metric
learning settings [7, 8]. Recent work has extended CL to generative models: DiffROP [4] applies
a probabilistic contrastive loss in the ambient space to reduce overlap between class-conditional
output distributions in diffusion models; CONFORM [23] introduces contrastive regularization over
attention maps to improve semantic alignment in text-to-image generation. TVAE [13] and Tri-VAE
[14] both incorporate a triplet loss into a variational autoencoder (VAE) framework: TVAE for
general representation learning and Tri-VAE for anomaly detection. While TVAE uses a standard
VAE architecture, Tri-VAE employs a U-Net with a projection head at the bottleneck, similar in spirit
to CORAL. However, neither method involves diffusion and both modify the decoder path.
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2 Preliminaries and Problem Setup
2.1 Diffusion Models

Generative DMs were first introduced in [1], which formulated data generation as a Markovian
denoising process grounded in non-equilibrium thermodynamics. The approach was later popularized
by Ho et al. [2], who introduced a simplified objective and fixed variance schedule, significantly
improving sample quality and training stability.

DMs generate data by gradually adding noise to a sample in a forward (noising) process and then
learning to denoise in a reverse (denoising) process. The forward process gradually corrupts a data
sample x0 ∼ q(x0) over T discrete time steps by adding Gaussian noise:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) and q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), 1 ≤ t ≤ T,

(1)
where {βt ∈ (0, 1)}Tt=1 is a predefined variance schedule. As t increases, the distribution of xt

transitions from close to q(x0) to approximately standard Gaussian. One can express the marginal
distribution at any timestep t as q(xt|x0) = N (xt;

√
ᾱtx0, (1− ᾱt)I), where ᾱt =

∏t
s=1(1− βs).

The reverse process is modeled by a neural network that approximates the conditional distribution
q(xt−1|xt) using a learnable Gaussian distribution given by

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) and pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt), (2)

where the terminal distribution is typically set to p(xT ) = N (0, I) and the variance is often fixed
as Σθ(xt, t) = σ2

t I. Rather than predicting µθ directly, it is common to reparameterize the mean in
terms of the added noise εθ(xt, t) and train the network to predict this noise.

This leads to the simplified training objective introduced by [2], in which the model εθ(xt, t) is
trained to predict the Gaussian noise ε ∼ N (0, I) that was used to perturb the clean input x0 into a
noised version xt, for a randomly sampled timestep t ∼ U({1, . . . , T}):

Ldiff = Et,x0,ε

[
||ε− εθ (xt, t)||22

]
. (3)

In practice, the noise predictor εθ is implemented using an image-to-image U-Net parameterized by
θ, and the expectation operator is replaced by the empirical sample average for every t.

Classifier-Free Guidance When label information is available, classifier-free guidance (CFG)
[18] has become a widely adopted technique for improving conditional diffusion models. Instead
of training a separate classifier to guide generation, CFG modifies the denoising model εθ in (3) to
support both conditional and unconditional generation. During training, the model εθ(xt, t,y) is
optimized using class labels y; for a chosen fraction puncond of samples, the training process ignores
labels to learn the unconditional model with y = ∅.

Finally, at sampling time, conditional guidance is applied by combining the conditional and uncondi-
tional predictions to recover x0 from xt:

εCFG
θ (xt, t,y) = (1 + ω)εθ(xt, t,y)− ωεθ(xt, t), (4)

where ω > 0 is a guidance weight controlling the strength of conditioning.

2.2 Metric Learning and Contrastive Approaches

Metric learning aims to map inputs into an embedding space where semantically similar examples
are close together and dissimilar ones are far apart. Instead of designing distance functions manually,
modern methods use neural networks to learn transformations that make standard distances (e.g.,
Euclidean or cosine) meaningful for the task. This learned embedding captures complex similarity
structures aligned with supervision.
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Figure 2: CORAL architecture and workflow on CelebA-5. (a) The five-class CelebA-5 training
data is input to the U-Net architecture. (b) Denoising U-Net. The white inset shows an actual
t-SNE visualization of the U-Net latent representations due to CORAL. (c) CORAL’s addition to the
standard DDPM architecture: a projection head MLP consisting of a single dense layer followed
by normalization. (d) The output from the U-Net and the projection head are used to compute the
corresponding diffusion and contrastive losses. (e) The contrastive loss is scaled by a time-dependent
weighting function, λ(t), and added to the standard diffusion loss to obtain the CORAL loss. (f)
Samples are obtained from a trained CORAL model.

2.2.1 Contrastive Loss Functions

Contrastive loss functions are a fundamental tool in metric learning, designed to shape embedding
spaces so that semantically similar samples are close together, while dissimilar samples are pushed
apart. Early formulations, such as the triplet loss [24], enforce a margin between anchor-positive
and anchor-negative pairs using triplets of labeled samples where each triplet contains an anchor, a
positive (same class as anchor), and a negative (different class from anchor). While effective, triplet
loss can suffer from slow convergence and inefficient sampling. More recent advancements such
as the supervised contrastive loss (SupCon) [25] generalize this idea by leveraging all positives and
negatives in a mini-batch, offering greater stability and improved sample efficiency during training.

Supervised Contrastive Loss SupCon [25] generalizes triplet loss by comparing each anchor to
multiple positives and negatives within a batch, improving both convergence stability and overall
performance. Let z ∈ Rd denote the `2-normalized embedding of a sample. The loss is defined as:

LSupCon = −
∑
i∈I

1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/τSC)∑

s∈S(i) exp(zi · zs/τSC)
(5)

where I is the set of all indices in the batch, S(i) = I \ {i} denotes the set of all sample indices
in the batch excluding the anchor i, P (i) ⊆ S(i) is the set of indices corresponding to positive
samples that share the same class as the anchor, and τSC is a temperature parameter that controls the
concentration (sharpness) of the similarity distribution. Lower values of τSC (e.g., τSC ≈ 0.1) sharpen
the distribution, placing greater emphasis on harder positive and negative pairs and increasing the
gradient magnitude (|∇LSC| ∝ 1/τSC).

3 Our Method

In this section, we present our method, COntrastive Regularization for Aligning Latents (CORAL),
designed to enhance class separation in diffusion models trained on long-tailed datasets. The core
insight behind CORAL is that the latent space of the denoising U-Net, specifically its bottleneck
layer, plays a central role in shaping generative behavior. In long-tailed settings, we observe that
latent representations of tail-class samples often overlap with those of head classes, resulting in
representation entanglement and degraded generation quality (see Figure 1 for a visualization of the
CIFAR10-LT dataset). Our comparisons between models trained on balanced and imbalanced data
indicate that this overlap arises from head classes dominating parameter updates, resulting in less
structured latent representations for tail classes.

CORAL introduces two targeted modifications to standard diffusion training: a lightweight projection
head applied to the U-Net bottleneck and a supervised contrastive loss term. These additions allow
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CORAL to regularize the latent space directly, promoting intraclass clustering and interclass separa-
tion during training. The contrastive signal complements the diffusion objective, helping maintain
semantic distinctions across classes, especially for underrepresented ones. Figure 2 illustrates the
CORAL framework using CelebA-5 [16], a 5-class LT subset of CelebA [26], as an example dataset.

Architectural Modification While the forward diffusion process operates in the high-dimensional
ambient space, the U-Net processes information through a compressed latent space, with the bottle-
neck layer playing a central role in the model’s representational capacity. Prior work has shown that
this bottleneck encodes semantically meaningful features [10], making it a natural point for inter-
vention. CORAL leverages this insight by adding a small projection head fφ,e.g. a fully-connected
linear layer followed by a normalization layer, to the bottleneck output.

CORAL builds on established principles of contrastive representation learning, where projection
heads have been shown to capture task-related information more effectively than direct feature
space constraints [12, 27]. The projection head serves two critical functions: (1) it decouples the
contrastive objective from the main diffusion features, allowing the model to learn class-discriminative
embeddings in an auxiliary space while the bottleneck continues to serve the generative objective [12],
and (2) it preserves intraclass diversity by preventing the contrastive loss from directly collapsing
intraclass variations in the bottleneck representations [27]. This complementary structure allows both
the diffusion and contrastive objectives to improve simultaneously.

During training, we apply a supervised contrastive loss on the projected embeddings to encourage
class-wise separation while the main bottleneck features continue to serve the diffusion objective.
Once trained, the U-Net bottleneck has learned to produce well-separated class-specific features, and
the projection head is no longer needed. This design ensures that CORAL adds zero computational
overhead during sampling and remains fully compatible with standard diffusion sampling procedures.
The learned structure in the bottleneck representations persists and guides generation without requiring
the auxiliary projection network.

Table 4 in Appendix B demonstrates that CORAL’s latent space intervention consistently outperforms
ambient space approaches in the style of DiffROP [4]. Ambient-space approaches enforce separation
on already generated outputs, which can reduce intraclass diversity by imposing constraints post-hoc.
In contrast, CORAL learns inherently separated representations at the compressed bottleneck layer
where class overlap occurs during the generative process itself.

Training Objective The overall training objective for CORAL augments the standard diffusion
loss with a contrastive alignment term applied to the projected latent representations to obtain

LCORAL = Ldiff + λ(t) · Lcon, (6)

where Ldiff is the standard diffusion training loss, such as the noise prediction objective defined in (3),
Lcon is a contrastive loss applied to the projected bottleneck features, and λ(t) is a time-dependent
weighting function. While we use Lcon = LSupCon in our experiments, the framework is general and
supports any contrastive loss. The weighting function λ(t) is defined as:

λ(t) = w · exp
(
1− t/T

τr

)
, t ∈ {0, 1, . . . , T} (7)

where w is the base contrastive weight, T is the total number of diffusion steps, and τr is the
temperature parameter that controls the decay rate. Although in general τr > 0, our results with the
SupCon loss suggest that a range between [0.5, 1.0] works best.

This dynamic weighting scheme places greater emphasis on the contrastive objective during the
earlier (less noisy, t ≈ 0) denoising steps, where a meaningful semantic structure is more recoverable,
and gradually reduces its influence at later steps (t ≈ T ), where noise dominates the input. This
encourages more discriminative latent representations during the most informative stages of training.

Training Procedure To train our proposed CORAL method, we modify the standard diffusion
training procedure to incorporate both contrastive latent regularization and classifier-free guidance.
Algorithm 1 summarizes the full training pipeline. For each mini-batch, we first sample diffusion
timesteps and generate noisy inputs via the standard DDPM forward process. In line with CFG
training protocol [18], we randomly drop class labels with a fixed probability to enable joint training
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of conditional and unconditional denoising. The noisy inputs and (possibly masked) labels are passed
through the U-Net to compute the standard diffusion loss. Simultaneously, we extract bottleneck
features from the U-Net encoder, project them via the projection head fθ, and compute a supervised
contrastive loss using the original (unmasked) class labels. We then compute the total loss LCORAL
given in (6) Model parameters are updated using backpropagation on LCORAL.

Algorithm 1 CORAL Training Procedure

Input: Dataset D, model εθ, projection head fφ, total diffusion steps T , guidance dropout
probability puncond, contrastive weight schedule λ(t)

Initialize: Parameters θ, φ
for each mini-batch of size B do

for each sample (x
(i)
0 , y(i)) in mini-batch do

Sample timestep t ∼ U({1, . . . , T})
Sample noise ε(i) ∼ N (0, I)

Compute noised inputs: x(i)
t =

√
ᾱtx

(i)
0 +

√
1− ᾱtε

(i)

Drop labels with probability puncond: ỹ(i) = ∅ w.p. puncond

Predict noise: ε̂(i) = εθ(x
(i)
t , t, ỹ(i))

Extract bottleneck features h(i)
t of x(i)

t from U-Net encoder
Compute projected embeddings: z(i)t = fφ(h

(i)
t )

end for
Compute diffusion loss: Ldiff =

1
B

∑B
i=1 ‖ε(i) − ε̂(i)‖22

Compute contrastive loss Lcon using {(z(i)t , y(i))}Bi=1 (e.g., using (6) for SupCon)
Compute total loss: LCORAL = Ldiff + λ(t) · Lcon

Update (θ, φ) using gradients of LCORAL

end for

4 Experimental Setup and Results

4.1 Experimental Setup

Datasets We evaluate CORAL on long-tailed (LT) datasets: CIFAR10-LT, CIFAR100-LT [28],
CelebA-5 [26], and ImageNet-LT [17]. CIFAR10/100 datasets contain 32× 32 color images broken
into 10 and 100 classes. For CIFAR10-LT and CIFAR100-LT, we simulate long-tailed distributions
by applying an exponential decay to the class frequencies, controlled by an imbalance factor ρ ∈
{0.01, 0.001}. This results in the most frequent (head) class appearing 1/ρ times more often than the
rarest (tail) class, with intermediate classes following an exponentially decreasing trend. CelebA-5
consists of 64× 64 resized face images in 5 classes corresponding to hair color. CelebA-5 is naturally
imbalanced. We construct ImageNet-LT by sampling a subset of ImageNet-2012 following the Pareto
distribution with power value α = 6. ImageNet-LT has 1,000 clases with class sizes ranging from 5 to
1,280 images, we resize images to 64× 64 resolution. Additional details can be found in Appendix A.

Implementation Our implementation builds on the codebase from [5], with modifications to
support contrastive latent regularization. We use a U-Net backbone with multi-resolution attention
and dropout, consistent across all experiments. We use the SupConLoss implementation from [29].
Training was run on NVIDIA A100 (80 GB SXM) and H100 GPUs. Key training and architectural
hyperparameters are summarized in Appendix A.

Evaluation Metrics We compute the standard FID [30] and IS [31] to capture both quality and
diversity of the generated images. We additionally compute recall for distributions (PRD) and
improved recall [32] (labeled as Recall in Table 1). Standard PRD uses k-means clustering on
InceptionV3 features with 2000 clusters (20 times the number of classes for CIFAR-100) to compute
F8 and F1/8 scores [33]. F8 emphasizes recall (diversity) and F1/8 emphasizes precision (quality).
The improved PRD metrics employ k-nearest neighbor manifold estimation (k = 3) on VGG16
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Table 1: Comparison of methods on long-tailed image generation benchmarks.
Dataset Method FID (↓) IS (↑) F8 (↑) Recall (↑) F1/8 (↑)

CIFAR10-LT
(ρ = 0.01)
32× 32

DDPM [2] 6.17 9.43 0.87 0.52 0.94
CBDM [5] 5.62 9.28 0.96 0.57 0.95
T2H [6] 7.01 9.63 0.89 0.54 0.95
CORAL (ours) 5.32 9.69 0.97 0.59 0.97

CIFAR10-LT
(ρ = 0.001)
32× 32

DDPM [2] 13.05 9.10 0.87 0.53 0.85
CBDM [5] 12.74 9.05 0.87 0.56 0.89
T2H [6] 12.80 8.97 0.87 0.55 0.88
CORAL (ours) 11.03 9.13 0.90 0.56 0.89

CIFAR100-LT
(ρ = 0.01)
32× 32

DDPM [2] 7.70 13.20 0.87 0.50 0.89
CBDM [5] 6.02 12.92 0.91 0.56 0.90
T2H [6] 6.78 12.97 0.88 0.54 0.89
CORAL (ours) 5.37 13.53 0.92 0.59 0.91

CelebA-5
64× 64

DDPM [2] 10.28 2.90 0.90 0.52 0.89
CBDM [5] 8.74 2.74 0.92 0.57 0.90
T2H [6] 9.50 2.63 0.89 0.53 0.87
CORAL (ours) 8.12 2.97 0.94 0.59 0.92

Table 2: Comparison of methods on ImageNet-LT.
Dataset Method FID (↓) IS (↑) Recall (↑)

ImageNet-LT
64× 64

DDPM [2] 17.08 21.03 0.39
CBDM [5] 22.66 17.13 0.42
T2H [6] 18.59 19.15 0.44
CORAL (ours) 16.11 24.17 0.48

features [34], providing more robust estimates of sample quality and coverage. These metrics
collectively provide a comprehensive assessment; in particular, F1/8 measures generation fidelity
while improved recall and F8 capture the diversity of the generated distribution. FID captures a
mixture of both quality and diversity.

For overall metric calculations, we use the balanced version of the datasets for the real data to ensure
fair evaluation. All metrics are computed on 50,000 generated samples to ensure statistical reliability.
During sampling, class labels are drawn from a uniform distribution across all classes for equal
representation.

Baselines We compare CORAL’s performance against that of DDPM, CBDM, and T2H for the
following datasets: CIFAR10-LT with ρ = 0.01 and ρ = 0.001, CIFAR100-LT, CelebA-5 and
ImageNet-LT. We use the publicly available implementations for DDPM [2], CBDM [5], and T2H [6]
to train the models with provided parameters, where available, generate synthetic samples, and report
results for each of these methods.

4.2 Experimental Results

Comparison of Metrics In Table 1 and Table 2, we compare the performance of CORAL against
standard DDPM, as well as state-of-the-art baselines CBDM and T2H across multiple long-tailed
datasets. CORAL consistently outperforms all baselines across all datasets and evaluation metrics,
demonstrating its effectiveness in improving both the quality and diversity of generated samples.
CORAL demonstrates strongest improvements on metrics that capture diversity and distribution
coverage while maintaining improved performance on quality focused metrics

On the large scale ImageNet-LT benchmark with 1,000 classes, CORAL’s advantages are most
evident, outperforming all baselines by significant margins. Ambient space regularization approaches
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exhibit degraded performance scenarios with large numbers of classes, whereas CORAL’s latent
space intervention maintains consistent performance.

Per-Class FID Figure 3 presents the per-class FID scores for CIFAR10-LT with ρ = 0.001,
representing a more extreme class imbalance. CORAL consistently outperforms baseline methods
across nearly all classes. The gains are particularly notable for the tail classes. Whereas both CBDM
and T2H exhibit degraded performance on tail classes, CORAL maintains stable performance across
both head and tail classes. For per-class FID analysis in Figure 3, we generate 5K samples for each
class and compare against the 5K real samples from the balanced dataset for that specific class.

airplane auto bird cat deer dog frog horse ship truck
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Figure 3: Per-class FID (↓) for the CIFAR10-LT dataset with an imbalance factor ρ = 0.001

Latent Space Visualizations Our experimental results clearly show that CORAL achieves better
performance by explicitly enforcing class-wise separation in the latent space. In Figure 1, we present
t-SNE visualizations of U-Net bottleneck representations for CIFAR10-LT with an imbalance ratio
of ρ = 0.01, comparing models trained with DDPM (on both the original balanced CIFAR-10 and
CIFAR10-LT) and with CORAL on CIFAR10-LT. Figure 2 visualizes the separated representations
(using t-SNE) learned by CORAL for the CelebA-5 dataset. Additional visualizations for the other
datasets using both t-SNE and UMAP [35] are included in Appendix D. In particular, our plots for a
balanced dataset with a limited number of samples per class show that the observed representation
entanglement arises predominantly from class imbalance in the training distribution.

Generation Quality Figure 4 presents generated samples from CBDM, T2H, and CORAL for the
tulips class (class 92) in CIFAR100-LT. Visually, CORAL produces samples that are both more
diverse and of higher fidelity compared to the other methods. These qualitative differences align with
the quantitative improvements observed in Table 1, where CORAL achieves superior performance
across all evaluated metrics. CBDM suffers from mode collapse by producing smaller flowers with
excessive grass backgrounds borrowed from head animal classes. T2H shows diminished class
fidelity as tulips resemble other flower types due to over-transfer from head to tail classes. In contrast,
CORAL generates tulips that reflect appropriate scale and structure, with distinctive features and
backgrounds consistent with the training data. This demonstrates CORALs ability to balance the
trade-off between preserving tail-class characteristics and promoting sample diversity. Additional
visualizations are provided in Appendix B.

Ablation Studies We have performed extensive ablation studies for various hyperparameters,
including the SupCon temperature τSC, the time-dependent weighting function temperature τr, and
the CFG sampling parameter ω; these plots can be found in Appendix C.

5 Concluding Remarks
Broader Impacts As generative models have become more widely utilized in practice, their
representativeness becomes more impactful. Tail class generation has become a key method to
address long-tailed recognition tasks such as disease detection where real data is limited. While
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Figure 4: Comparison of generated samples from the class tulips (class 92) in CIFAR100-LT,
ρ = 0.01. CBDM (left), T2H (middle), and CORAL (right). CORAL shows increased diversity and
fidelity relative to existing approaches.

generated images have the potential to cause harm, e.g. deepfakes or bias amplification, CORAL
helps to mitigate the bias introduced by dataset imbalance.

Future Directions While our work focuses on class conditional generation with categorical imbal-
ance, the core principle of latent space disentanglement through contrastive regularization extends
naturally to more complex generative settings. A particularly promising application domain is the
fine tuning of large scale text-to-image (T2I) models for specialized tasks. When pretrained models
like Stable Diffusion [36] are adapted to domain specific applications, such as medical imaging,
scientific visualization, or specialized industrial use cases, the fine tuning datasets often exhibit severe
imbalance. For T2I models that employ U-Net architectures, CORAL’s approach of applying con-
trastive regularization at these bottleneck layers could prevent rare concepts from becoming entangled
with common ones. Exploring CORAL’s applicability to parameter efficient fine tuning methods,
e.g. LoRA [37], for domain adaptation and investigating whether similar contrastive interventions
can improve generation quality for underrepresented concepts constitute promising directions for
ensuring equitable representation across specialized domains.

Limitations While CORAL is able to produce diverse and high quality images when trained on
heavily imbalanced datasets, its power comes at the cost of additional computational complexity.
This limitation is shared by all comparable methods, though it can be reduced by finetuning with the
CORAL loss rather than fully training.

Conclusions Ensuring high-quality sample generation for tail classes of long-tailed datasets remains
a major challenge. In addressing this challenge, we have revealed a previously unknown cause for the
poor performance of DMs: the (U-Net) latent representations for the tail classes completely overlap
with those for the head classes, thereby severely limiting the guidance of the former. Our method,
CORAL, significantly enhances both the diversity and fidelity of diffusion model outputs relative
to the state-of-the-art by separating and realigning the latent space representations, especially for
the long-tail classes using contrastive losses. We have demonstrated that CORAL performs well for
datasets with both extreme imbalance and many classes, and our results suggest that disentangling in
the latent space is more effective than rebalancing and increased guidance in the ambient space.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We propose CORAL which improves tail class generation by separating classes
in the latent space.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, limitations are included in the conclusion Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: No theoretical results are included
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, experimental details can be found in the experimental setup Section 4.1
and in the appendix material, and hyperparameters are listed in the appendix material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The code is available at the GitHub repository linked in the abstract and will
be released publicly after review period.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Included in experimental setup Section 4.1 and in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not included due to resource limitations.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Discussion on computational resources is in the experimental setup Section 4.1
and in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: No ethical concerns.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, broader impacts are included in the concluding remarks Section 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Models presented are trained on publicly available data and have limited
potential for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: License respects the licenses of cited works.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets released.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are not used in non-standard or original ways.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Dataset and Experimental Setup Details

Long-Tail Datasets Balanced datasets can be artificially transformed into long-tail (LT) datasets by
assigning class sample counts according to a geometric progression governed by an imbalance ratio
ρ. In this formulation, the head class has the maximum number of samples, N , while the tail class
has approximately ρN samples. The number of samples in class i is given by:

ni =
⌊
Nρ

i
C−1

⌋
(8)

where N is the number of samples in the head class, ρ is the imbalance ratio (0 < ρ < 1),
i ∈ {0, 1, . . . , C − 1} is the class index, and C is the total number of classes.

CIFAR10-LT and CIFAR100-LT The original CIFAR10 and CIFAR100 datasets each consist of
a training set with 50k images uniformly distributed across 10 or 100 classes, respectively. Their
long-tailed variants, CIFAR10-LT and CIFAR100-LT [28], introduce an exponential decay in class
frequency from class 0 to the final class. Common long-tail imbalance ratios include ρ = 0.01 and
ρ = 0.001. Specifically for ρ = 0.01, CIFAR10-LT contains 12,406 images, with the first head class
comprising 5,000 samples and the last tail class only 50. CIFAR100-LT has 10,847 images, with the
head class containing 500 samples and the tail just 5.

Experiments on CIFAR10-LT and CIFAR100-LT were conducted using NVIDIA A100 80GB SXM
GPUs. Training took approximately 7 hours, and sampling required 8 hours. For DDPM, CBDM,
and CORAL, the hyperparameters used were: a learning rate of 2× 10−4, batch size of 128, Adam
optimizer with default momentum parameters, dropout rate of 0.1, 150k training steps, and T = 1000
diffusion steps. For T2H, all settings remained the same except for the number of training steps,
which was increased to 200k.

CelebA-5 CelebA-5 [16] is a five-class subset of the CelebA dataset, composed of samples labeled
with exactly one of the following hair colors: black, brown, blonde, gray, or bald. Samples with
multiple or missing labels are excluded. The dataset is naturally imbalanced, with black- and
brown-haired individuals significantly outnumbering those with gray hair or baldness.

Experiments on CelebA-5 were run on NVIDIA H100 GPUs. Training took approximately 18 hours,
and sampling required 22 hours. All models were trained with a learning rate of 3× 10−4 and a batch
size of 128, with all remaining hyperparameters kept consistent with the CIFAR experiments.

ImageNet-LT ImageNet-LT is a long-tailed variant of ImageNet-2012 constructed by [17] by
sampling a subset following the Pareto distribution with power value α = 6. The dataset comprises
115.8k images from 1000 categories, with a maximum of 1,280 images per class and a minimum of 5
images per class.

Experiments on ImageNet-LT were conducted using NVIDIA H100 GPUs. All models were trained
with a batch size of 128, 300k training steps, and T = 1000 diffusion steps. For evaluation, we
generated 50k samples uniformly across all classes and compared against the balanced validation set
containing 20k images as the real samples.

Hyperparameters Table 3 summarizes the regularization hyperparameters and sampling guidance
scale ω used for each method and dataset. The sub-tables correspond to DDPM (top left), CBDM (top
right), T2H (bottom left), and CORAL (bottom right), respectively. For CORAL, the base contrastive
weight, w, in (7) was set to 0.01.

We follow the code implementation for CBDM [5] with the regularization weight τcb = τ/T , where
τ is the original weight defined in [5], and T is the total number of diffusion timesteps. For T2H
[6], we use the code implementation with direct distance-based weighting that does not require a
regularization parameter.
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Table 3: Hyperparameter settings for each method.

DDPM [2]
Dataset ω

CIFAR10-LT (ρ = 0.01) 0.8
CIFAR10-LT (ρ = 0.001) 1.0
CIFAR100-LT (ρ = 0.01) 0.8
CelebA-5 0.6

CBDM [5]
Dataset ω τcb

CIFAR10-LT (ρ = 0.01) 1.0 1.0
CIFAR10-LT (ρ = 0.001) 1.8 1.0
CIFAR100-LT (ρ = 0.01) 1.6 1.0
CelebA-5 1.0 50.0

T2H [6]
Dataset ω

CIFAR10-LT (ρ = 0.01) 1.0
CIFAR10-LT (ρ = 0.001) 1.7
CIFAR100-LT (ρ = 0.01) 1.5
CelebA-5 1.0

CORAL (ours)
Dataset ω τSC τr

CIFAR10-LT (ρ = 0.01) 0.6 0.12 0.8
CIFAR10-LT (ρ = 0.001) 1.0 0.10 1.0
CIFAR100-LT (ρ = 0.01) 0.8 0.09 1.0
CelebA-5 0.7 0.12 0.8

B Additional Results

Comparing Contrastive Regularization in Ambient and Latent Space CORAL differs funda-
mentally from ambient space contrastive regularization methods (similar to DiffROP [4]) in both its
approach and effectiveness. CORAL operates directly within the diffusion model’s internal latent
space, specifically at the U-Net bottleneck layer augmented with a projection head, where semantic
representations are formed and class-discriminative embeddings are learned. This architectural differ-
ence is crucial because CORAL addresses the representation entanglement where tail-class samples
overlap heavily with head-class representations. In contrast, ambient space contrastive regularization
methods enforce separation constraints on the image space.

Dataset Method FID (↓) IS (↑) Recall (↑)

CIFAR10-LT
(ρ = 0.01)

DDPM [2] 6.17 9.43 0.52
Ambient Space Contrastive 5.85 9.18 0.55
CORAL (ours) 5.32 9.69 0.59

ImageNet-LT
64× 64

DDPM [2] 17.08 21.03 0.39
Ambient Space Contrastive 24.73 15.12 0.34
CORAL (ours) 16.11 24.17 0.48

Table 4: Comparison of contrastive regularization strategies on CIFAR10-LT and ImageNet-LT.

Table 4 provides empirical validation of CORAL’s design choices. The results show that learned
separation in the latent space scales more effectively than imposed separation in the ambient space.
As the generation task becomes more challenging, ambient space methods not only struggle but
actually degrade below baseline DDPM performance in distributional coverage as the class space
grows, whereas CORAL maintains its effectiveness across all metrics.

Generated Images We generate images for CIFAR10-LT, CIFAR100-LT, and CelebA-5 to evaluate
the effectiveness of CORAL in addressing the challenges of diffusion models trained on long-tailed
datasets. Randomly selected examples are shown in Figures 5 to 7, illustrating how our contrastive
latent alignment framework improves both the quality and diversity of generated samples, particularly
for tail classes.

Figures 5 and 6 show generated samples for CIFAR10-LT and CIFAR100-LT, respectively, with
ρ = 0.01. CORAL successfully disentangles latent representations to generate high-quality, diverse
samples for the underrepresented classes. CORAL preserves the distinctive characteristics of each
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Figure 5: Generated samples produced by CORAL on the CIFAR10-LT dataset with ρ = 0.01.

Figure 6: Generated samples produced by CORAL on the CIFAR100-LT dataset with ρ = 0.01.
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Figure 7: Generated samples produced by CORAL on the CelebA-5 dataset.

class, effectively mitigating feature borrowing from head to tail classes. The visual quality of
these results highlights the effectiveness of CORALs latent space regularization in promoting class
separation and maintaining clean, well-structured features in the generated outputs.

Figure 7 displays generated samples for CelebA-5, demonstrating CORALs ability to handle naturally
imbalanced data. The dataset exhibits pronounced class imbalance across five hair color categories
(black, brown, blond, gray, and bald) with the head class containing nearly 15 times more samples
than the tail class. In such imbalanced settings, latent representations for tail classes often become
entangled with those of head classes. CORAL effectively preserves class-specific features, producing
diverse and realistic images in all categories.

C Ablation Studies

Effects of Hyperparameters Figure 8 illustrates the effect of three key hyperparameters on
CORALs performance for CIFAR10-LT with imbalance ratio ρ = 0.01, measured by FID. The
supervised contrastive temperature, τSC, in (5) achieves optimal performance at τSC = 0.12, beyond
which FID increases sharply.

For the decay rate temperature, τr, in (7), the best performance is observed at τr = 0.8. FID remains
relatively stable for 0.7 ≤ τr ≤ 0.9, with a steep increase outside of this range. These findings
support our hypothesis that contrastive regularization is most effective when applied toward the end
of the denoising process (i.e., when t ∼ 0).

Finally, for the CFG scale, ω, in (4), FID traces a convex curve with optimal performance at ω = 0.6.
This indicates a trade-off between leveraging class-conditional information (ω > 0) and avoiding over-
conditioning that could limit sample diversity (ω � 0.6). These results underscore the importance of
careful hyperparameter tuning in CORAL to achieve an optimal balance between sample fidelity and
diversity, particularly for long-tailed datasets.
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Figure 8: Effect of regularization hyperparameters and guidance scales on FID. From left to
right: FID vs τSC, FID vs τr, and FID vs ω for the CIFAR10-LT dataset. Coral stars mark the lowest
FID achieved for each hyperparameter.

CORAL on Balanced Datasets We also evaluate CORAL on two balanced datasets, CIFAR10 and
CIFAR100, using FID as the performance metric, as shown in Table 5. Even in the absence of class
imbalance, CORAL outperforms DDPM and CBDM in terms of FID. This improvement stems from
CORALs contrastive loss, which promotes class-wise separation in the latent space even in balanced
settings, as illustrated in Figure 9. Importantly, this separation is achieved without compromising
fidelity or diversity, as reflected in the consistently strong FID scores.

Table 5: Comparison of methods on CIFAR10 and CIFAR100 image generation.
Dataset Method FID (↓)

CIFAR10
DDPM [2] 3.84
CBDM [5] 3.61
CORAL (ours) 3.30

CIFAR100
DDPM [2] 3.91
CBDM [5] 3.37
CORAL (ours) 2.86

Impact of Sample Size in Balanced Datasets Figure 10 illustrates the impact of total sample
size on latent representations from DDPM for the balanced CIFAR10 dataset. As the number of
training samples per class decreases from 5k to 100, we observe a noticeable reduction in cluster
formation in the latent space, with representations becoming increasingly scattered. This suggests
that in such a highly overparameterized regime, the model memorizes individual samples rather than
learning generalizable class-level structure. We note that this type of scattering is visually distinct
from the entanglement observed in DDPM under class imbalance (see, for example, Figure 12). For
imbalanced datasets, models have more available information on head than on tail classes, allowing
them to learn better representations for the former than the latter. This does not lead to scattering, but
rather to a distinct overlap of tail class representation clusters within head class clusters.

Figure 11 illustrates the memorization behavior of DDPM on the balanced CIFAR10 dataset with 50
samples per class and guidance strength ω = 0.1. For each class, the panel displays two rows of 10
images: the bottom row (outlined in magenta) shows samples generated by DDPM, while the top
row presents the most visually similar real training samples corresponding to each generated image.
The generated samples are near-identical to the training samples, differing at most by a horizontal
reflection, highlighting the extent of memorization in this limited-data setting.

24



t-SNE UMAP LocalMAP

Class

airplane

auto

bird

cat

deer

dog

frog

horse

ship

truck

Figure 9: Visualizations of U-Net bottleneck features using t-SNE, UMAP, and LocalMAP on
CIFAR-10 (balanced). Each row shows a different method trained on CIFAR-10, listed from top to
bottom: DDPM [18], CBDM [5], and CORAL (ours).
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Figure 10: Visualizations of U-Net bottleneck features using t-SNE, UMAP, and LocalMAP
on CIFAR10 (balanced) for DDPM models trained with varying amounts of data. Each row
corresponds to a different trained model for DDPM , with increasing samples per class from top to
bottom: 100, 500, 1k, and 5k. For the final row (5k samples per class), a randomly selected subset
of 20k samples is visualized from the full training set of 50k.
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Figure 11: Memorization in limited-data scenarios. For each class, the top row shows the closest
matching real training samples corresponding to the generated images in the bottom row (outlined
in magenta), which were produced by a DDPM model trained on CIFAR-10 with 50 samples per
class and sampled using ω = 0.1. The high visual similarity between generated and training samples
reflects the models strong memorization behavior in limited-data settings.
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D Comparison with Other Methods

Latent Space Visualization Figure 12 visualizes the latent representations from the U-Net bot-
tleneck layer using t-SNE [11] (left), UMAP [35] (middle), and LocalMAP [38] (right) for DDPM
[18], CBDM [5], T2H [6], and CORAL trained on CIFAR10-LT with an imbalance ratio of ρ = 0.01.
CORAL exhibits markedly improved class-wise separation in latent space, mitigating the representa-
tional entanglement that typically causes feature mixing between head and tail classes. Figure 13
presents analogous visualizations for CelebA-5 across all methods except T2H, for which no imple-
mentation is available on this dataset.

Comparison with Baseline Methods We compare CORAL with baseline methods and highlight
its strengths to address long-tailed generation in diffusion models.

• CBDM: Introduces a distribution adjustment regularizer during training that encourages similarity
between generated images across different classes, transferring knowledge from head classes to
tail classes. CBDM [5] suffers from mode collapse because its regularization loss encourages the
model to produce similar outputs across different class conditions.

• T2H: Employs weighted denoising score matching to transfer knowledge from head classes to tail
classes by using head samples as denoising targets for noisy tail samples. Its performance depends
on both label distribution and sample similarity. T2H’s [6] score substitution mechanism could
potentially lead to mode collapse when noisy tail samples are consistently mapped to the same
limited set of head references due to similarity-based selection.

• CORAL: As demonstrated in our experimental results, CORAL consistently outperforms both
CBDM and T2H across a range of evaluation metrics, with particularly strong gains in tail classes.
Our experimental results across multiple datasets highlight the strengths of CORAL:
1. Mode Stability: CORAL prevents mode collapse, and generates class-consistent and visually

diverse samples. As can be seen in the generated samples. This is in contrast to CBDM, which
often fails to preserve class identity, e.g., by generating class-conditioned samples displaying
attributes of other classes, as shown in Figure 4.
CORAL effectively reduces undesirable interclass feature borrowing in the class labeled datasets
we consider. At the same time, CORAL allows the transfer of non-discriminative features that
facilitate generalization, as shown in Figure 4.

2. Adaptive Regularization: CORAL incorporates time-dependent regularization into the con-
trastive loss. This adaptive weighting enhances separation during the later stages of denoising,
when outputs are less noisy and more semantically meaningful. Figure 8 shows that contrastive
regularization is most effective when applied toward the end of the denoising process.

3. Latent Disentanglement: CORALs strength lies in leveraging the lower-dimensional latent
space of the denoising U-Net, which has been shown to capture semantically meaningful
structure [10]. CORAL achieves effective inter-class disentanglement in the latent space by
employing a linear projection head (see Figure 2), resulting in high-fidelity and class-aligned
generated samples. These effects are illustrated in Figure 12 for CIFAR10-LT with ρ = 0.01 and
in Figure 13 for CelebA-5, using latent space visualizations from t-SNE, UMAP, and LocalMAP.
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Figure 12: Visualizations of U-Net bottleneck features using t-SNE, UMAP, and LocalMAP on
CIFAR10-LT with an imbalance ratio of ρ = 0.01. Each row shows a different method trained on
CIFAR10-LT, listed from top to bottom: DDPM [18], CBDM [5], T2H [6], and CORAL.
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Figure 13: Visualizations of U-Net bottleneck features using t-SNE, UMAP, and LocalMAP on
CelebA-5. Each row shows a different method trained on CelebA-5, listed from top to bottom:
DDPM [18], CBDM [5], and CORAL.
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