
Learning Where to Edit Vision Transformers

Yunqiao Yang1∗ Long-Kai Huang2† Shengzhuang Chen1

Kede Ma1 Ying Wei3†
1City University of Hong Kong 2Tencent AI Lab 3Zhejiang University
{yqyang.cs, szchen9-c}@my.cityu.edu.hk hlongkai@gmail.com

kede.ma@cityu.edu.hk ying.wei@zju.edu.cn

Abstract

Model editing aims to data-efficiently correct predictive errors of large pre-trained
models while ensuring generalization to neighboring failures and locality to min-
imize unintended effects on unrelated examples. While significant progress has
been made in editing Transformer-based large language models, effective strategies
for editing vision Transformers (ViTs) in computer vision remain largely untapped.
In this paper, we take initial steps towards correcting predictive errors of ViTs,
particularly those arising from subpopulation shifts. Taking a locate-then-edit
approach, we first address the “where-to-edit” challenge by meta-learning a hyper-
network on CutMix-augmented data generated for editing reliability. This trained
hypernetwork produces generalizable binary masks that identify a sparse subset of
structured model parameters, responsive to real-world failure samples. Afterward,
we solve the “how-to-edit” problem by simply fine-tuning the identified parameters
using a variant of gradient descent to achieve successful edits. To validate our
method, we construct an editing benchmark that introduces subpopulation shifts
towards natural underrepresented images and AI-generated images, thereby reveal-
ing the limitations of pre-trained ViTs for object recognition. Our approach not
only achieves superior performance on the proposed benchmark but also allows for
adjustable trade-offs between generalization and locality. Our code is available at
https://github.com/hustyyq/Where-to-Edit.

1 Introduction

In many scientific and engineering disciplines, computational models serve as approximations of
complex real-world phenomena. As a consequence, they are inherently prone to predictive errors,
aptly encapsulated by George Box’s adage: “All models are wrong, but some are useful.” Model
editing [55, 6, 9, 40] has emerged as a promising technique to make (large) pre-trained models more
useful by enabling targeted updates to model behavior on specific inputs or tasks in a data-efficient
manner without pre-training again from scratch. An ideal model editing method should satisfy three
major desiderata [9, 61]: 1) reliability, ensuring the model behavior is effectively updated for the
current sample; 2) generalization, so that the changes extend to neighboring samples; and 3) locality,
meaning the edit should have minimal impact on the model behavior on unrelated samples.

Model editing has allowed many fascinating applications, including error correction, factual knowl-
edge update, bias mitigation, policy compliance, and personalization, though most of them have
predominantly been within large language models (LLMs) [15, 1, 12] in the natural language process-
ing (NLP) community [9, 40]. With the enormous and often inaccessible pre-training datasets and the
ever-growing model sizes that make retraining computationally demanding, the need for effectively

∗Part of the work was done when the author interned at Tencent AI Lab.
†Corresponding authors.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/hustyyq/Where-to-Edit

editing computer vision (CV) models is also becoming urgent. Adapting model editing techniques
from NLP to CV is non-trivial and presents unique challenges. From the data perspective, NLP deals
with one-dimensional, discrete signals that are highly semantic and information-dense, whereas CV
requires processing high-dimensional continuous sensor data that is spatially redundant. From the
model perspective, lots of model editing methods in NLP are specially designed for LLMs with unidi-
rectional (i.e., autoregressive) attention, such as GPT-3 [15] and GPT-4 [1]. In contrast, CV models
have primarily been based on convolutional networks [33, 52, 24], with more recent implementations
using vision Transformers (ViTs) [11, 35] that otherwise employ bidirectional attention. These
differences in data formats and model structures make targeted edits more challenging to implement
in CV models, and when such edits are achieved, they often result in suboptimal performance.

In this paper, we take initial steps towards editing pre-trained ViTs for object recognition [10], aiming
to correct predictive errors without the need for costly and time-consuming retraining. Specifically,
we take a locate-then-edit approach, which breaks down model editing into two key subproblems:
where-to-edit and how-to-edit. Moreover, we prioritize learning where to edit rather than how to edit
to facilitate a simpler yet better trade-off between generalization and locality, without needing to
store previously trained data.

For the where-to-edit phase, we first narrow the editing scope using a greedy search-based heuristic.
Next, inspired by the proven effectiveness of meta-learning [14] in optimizing training strategies
for individual samples, we meta-train a hypernetwork to generate a binary task, indicating which
parameters are critical for the editing sample. To address the issue of limited data, the hypernetwork
is trained solely using pseudo-samples, each comprising a natural image paired with its CutMix
version [62] (see Fig. 1). The optimization objective is to align the predicted probability distribution
of the CutMix sample to that of the original. By controlling the sizes of patches used in CutMix and
randomly varying their locations, we simulate distribution shifts in backgrounds, contextual objects,
and object attributes, creating opportunities to learn generalizable binary masks that effectively
respond to real-world failures. Additionally, we apply a sparsity constraint to the binary masks, acting
as an indirect, data-free regularizer to promote locality. Once the where-to-edit problem is solved,
the how-to-edit phase becomes straightforward: we simply fine-tune the selected parameters using a
variant of gradient descent to apply targeted edits.

To validate our method, we construct an editing benchmark that exposes the weaknesses of pre-
trained ViTs by introducing two types of subpopulation shifts. The first is a natural subpopulation
shift [45, 50], with underrepresented natural images of certain categories efficiently identified by
the maximum discrepancy (MAD) competition [58]. The second is an artificial subpopulation shift,
introduced by synthesized images from high-quality text-to-image generative models like Stable
Diffusion [46].

In summary, our key contributions are as follows:

• a first-of-its-kind model editing method for pre-trained ViTs that leverages meta-learning to
prioritize the where-to-edit phase;
• an editing benchmark that provides valuable resources for future model editing research in CV;
• an extensive experimental demonstration that our method achieves the best Pareto front between

generalization and locality on the proposed benchmark, while offering flexible trade-offs in the
how-to-edit phase.

2 Related Work

In this section, we provide a brief overview of current model editing methods in NLP and CV.

2.1 Model Editing in NLP

Memory-based Methods rely on external mechanisms, such as wrappers [41] and caches [21], to
store factual updates without modifying the internal model parameters. A common theme in these
studies is the use of a gating mechanism to determine whether a test sample falls within the editing
scope; if so, the base model behavior is overridden. For instance, SERAC [41] and GRACE [21]
employ a scope classifier as a form of hard gating, while Murty et al. [42] utilized a soft gating
function, allowing for smoother integration. More recent approaches like IKE [63] and MeLLo [64]
alter the input prompts of an LLM for knowledge update, where the gating mechanism is implicitly

2

embedded within the LLM itself. Generally, memory-based methods offer advantages such as non-
destructive updates, modularity, and suitability for continual and few-shot learning settings. However,
they face scalability issues when handling a large number of edits. Additionally, the editing success
heavily depends on the accuracy of the gating mechanism.

Parameter-based Methods modify the internal model parameters, which offers a more fine-grained
approach to editing. These methods can roughly be categorized into two subgroups: locate-then-edit
approaches and hypernetwork-based approaches. Locate-then-edit methods focus on identifying a
subset of key parameters for editing. For instance, ROME [38], MEMIT [39], and MEMITCSK [20]
leverage causal mediation analysis (i.e., representation denoising) to locate hidden states (i.e., inter-
mediate representations, not model parameters) responsible for knowledge storage. The theory of
associative memory [32] is then applied to transfer the state localization results to model parameters.
Recent studies [22] suggest that knowledge localization may not reliably inform successful edits.
Furthermore, the very notion that knowledge can be localized may be inherently flawed, as factual
information in LLMs may be encoded in a distributed manner [40]. Single-step integrated gradient
across multiple editing samples [8, 60] is another commonly used statistic for localization. Here, we
adopt a more principled meta-learning strategy to locate key parameters, using multi-step gradient
information that more accurately captures the changes in model behavior.

Hypernetwork-based methods, such as KnowledgeEditor [9], MEND [40], and MALMEN [54],
train an external network to directly generate parameter updates for the editing sample, which is
represented by either feedforward feature representation [9] or backward gradient decomposition [40].
Localization techniques can be applied beforehand to restrict the functional space of the hypernetwork.
Existing hypernetwork-based methods emphasize the how-to-edit aspect but treat the where-to-
edit superficially, and often result in suboptimal performance, especially when adapting to CV
applications. In contrast, our method prioritizes learning where to edit, achieving a better balance
between generalization and locality.

2.2 Model Editing in CV

Limited research on model editing has been conducted in CV. Bau et al. [3] took a locate-then-edit
approach to rewrite generative adversarial networks. Santurkar et al. [49] adapted this method for
editing image classifiers based on convolutional networks by mapping the representation of the
new visual concept to that of a previously learned concept. However, this approach requires prior
knowledge of the new visual concept, its location within the image, and the specific target concept
for correction. In practical applications, such detailed information may not always be available. In
contrast, our method relaxes all these assumptions and is one of the first applied to ViTs.

3 Learning Where to Edit ViTs

In this section, we first present the preliminaries, followed by a detailed description of the proposed
method for learning where to edit ViTs. The system diagram of our method is shown in Fig. 1.

3.1 Preliminaries

Problem Formulation Given a base computational model f(·; θ) : X 7→ Y , parameterized by
θ, model editing aims to modify the model behavior for specific inputs x ∈ X (or regions of the
input space, S ⊂ X) while keeping its overall performance intact. Denote the post-edited model as
f
(
·; θ(e)

)
, where θ(e) represents the updated parameter vector3 after editing. Typically, f

(
·; θ(e)

)
is

evaluated based on three main criteria: reliability, generalization, and locality.

• Reliability: For any editing sample (x, y), the edited model f
(
x; θ(e)

)
= y.

• Generalization: For any neighboring4 sample (x′, y′) ∈ N (x, y), f
(
x′; θ(e)

)
= y′, even if

(x′, y′) is not directly used in the editing process.

3We slightly abuse the notation θ(e) to encompass any possible modifications, including those by memory-
based methods.

4Conceptually, in high-level vision, two images are considered neighbors, if they are semantically similar,
such as belonging to the same category or subpopulation.

3

Frozen parameters Editable parameters

L×

Classification head

ViT as base model

ഥ𝑚

Learnable tokens

···

CutMix
ViT as feature

extractor

Inner-loop loss

KL 𝑥, 𝑝 𝑦 𝑥′; 𝜙 0 ; 𝜙 𝑡

Outer-loop loss

KL 𝑥, 𝑝 𝑦 𝑥′; 𝜙 0 ; 𝜙 𝑇

+λ ഥ𝑚 0

MSA

FFN

Transformer encoder

Projection head

Concatenation

Binarization

···

Hypernetwork

Embedding

Figure 1: System diagram of the proposed model editing method.

• Locality: For any sample (x′, y′) /∈ N (x, y), the model behavior should remain unchanged,
i.e., f

(
x′; θ(e)

)
= f(x′; θ).

An ideal model editing method shall ensure reliable edits while balancing generalization and locality
effectively. As initial model editing attempts in CV, we limit our scope to single-example editing.

Vision Transformers A ViT [11] feature extractor, denoted by e(·;ϕ) with parameter vector ϕ,
consists of a linear embedding layer followed by L attention blocks. Each block is composed of a
multiheaded self-attention (MSA) layer and a feedforward neural network (FFN). The FFN, which
underpins most model editing methods, including ours, comprises two fully-connected (FC) layers:
FFN(z) = GELU(zW + b)W ′ + b′. Here, W ∈ RN×Nm and W ′ ∈ RNm×N are weight matrices,
where Nm denotes the intermediate dimension. b ∈ RNm×1 and b′ ∈ RN×1 are bias terms. The
activation function GELU(·) is the Gaussian error linear unit [26].

An input image x is first partitioned into M non-overlapping, fixed-size patches, each linearly embed-
ded in an N -dimensional feature space together with a class token [cls], yielding a concatenation
of patch embeddings of size (M + 1)×N . These embeddings are processed through the L attention
blocks for feature extraction. A linear classification head, h(·), maps the extracted features to a
probability distribution over classes in Y , represented as p(y = c|x;ϕ) = hc(e(x;ϕ)), where c ∈ Y .
For notation simplicity, we omit the parameters in the classification head h(·), as they constitute only
a small fraction of the total parameters and are generally frozen during model editing.

3.2 Model Editing at Training Time: Where-to-edit

The simplest way of editing a ViT is through vanilla fine-tuning, which involves updating all model
parameters. However, modern ViTs have millions to billions of parameters, and fine-tuning on
a single sample (x, y) can lead to overfitting, while incurring substantial computation costs. To
overcome these, prior research [8, 23] first identifies a subset of key parameters, followed by editing:

ϕ⋆ = ϕ+ m̄⊙∆ϕ, (1)

where m̄ is a binary mask of the same dimension as ϕ, ∆ϕ represents the parameter update, and ⊙ is
the Hadamard product.

Prevailing localization strategies in NLP rely on casual mediation analysis [38], integrated gradi-
ents [8], or pure heuristic methods [28], which may not be ideal for ViTs due to differences in
data modalities and model architectures. In this work, we follow the locate-the-edit approach, and
decompose model editing into two subproblems: where-to-edit (i.e., computing m̄) and how-to-edit
(i.e., computing ∆ϕ), with a focus on where-to-edit. Drawing inspiration from the demonstrated
success of meta-learning [34, 14] in tailoring training strategies for individual samples, we meta-train
a hypernetwork to generate the binary mask m̄ for each editing sample.

Meta-learning [34, 14], also known as learning-to-learn, involves training models on a collection of
training episodes [7] to enable effective generalization and adaptation to novel, unseen episodes. In

4

our context, a training episode corresponds to a single editing example. We employ optimization-
based meta-learning approaches [14, 44], framing where-to edit as a bi-level optimization problem.
In the inner loop, key parameters, indicated by m̄, are updated for the editing sample by optimizing a
reliability loss via gradient-descent over T iterations. In the outer loop, the hypernetwork g(·;φ),
parameterized by φ, is refined to generate m̄. Mathematically, we have

min
φ

ℓ
(
x, y;ϕ(T)

)
+ λ∥m̄∥0

s.t. m̄ = g(x;φ)

∆ϕ(t) = ∆ϕ(t−1) − α∇ϕℓ
(
x, y;ϕ(t−1)

)
, t ∈ {1, 2, . . . , T}

ϕ(t) = ϕ(0) + m̄⊙∆ϕ(t), t ∈ {1, 2, . . . , T},

(2)

where (x, y) is the editing sample. ϕ(T) is the updated parameter after T iterations of inner-loop
optimization, and ϕ(0) denotes the pre-trained parameters of the base model as initialization. The
term ∆ϕ(t) is the parameter update after the t-th iteration, with ∆ϕ(0) = 0. The loss function
ℓ
(
x, y;ϕ(t)

)
measures the reliability of the edit. To encourage sparsity in the binary mask m̄, we

add an ℓ0-norm term in the outer-loop objective, which acts as an indirect, data-free regularizer to
encourage locality. The scalar λ controls the trade-off between the two terms. In our implementation,
the hypernetwork takes the last-stage features corresponding to the [cls] token from the ViT feature
extractor e

(
·;ϕ(0)

)
as input, i.e., m̄ = g

(
e
(
x;ϕ(0)

)
;φ
)
.

3.3 Optimization Challenges

Despite mathematical elegance, solving the bi-level optimization problem in (2) presents three
challenges. First, meta-training the hypernetwork necessitates a sizable of high-quality editing
samples, which are expensive and time-consuming to collect in practice. To address this, we generate
pseudo-samples using a data augmentation technique known as CutMix [62]. Second, identifying
key parameters within the entirety of the ViT presents a vast search space. This combinatorial
complexity not only introduces unacceptable computational costs but also makes the localization of
key parameters a challenging endeavor [36, 51]. To alleviate this, we shrink the editing scope based
on a greedy search-based heuristic. Third, generating a binary mask typically involves a binarization
operation in g(·;φ), which produces zero gradients almost everywhere and is thus ineffective in
optimizing. To resolve this, we use a gradient-friendly approximation to binarization.

Pseudo-sample Generation We employ CutMix [62] to generate pseudo-samples for editing. Specif-
ically, given a natural image x′, we apply CutMix [62] to randomly overlay a small patch from
another irrelevant image onto x′, producing a pseudo-sample x. This patch-based perturbation tends
to alter the predicted probability distribution, resulting in p

(
y = c|x;ϕ(0)

)
̸= p

(
y = c|x′;ϕ(0)

)
,

for c ∈ Y . This motivates us to instantiate the reliability loss ℓ
(
x, y;ϕ(t)

)
in Problem (2) as the

Kullback-Leibler (KL) divergence [27] between p
(
y|x′;ϕ(0)

)
and p

(
y|x;ϕ(t)

)
:

ℓ
(
x,
{
p
(
y|x′;ϕ(0)

)}
;ϕ(t)

)
=
∑
c∈Y

p
(
y = c|x′;ϕ(0)

)
log

(
p
(
y = c|x′;ϕ(0)

)
p
(
y = c|x;ϕ(t)

)) , (3)

where
{
p
(
y|x′;ϕ(0)

)}
is treated as the soft ground-truth label.

Editing Scope Shrinkage Previous studies [38, 40] have suggested that modifying FFNs within
a Transformer is more effective for achieving successful edits [17, 18]. For example, MEND[40]
focuses on editing the last three FFNs, while ROME [38] targets the middle FFNs. Here, we conduct
a similar empirical investigation to identify a subset of consecutive FFNs in a ViT, by greedy search
for the optimal generalization and locality trade-off. Specifically, we fine-tune ten groups of FFNs (or
MSAs) in three consecutive layers [40] of a pre-trained ViT/B-16, denoted as {1-3, 2-4, . . ., 10-12}.
The editing set comprises 100 predictive failures of the ViT, where volleyball is mistaken for
basketball (see Fig. 2a), identified by the MAD competition [58] (see more details in Sec. 4.1).
The average results across the editing set are shown in Fig. 2b, where we see that editing MSAs is not
conducive to preserving locality. In contrast, editing the 8-th to 10-th FNNs tends to achieve the best
trade-off, which are selected as the default layers for subsequent experiments.

5

(a) Editing samples.

35 45 55 65 75 85 95
Generalization (%)

55

65

75

85

95

Lo
ca

lit
y

(%
)

ViT-B/16 FFNs
ViT-B/16 MSAs

1-3

4-6

7-9

10-12

In
de

x
of

 th
re

e
co

ns
ec

ut
iv

e
M

SA
s

1-3

4-6

7-9

10-12

In
de

x
of

 th
re

e
co

ns
ec

ut
iv

e
FF

N
s

(b) Editing results via vanilla fine-tuning.

Figure 2: The left subfigure shows representative editing examples, highlighting the predictive errors
of the base ViT when predicting volleyball as basketball. The right subfigure depicts the
generalization and locality trade-offs when editing different groups of FFNs or MSAs in the base ViT.
It is evident that editing the 8-th to 10-th FFNs achieves the optimal Pareto front.

To further limit the output space of the hypernetwork, we employ structured tuning [8] by selecting
specific rows/columns of the weight matrices in the FFNs for updating. As suggested in [8], we select
the weights along the intermediate dimension Nm, which further reduces the output dimension of the
hypernetwork to Nm × 6 (i.e., three FFNs with two FCs each).

Binarization Approximation As a special case of quantization in signal processing, binarization can
be approximated to enable gradient-based training through three main approaches: straight-through
estimation [4], uniform noise addition [2], and soft-to-hard annealing [30]. Here, we use a fixed
parametric sigmoid function with favorable gradient behavior as the approximation:

m̂ = Sigmoid(k ×m), (4)
where m is a continuous map computed by the hypernetwork right before binarization, and k is
a hyperparameter that controls the degree to which the sigmoid curve approximates the desired
binarization operation. Empirically, we set k = 10. We have also experimented with a soft-to-hard
annealing for k, and observed comparable results. After adopting Eq. (4), we substitute m̄ with m̂
and replace the ℓ0-norm with the ℓ1-norm in Problem (2) to facilitate gradient-based optimization.

3.4 Model Editing at Test Time: How-to-edit

At test time, we solve the how-to-edit problem in a manner similar to the inner-loop optimization.
The two minor differences lie in the loss function and the binarization operation.

At test time, we are provided with the editing sample x and its ground-truth label y. Therefore, the
KL divergence during training reduces the cross-entropy loss during testing:

ℓ
(
x, y;ϕ(t)

)
= −

∑
c∈Y

I[y = c] log
(
p
(
y = c|x;ϕ(t)

))
. (5)

Also, we can directly employ the threshold-based binarization without approximation to obtain

m̄i = q(mi) =

{
1 mi ≥ ρ

0 mi < ρ,
(6)

where i is the positional index, and ρ is a hyperparameter that can be adjusted for different model
editing applications. When ρ is set to zero, all parameters in the selected FFNs are updated with
improved reliability. As ρ increases, fewer parameters are updated, which favors locality.

3.5 Hypernetwork Architecture

Similar to the ViT feature extractor e
(
·;ϕ(0)

)
, the hypernetwork g(·;φ) comprises five attention

blocks, an FC layer as the projection head, and a binarization operation. As shown in Fig. 1, we
introduce six learnable tokens, each corresponding to an FC layer within the three selected FFNs
of the base ViT. These tokens are concatenated with the image features derived from e

(
·;ϕ(0)

)
and

serve as input to the hypernetwork to compute the binary mask m̄.

6

Ours: gr 86.32 locality 87.36

T-Patcher： gr 81.28 locality 88.88

Volleyball misclassified as basketball

Error samples during testing

Volleyball Basketball

Samples seen during pre-training

N
at

u
ra

l

Shovel Paddle Shovel misclassified as paddle

N
atu

ral
A

I-g
en

erated

Figure 3: Visual examples seen by the base ViT/B-16 during pre-training, contrasted with visual
examples in the proposed editing benchmark as predictive errors of the base ViT/B-16.

4 Editing Benchmark with Subpopulation Shifts

In this section, we establish an editing benchmark that exposes failures of the base ViT in object
recognition by introducing subpopulation shifts to underrepresented natural and AI-generated images.

4.1 Natural Image Subset

To build the natural image subset, we first compile a large dataset of unlabeled images, denoted as
U , from Flickr, by leveraging keywords relevant to the object categories in ImageNet-1k [10]. Next,
we employ the MAD competition [58] to facilitate failure identification of the base ViT to be edited.
Under the principle of model falsification as model comparison, MAD chooses to identify images
that best distinguish two classifiers, f(·) and f ′(·), by maximizing their prediction discrepancies.
This can be mathematically formulated as

x(i) = argmax
x′∈U\Dn

d (f(x′), f ′(x′)) , (7)

where Dn = {x(j)}i−1
j=1 is the set of i − 1 images that have been identified. d(·, ·) is the multi-

hop distance defined over the WordNet [13] to measure prediction discrepancy at a semantic level.
Intuitively, if one classifier is weaker, the identified image setDn is more likely to include its predictive
failures, thereby substantially reducing the human effort for failure identification. Moreover, the
“ground-truth” labels for these failures can be first suggested by the stronger model and then verified
by two of the authors. To leverage this intuition, we pair our base model (i.e., a ViT/B-16 pre-trained
on ImageNet-1k) with a stronger one (i.e., the same ViT/B-16 pre-trained using CLIP [43] and fine-
tuned on ImageNet), which generally exhibits better generalization to unseen data. In total, we collect
2, 354 MAD-searched natural images, which are partitioned into 16 groups, i.e., Dn = {S(i)}16i=1,
based on the predictions by the two models. Each group is named according to the format “prediction
of the stronger model”-“prediction of the base model,” with the statistics and visual examples given
in the Appendix.

4.2 AI-generated Image Subset

Classifiers pre-trained on natural images often struggle to generalize to AI-generated images [56, 59].
To exploit this, we construct an AI-generated image subset containing two groups of images, denoted
as Da = {S(i)}18i=17. The 17-th group includes 860 images with an art style shift (i.e., oil painting)
generated by Textural Inversion [56], while the 18-th group comprises 1, 092 images with a lighting
condition shift (i.e., stage light) produced by PUG [5]. Both Textural Inversion and PUG are text-
to-image generators, wherein the “ground-truth” label is embedded in the input text prompt and
subsequently verified by two of the authors. Additional details of the AI-generated image subset can
be found in the Appendix.

7

60 65 70 75 80 85 90 95
LR (%)

60
65
70
75
80
85
90
95

G
R

 (%
)

Natural image subset

FT-`2

LoRA
T-Patcher
KE

KN
MEND

SPT
Ours

ROME

60 65 70 75 80 85 90 95
LR (%)

45
50
55
60
65
70
75
80
85

G
R

 (%
)

AI oil painting subset

55 60 65 70 75 80 85 90 95
LR (%)

30
40
50
60
70
80
90

G
R

 (%
)

AI stage light subset

Figure 4: Editing results for ViT/B-16 on the proposed benchmark.

5 Experiments

In this section, we first describe the experimental setups and then present comparison results on the
proposed editing benchmark.

5.1 Experiment Setups

Evaluation Metrics Following [29], we evaluate all model editing methods on the single-example
editing task and compare their performance using three evaluation metrics. The first is the success
rate (SR), which indicates the reliability (i.e., accuracy) of the edited model f

(
·; θ(e)

)
:

SR(f,Dr) =
1

|Dr|
∑

(x,y)∈Dr

I

[
y = f

(
x; θ(e)(x, y)

)]
, (8)

where Dr = Dn

⋃
Da consists of all MAD-searched and AI-generated images, and we make it

explicit the dependence of the updated parameters θ(e) on the editing sample (x, y). The second
metric is the generalization rate (GR), which assesses the accuracy of the edited model on neighboring
samples that fall within the editing scope:

GR(f,S) = 1

|S|(|S| − 1)

∑
(x′,y′)∈S

∑
(x,y)∈S\(x′,y′)

I

[
y = f

(
x; θ(e)(x′, y′)

)]
, (9)

where S denotes one of the 18 groups in the proposed editing benchmark. We further average the
GR values across all groups as an overall indicator of generalization. The third metric is the locality
rate (LR), which examines whether the edited model maintains its predictions on unrelated samples
outside the editing scope:

LR(f,Dr,Dl) =
1

|Dr||Dl|
∑

(x′,y′)∈Dr

∑
(x,y)∈Dl

I

[
y = f

(
x; θ(e)(x′, y′)

)]
, (10)

where Dl includes out-of-scope images. Using the validation set from ImageNet-1k as Dl does
not adequately examine locality, as the majority are easy samples that lie far from the decision
boundary [16]. To more closely examine the adverse effects of model editing, we have carefully
curated 2, 071 images near the decision boundary of the base model from the validation sets of
ImageNet-1k [47], ImageNet-R [25], and ImageNet-Sketch [57], whose predictions are more suscep-
tible to change. Our selection criteria rely on the predicted probabilities of the pre-trained ViT/B-16
model as follows: 1) the predicted probability for the true label is the highest, and 2) the difference
between the top two predicted probabilities is less than 0.05, suggesting a highly ambiguous class.
We also employ the GR-LR curve to delineate the generalization and locality trade-off.

Base Models For all model editing methods, we experiment with two ViT backbones, ViT-B/16
and ViT/S-16, both pre-trained on ImageNet-21k and ImageNet-1k [53, 47].

8

76 78 80 82 84 86 88 90 92
LR (%)

60

70

80

90

G
R

 (%
)

Natural image subset

FT-`1

FT-`2

Random masking
Ours

(a) Localization effectiveness.

76 78 80 82 84 86 88 90 92
LR (%)

80.0

82.5

85.0

87.5

90.0

92.5

95.0

G
R

 (%
)

Natural image subset

One sample
Two samples
Three samples

(b) More editing samples.

Figure 5: Ablation results of the hypernetwork for ViT/B-16.

Competing Methods We compare our method with several recent model editing approaches as
follows. 1) Fine-tuning (FT) updates the 8-th to 10-th FFNs, which have been identified as the most
effective layers using greedy search (see Fig. 2). 2) FT-ℓ2 [39] incorporates ℓ2-norm regularization
during fine-tuning. 3) T-Patcher [29] adds and tunes a single neuron in the last FFN. 4) KN [8]
and 5) SPT [23] select key parameters based on integrated gradient information. 6) ROME [38] is
implemented to adjust the second FC layer of the last FFN by solving a constrained least squares
problem. 7) LoRA [28] introduces trainable low-rank matrices to update the queries and values of all
MSAs. 8) KE [9] and 9) MEND [40] employ hypernetworks to generate parameter updates for the
last three FFNs. In line with previous work [40, 39], early stopping is applied when the training loss
drops below 0.01 or the maximum of 100 editing steps is reached. Detailed implementations of the
competing methods and additional training configurations are provided in the Appendix.

5.2 Main Results

Fig. 4 shows the GR-LR curves for different editing methods applied to ViT-B/16, averaged across
18 groups in the proposed benchmark. We highlight several interesting observations. First, correcting
a single predictive error is generally feasible, as evidenced by a nearly 100% SR for most methods.
Second, achieving high levels of generalization and locality simultaneously proves to be a significant
challenge. T-Patcher and ROME utilize previously seen data to maintain locality. Nevertheless,
T-Patcher, which relies on an editing scope classifier, exhibits noticeable generalization variability
across different editing samples. ROME, being specifically designed for language-based GPT [15],
shows limited promise in generalizing to ViTs. LoRA manages to maintain locality because of
its low-rank updates but struggles to generalize. Both KE and MEND exhibit low locality on the
MAD-searched natural images and poor generalization to the AI-generated images. Third, our method
achieves the new state-of-the-art without relying on previously trained data to explicitly enforce
locality. Similar conclusions can be drawn for ViT-S/16, shown in the Appendix.

We then evaluate our method across different parameter sparsity levels in the three FFNs from
{0.25, 0.50, 0.75, 0.90, 0.95}, corresponding to {12.4%, 8.25%, 4.13%, 1.65%, 0.83%} parameters
of the entire model, by adjusting ρ in Eq. (6). The competing methods—FT-ℓ2, KN, and SPT—are
adjusted to comparable levels of parameter sparsity by tuning their respective hyperparameters. Note
that our method reduces to FT when ρ = 0. The resulting GR-LR curves are shown in Fig. 4. As
expected, increasing the parameter sparsity in KN, SPT, and our method improves locality at the
expense of generalization. Notably, our method achieves the best Pareto front among all methods,
which we believe arises from our proposed strategy of learning where to edit towards editing success.

5.3 Ablation Studies

Localization Effectiveness To substantiate that the effectiveness of our method is indeed due to
the successful localization of a specific subset of key parameters, rather than merely due to sparsity,
we compare the binary masks produced by our hypernetwork to random masks at the same sparsity
levels, together with FT-ℓ1 and FT-ℓ2. As depicted in Fig. 5a, FT-ℓ1 generally surpasses FT-ℓ2 at
various regularization levels as ℓ1-norm is more effective in zeroing out less important parameters.
Applying random masks shows effects akin to FT-ℓ1. When the ratio of editing parameters falls below
1.65%, the performance of random masking becomes significantly inferior to our method.

9

(a) Six representative editing examples from three
different groups.

0 1 2 3 4 5
Image index

0
1

2
3

4
5

Im
ag

e
in

de
x

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Binary mask IoU results between pairs of samples
in (a), indexed in column-major order.

Figure 6: Mask specificity results.

Mask Specificity To confirm the specificity of the parameters identified by the hypernetwork for
different editing samples, we compute the intersection over union (IoU) of the corresponding binary
masks at the 0.95 sparsity level for samples within and outside the same groups in the natural image
subset. Fig. 6b illustrates that the identified parameters demonstrate substantial overlaps for images
within the same group and much lower overlaps between images from different groups. These
findings support that the hypernetwork successfully pinpoints key parameters necessary to correct
specific errors while effectively excluding parameters associated with other unrelated samples. This
learned mask specificity allows our method to balance effectively between generalization and locality.

More Editing Samples We further evaluate our method when multiple editing samples in the same
group (i.e., with similar failure causes) are available. As a straightforward extension, we compute the
average of the continuous masks generated from each sample, followed by binarization using Eq. (6).
Fig. 5b presents the results of using one, two, and three samples for model editing. Remarkably, the
editing performance improves with more editing samples, which can be attributed to more precise
parameter localization as a result of the ensemble of masks.

More Ablation Studies More ablation studies (e.g., the alternative pseudo-sample generation
strategy, the sparsity regularization in the outer loop, the gradient step and learning rate in the inner
loop, and the number of attention blocks in the hypernetwork) are in the Appendix.

6 Conclusion and Discussion

We have introduced a model editing method to correct predictive errors in ViTs. Our method
prioritizes where-to-edit over how-to-edit by meta-training a hypernetwork to identify a subset
of structured parameters for editing. By applying ℓ1-norm regularization, our method promotes
sparsity in the generated mask, thereby indirectly ensuring locality without needing to retrain on
previously used data. Comprehensive tests on the proposed editing benchmark confirm that our
method effectively corrects predictive errors in ViTs. Moreover, the introduced edits are not only
reliable but also generalize well to neighboring samples, while maintaining a high rate of locality.

Our work is among the early endeavors in CV model editing, and it raises several intriguing questions
for future research. First, our approach utilizes the CutMix technique [62] to generate cost-effective
pseudo-samples for training, but its effectiveness has only been confirmed empirically. The reasons
why the hypernetwork trained on such synthetic data achieves reasonable generalization and the
identification of optimal synthetic data generation techniques remain wide open. Second, it would be
beneficial to adapt our method to other vision architectures, such as convolutional networks or Swin
Transformers [35], and extend its application to other vision areas like dense prediction, generative
modeling, and multimodal LLMs. Third, exploring how to apply our method in a batch-editing setting
represents a promising avenue. In such scenarios, the use of a decoupling trick (see more details in
the Appendix) may prove essential for effectively reducing computational and memory demands.

10

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia L Aleman,

Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

[2] Johannes Ballé, Valero Laparra, and Eero P Simoncelli. End-to-end optimized image compres-
sion. In International Conference on Learning Representations, 2017.

[3] David Bau, Steven Liu, Tongzhou Wang, Jun-Yan Zhu, and Antonio Torralba. Rewriting a deep
generative model. In European Conference on Computer Vision, pages 351–369, 2020.

[4] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[5] Florian Bordes, Shashank Shekhar, Mark Ibrahim, Diane Bouchacourt, Pascal Vincent, and Ari
Morcos. PUG: Photorealistic and semantically controllable synthetic data for representation
learning. In Advances in Neural Information Processing Systems, pages 8072–8081, 2023.

[6] Wray Buntine. Theory refinement on Bayesian networks. In Conference on Uncertainty in
Artificial Intelligence, pages 52–60, 1991.

[7] Jiaxin Chen, Xiao-Ming Wu, Yanke Li, Qimai Li, Li-Ming Zhan, and Fu-lai Chung. A closer
look at the training strategy for modern meta-learning. In Advances in Neural Information
Processing Systems, pages 396–406, 2020.

[8] Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons
in pretrained Transformers. In Annual Meeting of the Association for Computational Linguistics,
pages 8493–8502, 2022.

[9] Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. In
Empirical Methods in Natural Language Processing, pages 6491–6506, 2021.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 248–255, 2009.

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations, 2021.

[12] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The Llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

[13] Christiane Fellbaum. WordNet: An Electronic Lexical Database. MIT Press, 1998.

[14] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In International Conference on Machine Learning, pages 1126–1135,
2017.

[15] Luciano Floridi and Massimo Chiriatti. GPT-3: Its nature, scope, limits, and consequences.
Minds and Machines, 30:681–694, 2020.

[16] Irena Gao, Gabriel Ilharco, Scott Lundberg, and Marco T Ribeiro. Adaptive testing of computer
vision models. In IEEE International Conference on Computer Vision, pages 4003–4014, 2023.

[17] Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Goldberg. Transformer feed-forward layers
build predictions by promoting concepts in the vocabulary space. In Empirical Methods in
Natural Language Processing, pages 30–45, 2022.

[18] Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. In Empirical Methods in Natural Language Processing, pages 5484–5495,
2021.

11

[19] Chong Guo, Michael Lee, Guillaume Leclerc, Joel Dapello, Yug Rao, Aleksander Madry, and
James Dicarlo. Adversarially trained neural representations are already as robust as biological
neural representations. In International Conference on Machine Learning, pages 8072–8081,
2022.

[20] Anshita Gupta, Debanjan Mondal, Akshay Sheshadri, Wenlong Zhao, Xiang Li, Sarah Wiegreffe,
and Niket Tandon. Editing common sense in transformers. In Empirical Methods in Natural
Language Processing, pages 8214–8232, 2023.

[21] Thomas Hartvigsen, Swami Sankaranarayanan, Hamid Palangi, Yoon Kim, and Marzyeh
Ghassemi. Aging with grace: Lifelong model editing with discrete key-value adaptors. In
Advances in Neural Information Processing Systems, pages 47934–47959, 2023.

[22] Peter Hase, Mohit Bansal, Been Kim, and Asma Ghandeharioun. Does localization inform
editing? Surprising differences in causality-based localization vs. knowledge editing in language
models. In Advances in Neural Information Processing Systems, pages 17643–17668, 2023.

[23] Haoyu He, Jianfei Cai, Jing Zhang, Dacheng Tao, and Bohan Zhuang. Sensitivity-aware visual
parameter-efficient fine-tuning. In IEEE International Conference on Computer Vision, pages
11825–11835, 2023.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778,
2016.

[25] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo,
Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin
Gilmer. The many faces of robustness: A critical analysis of out-of-distribution generalization.
In IEEE International Conference on Computer Vision, pages 8340–8349, 2021.

[26] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (GELUs). arXiv preprint
arXiv:1606.08415, 2016.

[27] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
ArXiv preprint arXiv:1503.02531, 2015.

[28] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In
International Conference on Learning Representations, 2022.

[29] Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou, Wenge Rong, and Zhang Xiong.
Transformer-patcher: One mistake worth one neuron. In International Conference on Learning
Representations, 2023.

[30] Jeong-Hun Jang and Ki-Sang Hong. Binarization of noisy gray-scale character images by thin
line modeling. Pattern Recognition, 32(5):743–752, 1999.

[31] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, 2015.

[32] Teuvo Kohonen. Correlation matrix memories. IEEE Transactions on Computers, 100(4):353–
359, 1972.

[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems, pages
1097–1105, 2012.

[34] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept
learning through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

[35] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin Transformer: Hierarchical vision Transformer using shifted windows. In IEEE
International Conference on Computer Vision, pages 10012–10022, 2021.

12

[36] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Kwang-Ting Cheng, and
Jian Sun. MetaPruning: Meta learning for automatic neural network channel pruning. In IEEE
International Conference on Computer Vision, pages 3296–3305, 2019.

[37] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

[38] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in GPT. In Advances in Neural Information Processing Systems, pages 17359–
17372, 2022.

[39] Kevin Meng, Arnab S Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-editing
memory in a Transformer. In International Conference on Learning Representations, 2023.

[40] Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast
model editing at scale. In International Conference on Learning Representations, 2022.

[41] Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, and Chelsea Finn.
Memory-based model editing at scale. In International Conference on Machine Learning, pages
15817–15831, 2022.

[42] Shikhar Murty, Christopher D Manning, Scott Lundberg, and Marco T Ribeiro. Fixing model
bugs with natural language patches. In Empirical Methods in Natural Language Processing,
pages 11600–11613, 2022.

[43] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
pages 8748–8763, 2021.

[44] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with
implicit gradients. In Advances in Neural Information Processing Systems, pages 113–124,
2019.

[45] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do ImageNet
classifiers generalize to ImageNet? In International Conference on Machine Learning, pages
5389–5400, 2019.

[46] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 10684–10695, 2022.

[47] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C Berg, and Li Fei-Fei.
ImageNet large scale visual recognition challenge. International Journal of Computer Vision,
115:211–252, 2015.

[48] Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry. Do
adversarially robust ImageNet models transfer better? In Advances in Neural Information
Processing Systems, pages 3533–3545, 2020.

[49] Shibani Santurkar, Dimitris Tsipras, Mahalaxmi Elango, David Bau, Antonio Torralba, and
Aleksander Madry. Editing a classifier by rewriting its prediction rules. In Advances in Neural
Information Processing Systems, pages 23359–23373, 2021.

[50] Shibani Santurkar, Dimitris Tsipras, and Aleksander Madry. BREEDS: Benchmarks for sub-
population shift. In International Conference on Learning Representations, 2021.

[51] Haopu Shang, Jia-Liang Wu, Wenjing Hong, and Chao Qian. Neural network pruning by
cooperative coevolution. In International Joint Conference on Artificial Intelligence, pages
4814–4820, 2022.

13

[52] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations, 2015.

[53] Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit,
and Lucas Beyer. How to train your ViT? Data, augmentation, and regularization in vision
Transformers. Transactions on Machine Learning Research, 2022.

[54] Chenmien Tan, Ge Zhang, and Jie Fu. Massive editing for large language models via meta
learning. In International Conference on Learning Representations, 2024.

[55] Sebastian Thrun and Tom M Mitchell. Learning one more thing. In International Joint
Conference on Artificial Intelligence, pages 1217–1223, 1995.

[56] Joshua Vendrow, Saachi Jain, Logan Engstrom, and Aleksander Madry. Dataset interfaces:
Diagnosing model failures using controllable counterfactual generation. ArXiv preprint
arXiv:2302.07865, 2023.

[57] Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global represen-
tations by penalizing local predictive power. In Advances in Neural Information Processing
Systems, pages 10506–10518, 2019.

[58] Haotao Wang, Tianlong Chen, Zhangyang Wang, and Kede Ma. I am going mad: Maximum
discrepancy competition for comparing classifiers adaptively. In International Conference on
Learning Representations, 2020.

[59] Olivia Wiles, Isabela Albuquerque, and Sven Gowal. Discovering bugs in vision models using
off-the-shelf image generation and captioning. In Advances in Neural Information Processing
Systems Workshop on Machine Learning Safety, 2022.

[60] Xinwei Wu, Junzhuo Li, Minghui Xu, Weilong Dong, Shuangzhi Wu, Chao Bian, and Deyi
Xiong. DEPN: Detecting and editing privacy neurons in pretrained language models. In
Empirical Methods in Natural Language Processing, pages 2875–2886, 2023.

[61] Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng, Zhoubo Li, Shumin Deng, Huajun Chen,
and Ningyu Zhang. Editing large language models: Problems, methods, and opportunities. In
Empirical Methods in Natural Language Processing, pages 10222–10240, 2023.

[62] Sangdoo Yun, Dongyoon Han, S Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon
Yoo. CutMix: Regularization strategy to train strong classifiers with localizable features. In
International Conference on Computer Vision, pages 6023–6032, 2019.

[63] Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang.
Can we edit factual knowledge by in-context learning? In Empirical Methods in Natural
Language Processing, pages 4862–4876, 2023.

[64] Zexuan Zhong, Zhengxuan Wu, Christopher D Manning, Christopher Potts, and Danqi Chen.
MQuAKE: Assessing knowledge editing in language models via multi-hop questions. In
Empirical Methods in Natural Language Processing, pages 15686–15702, 2023.

14

A More Details about the Editing Benchmark

A.1 Natural Image Subset

Table A: Statistics of the natural image subset. The first column lists identifiers for each object
category in ImageNet-1k. The “Class Name” in the second column is in the format as “prediction by
the stronger model”-“prediction by the base model.”

Group Identifier Class Name Sample Number
890-430 volleyball-basketball 123
933-923 cheeseburger-plate 133
470-644 candle-matchstick 113
900-437 water tower-beacon 159
609-586 jeep-half track 410
543-422 dumbbell-barbell 240
879-762 umbrella-restaurant 49
417-865 balloon-toyshop 75
573-751 go-kart-racer 172
880-671 unicycle-mountain bike 149
954-582 banana-grocery store 75
752-890 racket-volleyball 137
640-539 manhole cover-doormat 80
407-654 ambulance-minibus 155
562-975 fountain-lakeside 155
888-718 viaduct-pier 129

We divide the MAD-searched natural image subset into 16 groups, whose statistics are listed in
Table A. Visual examples in each group are shown in Figs. A and B. These images are sourced from
Flickr, prior to the advent of Stable Diffusion, and are licensed under creative commons.

A.2 AI-generated Image Subset

We adopt Textural Inversion [56] and PUG [5] to construct the AI-generated image subset, encom-
passing the oil painting and stage light shifts, respectively. The statistics are given in Table B.

Specific classes in the oil painting subset include stingray, bullfrog, box turtle, garter
snake, harvestman, crayfish, hermit crab, mongoose, rhinoceros beetle, weevil, wood
rabbit, capuchin, african elephant, breastplate, drumstick, envelope, hand blower,
shovel, spatula, syringe, wine bottle, and corn.

Specific classes in the stage light subset include barrel, cofee mug, washer, jack o lantern,
vase, throne, soccer ball, basketball, car wheel, vacuum, birdhouse, laptop, piano,
pool table, carousel, jellyfish, convertible, motor scooter, mask, sewing machine,
hay, gasmask, bell pepper, drum, table lamb, backpack, chicken hen, tennis ball,
safe, pay phone, cabbage, and pineapple.

Visual examples of the oil painting and stage light images are shown in Fig. C and Fig. D, respectively.

A.3 Potential Dataset Filtering

Recall that the editing benchmark is designed to challenge the ViT/B-16 model. Thus, it is likely
that some images might not induce predictive errors in other base models, which vary in terms of
training data, model architecture, loss function, and optimization pipeline. For the ViT/S-16 model,
the benchmark is subject to an additional filtering process based on its predictions. Consequently,
65% of the natural images and 100% of the AI-generated images are retained.

15

Group 890-430: volleyball-basketball Group 933-923: cheeseburger-plate

Group 470-644:candle-matchstick Group 900-437: water tower-beacon

Group 609-586: jeep-half track Group 543-422: dumbbell-barbell

Group 879-762: umbrella-restaurant Group 417-865: balloon-toyshop

Figure A: Visual examples in each group of the natural image subset. Part 1/2.

Table B: Statistics of the AI-generated image subset.
Group Class Number Sample Number

oil painting 22 860
stage light 32 1,092

B More Experimental Details

In this section, we give more implementation details of the proposed and competing model editing
methods. Algorithm 1 presents the pseudo-code of our method.

B.1 More Details of Our Method

Decoupling Trick In meta-learning, optimization of the hypernetwork entails differentiating the
outer-loop loss with respect to the output of the inner loop ϕ(T), and propagating the gradient through
the inner-loop optimization to the output of the hypernetwork m̂ (approximated by Eq. (4)), and
finally to the parameters of the hypernetwork, φ. This extended chain of computation not only
demands substantial computational resources but also hampers efficient optimization. To mitigate
these, we decouple the pathway of hypernetwork optimization from the meta-learning gradient.
Specifically, we introduce an auxiliary variable m̃, matching the dimensionality of m̂, to substitute

16

Group 573-751: go-kart-racer Group 880-671: unicycle-mountain bike

Group 954-582: banana-grocery store Group 752-890: racket-volleyball

Group 640-539: manhole cover-doormat Group 407-654: ambulance-minibus

Group 562-975: fountain-lakeside Group 888-718: fountain-lakeside

Figure B: Visual examples in each group of the natural image subset. Part 2/2.

for the hypernetwork’s output during bi-level optimization. As a result, ϕ(T) is now dependent on m̃,
rather than m̂. We first optimize the auxiliary variable:

m̃⋆ = argmin
m̃

ℓ
(
x, y;ϕ(T)

)
+ λ∥m̃∥1. (11)

Subsequently, m̃⋆ directs the parameter optimization of the hypernetwork using the element-wise KL
divergence averaged across all positions:

φ⋆ = argmin
φ

1

dim(m̃⋆)

∑
i

KL
(
gi

(
e
(
x;ϕ(0)

)
;φ
)
, m̃⋆

i

)
, (12)

where i is the positional index and dim(m̃⋆) = Nm × 6 in our implementation.

Pseudo-sample Generation When applying CutMix, we vary the sizes of the pasted patches from
48× 48 to 128× 128, ensuring the preservation of the primary structural and textural details in the
original images, which are 224× 224 in size.

Hypernetwork Architecture We design the hypernetwork to mirror the architecture of its corre-
sponding base model (i.e., ViT/B-16 or ViT/S-16), with the same input and intermediate dimensions.
Nevertheless, we reduce the number of attention blocks to five.

17

corn rhinoceros beetle capuchin

breastplate shovel wine bottle

Figure C: Visual examples of the AI-generated oil painting images.

coffee mug vase washer

Figure D: Visual examples of the AI-generated stage light images.

Hyperparameter Configuration We set the learning rate in the inner loop as 0.001, and perform
gradient descent for five steps (i.e., T = 5). In the outer loop, we apply the Adam optimizer with
a learning rate of 0.1 to optimize m̃ from random initialization for a total of ten steps. For the
hypernetwork optimization, RMSProp5 is utilized with a learning rate of 10−4, a minibatch size of
eight, and a maximum iteration number of 7, 000. Training a hypernetwork for the base ViT/B-16
takes approximately 9 hours on a single RTX A6000 GPU (48G).

5https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

18

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Algorithm 1 Hypernetwork Meta-training via Standard Implementation / Decoupling Trick

Require: Hypernetwork, g(·;φ); ViT feature extractor, e
(
·;ϕ(0)

)
; CutMix dataset, B; training itera-

tion, MaxIter; inner-loop learning rate, α; inner-loop step, T ; outer-loop hypernetwork learning
rate, β; outer-loop m̃ learning rate, γ; outer-loop step, MaxOuterIter; trade-off parameter, λ

1: Randomly initialize φ
2: for MainIter = 1 to MaxIter do
3: Create a CutMix dataset B from ImageNet-1k
4: for (x′, x) ∈ B do
5: Calculate m̂ = g

(
e
(
x;ϕ(0)

)
;φ
)

// Approximated by Eq. (4)
6: Set ∆ϕ(0) = 0
7: for t = 1 to T do
8: ∆ϕ(t) = ∆ϕ(t−1) − α∇ϕℓ

(
x, p

(
y|x′;ϕ(0)

)
;ϕ(t−1)

)
9: ϕ(t) = ϕ(0) + m̂⊙∆ϕ(t)

10: end for
11: φ← φ− β∇φ

[
ℓ
(
x, p

(
y|x′;ϕ(0)

)
;ϕ(T)

)
+ λ∥m̂∥1

]
12: Randomly initialize m̃
13: for OuterIter = 1 to MaxOuterIter do
14: for t = 1 to T do
15: ∆ϕ(t) = ∆ϕ(t−1) − α∇ϕℓ

(
x, p

(
y|x′;ϕ(0)

)
ϕ(t−1)

)
16: ϕ(t) = ϕ(0) + m̃⊙∆ϕ(t)

17: end for
18: m̃← m̃− γ∇m̃

[
ℓ
(
x, p

(
y|x′;ϕ(0)

)
;ϕ(T)

)
+ λ∥m̃∥1

]
19: end for
20: end for
21: φ← φ− β∇φKL (m̂, m̃)
22: end for

B.2 Implementation Details of Competing Methods

For methods that involve updating the base model parameters through backpropagation—including
FT, FT-ℓ2, KN [8], SPT [23], and our method—we follow [9] and adopt RMSProp as the optimizer,
where the learning rate is set to 2× 10−5 for ViT/B-16 and 10−4 for ViT/S-16, respectively.

T-Patcher [29] adds one neuron in the last FFN, together with a trainable multiplier initialized as 10.
The new parameters are optimized using Adam with a learning rate of 5× 10−3.

ROME [38] employs Adam with a learning rate of 0.01 to obtain the target hidden representations of
the last FFN, and then solves a constrained least squares problem to update the second FC layer.

We follow the default setting in LoRA [28], adding learnable matrices with a rank of eight. These
low-rank matrices are optimized by Adam with a learning rate of 10−4.

For KE [9] and MEND [9], we adhere to their training protocols to edit the six FC layers within the
last three FFNs. The hypernetworks are meta-trained on editing samples sourced from ImageNet-1k
to alter the base model’s predictions to match the top-k randomly selected classes. The optimizer is
Adam [31] with a learning rate of 10−5.

C More Experimental Results

C.1 More Editing Results for ViT/B-16

In the main paper, we report the averaged editing results for ViT/B-16 across the sixteen groups in
the natural image subset. Here, we further report the editing results on each group in Fig. E.

19

60 65 70 75 80 85 90 95
LR (%)

65

70

75

80

85

90

95

100

G
R

 (%
)

Group 890-430

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

60 65 70 75 80 85 90 95
LR (%)

60

70

80

90

100

G
R

 (%
)

Group 933-923

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

60 65 70 75 80 85 90 95
LR (%)

60

65

70

75

80

85

90

95

100

G
R

 (%
)

Group 470-644

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

60 65 70 75 80 85 90 95
LR (%)

60

70

80

90

100

G
R

 (%
)

Group 900-437

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

60 65 70 75 80 85 90 95
LR (%)

75

80

85

90

95

100

G
R

 (%
)

Group 609-586

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

60 65 70 75 80 85 90 95
LR (%)

40

50

60

70

80

90

G
R

 (%
)

Group 543-422

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

60 70 80 90
LR (%)

60

70

80

90

G
R

 (%
)

Group 879-762

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

65 70 75 80 85 90 95
LR (%)

60

65

70

75

80

85

90

95

100

G
R

 (%
)

Group 417-865

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

60 70 80 90
LR (%)

75

80

85

90

95

100

G
R

 (%
)

Group 573-751

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

60 70 80 90
LR (%)

50

60

70

80

90

100

G
R

 (%
)

Group 880-671

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

60 70 80 90
LR (%)

50

60

70

80

90

100

G
R

 (%
)

Group 954-582

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

60 65 70 75 80 85 90 95
LR (%)

20

30

40

50

60

70

80

90

100

G
R

 (%
)

Group 752-890

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

60 65 70 75 80 85 90 95
LR (%)

50

60

70

80

90

100

G
R

 (%
)

Group 640-539

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

60 65 70 75 80 85 90 95
LR (%)

60

65

70

75

80

85

90

95

100

G
R

 (%
)

Group 407-654

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

60 70 80 90
LR (%)

50

60

70

80

90

G
R

 (%
)

Group 562-975

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

60 65 70 75 80 85 90 95
LR (%)

50

60

70

80

90

G
R

 (%
)

Group 888-718

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

Figure E: Editing results for ViT/B-16 on the sixteen groups in the natural image subset.

60 70 80 90 100
LR (%)

50

60

70

80

90

100

G
R

 (%
)

Natural image subset

FT-`2

LoRA
T-Patcher
KE

KN
MEND

SPT
Ours

ROME

50 60 70 80 90 100
LR (%)

20
30
40
50
60
70
80
90

G
R

 (%
)

AI oil painting subset

60 70 80 90 100
LR (%)

20
30
40
50
60
70
80
90

G
R

 (%
)

AI stage light subset

Figure F: Editing results for ViT/S-16 on the proposed benchmark.

C.2 Editing Results for ViT/S-16

Fig. F presents the editing outcomes for ViT/S-16, where our method continues to exhibit the opti-
mal generation-locality trade-off, demonstrating its adaptability across various model architectures.
Meanwhile, Fig. G presents the editing results on each group in the natural image subset.

C.3 More Analysis

We present the training curves of the hypernetwork in Fig. H. We find that the mask sparsity increases
rapidly at the beginning of training from 0.0 to 0.86, which poses challenges for successful edits. As
training progresses, the mask sparsity stabilizes while the KL divergence decreases. This suggests
that the hypernetwork has effectively located key parameters relevant to successful edits.

20

60 70 80 90 100
LR (%)

40

50

60

70

80

90

100

G
R

 (%
)

Group 890-430

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

60 70 80 90 100
LR (%)

40

50

60

70

80

90

100

G
R

 (%
)

Group 933-923

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

60 70 80 90 100
LR (%)

40

50

60

70

80

90

100

G
R

 (%
)

Group 470-644

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

60 70 80 90 100
LR (%)

40

50

60

70

80

90

100

G
R

 (%
)

Group 900-437

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

50 60 70 80 90 100
LR (%)

60

70

80

90

100

G
R

 (%
)

Group 609-586

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

50 60 70 80 90 100
LR (%)

50

60

70

80

90

100

G
R

 (%
)

Group 543-422

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

50 60 70 80 90 100
LR (%)

40

50

60

70

80

90

G
R

 (%
)

Group 879-762

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

50 60 70 80 90 100
LR (%)

40

50

60

70

80

90

100

G
R

 (%
)

Group 417-865

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

60 70 80 90 100
LR (%)

60

70

80

90

100

G
R

 (%
)

Group 573-751

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

50 60 70 80 90 100
LR (%)

40

50

60

70

80

90

100

G
R

 (%
)

Group 880-671

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

50 60 70 80 90 100
LR (%)

50

60

70

80

90

G
R

 (%
)

Group 954-582

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

50 60 70 80 90 100
LR (%)

30

40

50

60

70

80

90

100

G
R

 (%
)

Group 752-890

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

50 60 70 80 90 100
LR (%)

30

40

50

60

70

80

90

100

G
R

 (%
)

Group 640-539

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

60 70 80 90 100
LR (%)

60

70

80

90

100

G
R

 (%
)

Group 407-654

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

60 70 80 90 100
LR (%)

30

40

50

60

70

80

90

100
G

R
 (%

)
Group 562-975

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

60 70 80 90 100
LR (%)

40

50

60

70

80

90

100

G
R

 (%
)

Group 888-718

FT-`2

T-Patcher
KN
SPT
ROME
LoRA
KE
MEND
Ours

Figure G: Editing results for ViT/S-16 on the sixteen groups in the natural image subset.

0 1k 2k 3k 4k
Iterations

0.0

0.2

0.4

0.6

0.8

Sp
ar

si
ty

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

K
L

di
ve

rg
en

ce

Mask sparsity
Outer-loop KL divergence

Figure H: Training curves of the hypernetwork.

890-430
933-923

470-644
900-437

609-586
879-762

573-751
407-654

Groups

890-430

933-923

470-644

900-437

609-586

879-762

573-751

407-654

G
ro

up
s

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Figure I: Binary mask IoU results for samples
among eight groups of the natural image subset.

C.4 Ablation Studies

Mask Specificity We further compute the averaged IoU results of the binary masks at the 0.95
sparsity level for editing samples among eight groups in the natural image subset. The results in
Fig. I show that the identified parameters exhibit substantial overlaps for samples within the same
group and much lower overlaps for samples from different groups.

Alternative Strategy for Pseudo-sample Generation We examine another more computationally
expensive pseudo-sample generation strategy, i.e., PGD [37], which has been validated to capture
diverse distribution variations [19, 48]. Given a natural image x′ with the label y′ in the pre-training
set, we apply PGD [37] on x′ to obtain the pseudo-sample x with the prediction different from
y′. We set the number of attack steps to 10 with a step size of 2/255, under the feasible set of

21

80 82 84 86 88 90
LR (%)

77.5
80.0
82.5
85.0
87.5
90.0
92.5
95.0

G
R

 (%
)

Natural image subset

CutMix PGD

74 76 78 80 82 84
LR (%)

60.0
62.5
65.0
67.5
70.0
72.5
75.0
77.5

G
R

 (%
)

AI oil painting subset

65.0 67.5 70.0 72.5 75.0 77.5 80.0
LR (%)

70

75

80

85

90

95

G
R

 (%
)

AI stage light subset

Figure J: Editing results for ViT/B-16 on the proposed benchmark, using the hypernetworks meta-
trained by two different pseudo-sample generation approaches.

78 80 82 84 86 88 90
LR (%)

75

80

85

90

G
R

 (%
)

ViT/B-16 on 954-582

0.2
1.0
5.0

80 82 84 86 88 90 92
LR (%)

80.0
82.5
85.0
87.5
90.0
92.5
95.0
97.5

G
R

 (%
)

ViT/B-16 on 933-923

0.2
1.0
5.0

Figure K: Ablation results of the hyperparameter λ in the outer-loop optimization of Problem (2).

77.5 80.0 82.5 85.0 87.5 90.0 92.5
LR (%)

85.0

87.5

90.0

92.5

95.0

97.5

G
R

 (%
)

ViT/B-16 on 890-430

1
5
10

78 80 82 84 86 88 90
LR (%)

82.5

85.0

87.5

90.0

92.5

95.0

97.5

G
R

 (%
)

ViT/B-16 on 752-890

1
5
10

Figure L: Ablation results of the gradient step T in the inner loop.

77.5 80.0 82.5 85.0 87.5 90.0 92.5
LR (%)

85.0

87.5

90.0

92.5

95.0

97.5

G
R

 (%
)

ViT/B-16 on 890-430

10−4

10−3

10−2

78 80 82 84 86 88 90
LR (%)

82.5

85.0

87.5

90.0

92.5

95.0

97.5

G
R

 (%
)

ViT/B-16 on 752-890

10−4

10−3

10−2

Figure M: Ablation results of the learning rate in the inner loop.

ℓ∞(x, x′) ≤ 8/255. During training, we employ the cross-entropy loss ℓ
(
x, y′;ϕ(t)

)
to correct the

prediction of x.

22

82 84 86 88 90 92
LR (%)

88

90

92

94

96

98

G
R

 (%
)

ViT/B-16 on 890-430

One block
Three blocks
Five blocks

84 86 88 90 92
LR (%)

92

94

96

98

G
R

 (%
)

ViT/B-16 on 609-586

One block
Three blocks
Five blocks

Figure N: Ablation results of the number of attention blocks in the hypernetwork.

Fig. J shows the editing results of two hypernetworks meta-trained using the two different pseudo-
sample generation approaches. Remarkably, the simple CutMix rivals PGD in simulating distribution
shifts, even in the two AI-generated image subsets.

Sparsity Regularization in the Outer Loop In the outer loop, we introduce a trade-off hyperpa-
rameter, λ, to balance the reliability objective with the sparsity regularizer. Here, we explore the
impact of λ and observe that the sensitivity of hypernetwork to this trade-off parameter is minimal,
as shown in Fig. K.

Gradient Step in the Inner Loop For the gradient step, T , in the inner loop, we test values of
{1, 5, 10}. The performance of ViT/B-16 for each setting is illustrated in Fig. L, where we find that
one gradient step yields slightly inferior results compared to more steps. Five and ten steps perform
similarly, yet ten steps have greater training costs. Thus, we opt for five gradient steps as the default.

Learning Rate in the Inner Loop We explore the impact of the learning rate in the inner loop with
values from {10−4, 10−3, 10−2}. The editing results shown in Fig. M indicate that a lower learning
rate (i.e., 10−4) exhibits slightly inferior performance than a larger learning rate. This may arise
because a lower learning rate results in minimal updates to the base model within five gradient steps,
thereby ineffective in guiding the hypernetwork training.

Number of Attention Blocks We additionally conduct ablative experiments to evaluate the impact
of the number of attention blocks in the hypernetwork. We test values of {1, 3, 5}, and the editing
performance for ViT/B-16 is illustrated in Fig. N, where we find that a small hypernetwork can
achieve comparable performance to larger hypernetworks. Decreasing the number of attention blocks
in the hypernetwork from five to three, and to one, does not incur a noticeable performance drop.

D Limitations

See the Conclusion and Discussion section in the main text.

E Broader Impact

Model editing has a broad impact by accelerating innovation in AI development through rapid
iterations and refinements without extensive retraining, thus conserving resources and reducing
environmental impact. The proposed method enables error correction of CV models, thereby enhanc-
ing adaptability and accessibility. We believe our method has great potential in addressing ethical
concerns by mitigating biases and improving fairness in CV applications, while also increasing the
robustness of CV systems against security threats like adversarial attacks.

23

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] ,
Justification: Limitations are discussed in the Appendix D.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

24

Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Implementation details are provided in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

25

Answer: [Yes]

Justification: Our code is available at https://github.com/hustyyq/Where-to-Edit.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details are provided in the Appendix A and B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Fine-tuning on a specific example is determinative when no additional ran-
domly initialized parameters are introduced. In this case, there is no associated error bar.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

26

https://github.com/hustyyq/Where-to-Edit
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Computer resources are provided in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In appendix E.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

27

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pre-trained language models,
image generators, or scraped datasets)?

Answer:[Yes]

Justification: For the 2354 images scraped from the Internet, we check the images manually
to ensure the safety.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The authors cite the original paper that produced the dataset used in this paper.
The Internet-searched images from the website are used under the copyright, which is stated
in Appendix A.1.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

28

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: The paper does not release new assets before acceptance.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29

	Introduction
	Related Work
	Model Editing in NLP
	Model Editing in CV

	Learning Where to Edit ViTs
	Preliminaries
	Model Editing at Training Time: Where-to-edit
	Optimization Challenges
	Model Editing at Test Time: How-to-edit
	Hypernetwork Architecture

	Editing Benchmark with Subpopulation Shifts
	Natural Image Subset
	AI-generated Image Subset

	Experiments
	Experiment Setups
	Main Results
	Ablation Studies

	Conclusion and Discussion
	More Details about the Editing Benchmark
	Natural Image Subset
	AI-generated Image Subset
	Potential Dataset Filtering

	More Experimental Details
	More Details of Our Method
	Implementation Details of Competing Methods

	More Experimental Results
	More Editing Results for ViT/B-16
	Editing Results for ViT/S-16
	More Analysis
	Ablation Studies

	Limitations
	Broader Impact

