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Abstract

While many variants of Variational Autoencoders proposed, a unified understanding remains
unclear. In particular, σ-VAEs utilize a scaled identity matrix σ2I in the decoder variance,
while β-VAEs introduce a hyperparameter β to reweight negative ELBO loss. However,
existing learning theories on the global optimal VAEs yield limited practical insight toward
their empirical success. In addition, previous work showed the mathematical equivalence
of the variance scalar σ and the hyperparameter β in the loss landscape, but σ as a model
parameter fundamentally differs from β as a hyperparameter. This paper presents a compre-
hensive analysis of σ-CVAE, revealing its expressiveness and limitations due to suboptimal
variational inference. Focusing on the conditional variants, we propose Calibrated Robust
σ-CVAE, a doubly robust algorithm that ensures reliable σ estimation while effectively pre-
venting posterior collapse. Our approach, leveraging functional neural decomposition and
KL annealing techniques, provides a unified framework to understand both σ-VAEs and
β-VAEs regarding parameter optimality and training dynamics. Empirical results demon-
strate the superior performance of our method across various conditional density estimation
tasks, highlighting its significance for accurate and reliable probabilistic modeling.

1 Introduction

Conditional distributions play an essential role in characterizing the dependence of a response or data y ∈ Rq

on given covariates or labels x ∈ X ⊆ Rp. Canonical methods, such as regression or density estimators,
face challenges when the data generating distribution pgt(y|x) is complex and high-dimensional. Deep
latent generative models based on amortized variational inference are widely used as a scalable approach
to model complex distributions and scale to large datasets. In particular, (Sohn et al., 2015), derived from
Variational Autoencoders (VAEs) (Kingma & Welling, 2014; Rezende et al., 2014), introduced Conditional
VAEs (CVAEs) to learn conditional distributions.

1.1 Gaussian σ-Conditional VAE

Gaussian σ-CVAE models the marginal distribution pθ,σ(y|x) in a parametric form, utilizing a latent variable
z. It incorporates a Gaussian decoder pθ,σ(y|x, z) = N(µθ(x, z), σ2Iq), where σ is a learnable shared scale
parameter (Kingma et al., 2016; Dai & Wipf, 2018) and a data-independent prior p(z|x) = N(0, Id) where
the latent variable z is sampled from(Doersch, 2021).

pθ,σ(y|x) =
∫

N(y|µθ(x, z), σ2Iq)N(z|0, Id)dz. (1)

It also includes a Gaussian encoder qϕ(z|y, x) = N(µϕ(y, x), Σϕ(y, x)) as an approximate posterior of
pθ,σ(z|y, x), such that the logarithm of pθ,σ(y|x) is replaced by a tractable evidence lower bound (ELBO),

ELBO = Eqϕ
[log pθ,σ(y|x, z)]−KL[qϕ(z|y, x)||p(z)]. (2)

Both the decoder and the encoder being Gaussian distributions simplify the sampling procedure of qϕ(z|y, x)
and the computation of the KL divergence in ELBO, allowing it to be scalable to large dataset via the
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reparameterization trick (Kingma & Welling, 2014; Rezende et al., 2014). The conditional covariates x
influence the mean of the decoder µθ(x, z) assuming a data-independent prior p(z) without loss of generality
(Zheng et al., 2022).

1.2 Learning theories of CVAE

The most intuitive objective function L(θ, σ, ϕ) of CVAEs is the expected negative ELBO with respect to
the ground truth data-generating measure µgt over the model parameters {θ, σ, ϕ}:

L(θ, σ, ϕ) :=
∫
−1× ELBO µgt(dydx). (3)

The double inequalities in Eq.4 illustrate the optimality of model parameters, highlighting the main objectives
of CVAE: variational inference and generative modeling.

L(θ, σ, ϕ) ≥
∫
− log pθ,σ(y|x)µgt(dydx) ≥

∫
− log pgt(y|x)µgt(dydx). (4)

The tightness of the first inequality determines the quality of variational inference, controlled by the dis-
tribution family and the parameter ϕ. The gap in the first inequality, termed inference gap Cremer et al.
(2018), reflects how closely the variational posterior qϕ approximates the true posterior. Significant research
has focused on enhancing variational inference (Ranganath et al., 2016; Kingma et al., 2016; Cremer et al.,
2018; Burda et al., 2016; Nowozin, 2018; Huang et al., 2019).

The tightness of the second inequality determines the quality of probabilistic modeling. We refer to it as
approximation gap, or parsimony gap following Mattei & Frellsen (2018). θ, σ determines how closely the
model pθ,σ(y|x) marginally approximates the ground-truth distribution pgt(y|x) in terms of the conditional
entropy of the data. Often, a tighter second inequality of Eq.4 is established on unrealistic theoretical
assumptions or on an additional hierarchical structure. For example, a probalistic PCA setup assumes a
linear dependence between latent variable and response (Lucas et al., 2019b; Dai et al., 2020; Sicks et al.,
2021; Wang & Ziyin, 2022; Dang et al., 2023), which may not be generalized to complex datasets; A global
optimal result is established asymptotically by assuming σ → 0; Hierarchical Bayesian analysis indicated
that assuming an inverse gamma prior distribution on variance σ could expand a Gaussian decoder into a
student-t decoder (Takahashi et al., 2018; Stirn & Knowles, 2020).

The existing theoretical works in understanding these inequalities are often separated, perhaps due to a lack
of comprehensive understanding in all detailed aspects of VAE learning theories.

1.3 Loss equivalence to β-CVAE

Given the same parameter θ, ϕ, Gaussian σ-CVAE has the same objective function as β-CVAE, up to a
multiplying constant (Lucas et al., 2019b; Rybkin et al., 2021). As shown below,

Eqϕ
[∥µθ(x, z)− y∥2]/2σ2 + KL[qϕ||p(z)] ∝ Eqϕ

[∥µθ(x, z)− y∥2] + βKL[qϕ||p(z)], (5)

the negative ELBO of a Gaussian σ-CVAE on the left side is proportional to the objective function of β-
CVAE, assuming a fixed unit variance. Therefore, an optimal σ is believed to be the best β (Lucas et al.,
2019a; Rybkin et al., 2021)

The equivalence reveals the subtlety of the hyperparameter β. From a statistics point of view, when the
decoder is taken from a location-scale distribution family, scaling the KL divergence between approximate
posterior and prior is nothing but scaling its unit diagonal variance. Thus, one should avoid the explicit
usage of β while assuming a fixed unit variance for accurate and reliable probabilistic modeling. First, a
fixed unit variance in Gaussian decoders limits the expressive power of the marginal distribution pθ,σ(y|x),
causing a potentially larger approximation gap. Secondly, the β-scaled objective lacks interpretability, since
it can no longer be seen as an approximate log-likelihood. Lastly, tuning the hyperparameter β is more
computationally expensive than learning the parameter σ.
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However, β itself still plays an essential role in the robust estimation of the VAE model. To ameliorate
posterior collapse or the KL vanishing problem, KL annealing methods introduce the hyperparameter β
(Higgins et al., 2016; Chen et al., 2018; Rezende & Viola, 2018) and tune it with a predefined monotonic or
cyclical annealing schedule (Raiko et al., 2007; Bowman et al., 2016; Fu et al., 2019).

In summary, the organization and contributions of this paper are as follows.

(1) A zero approximation gap is generally achievable without optimal variational inference.
In Section 2, we establish a non-asymptotic approximation theorem of continuous Gaussian decoders for
arbitrary complex conditional densities. In Lemma 2.1, we point out the identifiability issue of σ to recover
the ground truth distribution and one possible way to bypass it is to consider a block neural decomposition
(Sobol, 2001). In Theorem 2.4, we prove that σ-CVAE can approximate the arbitrary complex ground
truth conditional density pgt(y|x) more generally, challenged by suboptimal variational inference and non-
identifiability of decoder variance.

(2) KL annealing is a form of decoder variance calibration. In Section 3.1, we further analyze the
dynamics of σ in a dual-step optimization algorithm, showing that the biased gradient of σ is actually a result
of suboptimal variational inference. Considering the equivalence of β and σ, we show in Section 3.2 that the
KL annealing techniques against posterior collapse can be seen as a form of decoder variance calibration.
This duality of β and σ highlights the fact that an extensive KL annealing scheme could be redundant in
practice, and a doubly robust model can be obtained by calibrating σ directly. As an example, we propose
Calibrated Robust σ-CVAE in Section 3.3, a simple calibrated Condtional VAE variant which calibrates the
parameter σ that can efficiently explore the loss landscape of θ, ϕ to prevent posterior collapse and provide
robust variance estimation.

(3) σ-Calibration is doubly robust, providing both reliable variance estimation and prevention
of posterior collapse. In Section 4.1, we empirically validate that suboptimal variational inference can be
the main source of numerical instability in the estimation of σ. More importantly, we confirm the double
robustness of our algorithm, showing that it not only provides decoder variance estimation but also fine-
tunes suboptimal encoders. Compared to existing KL annealing methods, we validate the superiority and
effectiveness of σ calibration. Starting from Section 4.2, we compared the performance of Calibrated Robust
σ-CVAE in various conditional density estimation tasks, showing its superiority over various conditional
learning methods.

1.4 Related Work

A comprehensive section of Related Work can be found in Appendix A. Table 1 provide a short overview of
our setting and contribution compared to existing studies.

Table 1: An high-level comparison with existing VAE theories and applications

Reference Approximation Assumption
Optimal
VI

Expressive
Decoder

Doubly
Robust

Dai & Wipf
(2018) Simple Riemann Manifold

✓ ✓ ×

Lucas et al.
(2019b) Decoder’s Mean Linearity

✓ × N.A.

Takahashi
et al. (2018) Inverse-Gamma Prior

× ✓ ✓–

This paper Block Functional ANOVA
× ✓ ✓
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2 How expressive σ-CVAEs can be?

2.1 Data generating distribution and VAE generative model

In this paper, we aim to understand why σ-CVAE is powerful to parameterize a wide range of data-generating
distribution. We begin our analysis by defining conditional distributions as a measurable function G.
Lemma 2.1 (Gaussian noise outsourcing (Agrawal & Domke, 2021)). Suppose that x, y are random
vectors taking values in the standard Borel space X ,Y with µX denoting the probability measure on X , and
that Px,y : X × Y ⇝ R is a probability kernel of interests, then for any m > 1, and a standard Gaussian
random vector z ∈ Rm with measure µZ that is independent of x, there exists a Borel measurable function
G : X × Rm → Y such that

(x, y) = (x, G(x, z)) a.s. (6)

Lemma 2.1 states that the randomness of any complex data distribution of y can be outsourced to a Gaussian
random vector z that is independent of x. When x is deterministic or given, such G is the nested function of
the quantile function of y given x and a Gaussian cumulative distribution function. Note that the dimension
m is not necessarily the same as the latent dimension d of CVAE. Hence, for any latent m ∈ N+, there exists
a Borel measurable map {G∗

m : X × Rm → Y} corresponding to the data generating measure µgt.

Based on Eq,1, we can characterize the Gaussian σ-CVAE model of y given x as a form of G, i.e.,

y := Gθ,σ(x, (z1, z2)) = µθ(x, z1) + σz2. (7)

The decomposition in Eq.7 highlights the inherent restrictions of noise outsourcing in the σ-CVAE model.
These restrictions include two key aspects: 1) the enforced independence between the d-dimensional latent
variable z1 and q-dimensional decoder’s unscaled noise z2, restricting their interactions; 2) an additive
relationship between the mean and scaled variance, which limits complex interactions and constrains the
flexibility of data-dependent variances.

The concept of noise outsourcing reformulates the comparison of distributions into a comparison of variable-
transforming measurable maps, eliminating the need to compute log-probability and KL divergence. Such
comparisons offer a new perspective on existing approximation theories. For instance, by extending and
simplifying the findings of Dai & Wipf (2018) in Proposition B.2, we show that an asymptotic assumption on
σ → 0 eliminates the two aspects mentioned above, enabling the recovery of the ground-truth distribution
G∗

d(x, z) through an arbitrarily complex network µθ(x, z1). For another example, when the Linear VAE
assumes µθ as a linear combination of x and z, the corresponding Gσ,θ is reduced to a fully linear function.

2.2 Non-asymptotic approximation of the σ-CVAE

In this paper, we demonstrate the key differences between the restrictions in Eq.7 and the data-generating
map in Eq.6, allowing us to analyze the expressiveness of the σ-CVAE model. A zero approximation gap
is essentially the equality conditions between Eq.6 and Eq.7. Specifically, we explore a less-explored yet
intuitive approach known as block neural decomposition Sobol (2001); Märtens & Yau (2020).
Definition 2.2 (Block neural decomposition (Sobol, 2001)). Suppose that given any response dimension
q, there exist m > q, such that G∗

m : X × Rm → Y equals almost surely to a neural network fη that can be
arbitrarily complex, then a block decomposition of G∗

m on input dimension X × Rm−q × Rq is

fη(x, z1, z2) =fη
0 + fη

x(x) + fη
z1

(z1) + fη
z2

(z2) + fη
xz1

(x, z1) + fη
xz2

(x, z2)
+ fη

z1z2
(z1, z2) + fη

xz1z2
(x, z1, z2).

(8)

We note that this decomposition is a blockwise expansion (Sobol, 2001) of measurable functions, making
nonparametric mixture model in Märtens & Yau (2020) a special case. However, this decomposition is not
identifiable and unique. We will now present a unique decomposition as stated below.
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Assumption 2.3 (Block ANOVA representation (Sobol, 2001)). Let µx, µz1 , µz2 denote the Borel
measure of x, z1, z2, respectively, and let µI be the measure or product measure of the index subset of
{x, z1, z2}. The block ANOVA representation assumes that the functional f in Eq.8 satisfies the following
integral constraints,

∫
fI(yI)µI(dyi) = 0, ∀i ∈ I, for every index subset, I ⊆ {x, z1, z2}.

If there are no covariates x, the decomposition consists of fη
0 + fη

z1
(z1) + fη

z2
(z2) + fη

z1z2
(z1, z2). This

assumption leads to the following integral constraints:∫
fη

z1
(z1)µ(z1) = 0,

∫
fη

z2
(z2)µ(z2) = 0,

∫
fη

z1,z2
(z1, z2)µ(zi) = 0, ∀zj ̸=i. (9)

By imposing constraints on the measurable function G∗
m = fη(x, z1, z2), we obtain a unique decomposition

of G∗
m into a sum of orthogonal functional bases. Such decomposition of G∗

m is directly related to σ-CVAE in
Gθ,σ(X, (Z1, Z2)). By analyzing their equality conditions, we obtain a non-asymptotic approximation results
without the asymptotic assumption of σ → 0

Theorem 2.4 (Non-asymptotic approximation of σ-CVAE). Under Assumptions 2.3, for some m > q,
if the block neural decomposition of ground-truth map G∗

m satisfy the following conditions almost everywhere
up to zero measure of z2: 1) fz2(z2) = σ∗z2 and 2) fη

xz2
(z1, z2) + fη

xz2
(x, z2) + fxz1z2(x, z1, z2) = C for

some σ∗ > 0, and constant C, then there exist a σ-CVAE model with decoder parameterized by θ(η), and
decoder variance scalar σ such that

Gθ,σ(x, (z1, z2)) = G∗
m(x, z) a.s. (10)

The proof is deferred to Appendix D. The proof is nothing more than pattern matching under the unique
decomposition of G∗

m. Theorem 2.4 provides deeper insight into the optimality of decoder parameters. First,
it shows that there exist one or more optimal parameters {θ∗, σ∗} such that the parametric density pθ,σ(y|x)
can recover the ground-truth density, but they are not identifiable without additional assumptions. Second,
it shows that a zero approximation gap is more generally available and does not require an asymptotic
condition taking σ → 0. To this extent, theorem 2.4 can be seen as a weaker form of proposition B.2. It does
not assume that G∗

m is approximated by a finite Gaussian mixture, which restricts the expressive power of
σ-CVAE model Mattei & Frellsen (2018). In addition, it allow non-linear relationship of x and z1 that goes
beyong assuming G∗

m is a probabilistic PCA model in linear VAEs (Lucas et al., 2019b; Dai et al., 2020;
Sicks et al., 2021; Wang & Ziyin, 2022; Dang et al., 2023), which cannot extend to the complex datasets
used in Section 4.1.

Theorem 2.4 also aligns with the empirical evidence of suboptimality in variational inference presented in
Cremer et al. (2018). When qϕ∗ does not perfect recover the true posterior, Theorem 2.4 reassures that there
exists a generative distribution pθ∗,σ∗(y|x) with global optimal θ∗, σ∗ that well approximate the ground
truth data generating distribution, demonstrating its generative capabilities.

3 What if variational inference is not optimal?

Given the non-identifiability issue in σ and the existence of suboptimal encoders, it is of great importance
that accurate estimates of data-generating distribution are obtained through numerically robust optimization.
Traditional wisdom in likelihood-based models has been optimizing the loss by updating σ jointly with {θ, ϕ}
in Dai et al. (2021); Dai & Wipf (2018) or by updating σ in the dual-step coordinate descent in Rybkin et al.
(2021).

In the analysis below, we show how suboptimal variational inference that is not guaranteed in approximation
theorem leads to biased parameter estimation. Apart from the unbounded likelihood for having a learned σ,
and model non-identifiability, we demonstrate another source of numerical instability in optimizing σ that
is caused by suboptimal variational inference. As evidenced by the experiments in Section 4.1, we propose
novel algorithmic improvements to calibrate the decoder variance.
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3.1 The necessity of σ-calibration: bias in the gradient

Given finite N i.i.d observations D = {yi, xi}N
i=1 from pgt(x, y), the objective of CVAEs is given by

L(θ, ϕ, σ) = 1
N

N∑
i=1

[
Eqϕ(z|yi,xi)[− log pθ,σ(yi|xi, z))] +

N∑
i=1

KL[qϕ(z|yi, xi)||p(z)]
]
. (11)

The gradient of L(θ, ϕ, σ) with respect to σ is a biased approximation of the true gradient of the negative
log-likelihood function with respect to σ. To see this, recalling Fisher’s identity,

∇σ − log pθ,σ(y|x) = Epθ,σ(z|y,x)[−∇σ log pθ,σ(y|x, z)]. (12)

However, the possibly biased gradient of σ in the CVAE loss function is given by

∇σL(θ, ϕ, σ) = 1
N

N∑
i=1

Eqϕ(z|yi,xi)[−∇σ log pθ,σ(yi|xi, z)]. (13)

This similar argument can be extended to the dual-step coordinate descent method Rybkin et al. (2021)
for robust likelihood estimation, where the optimal σ∗

t is obtained analytically by the maximum likelihood
principle with optimal step size. Given {θt, ϕt} at time t,

σ∗
t = arg min

σ
L(θt, ϕt, σ) = arg min

σ

1
N

N∑
i=1

Eqϕt (z|yi,xi) [− log pθt,σ(yi|xi, z)] , (14)

where ideally the expectation should be taken over intractable posterior.

This analysis uncovers an estimation issue in Gaussian σ-VAE models, that is, the biased estimation of
variance σ in the presence of suboptimal variational inference. This bias is often overlooked in the literature
due to unrealistic simplifications. Such simplifications can arise, for instance, in asymptotic analysis (Dai &
Wipf, 2018; Zheng et al., 2022) or in a linear VAE setting (Lucas et al., 2019b; Dai et al., 2020; Wang &
Ziyin, 2022). We argue that these simplifications not only limit the true expressive power of VAE models,
as stated in Theorem 2.4, but also underestimate the practical challenges in robust parameter estimation.

3.2 Posterior collapse: a compelling evidence for suboptimal encoders

It is analytically infeasible to establish a rigorous metric that quantifies the discrepancy between the approx-
imate posterior and the true intractable posterior pθ,σ(z|y, x). Thus, a rigorous theory of calibration would
require additional assumptions. For example, qϕ(z|x, y) can be assumed as a corrupted model of intractable
pθ,σ(z|x, y) by defining a ϵ−corruption model (Acharya et al., 2022) to characterize the discrepancy between
the posterior and the approximate variational distribution at convergence. Then one can derive some results
about its breakdown point. In such a theory, the geometric median of the gradient of σ could be used as a
calibration to approximate its true gradient, but it is computationally expensive when extending to a full
diagonal covariance Σ that might hurt its scalability.

In this paper, we argue that actions should be taken if there is clear and compelling evidence of a poor
encoder qϕ. Specifically, we consider a well-known example of the evidence, termed posterior collapse (Lucas
et al., 2019a; He et al., 2019; Razavi et al., 2019) or KL vanishing (Bowman et al., 2016; Fu et al., 2019). It
refers to the problem that the approximate posterior qϕ(z|y, x) collapses to the standard Gaussian N(0, Id),
resulting in vanishing KL divergence in the training loss function.

1
N

N∑
i=1

KL[qϕ(z|yi, xi)||p(z)]
]
≈ 0. (15)

Obviously, the encoder qϕ that approximates the true posterior will hardly become the prior. This is because,
under Bayes’ rule, i.e. pθ,σ(z|y, x) ∝ p(z)pθ,σ(y|x, z), pθ,σ(y|x, z) is never designed to be independent of
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z or equivalently, the mean µθ(x, z) in the decoder is not a function of z. If the VAE generative model
ignores a latent variable, it collapses to nonlinear regression, significantly reducing the expressive power. As
a result, posterior collapse often coincides with poor ELBO in complex datasets due to lack of fit.

The standard solution for KL vanishing is KL annealing (Raiko et al. (2007); Bowman et al. (2016); Fu et al.
(2019)) using β-VAEs. The idea is that the loss landscape w.r.t. θ, ϕ is highly non-convex when σ is fixed.
Thus, tuning the hyperparameter β, which reweights the KL divergence in the loss function, can prevent
posterior collapse, resulting in a relatively large KL divergence in Eq.15 and a lower training ELBO loss.
For example, the schedule of β in Fu et al. (2019) is

βt = 2r/M ∗ 1{0≤r<M/2}(r) + 1 ∗ 1{M/2≤r<M}(r), (16)

where r = mod(t, M). The βt is periodically annealed from 0 to 1 in first half of a M -iteration cycle and
stayed at 1 throughout the rest of the cycle. Obviously, the statistical insight of the anneal schedule is obscure
in principle. In fact, we can show that these KL annealing techniques are computationally expensive. See
Appendix F for a theoretical discussion and experimental evidence.

Considering the mathematical equivalence between σ and β in Eq.5, KL annealing can be seen as the
calibration of scaled variance σ. Taking Eq.16 as an example, the loss-equivalent decoder variance σt is
annealed as follows.

σ2
t = M/4r ∗ 1{0≤r<M/2}(r) + 1/2 ∗ 1{M/2≤r<M}(r), (17)

where r = mod(t, M). Thus, preventing posterior collapse can be easily achieved without introducing β,
because we can always calibrate σ to change the loss landscape of θ, ϕ.

3.3 σ-calibration: an implicit KL annealing

In this paper, we propose Calibrated Robust CVAE, a simple doubly robust framework incorporating cali-
brations of σ using the block coordinate gradient descent method.

A general pseudo-code can be found in Algorithm 1. At a high level, this block coordinate gradient descent
algorithm consists of three steps. The first step is the optimization of θ, ϕ as a block at a given fixed σ, where
K iterations (stochastic) gradient descent is implemented. We refer hyperparameter K as inner steps. The
second step is the maximum likelihood estimate of σ, obtaining the optimal σ in closed form based on the
current θ, ϕ, as described in Rybkin et al. (2021). The third and most important step is called σ-calibration
step at convergence, where the σ will be calibrated if compelling evidence for calibration is found. In this
step, it rejects any suboptimal encoder qϕ that possibly leads to an unreliable generating model. Specifically,
if the KL divergence term in loss is less than the hyper-parameter calibration tolerance C, the calibrated σcal

is given by
σcal

t := |1 + φ| × σt, (18)

where we sample φ ∼ N(0, S) with variance S starts at 1 increasing by 1 after each calibration. Figure 2(a)
illustrates how σ is calibrated throughout the training process.

Rationale behind calibration-at-convergence: The design of the calibration is inspired from the existing
KL annealing techniques, but we have three key considerations: 1) calibration must be bidirectional, similar
to KL annealing. The variance S, which governs the calibration magnitude, should increase when stronger
calibration is required. 2) calibration should be adaptive, as there is no bias in the estimation of σ when an
optimal ϕ is obtained. 3) calibration should be lazy, given the iterative nature of the training process.

Our σ-CVAE calibration method offers three key advantages over a β-VAE with KL annealing. First, our
objective sticks to the original ELBO loss and avoids explicit usage of β, making it more suitable for reliable
probabilistic modeling. Second, our calibration process is straightforward and results-driven, effectively
calibrating σ until the desired goal is achieved. A predefined annealing schedule is no longer needed. Third,
our calibration is highly interpretable. We utilize the metric of posterior collapse is used to trigger calibration
and our hyperparameter C is the permissible deviation from a zero KL divergence.
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Algorithm 1: general σ calibration for σ-CVAE
Input: data {xi, yi}N

i=1, deterministic neural networks fµy , fµz , fSy with initialized parameter θ0, ϕ0,
Initialization σ0, inner number of iteration K of updating θ, ϕ, Calibration tolerance C
Output: θ, ϕ, σ
while is training do

for i = 1 to K do
Read batch {xj , yj}B

j=1 from data
Sample zj ← qϕt(z|yj , xj) for j = 1, ..., B
Compute batch loss L(θt, ϕt, σt)
Compute gradient ∇θL;∇ϕL
θt ← θt − α∇θL
ϕt ← ϕt − α∇ϕL

end for
Sample zj ← qϕt

(z|yj , xj) for j = 1, ..., N ;
Update Optimal σ2

t ← 1
N

∑N
i=1∥yi − µθt

(xi, zi)∥2/q
if Convergence then

if
∑

KL[qϕ(z|yi, xi)||p(z)] < C then
Calibrate σt ← σcal

t as Eq.18
end if

else
Break

end if
end while

4 Experiments

In this section, we provide more practical insights in the calibration of σ-CVAE through extensive numerical
experiments given a finite training sample. We use the Adam (Kingma, 2014) stochastic gradient descent
algorithm in training neural networks. The general learning rate is 0.005 and the convergence threshold is
0.001 in the average loss change. Other important details of each of the following experiments are attached
in the Appendix E. In addition, we also validate our method in the MNIST (Deng, 2012) and CelebA (Liu
et al., 2018) datasets for conditional image generation and reconstruction in Appendix H & I.

4.1 Two-moon dataset

Let x ∈ {−1, 1} be the binary input and let y ∈ R2 be generated as follows,

y =
{(

cos(α) + 1
2 + ϵ1, sin(α)− 1

6 + ϵ2
)

, if x = −1,(
cos(α)− 1

2 + ϵ3,− sin(α) + 1
6 + ϵ4

)
, if x = 1,

where α ∼ Uniform[0, π] and ϵi ∼ N
(
0, τ2)

,∀i = 1, 2, 3, 4. Note that α, ϵ1, . . . , ϵ4 are mutually independent.
We simulated three datasets of size n = 5, 000 with 2, 500 for each class using τ = 0.1, which is refered later
as the true σ. Note that this synthetic dataset does not follow the pPCA model described in Lucas et al.
(2019a) and cannot be recovered by a linear CVAE. A well-behaved encoder, in this case, is expected to
yield a non-zero KL divergence.

A learned variance is crucial for VAE generative power. In Figure 1, we validate that vanilla σ-CVAE
with small K, including K = 1 as suggested in Rybkin et al. (2021), may fail to recover the truth. This
observation agrees with Dai et al. (2021), which notes that learning σ can have unintended consequences.
In our case, a different size of the inner step K would result in completely different generative model at
convergence, given the same training dataset.
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Figure 1: (a),(c) reconstructed training Twomoon dataset; (b),(d) generated samples. Vanilla σ-CVAEs may
not recover the true σ, reconstruct training data, and learn the ground-truth distribution. The true σ is 0.1.

The contradictory result is well predicted by Theorem 2.4. Although σ-CVAEs are not guaranteed to achieve
an optimal variance inference, Gθ,σ in Eq.7 can have amazing expressive capacity in estimating the ground
truth map G in Eq.6, particularly when the non-identifiable parameter, variance σ, is accurately estimated.

Better encoder leads to better variance estimation. In addition, we see in Figure 1 (left) that
increasing the size of the inner step K leads to a better estimation of σ and a better learned generative
model. This is precisely what we emphasize in Section 3.1. The gradient bias of σ can be reduced by
obtaining a more informative ϕ through a longer K inner steps. As a result, the dynamics of σ is less likely
to be trapped in local optima.

Of course, smaller K is always preferred, and excessively large K should be avoided to ensure computational
efficiency. Unfortunately, K is a hyperparameter and an appropriate setup of K to balance the robustness
of variance estimation with computational efficiency is generically unknown.

(a) Robust σ estimation with small K
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(b) σ-calibration as an KL annealing
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Figure 2: (a) Robust estimate of σ is obtained by calibration with a small K (K=25 w/ TB). The calibrated
σ are marked as ∗; (b) The KL divergence in ELBO remains positive after several calibrations of σ. The
calibration tolerance C = 0.05. The true σ is 0.1.

σ-calibration is a fast implicit KL annealing that prevents posterior collapse. In contrast, the
results of our proposed calibrated robust σ-CVAE, using a small K = 25, is shown in Figure 2. Our proposed
calibrated robust σ-CVAE, successfully estimates the decoder variance in Figure 2(a), as well as recover the
ground truth distribution with a low ELBO in Figure 2(b).

In addition, variance calibration on σ is as effective as KL annealing techniques in preventing posterior
collapse without the need for a reweighting hyperparameter β. This is evident in Figure 2(b). After the
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last calibration of σ, we observe a spike in ELBO training loss, increasing from below 1 to above 11. This
indicates that the change in σ successfully anneals the loss landscape, preventing the model from converging to
a suboptimal qϕ obtained before calibration. The KL divergence remains positive after the last σ calibration,
showing that the annealed loss landscape leads to a better qϕ that is free from posterior collapse.

Thus, the calibration of σ works exactly as KL annealing, but in a fast and implicit manner. Note that the
hyperparameters of our calibration are the calibration tolerance C and the inner step K, so a predefined
annealing schedule system (Raiko et al., 2007; Bowman et al., 2016; Fu et al., 2019) is no longer needed. Also,
we do not assume σ to be fixed at 1, so we optimize the lower bound of likelihood rather than a reweighed
loss. Compared with vanilla CVAE that recovers the true σ using large K = 500, 2500, our algorithm only
needs 30%, 6% of total epochs to converge, respectively.

Compared to Monotonic Bowman et al. (2016) or Cylical annealing Fu et al. (2019), our algorithm can be
50− 70% faster to converge. A detailed comparison of wall time savings is in the Appendix.F

(a) without calibration (b) with calibration

Figure 3: CVAE model using a learned σ (a) without calibration and (b) without our proposed calibration on
twomoon training datasets. It prevents a vanishing KL divergence due to posterior collapse and significantly
improves the decoder variance estimates and the ELBO at convergence. The ground-truth σ = 0.1. The
calibration tolerance C = 0.05. Inner step K = 25. Each point is averaged over 20 repetition experiments.

σ-calibration brings doubly robust estimation We compared the results of CVAEs that iteratively
update σ with various initializations of σ ranging from 0.05 to 1. Shown in Figure 3(a), the CVAE training
without calibration ends up with a very high training loss (ELBO), and a large mean squared error (MSE) of
the learned σ to the ground-truth. and a vanishing KL divergence (KL) of prior and encoder. In alignment
with Dai & Wipf (2018); Dang et al. (2023), we found that a smaller initialization of σ have a higher chance
of avoiding posterior collapse with a non-zero KL divergence. However, small initialization are limited in
preventing posterior collapse and it still may fail to recover the ground-truth distribution. Results of a
fixed-σ CVAE can be found in the ablation study in Appendix G.

Incorporating our σ-calibration, the σ-CVAE significantly outperforms on the metrics, shown in Figure 3 (b).
It has a smaller MSE, a nonzero KL, and a smaller ELBO, which is consistent among all the initialization
of σ.

Compared to Monotonic Bowman et al. (2016) or Cylical annealing Fu et al. (2019), our algorithm can adjust
the hyper-paramter C requiring for better encoders, therefore resulting in significantly less biased estimation
of decoder (fine-tuning of C requried). See experimental details in in the Appendix.F

4.2 Comparison with nonparametric conditional density estimator

Here, we compare the performance calibrated σ-CVAE with the Wasserstein generative conditional sam-
pling method (WGCS) Liu et al. (2021), along with three conventional nonparametric conditional density
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Table 2: Mean squared error of the estimated conditional mean (MEAN), the estimated standard deviation
(SD) and the corresponding simulation standard errors (in parentheses) on test dataset. The numbers in
bold indicate the best results among the same row. The evaluation is repeated 10 times. Smaller number
means a better estimation of conditional mean and variance.

CVAE (ours) WGCS NNKCDE CKDE FlexCode

M1
Mean 0.174 (0.004) 1.10(0.05) 2.49(0.01) 3.30(0.02) 2.30(0.01)
SD 0.185(0.005) 0.24(0.04) 0.43(0.01) 0.59(0.01) 1.06(0.08)

M2
Mean 0.421(0.005) 3.71(0.23) 6.09(0.07) 66.76(2.06) 10.20(0.33)
SD 2.071(0.019) 3.52(0.17) 9.33(0.23) 18.87(0.59) 11.08(0.34)

M3
Mean 0.106(0.001) 0.32(0.03) 0.11(0.01) 1.55(0.03) 0.12(0.04)
SD 0.421(0.001) 0.10(0.01) 0.36(0.01) 0.51(0.01) 0.33(0.01)

estimators, including the nearest-neighbor kernel conditional density estimator (NNKCDE) Dalmasso et al.
(2020), the conditional kernel density estimator (CKDE ) Hall et al. (2004), and a basis expansion method
FlexCode (Izbicki & Lee (2017)) in the tasks of estimating the conditional mean and conditional standard
deviation.

Three different models M1, M2, M3 simulated datasets are used. Details can be found in Appendix E.
We evaluated the learned conditional distribution in terms of the estimated conditional mean Ê[y|xk] and
the estimated conditional standard deviation ŜD[y|xk] and our method produces consistent results and
outperforms the other model, as it has the smallest MSEs for estimating the conditional mean and conditional
standard deviation in most cases shown in Table 2.

4.3 Comparison with Conditional Flow Based model in benchmark datasets

In this section, we compare the performance of calibrated σ-CVAE with Bayesian conditional normalizing
flowsTrippe & Turner (2018) in Table 3 on 6 UCI datasets in terms of the test mean log-likelihood in nats.
We must emphasize that σ-CVAEs is not an exact likelihood-based method and their optimization is on the
lower bound of the likelihood without global optimal variantional inference implied by Theorem 2.4, so our
method is very competitive with other methods.

Table 3: Mean log-likelihood of test data ± variance (in nats), compared with Bayesian normalizing flows
Trippe & Turner (2018), mixture density networks, and neural networks with latent inputs on six small UCI
benchmark datasets. A higher logarithmic likelihood implies a better generalization of the test set. The
random train-test split is 75% to 25% Each experiment is repeated 5 times.

Dataset boston concrete energy power wine-red yacht
N 506 1030 768 9568 1599 308

p/q 13/1 8/1 8/2 4/1 11/1 6/1

MDN-2 −2.65 ± 0.03 −3.23 ± 0.03 −1.60 ± 0.04 −2.73 ± 0.01 −0.91 ± 0.04 −2.70 ± 0.05
MDN-5 −2.73 ± 0.04 −3.28 ± 0.03 −1.63 ± 0.06 −2.70 ± 0.01 +1.43 ± 0.07+1.43 ± 0.07+1.43 ± 0.07 −2.54 ± 0.10
MDN-20 −2.74 ± 0.03 −3.27 ± 0.02 −1.48 ± 0.04 −2.68 ± 0.01 +1.21 ± 0.06 −2.76 ± 0.07

LV-15 −2.64 ± 0.05 −3.06 ± 0.03 −0.74 ± 0.03 −2.81 ± 0.01 −0.98 ± 0.02 −1.01 ± 0.04
LV-5 −2.56 ± 0.05 −3.08 ± 0.02 −0.79 ± 0.02 −2.82 ± 0.01 −0.96 ± 0.01 −1.15 ± 0.05
NF-2 −2.40 ± 0.06 −3.03 ± 0.05 −0.44 ± 0.04 −2.73 ± 0.01 −0.87 ± 0.02 −0.30 ± 0.04
NF-5 −2.37 ± 0.04 −2.97 ± 0.03 −0.67 ± 0.15 −2.68 ± 0.01−2.68 ± 0.01−2.68 ± 0.01 −0.76 ± 0.10 −0.21 ± 0.09−0.21 ± 0.09−0.21 ± 0.09
HMC −2.27 ± 0.03−2.27 ± 0.03−2.27 ± 0.03 −2.72 ± 0.02−2.72 ± 0.02−2.72 ± 0.02 −0.93 ± 0.01 −2.70 ± 0.00 −0.91 ± 0.02 −1.62 ± 0.02

Dropout −2.46 ± 0.25 −3.04 ± 0.09 −1.99 ± 0.09 −2.89 ± 0.01 −0.93 ± 0.06 −1.55 ± 0.12
MF −2.62 ± 0.06 −3.00 ± 0.03 −0.57 ± 0.04 −2.79 ± 0.01 −0.97 ± 0.01 −1.00 ± 0.10

CVAE(ours) −3.17 ± 0.07 −3.48 ± 0.04 +0.22 ± 0.10+0.22 ± 0.10+0.22 ± 0.10 −3.29 ± 0.03 −1.48 ± 0.06 −0.34 ± 0.02
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5 Discussion

Although the KL divergence in Eq.15 is a direct measurement of the difference between the Gaussian encoder
and the prior, the criteria of posterior collapse remain flexible. For example, Lucas et al. (2019b) defined the
dimension-wise posterior collapse by P(KL[qϕ(zi|y, x)||p(zi)] ≤ ϵ) > 1− δ for each latent dimension index i
in a probably approximately correct manner. Similarly, Dai et al. (2021) defined implicit posterior collapse
from observing a large maximum mean discrepancy (Makhzani et al., 2016) between the aggregated posterior
1
N

∑N
i=1 qϕ(z|yi, xi) and p(z). This is because marginalizing a well-behaved encoder would be similar to the

prior, that is,
∫

qϕ(z|y, x)µgt(dydx) ≈
∫

pθ,σ(z|y, x)µgt(dydx) ≈ p(z).

Our calibrated dual-step coordinate descent algorithm depends on two hyperparameters, namely C, K. While
it eliminates the need for an expensive and ad hoc annealing schedule, these hyperparameters are crucial
and must be carefully tuned. These values may vary depending on the specific application. We recommend
using a small tolerance C and a moderate K inner steps for the sake of computational efficiency as a general
rule of thumb. Using an excessively large tolerance C will not only trigger more calibrations of σ but also
lead to potential non-convergence of the algorithm.

The calibration step can be viewed as a warm restart if we calibrate σ at convergence back to its initialized
value. That being said, we note that a cold restart of our algorithm remains effective for an extremely
poor initialization of θ, ϕ, which we have occasionally encountered. We used default initialization of Pytorch
modules, while Xavier’s (Glorot & Bengio, 2010) is also a possible choice. An in-depth investigation of
initialization strategies would be a valuable follow-up of this work.

If reliable probabilistic modeling and robust estimation are not the top priority, it is not common to incor-
porate both β and σ simultaneously, especially in image generation tasks, including crispy face generation
(Vahdat & Kautz, 2020) and abnormality detection (Loizillon et al., 2024). Based on results from Appendix
H & I, σ-calibration itself does not significantly improve the image generation results. It should be noted
that the processes for generating images are sometimes unclear, and it is possible that the mean µθ(x, z)
without sampling additive decoder variance is used as the generated sample. It is neither aligned with the
assumptions of a Gaussian decoder nor does it represent an accurate generative process.

Of course, the setup of our analysis and algorithm is subject to several conventional assumptions. These
assumptions can be relaxed in several aspects including 1) generalizing our analysis to accommodate a
heterogeneous, diagonal, or even full covariance matrix Σ, which offers better approximation properties
for more complex datasets, 2) incorporating additional robust estimation techniques, which is essential for
addressing challenges such as imbalanced data, unlabeled data, etc., and 3) incorporating with state-of-the-
art image variants for better conditional image generations.

In these scenarios, the connection between decoder variance Σ and β is reflected in the leading eigenvalues of
Σ, and more importantly, designing and justifying a calibration technique requires additional considerations
to ensure that the calibration is not only empirically effective but also theoretically sound. We also highlight
that in hierarchical Bayesian analysis (Hoffman & Blei, 2015; Agrawal & Domke, 2021; Margossian & Blei,
2023), θ can be seen as the global latent parameter, and the prior distribution of the local latent variable z
could depend on θ, which would also complicate the analysis.

To the best of our knowledge, this work is the first comprehensive study on the variance parameter σ in
VAE models. We prove the existence of the bias in the gradient of σ, and the need for calibration in theory
and empirically to provide a robust and accurate estimation on complex datasets. It shows that calibrating
σ can prevent posterior collapse by avoiding bad local optimal encoders through an annealed loss landscape,
such that explicitly introducing a hyperparameter β is more than redundant. The calibration of σ in turn
provides a robust estimate of σ itself due to a less biased gradient through better encoders.

In conclusion, our analysis provides deeper statistical insights into existing VAE learning theories on the
approximation gap and the loss equivalence of β and σ. More importantly, our proposed algorithm can be
practically inspiring for various VAE applications that require reliable probabilistic modeling, while a fixed
σ or explicit β is still commonly used by convention.
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A Related Works

Expressive decoder and approximation gap. We considers Gaussian decoders extending from σ-VAE,
wherein the variance is a scaled identity matrix Σ = σ2Id. While many recent applications assume a fixed
variance, e.g.,σ2 = 1 (Castrejon et al., 2019; Yamasaki et al., 2023; Loizillon et al., 2024), critics have
highlighted that this assumption leads to limited generative power and a positive approximation gap. If σ is
not fixed, one line of research establishes the tightness of the approximation gap in the asymptotic regime
σ → 0 (Dai & Wipf, 2018; Zheng et al., 2022). The assumptions regarding σ → 0 are problematic. Mattei &
Frellsen (2018) shows that this can lead to an unbounded likelihood and demonstrate a zero approximation
gap between Gaussian VAE and a submodel of nonparametric mixture models (Lindsay, 1995). However,
their results do not extend to conditional variants. To mitigate likelihood unboundedness, Takahashi et al.
(2018); Skafte et al. (2019); Stirn & Knowles (2020) employ a conjugate gamma prior on the inverse variance
1/σ2, transforming the decoder pθ(y|x, z) into a student-t distribution, though there is no rigorous discussion
on the approximation gap. Another independent line of research shows that the generative model under linear
VAE assumptions corresponds to probabilistic Principal Component Analysis (pPCA) models (Lucas et al.,
2019b; Wang & Ziyin, 2022), which also demonstrates a zero approximation gap. Linear VAE theories are
rigorous but do not fully account for the success of VAEs. In this paper, we analyze the approximation gap
of σ-CVAE for a non-fixed σ, highlighting its expressiveness as a powerful generative model.

Non-identifiability and robust decoder estimation. Flexible covariance parameterization in the Gaus-
sian decoder faces several challenges. The first challenge is the likelihood blow-up problem, where maximum
likelihood estimation is ill-defined as the likelihood function log pθ(y|x) becomes infinite or unbounded when
the covariance approaches zero. For instance, the multilayer perceptrons (MLP) parameterization of the de-
coder (Kingma & Welling, 2014) results in unbounded likelihood functions for continuous responses (Mattei
& Frellsen, 2018). Another challenge is model non-identifiability, where different parameters of the model can
yield the same likelihood or ELBO, leading to multiple (local) optima. If µ or σ is modeled a function of z, the
likelihood function pθ,σ(y|x) becomes non-identifiable due to latent rotation transformations (Khemakhem
et al., 2020). Consequently, the common choice of the covariance matrix for the Gaussian decoder is a scaled
identity matrix, which balances model complexity and numerical stability. Also, a dual-step optimization
(Detlefsen et al., 2019; Rybkin et al., 2021) is favored over joint optimization of the mean and covariance
of the decoder (Dai & Wipf, 2018; Takahashi et al., 2018) to enhance numerical stability. Nonetheless, this
paper highlights that challenges remain in achieving robust decoder estimation.

Posterior collapse and KL annealing. Posterior collapse is a prevalent issue indicating suboptimal
variational inference of VAEs, where the learned encoders has a near-zero KL divergence from the prior,
often due to inadequate approximation of the true posterior distribution (He et al., 2019; Lucas et al.,
2019b) or, less frequently, from perfect alignment with the posterior in a degraded latent variable model
Wang et al. (2021). To address this, traditional KL annealing methods consider re-weighting the loss function
with a tuned hyperparameter β (Higgins et al., 2016; Chen et al., 2018; Rezende & Viola, 2018), or with a
predefined monotonic or cyclical annealing schedule that involves cross-validation and intensive computation
(Raiko et al., 2007; Bowman et al., 2016; Fu et al., 2019). We argue that calibrating σ on σ-CVAE is
equivalent to KL annealing due to the loss equivalence between σ and β, noted in Lucas et al. (2019a);
Dai et al. (2021); Rybkin et al. (2021). Furthermore, we propose an implicit σ-calibration approach that
dynamically adjusts based on clear evidence of posterior collapse, leading to improved encoder estimations
and reduced computational costs.

B Discussion on Theorem 2.4

The approximation theories of this work is also motivated by explaining the expressiveness of the param-
eterized density pθ,σ(y|x) when σ is not infinitesimal. Here we show a simple extended result from Dai &
Wipf (2018).

Assumption B.1 (Response continuity). Conditional on any x ∈ X , there exists a ground truth proba-
bility measure of µgt such that its Radon-Nikodym derivative with respect to the standard Lebesgue measure
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is nonzero almost everywhere in Y given ∀x ∈ X . Simply put, pgt(y|x) exists uniquely and is non-zero almost
everywhere up to a null set.
Proposition B.2 (Global optimal σ-CVAE). Under Assumption B.1, if the latent dimension d is larger
than or equal to the dimension of the response q, then for any σ > 0, there exists a σ-CVAE with encoder
network parameterized by θσ, and decoder network parameterized by ϕσ such that,

lim
σ→0

KL[pθσ
(y|x)∥pgt(y|x)] = 0, lim

σ→0
KL[qϕσ

(z|y, x)∥pθσ
(z|y, x)] = 0. (19)

Inspired by Dai & Wipf (2018), the proof argument involves two steps; first, we show the convergence of
the parameterized density to the distribution of the ground truth measure; then we show that the ELBO
is asymptotically tight as σ → 0 as the KL divergence between the approximate posterior and the ground
truth posterior vanishes. In particular, we do not assume that y follows a low-dimensional simple Riemann
manifold with dimension less than q, to avoid additional definitions such as active dimension (Zheng et al.,
2022). The detailed proof of Proposition B.2 in Appendix

The proposition B.2 states that σ-CVAE asymptotically approximates pgt(y|x) and the intractable posterior
pθ(z|y, x) as σ → 0 simultaneously. This proposition establishes the asymptotic expressiveness of the
parameterized density pθ,σ(y|x) as σ → 0. The global optimality is evident from the fact that the lower
bound of Eq.4 is reached. However, this proposition is limited because it does not explain the practical
success of experiments in which a nonzero σ is learned. Indeed, Proposition B.2 cannot answer the reason
why a non-zero σ is learned. It is not clear whether this is due to the limit capacity of the encoder/decoder
network or the identifiability of VAEs.

C Proof of proposition B.2

Following the line of proof of theorem 2 in Dai & Wipf (2018), we first consider the case when latent dimension
d equals response dimension q

Step 1: Show that KL[pθ∗
σ
(y|x)||pgt(y|x)]→ 0 as σ → 0.

Define the function F : Rq → [0, 1]q given x as follows,

Fx(y) = [F1(y1), F2(y2; y1)...., Fq(yq; y1, ..., yq−1)]T , (20)

Fi(yi; y1, ..., yi−1) =
∫ yi

y
′
i
=−∞

pgt(y
′

i|x, y1, ..., yi−1)dy
′

i, (21)

where pgt(y
′

i|x, y1, ..., yi−1) is the distribution of the i-th dimension of Y |X condition on the first i − 1
dimensions.

By definition we have dFx(y) = pgt(y|x)dy. And since pgt is nonzero everywhere, the conditional distribution
function Fx is invertible. Denote its inverse by F −1

x .

Similarly, we can define another differential and invertible function T : Rd → [0, 1]d

T (z) = [Φ(z1), Φ(z1), ...Φ(zd)]T , (22)

where Φ() is the cumulative density function of the standard Gaussian.

Since d = q, we consider possibly non-identifiable decorder parameter θ∗ ∈ {θ|µθ(x, z) = F −1
x ◦ T (z))}, then

the corresponding density

pθ(y|x) =
∫
Rd

N (y|µθ(x, z), σId)p(z)dz

=
∫

[0,1]q

N (y|F −1
x (u), σIq)du

=
∫
Rq

N (y|y′, σIq)pgt(y′|x)dy′ →
∫
Rq

δ(y − y′)pgt(y′|x)dy′ = pgt(y|x),

(23)
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which uses the fact that p.d.f of N(y|y′, σIq)→ δ(y, y′) as σ → 0.

It follows immediately that KL[pθ(y|x)||pgt(y|x)]→ 0.

Step 2: Show ∀θ∗
σ, ∃ϕ∗

σ s.t. qϕ∗
σ

(z|y,x)
pθ∗

σ
(z|y,x) → const.

let weights of encoder network ϕ are such that

µϕ(x, y) : = T −1 ◦ Fx(y),
Σϕ(x, y) : = σ(Sθ,ϕ(x, y)⊤Sθ,ϕ(x, y))−1,

(24)

where d× q Jacobian matrix Sθ,ϕ(x, y) := ∇zµθ(x, z)|z=µϕ(x,y).

Denote µϕ(x, y) = µϕ, Σϕ(x, y) = σΣ̃ϕ,

pθ(z|y, x) = pθ(y|x, z)p(z)
pθ(y|x) = N (y; µθ(x, z), σIm)N (z; 0, I)

pθ(y|x) (25)

let z′ = (z − µϕ)/
√

σ and q′
ϕ(z′|y, x), p′

θ(z′|y, x) be the transformed pdf, then we have

q′
ϕ(z′|y, x)

p′
θ(z′|y, x) = N (

√
σz′ + µϕ; µϕ, σΣ̃ϕ)pθ(y|x)

N (y; µθ(x,
√

σz′ + µϕ), σIm)N (
√

σz′ + µϕ; 0, I)

= C(x, y) exp{−
z′⊤Σ̃−1

ϕ z′

2 + ∥µϕ +
√

σz′∥2
2

2 +
∥y − µθ (x, µϕ +

√
σz′)∥2

2
2σ

}

= C(x, y) exp{−
z′⊤Σ̃−1

ϕ z′

2 + ∥µϕ +
√

σz′∥2
2

2 +
∥µθ(x, µϕ)− µθ(x, µϕ +

√
σz′)∥2

2
2σ

}

= C(x, y) exp{−
z′⊤Σ̃−1

ϕ z′

2 + ∥µϕ +
√

σz′∥2
2

2 +
∥∇zµθ(x, µϕ)

√
σz′∥2

2
2σ

}(Taylor Expansion)

= C(x, y) exp{−
z′⊤Σ̃−1

ϕ z′

2 + ∥µϕ +
√

σz′∥2
2

2 + z′⊤∇zµθ(x, µϕ)⊤∇zµθ(x, µϕ)z′)
2 }

= C(x, y) exp{∥µϕ +
√

σz′∥2
2

2 } → C(x, y) exp{∥µϕ∥2
2

2 } = 1.

(26)

Therefore, without the transformation of z, limσ→0 KL[qϕ∗
σ
(z|y, x)||pθ∗

σ
(z|y, x)] = 0

For the case where the latent dimension d is larger than the response dimension q, we use the first q latent
dimensions to build a projection between z1:q and y|x without the remaining d − q latent dimensions. To
be specific, let µθ(x, z) := F −1

x ◦ T (z1:q), and using the same derivation of Eq.23, we get

KL[pθ(y|x)||pgt(y|x)]→ 0.

Now, we define the mean function of the encoder where µϕ(y|x)1:q = T −1 ◦Fx(y) and µϕ(y|x)q+1:d = 0 and
the variance function of the encoder as follows,

Σϕ(x, y) = σ[(Sθ,ϕ(x, y), nq+1, ..., nd)T (Sθ,ϕ(x, y), nq+1, ..., nd)]−1,

where nd
i=q+1 are a set of q-dimensional column vectors, e.g. orthonormal basis of null(Sθ,ϕ), such that

ST
θ,ϕni = 0,

nT
i nj = 1i=j .

(27)

The set of nd
i=q+1 always exists due to the fact that Sθ,ϕ is the d × q Jacobian matrix with null space at

least d− q.
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This implies,

Σϕ(x, y) =
[
σ(Sθ,ϕ(x, y)⊤Sθ,ϕ(x, y))−1 0

0 Id−q

]
. (28)

Thus, The first q dimensions of qϕ(z|y, x) can exactly match the first q dimensions of true posterior as shown
in Eq.26. The remaining d − q dimensions follow a standardized Gaussian distribution that matches the
posterior of pθ∗

σ
(z|y, x) due to the fact that these dimensions are not used in likelihood involving µθ(x, z) :=

F −1
x ◦T (z1:q) as it remains to follow the prior distribution. As a result, limσ→0 KL[qϕ∗

σ
(z|y, x)||pθ∗

σ
(z|y, x)] =

0.

D Proof of theorem 2.4

We consider G∗
m as follows,

G∗
m = fη

0 + fη
x(x) + fη

z1
(z1) + fη

z2
(z2) + fη

xz1
(x, z1) + fη

xz2
(x, z2) + fη

z1z2
(z1, z2) + fη

xz1z2
(x, z1, z2) (29)

Step 1: we prove, under assumption 2.3, that there exists a unique decomposition of G∗
m in Eq.??

up to a rotation of coordinates within the block. Specifically, given G∗
m, there is a unique form for

fη
0 , fη

x(x), ..., fη
z1z2

(z1, z2), and fη
xz1z2

(x, z1, z2).

Following the line of proof of Theorem 1 Soboĺ (1993), with an abuse of notation µ, we can see that
fη

0 =
∫

G∗
m(x, z1, z2)µ(dxdz1dz2) = 1, as G∗

m is a proper probability map.

Then, the integration of G∗
m(x, z1, z2) over any two block dimensions, namely

∫
G∗

m(x, z1, z2)µ(dz1dz2),
admits the following,∫

G∗
m(x, z1, z2)µ(dz1dz2) =fη

0 + fη
x(x) +

��������:0∫
fη

z1
(z1)µ(dz1) +

�������:0
fη

z2
(z2)µ(dz2)

+
����������:0∫

fη
xz1

(x, z1)µ(dz1) +
���������:0
fη

xz2
(x, z2)µ(dz2)

+
��������:0∫

fη
z1z2

(z1, z2)µ(dz1dz2) +
���������:0∫

fη
xz1z2

(x, z1, z2)µ(dz1dz2),

(30)

where the cancellation to zeros are direct results of assumption 2.3.

Therefore,
fη

x(x) :=
∫

G∗
m(x, z1, z2)µ(dz1dz2)− 1,

fη
z1

(z1) :=
∫

G∗
m(x, z1, z2)µ(dxdz2)− 1,

fη
z2

(z2) :=
∫

G∗
m(x, z1, z2)µ(dxdz1)− 1.

(31)

Using the same argument, we can see

fη
xz1

(x, z1) :=
∫

G∗
m(x, z1, z2)µ(dz2)−

∫
G∗

m(x, z1, z2)µ(dxdz2)−
∫

G∗
m(x, z1, z2)µ(dz1dz2) + 1,

fη
xz2

(x, z2) :=
∫

G∗
m(x, z1, z2)µ(dz1)−

∫
G∗

m(x, z1, z2)µ(dxdz1)−
∫

G∗
m(x, z1, z2)µ(dz1dz2) + 1,

fη
xz2

(z1, z2) :=
∫

G∗
m(x, z1, z2)µ(dx)−

∫
G∗

m(x, z1, z2)µ(dxdz2)−
∫

G∗
m(x, z1, z2)µ(dxdz1) + 1,

(32)

and lastly the residual

fη
xz1z2

(x, z1, z2) := G∗
m(x, z1, z2)− (fη

x(x) + fη
z1

(z1) + fη
z2

(z2) + fη
xz1

(x, z1) + fη
xz2

(x, z2) + fη
z1z2

(z1, z2) + 1).
(33)
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This shows that all fη are unique given G∗
m

Step 2: We prove that with additional assumptions including fη
z2

(z2) = σ∗z2, σ-CVAE recovers the ground
truth G∗

m.

By comparison of block coordinates, µσ(x, z1) + σz2 = G∗
m is almost surely true if the following holds for

all x, z1, z2 (up to a zero measure of z2).

µθ(x, z1) = fη
x(x) + fη

z1
(z1) + fη

xz1
(x, z1) + C1

σz2 = fη
z2

(z2)
fη

xz2
(z1, z2) + fη

xz2
(x, z2) + fxz1z2(x, z1, z2) = C

(34)

Where C1 := 1 + C, an important detail is that in alignment with the identifiability assumption 2.3, fη
z2

(z2)
cannot have any additive constant. Specifically,

∫
fη

z2
(z2)µ(z2) =

∫
σz2µ(z2) = 0. Assuming the univer-

sal approximation theorem of µθ(x, z), the results are immediately implied by considering the additional
assumption.

The conditions and proof universal approximation property can be found in Hornik et al. (1989)

E Experiment details and Algorithm

We implemented the proposed method using the Pytorch 1.8.2 +cu111 with Python 3.7 on a Ubuntu internal
cluster with multiple Nvidia GPUs including A10,A30, A100, A100-40GB, A100-80GB, V100. We are not
aware of which GPU is used in the experiments due to the task distribution service.

In Section 4.1, we used fully connected 4-layer neural networks with a hyperbolic tangent activation function
for the encoding and decoding network. The latent dimension is set to 2 and the width of the hidden layer
is [16, 8, 4, 2] and [2, 4, 16, 4], respectively. σ initialized at 1. The batch size is equal to the sample size of the
training data. We generate 5000 data points with 2, 500 for each class with a latent variable generated from
a standard normal distribution.

In Section 4.2, we used 3 simulations datasets from the following:

M1 is a non-linear model with additive Gaussian noise:

y = x2
1 + exp (x2 + x3/3) + sin (x4 + x5) + ε, where ε ∼ N(0, 1).

M2 is A nonlinear model with multiplicative Non-Gaussian noise:

y =
(
5 + x2

1/3 + x2
2 + x2

3 + x4 + x5
)
∗ exp(0.5× ε),where, ε ∼ 0.5N(−2, 1) + 0.5N(2, 1).

M3. A Gaussian Mixture Model:

y ∼

{
N(−1− x1 − 0.5x2, 0.52), if U = 0,

N(1 + x1 + 0.5x2, 12), if U = 1,
, where U ∼ Binomial(1, 0.7).

The predictor dimension is 5 for M1 and M2, and 2 for M3. The response y is univariate. The sample size N =
5000, the test sample size is k = 2000. The mean squared error of the mean is 1

k

∑k
i=1

(
Ê[y|xk]−E[y|xk]

)2.
The mean squared error of the standard deviation is 1

k

∑k
i=1

(
ŜD[y|xk]− SD[y|xk]

)2.

We used fully connected 5-layer neural networks with a hyperbolic tangent activation function for the en-
coding and decoding network. The latent dimension is set to 5. The width of the hidden layer of the
network is [32, 16, 8, 4], and [8, 32, 16, 4]. For the WGCS method, the conditional generator G is parameter-
ized using a fully connected neural network. The discriminator D is parameterized using a fully connected
two-layer neural network. The noise vector is η ∼ N(0, 1). For the NNKCDE method, the tuning parame-
ters are chosen by cross-validation. The bandwidth of CKDE is determined based on the standard formula
h = 1.06σn−1/(2t+d), where σ is a measure of spread, t is the order of the kernel and d is the dimension of
X. The FlexCode basis expansion-based method uses the Fourier basis. The maximum number of bases is
set to 40 and the actual number of bases is selected using cross-validation. WGCS generates 10, 000 Monte
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Carlo samples to estimate the conditional distribution of each test xk to calculate the condition mean and
conditional standard deviation, while our method uses only 500 samples. For other methods, the estimates
are calculated by numerical integration.

F More discussion for experiments in Section 4.1

(a) (b) (c)

Figure 4: Calibrated σ-CVAE on two moon dataset: (a) the training data of size 5000, (b) estimated training
data, and (c) sample drawn from calibrated σ-CVAE. τ = 0.1, 0.2 and 0.3 from top to bottom. Best viewed
in color.

Additional experiment of learned σ-CVAE using Two moon dataset with τ = 0.1. The ground truth σ
recovers τ , which is 0.1.

Calibration in reducing the inner steps. In Table 4, we report the average wall time for convergence
for different K epoch for updating θ, ϕ, measured by python function time.perf_counter(). We report the
largest wall time out of 5 repetitions of successful experiments with estimated σ, initialized at 1, converged
to true value 0.1. Tolerance C = 0.05. Same criterion for convergence used in each K. NA represents no
correct estimate the true value σ within 3% relative error. We find that success rate of experiments for
uncalibrated σ-CVAEs increases with K and due to calibration in the sufficiently large K, our proposed
algorithm might be slower than a uncalibrated one.

Table 4: Comparison of wall time for convergence

k=25 50 100 250 500
Uncalibrated NA NA 62.15 76.10 177.81
Calibrated 10.55 12.69 25.00 33.72 269.78

Calibration as warm restart. Nonetheless, the calibration step in our framework is beneficial for the
estimation of σ-CVAE even if optimal σ is learned. As shown by Lucas et al. (2019b), posterior collapse in
qϕ occurs even if optimal σ is learned, possibly due to local optima in qϕ. Therefore, when calibrating σ, the
training dynamics of the parameter ϕ enjoys the rapid change of σ, perhaps due to a smoother loss landscape
with larger σ Dai et al. (2021), take advantage to escape the local optima and converge to a possibly better
local optima at the time when σ returns to optimally small again. Even if we calibrate the σ back to
initialization, the optimization that was done before this calibration would be beneficial as a warm restart.
To this extent, our calibration step is an inexpensive and implicit KL annealing scheme without a predefined
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monotonic or cyclic schedule Skafte et al. (2019); Stirn & Knowles (2020). Therefore, we recommend that
this calibration step should be used even if a sufficiently large K is used. Please note that warm restart is not
guarantee the convergence of algorithm in the non-convex ELBO optimization, throughout the experiments,
we observe cold restart is necessary for instances with very bad initialization.

Comparison with existing KL annealing methods. The explicit KL annealing is undoubtedly easy and
simple to implement. However, it is less efficient and often requires more computational power in terms of
preventing posterior collapse. For example, if σ is assumed to be fixed, an explicit KL annealing schedule like
Eq.16 is essentially a series of deterministic σ calibrations in Eq.17, due to σ-β equivalence. Therefore, the
annealing process of loss landscape is predefined and not adaptive to the performance of encoders. Similarly,
when σ is a learned parameter, an explicit KL annealing schedule confounds with it in shaping the loss
landscape, similarly to how it would by a single “effective” σe. For example, when β = 0.25 adding to LHS
of Eq.5, the “effective” σe is half of current σ value, i.e. σe = 0.5∗σ . The confounding between β and σ will
not vanish unless β is 1. In extreme cases, if the predefined βt = 1/(2σ2

t ), the effective σe would be fixed at
1. This means that there would be no KL annealing to the loss landscape at all because there would be no
change in the effective σe.

Such confounding not only complicates the annealing process of loss landscape determined by the effective
σe, but also hinders the accurate and efficient estimation of σ under maximum likelihood principle.

To provide more solid evidence, we trained Gaussian σ-CVAE with a learned σ using a monotonic or a
cyclical annealing schedule tuning β linearly from 0 to 1. For cyclical annealing, we use a cycle period
M = 10 of 5 maximum cycles . For monotonic anneal, we consider a single monotonic annealing with same
length M ∗ 5 = 50. The β becomes a fixed value of 1 after the maximum 50 iteration reached untill the
algorithm converges. The hyper-parameters of KL annealing are chosen reasonably for a fair comparison.

We report the MSE of learned σ, KLD at convergence under the same setting of Figure 3 average of 20
repetitions. Training Loss is not reported because of the training loss inconsistency that is caused by using
different β.

σ Initialized 0.2 0.4 0.6 0.8 1
MSE KLD MSE KLD MSE KLD MSE KLD MSE KLD

Monotonic 1.62e-02 1.81 6.09e-03 2.10 5.65e-03 2.19 3.41e-04 2.12 6.06e-04 2.17
Cyclical 1.76e-02 1.77 3.24e-02 1.71 1.92e-02 1.84 2.17e-02 2.01 4.58e-02 1.45
Ours C=0.05 2.41e-02 1.79 2.71e-02 1.64 6.01e-03 1.92 5.38e-02 1.39 2.69e-02 1.70
Ours C=1.96 1.26e-05 2.09 5.77e-05 2.09 1.22e-05 2.08 1.73e-05 2.10 1.76e-05 2.09
Vanilla 0.16 4.17e-01 0.20 1.40e-03 0.17 3.16e-01 0.20 2.20e-04 0.20 5.39e-04

Table 5: Comparison with KL annealing method. Monotonic refers to monotonic annealing (Bowman et al.,
2016), and cyclical refers cylical annealing. (Fu et al., 2019). C is Calibration tolerance. We use K = 25.

We also report the maximum wall time till convergence under the same setting of Table 4 using K =
25, 50, 100 recorded by python function time.perf_counter() out of 5 successfuly repetitions.

K=25 K=50 K=100
Monotonic 24.85 36.26 58.38
Cyclical 10.76 23.01 45.59
Calibrated C=0.05 10.55 12.69 25.00
Vanilla NA NA 62.15

Table 6: Comparison with KL annealing method. Monotonic refers to monotonic annealing (Bowman et al.,
2016), and cyclical refers cylical annealing (Fu et al., 2019). C is Calibration tolerance
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(a) fixed σ/β-CVAE
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(b) without calibration
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Figure 5: Experiments on twomoon dataset with ground truth σ = 0.1. Results of the CVAE models are
reported using (a) a fixed σ, equivalent to β-CVAE with a predefined β (b) a learned σ without calibration
with tolerance 0.05, (c) a learned sigma with calibration, and (d) a learned sigma with difference toleration
for calibration which is intialized at 1. K is set to 25. Each data point is averaged over 20 repetitions. MSE
of sigma is calculated by the squared error between the learned/fixed sigma and the ground truth.

G Ablation experiments on the effect of calibration

In this section, more experiments are performed to highlight the importance of calibration using the two-
moon dataset in Section 4.1, a nontrivial dataset simulated from a nonlinear generating function that causes
CVAE models to have reproducible posterior collapse problem. Throughout this section, we use σ = 0.1 to
generate our training dataset once and repeat our experiment 20 times. We use small K = 25.

To reiterate the importance of learning σ in CVAEs models, we report the results of those using fixed σ
ranging from 0.1 to 1 in Figure 5(a). CVAEs are well specified if the predefined fixed σ is equal and close
to the ground truth value. The performance of CVAEs degenerates rapidly as the difference between the
fixed σ and the ground truth increases. After the predefined σ is larger than a certain point, the posterior
collapse in CVAEs is exhibited by vanishing KL divergence between the approximate posterior and prior.
Therefore, we should not use CVAEs with a predefined variance scalar σ when the ground truth σ in the
data is unapproachable.

To emphasize the numerical instability in the training dynamics of σ and the posterior collapse of the learned
model, we report the results of CVAEs that iteratively update σ without calibration in Figure 5(b) with
various initializations of σ ranging from 0.05 to 1. The learned CVAE model ends up with a very high
ELBO, fails to recover the ground truth σ, and the KL divergence between the approximate posterior and
prior vanishes in most cases regardless of the initialization of σ. In Figure 1, we can see that σ is trapped
around 0.5 if no calibration is provided. It is known that the non-covex landscape of the ELBO function

24



Under review as submission to TMLR

w.r.t. θ, ϕ leads to many local optima, but our experiment specifically reveals the difficulty in estimating σ
in a dual-step algorithm.

To provide more empirical evidence of our proposed method, we report the results of our calibrated method in
Figure 5(c) for different initializations of σ ranging from 0.05 to 1. The tolerance that triggers our proposed
calibration step is set to 0.05. The results showed the consistency of our proposed method in accurately
estimating the truth of the ground σ, preventing posterior collapse, and thus obtaining locally optimal CVAE
models.

To ablate the calibration effect, we report the results of our proposed method with various tolerance hy-
perparameters C ranging from 0.00 to 0.5 in Figure 5(d). We initialized σ at 1. In the case that tolerance
is 0, our proposed calibration step will never be triggered due to the non-negativity of KL divergence. We
observe that a small tolerance of 0.05 is empirically effective in ameliorating posterior collapse and robust
estimation of σ. Note that the tolerance setting is case-to-case and may not be generalized to other datasets,
and a prodigious tolerance, which goes beyond the possible value of KL divergence, leads to non-convergence
in the algorithm. Therefore, we recommend a relatively small tolerance hyperparameter that triggers fewer
calibrations and offers less extra computational burden.

H Image reconstruction: MNIST

MNIST dataset LeCun et al. (1998) contains 60, 000 gray images with size 28 × 28. Dividing each image
into two parts x, y, we treat one part of the image as predictor x and the rest of the image as response
y. In Appendix H, we use fully connected 3-layer neural networks with a ReLU activation function for the
encoding and decoding network. The latent dimension is set to 5. The dimension of X is 196, 392, and
588, and the corresponding dimension of Y is 588,392, and 196. Two fully connected hidden layers are 256
and 128 for the encoder, and we reverse the width in the decoders. The batch size is 100. We update and
calibrate σ per 100 iterations with a posterior collapse tolerance set to 0.001. In Figure 6, we consider three
situations in which 1/4, 1/2, and 3/4 of the image are observed, and the goal is to learn the distribution of
the rest of the image. We chose 10 images from the test dataset to evaluate our method.

We see that the generated images are similar to the truth with reasonable variations, and the variations in
reconstruction decrease as the larger part of the image is observed.

I Image generation: CelebA

The CelebA dataset Liu et al. (2015) contains more than 200, 000 colored celebrity face images with 40 facial
attribute annotations. In this section, we used the architect of the CVAE models from Hou et al. (2019)
and embedded the attribute label of a vector in the images channels. If a label in one dimension is 1, we
embed it as an image channel of size 96× 96 that takes a value of 1 on every pixel. The width of the hidden
layers is set to [32, 64, 128, 256, 512] and the convolution layer with a kernel size of 3 , a stride size of 2,
and a padding size of 1. We used LeakyReLU activation functions at a negative slope of 0.02 followed by a
batch normalization layer. The number of latent dimensions is set to 32. The batch size is 16. we update
and calibrate each gamma per 1809 iterations, which is a factor of total training sample size and posterior
collapse tolerance set to 0.05. We apply the proposed method to the generation of human face images with
binary label features as a predictor. Since some of the attributes are highly correlated, we validate our
proposed framework using the following attributes Male, Young, Eyeglasses, Bald, Mustache, Smiling to be
the predictor x, and the response y here is the center-chopped scaled images with a size of 96 × 96. We
show the six types of true images and the generated images in each row of Figure 7. The attribute labels
for these three types are shown in Table 7. Our generated images preserve the face attributes as input with
moderate clarity.

Limitations Although our simple calibration σ-CVAE method does not provide a state-of-the-art image
generation framework, we hypothesize that the conditional distribution of the face image may not satisfy
the assumption 2.3. Expanding the analysis in consideration of modern variants/techniques that are specific
for (conditional) imagine generation is important subsequent work. Further efforts are needed to make it
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Figure 6: Reconstructing images in the MNIST test dataset. The left column of each panel contains the
true images from the test dataset that are not used for training. The second left column contains the given
part of the image that are used as predictor (i.e. upper left 1/4 in (a), left half 1/2 in (b), and upper left
half 3/4 in (c)), and the rest 5 columns are the reconstructed images.

Figure 7: (a) The true images in CelebA. Images of the same row have the same attributes. (b) Generated
(not reconstructed) images with the same attributes. Each row corresponds to a specific type of face identical
to the same row of (a)

a state-of-the-art (C)VAE variants for conditional image generator. One common challenge in conditional
image generation is meaningful quantitative measures to generated samples. Metrics such as test likelihood
or MSE failed in measuring the clarity of generated face images, and the ones like FID or Inception Score
add extra mathematical assumptions that are difficult to validate.
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Table 7: Attributes for six types of face images in Figure

Male Young Eyeglasses Bald Mustache Smile
type 1 +1 +1 -1 -1 -1 -1
type 2 +1 -1 +1 -1 -1 -1
type 3 +1 +1 -1 -1 +1 +1
type 4 -1 +1 -1 -1 -1 -1
type 5 -1 -1 +1 -1 -1 -1
type 6 -1 +1 -1 -1 -1 +1
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