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Abstract

Model editing aims to data-efficiently correct predictive errors of large pre-trained
models while ensuring generalization to neighboring failures and locality to min-
imize unintended effects on unrelated examples. While significant progress has
been made in editing Transformer-based large language models, effective strategies
for editing vision Transformers (ViTs) in computer vision remain largely untapped.
In this paper, we take initial steps towards correcting predictive errors of ViTs,
particularly those arising from subpopulation shifts. Taking a locate-then-edit
approach, we first address the “where-to-edit” challenge by meta-learning a hyper-
network on CutMix-augmented data generated for editing reliability. This trained
hypernetwork produces generalizable binary masks that identify a sparse subset of
structured model parameters, responsive to real-world failure samples. Afterward,
we solve the “how-to-edit” problem by simply fine-tuning the identified parameters
using a variant of gradient descent to achieve successful edits. To validate our
method, we construct an editing benchmark that introduces subpopulation shifts
towards natural underrepresented images and AI-generated images, thereby reveal-
ing the limitations of pre-trained ViTs for object recognition. Our approach not
only achieves superior performance on the proposed benchmark but also allows for
adjustable trade-offs between generalization and locality. Our code is available at
https://github.com/hustyyq/Where-to-Edit.

1 Introduction

In many scientific and engineering disciplines, computational models serve as approximations of
complex real-world phenomena. As a consequence, they are inherently prone to predictive errors,
aptly encapsulated by George Box’s adage: “All models are wrong, but some are useful.” Model
editing [55, 6, 9, 40] has emerged as a promising technique to make (large) pre-trained models more
useful by enabling targeted updates to model behavior on specific inputs or tasks in a data-efficient
manner without pre-training again from scratch. An ideal model editing method should satisfy three
major desiderata [9, 61]: 1) reliability, ensuring the model behavior is effectively updated for the
current sample; 2) generalization, so that the changes extend to neighboring samples; and 3) locality,
meaning the edit should have minimal impact on the model behavior on unrelated samples.

Model editing has allowed many fascinating applications, including error correction, factual knowl-
edge update, bias mitigation, policy compliance, and personalization, though most of them have
predominantly been within large language models (LLMs) [15, 1, 12] in the natural language process-
ing (NLP) community [9, 40]. With the enormous and often inaccessible pre-training datasets and the
ever-growing model sizes that make retraining computationally demanding, the need for effectively
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editing computer vision (CV) models is also becoming urgent. Adapting model editing techniques
from NLP to CV is non-trivial and presents unique challenges. From the data perspective, NLP deals
with one-dimensional, discrete signals that are highly semantic and information-dense, whereas CV
requires processing high-dimensional continuous sensor data that is spatially redundant. From the
model perspective, lots of model editing methods in NLP are specially designed for LLMs with unidi-
rectional (i.e., autoregressive) attention, such as GPT-3 [15] and GPT-4 [1]. In contrast, CV models
have primarily been based on convolutional networks [33, 52, 24], with more recent implementations
using vision Transformers (ViTs) [11, 35] that otherwise employ bidirectional attention. These
differences in data formats and model structures make targeted edits more challenging to implement
in CV models, and when such edits are achieved, they often result in suboptimal performance.

In this paper, we take initial steps towards editing pre-trained ViTs for object recognition [10], aiming
to correct predictive errors without the need for costly and time-consuming retraining. Specifically,
we take a locate-then-edit approach, which breaks down model editing into two key subproblems:
where-to-edit and how-to-edit. Moreover, we prioritize learning where to edit rather than how to edit
to facilitate a simpler yet better trade-off between generalization and locality, without needing to
store previously trained data.

For the where-to-edit phase, we first narrow the editing scope using a greedy search-based heuristic.
Next, inspired by the proven effectiveness of meta-learning [14] in optimizing training strategies
for individual samples, we meta-train a hypernetwork to generate a binary task, indicating which
parameters are critical for the editing sample. To address the issue of limited data, the hypernetwork
is trained solely using pseudo-samples, each comprising a natural image paired with its CutMix
version [62] (see Fig. 1). The optimization objective is to align the predicted probability distribution
of the CutMix sample to that of the original. By controlling the sizes of patches used in CutMix and
randomly varying their locations, we simulate distribution shifts in backgrounds, contextual objects,
and object attributes, creating opportunities to learn generalizable binary masks that effectively
respond to real-world failures. Additionally, we apply a sparsity constraint to the binary masks, acting
as an indirect, data-free regularizer to promote locality. Once the where-to-edit problem is solved,
the how-to-edit phase becomes straightforward: we simply fine-tune the selected parameters using a
variant of gradient descent to apply targeted edits.

To validate our method, we construct an editing benchmark that exposes the weaknesses of pre-
trained ViTs by introducing two types of subpopulation shifts. The first is a natural subpopulation
shift [45, 50], with underrepresented natural images of certain categories efficiently identified by
the maximum discrepancy (MAD) competition [58]. The second is an artificial subpopulation shift,
introduced by synthesized images from high-quality text-to-image generative models like Stable
Diffusion [46].

In summary, our key contributions are as follows:

• a first-of-its-kind model editing method for pre-trained ViTs that leverages meta-learning to
prioritize the where-to-edit phase;
• an editing benchmark that provides valuable resources for future model editing research in CV;
• an extensive experimental demonstration that our method achieves the best Pareto front between

generalization and locality on the proposed benchmark, while offering flexible trade-offs in the
how-to-edit phase.

2 Related Work

In this section, we provide a brief overview of current model editing methods in NLP and CV.

2.1 Model Editing in NLP

Memory-based Methods rely on external mechanisms, such as wrappers [41] and caches [21], to
store factual updates without modifying the internal model parameters. A common theme in these
studies is the use of a gating mechanism to determine whether a test sample falls within the editing
scope; if so, the base model behavior is overridden. For instance, SERAC [41] and GRACE [21]
employ a scope classifier as a form of hard gating, while Murty et al. [42] utilized a soft gating
function, allowing for smoother integration. More recent approaches like IKE [63] and MeLLo [64]
alter the input prompts of an LLM for knowledge update, where the gating mechanism is implicitly
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embedded within the LLM itself. Generally, memory-based methods offer advantages such as non-
destructive updates, modularity, and suitability for continual and few-shot learning settings. However,
they face scalability issues when handling a large number of edits. Additionally, the editing success
heavily depends on the accuracy of the gating mechanism.

Parameter-based Methods modify the internal model parameters, which offers a more fine-grained
approach to editing. These methods can roughly be categorized into two subgroups: locate-then-edit
approaches and hypernetwork-based approaches. Locate-then-edit methods focus on identifying a
subset of key parameters for editing. For instance, ROME [38], MEMIT [39], and MEMITCSK [20]
leverage causal mediation analysis (i.e., representation denoising) to locate hidden states (i.e., inter-
mediate representations, not model parameters) responsible for knowledge storage. The theory of
associative memory [32] is then applied to transfer the state localization results to model parameters.
Recent studies [22] suggest that knowledge localization may not reliably inform successful edits.
Furthermore, the very notion that knowledge can be localized may be inherently flawed, as factual
information in LLMs may be encoded in a distributed manner [40]. Single-step integrated gradient
across multiple editing samples [8, 60] is another commonly used statistic for localization. Here, we
adopt a more principled meta-learning strategy to locate key parameters, using multi-step gradient
information that more accurately captures the changes in model behavior.

Hypernetwork-based methods, such as KnowledgeEditor [9], MEND [40], and MALMEN [54],
train an external network to directly generate parameter updates for the editing sample, which is
represented by either feedforward feature representation [9] or backward gradient decomposition [40].
Localization techniques can be applied beforehand to restrict the functional space of the hypernetwork.
Existing hypernetwork-based methods emphasize the how-to-edit aspect but treat the where-to-
edit superficially, and often result in suboptimal performance, especially when adapting to CV
applications. In contrast, our method prioritizes learning where to edit, achieving a better balance
between generalization and locality.

2.2 Model Editing in CV

Limited research on model editing has been conducted in CV. Bau et al. [3] took a locate-then-edit
approach to rewrite generative adversarial networks. Santurkar et al. [49] adapted this method for
editing image classifiers based on convolutional networks by mapping the representation of the
new visual concept to that of a previously learned concept. However, this approach requires prior
knowledge of the new visual concept, its location within the image, and the specific target concept
for correction. In practical applications, such detailed information may not always be available. In
contrast, our method relaxes all these assumptions and is one of the first applied to ViTs.

3 Learning Where to Edit ViTs

In this section, we first present the preliminaries, followed by a detailed description of the proposed
method for learning where to edit ViTs. The system diagram of our method is shown in Fig. 1.

3.1 Preliminaries

Problem Formulation Given a base computational model f(·; θ) : X 7→ Y , parameterized by
θ, model editing aims to modify the model behavior for specific inputs x ∈ X (or regions of the
input space, S ⊂ X ) while keeping its overall performance intact. Denote the post-edited model as
f
(
·; θ(e)

)
, where θ(e) represents the updated parameter vector3 after editing. Typically, f

(
·; θ(e)

)
is

evaluated based on three main criteria: reliability, generalization, and locality.

• Reliability: For any editing sample (x, y), the edited model f
(
x; θ(e)

)
= y.

• Generalization: For any neighboring4 sample (x′, y′) ∈ N (x, y), f
(
x′; θ(e)

)
= y′, even if

(x′, y′) is not directly used in the editing process.

3We slightly abuse the notation θ(e) to encompass any possible modifications, including those by memory-
based methods.

4Conceptually, in high-level vision, two images are considered neighbors, if they are semantically similar,
such as belonging to the same category or subpopulation.

3



Frozen parameters Editable parameters

L×

Classification head

ViT as base model

ഥ𝑚

Learnable tokens

···

CutMix
ViT as feature 

extractor

Inner-loop loss

KL 𝑥, 𝑝 𝑦 𝑥′; 𝜙 0 ; 𝜙 𝑡

Outer-loop loss

KL 𝑥, 𝑝 𝑦 𝑥′; 𝜙 0 ; 𝜙 𝑇

+λ ഥ𝑚 0

MSA

FFN

Transformer encoder

Projection head

Concatenation

Binarization 

···

Hypernetwork

Embedding

Figure 1: System diagram of the proposed model editing method.

• Locality: For any sample (x′, y′) /∈ N (x, y), the model behavior should remain unchanged,
i.e., f

(
x′; θ(e)

)
= f(x′; θ).

An ideal model editing method shall ensure reliable edits while balancing generalization and locality
effectively. As initial model editing attempts in CV, we limit our scope to single-example editing.

Vision Transformers A ViT [11] feature extractor, denoted by e(·;ϕ) with parameter vector ϕ,
consists of a linear embedding layer followed by L attention blocks. Each block is composed of a
multiheaded self-attention (MSA) layer and a feedforward neural network (FFN). The FFN, which
underpins most model editing methods, including ours, comprises two fully-connected (FC) layers:
FFN(z) = GELU(zW + b)W ′ + b′. Here, W ∈ RN×Nm and W ′ ∈ RNm×N are weight matrices,
where Nm denotes the intermediate dimension. b ∈ RNm×1 and b′ ∈ RN×1 are bias terms. The
activation function GELU(·) is the Gaussian error linear unit [26].

An input image x is first partitioned into M non-overlapping, fixed-size patches, each linearly embed-
ded in an N -dimensional feature space together with a class token [cls], yielding a concatenation
of patch embeddings of size (M + 1)×N . These embeddings are processed through the L attention
blocks for feature extraction. A linear classification head, h(·), maps the extracted features to a
probability distribution over classes in Y , represented as p(y = c|x;ϕ) = hc(e(x;ϕ)), where c ∈ Y .
For notation simplicity, we omit the parameters in the classification head h(·), as they constitute only
a small fraction of the total parameters and are generally frozen during model editing.

3.2 Model Editing at Training Time: Where-to-edit

The simplest way of editing a ViT is through vanilla fine-tuning, which involves updating all model
parameters. However, modern ViTs have millions to billions of parameters, and fine-tuning on
a single sample (x, y) can lead to overfitting, while incurring substantial computation costs. To
overcome these, prior research [8, 23] first identifies a subset of key parameters, followed by editing:

ϕ⋆ = ϕ+ m̄⊙∆ϕ, (1)

where m̄ is a binary mask of the same dimension as ϕ, ∆ϕ represents the parameter update, and ⊙ is
the Hadamard product.

Prevailing localization strategies in NLP rely on casual mediation analysis [38], integrated gradi-
ents [8], or pure heuristic methods [28], which may not be ideal for ViTs due to differences in
data modalities and model architectures. In this work, we follow the locate-the-edit approach, and
decompose model editing into two subproblems: where-to-edit (i.e., computing m̄) and how-to-edit
(i.e., computing ∆ϕ), with a focus on where-to-edit. Drawing inspiration from the demonstrated
success of meta-learning [34, 14] in tailoring training strategies for individual samples, we meta-train
a hypernetwork to generate the binary mask m̄ for each editing sample.

Meta-learning [34, 14], also known as learning-to-learn, involves training models on a collection of
training episodes [7] to enable effective generalization and adaptation to novel, unseen episodes. In
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our context, a training episode corresponds to a single editing example. We employ optimization-
based meta-learning approaches [14, 44], framing where-to edit as a bi-level optimization problem.
In the inner loop, key parameters, indicated by m̄, are updated for the editing sample by optimizing a
reliability loss via gradient-descent over T iterations. In the outer loop, the hypernetwork g(·;φ),
parameterized by φ, is refined to generate m̄. Mathematically, we have

min
φ

ℓ
(
x, y;ϕ(T )

)
+ λ∥m̄∥0

s.t. m̄ = g(x;φ)

∆ϕ(t) = ∆ϕ(t−1) − α∇ϕℓ
(
x, y;ϕ(t−1)

)
, t ∈ {1, 2, . . . , T}

ϕ(t) = ϕ(0) + m̄⊙∆ϕ(t), t ∈ {1, 2, . . . , T},

(2)

where (x, y) is the editing sample. ϕ(T ) is the updated parameter after T iterations of inner-loop
optimization, and ϕ(0) denotes the pre-trained parameters of the base model as initialization. The
term ∆ϕ(t) is the parameter update after the t-th iteration, with ∆ϕ(0) = 0. The loss function
ℓ
(
x, y;ϕ(t)

)
measures the reliability of the edit. To encourage sparsity in the binary mask m̄, we

add an ℓ0-norm term in the outer-loop objective, which acts as an indirect, data-free regularizer to
encourage locality. The scalar λ controls the trade-off between the two terms. In our implementation,
the hypernetwork takes the last-stage features corresponding to the [cls] token from the ViT feature
extractor e

(
·;ϕ(0)

)
as input, i.e., m̄ = g

(
e
(
x;ϕ(0)

)
;φ
)
.

3.3 Optimization Challenges

Despite mathematical elegance, solving the bi-level optimization problem in (2) presents three
challenges. First, meta-training the hypernetwork necessitates a sizable of high-quality editing
samples, which are expensive and time-consuming to collect in practice. To address this, we generate
pseudo-samples using a data augmentation technique known as CutMix [62]. Second, identifying
key parameters within the entirety of the ViT presents a vast search space. This combinatorial
complexity not only introduces unacceptable computational costs but also makes the localization of
key parameters a challenging endeavor [36, 51]. To alleviate this, we shrink the editing scope based
on a greedy search-based heuristic. Third, generating a binary mask typically involves a binarization
operation in g(·;φ), which produces zero gradients almost everywhere and is thus ineffective in
optimizing. To resolve this, we use a gradient-friendly approximation to binarization.

Pseudo-sample Generation We employ CutMix [62] to generate pseudo-samples for editing. Specif-
ically, given a natural image x′, we apply CutMix [62] to randomly overlay a small patch from
another irrelevant image onto x′, producing a pseudo-sample x. This patch-based perturbation tends
to alter the predicted probability distribution, resulting in p

(
y = c|x;ϕ(0)

)
̸= p

(
y = c|x′;ϕ(0)

)
,

for c ∈ Y . This motivates us to instantiate the reliability loss ℓ
(
x, y;ϕ(t)

)
in Problem (2) as the

Kullback-Leibler (KL) divergence [27] between p
(
y|x′;ϕ(0)

)
and p

(
y|x;ϕ(t)

)
:

ℓ
(
x,
{
p
(
y|x′;ϕ(0)

)}
;ϕ(t)

)
=
∑
c∈Y

p
(
y = c|x′;ϕ(0)

)
log

(
p
(
y = c|x′;ϕ(0)

)
p
(
y = c|x;ϕ(t)

) ) , (3)

where
{
p
(
y|x′;ϕ(0)

)}
is treated as the soft ground-truth label.

Editing Scope Shrinkage Previous studies [38, 40] have suggested that modifying FFNs within
a Transformer is more effective for achieving successful edits [17, 18]. For example, MEND[40]
focuses on editing the last three FFNs, while ROME [38] targets the middle FFNs. Here, we conduct
a similar empirical investigation to identify a subset of consecutive FFNs in a ViT, by greedy search
for the optimal generalization and locality trade-off. Specifically, we fine-tune ten groups of FFNs (or
MSAs) in three consecutive layers [40] of a pre-trained ViT/B-16, denoted as {1-3, 2-4, . . ., 10-12}.
The editing set comprises 100 predictive failures of the ViT, where volleyball is mistaken for
basketball (see Fig. 2a), identified by the MAD competition [58] (see more details in Sec. 4.1).
The average results across the editing set are shown in Fig. 2b, where we see that editing MSAs is not
conducive to preserving locality. In contrast, editing the 8-th to 10-th FNNs tends to achieve the best
trade-off, which are selected as the default layers for subsequent experiments.
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(b) Editing results via vanilla fine-tuning.

Figure 2: The left subfigure shows representative editing examples, highlighting the predictive errors
of the base ViT when predicting volleyball as basketball. The right subfigure depicts the
generalization and locality trade-offs when editing different groups of FFNs or MSAs in the base ViT.
It is evident that editing the 8-th to 10-th FFNs achieves the optimal Pareto front.

To further limit the output space of the hypernetwork, we employ structured tuning [8] by selecting
specific rows/columns of the weight matrices in the FFNs for updating. As suggested in [8], we select
the weights along the intermediate dimension Nm, which further reduces the output dimension of the
hypernetwork to Nm × 6 (i.e., three FFNs with two FCs each).

Binarization Approximation As a special case of quantization in signal processing, binarization can
be approximated to enable gradient-based training through three main approaches: straight-through
estimation [4], uniform noise addition [2], and soft-to-hard annealing [30]. Here, we use a fixed
parametric sigmoid function with favorable gradient behavior as the approximation:

m̂ = Sigmoid(k ×m), (4)
where m is a continuous map computed by the hypernetwork right before binarization, and k is
a hyperparameter that controls the degree to which the sigmoid curve approximates the desired
binarization operation. Empirically, we set k = 10. We have also experimented with a soft-to-hard
annealing for k, and observed comparable results. After adopting Eq. (4), we substitute m̄ with m̂
and replace the ℓ0-norm with the ℓ1-norm in Problem (2) to facilitate gradient-based optimization.

3.4 Model Editing at Test Time: How-to-edit

At test time, we solve the how-to-edit problem in a manner similar to the inner-loop optimization.
The two minor differences lie in the loss function and the binarization operation.

At test time, we are provided with the editing sample x and its ground-truth label y. Therefore, the
KL divergence during training reduces the cross-entropy loss during testing:

ℓ
(
x, y;ϕ(t)

)
= −

∑
c∈Y

I[y = c] log
(
p
(
y = c|x;ϕ(t)

))
. (5)

Also, we can directly employ the threshold-based binarization without approximation to obtain

m̄i = q(mi) =

{
1 mi ≥ ρ

0 mi < ρ,
(6)

where i is the positional index, and ρ is a hyperparameter that can be adjusted for different model
editing applications. When ρ is set to zero, all parameters in the selected FFNs are updated with
improved reliability. As ρ increases, fewer parameters are updated, which favors locality.

3.5 Hypernetwork Architecture

Similar to the ViT feature extractor e
(
·;ϕ(0)

)
, the hypernetwork g(·;φ) comprises five attention

blocks, an FC layer as the projection head, and a binarization operation. As shown in Fig. 1, we
introduce six learnable tokens, each corresponding to an FC layer within the three selected FFNs
of the base ViT. These tokens are concatenated with the image features derived from e

(
·;ϕ(0)

)
and

serve as input to the hypernetwork to compute the binary mask m̄.
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Figure 3: Visual examples seen by the base ViT/B-16 during pre-training, contrasted with visual
examples in the proposed editing benchmark as predictive errors of the base ViT/B-16.

4 Editing Benchmark with Subpopulation Shifts

In this section, we establish an editing benchmark that exposes failures of the base ViT in object
recognition by introducing subpopulation shifts to underrepresented natural and AI-generated images.

4.1 Natural Image Subset

To build the natural image subset, we first compile a large dataset of unlabeled images, denoted as
U , from Flickr, by leveraging keywords relevant to the object categories in ImageNet-1k [10]. Next,
we employ the MAD competition [58] to facilitate failure identification of the base ViT to be edited.
Under the principle of model falsification as model comparison, MAD chooses to identify images
that best distinguish two classifiers, f(·) and f ′(·), by maximizing their prediction discrepancies.
This can be mathematically formulated as

x(i) = argmax
x′∈U\Dn

d (f(x′), f ′(x′)) , (7)

where Dn = {x(j)}i−1
j=1 is the set of i − 1 images that have been identified. d(·, ·) is the multi-

hop distance defined over the WordNet [13] to measure prediction discrepancy at a semantic level.
Intuitively, if one classifier is weaker, the identified image setDn is more likely to include its predictive
failures, thereby substantially reducing the human effort for failure identification. Moreover, the
“ground-truth” labels for these failures can be first suggested by the stronger model and then verified
by two of the authors. To leverage this intuition, we pair our base model (i.e., a ViT/B-16 pre-trained
on ImageNet-1k) with a stronger one (i.e., the same ViT/B-16 pre-trained using CLIP [43] and fine-
tuned on ImageNet), which generally exhibits better generalization to unseen data. In total, we collect
2, 354 MAD-searched natural images, which are partitioned into 16 groups, i.e., Dn = {S(i)}16i=1,
based on the predictions by the two models. Each group is named according to the format “prediction
of the stronger model”-“prediction of the base model,” with the statistics and visual examples given
in the Appendix.

4.2 AI-generated Image Subset

Classifiers pre-trained on natural images often struggle to generalize to AI-generated images [56, 59].
To exploit this, we construct an AI-generated image subset containing two groups of images, denoted
as Da = {S(i)}18i=17. The 17-th group includes 860 images with an art style shift (i.e., oil painting)
generated by Textural Inversion [56], while the 18-th group comprises 1, 092 images with a lighting
condition shift (i.e., stage light) produced by PUG [5]. Both Textural Inversion and PUG are text-
to-image generators, wherein the “ground-truth” label is embedded in the input text prompt and
subsequently verified by two of the authors. Additional details of the AI-generated image subset can
be found in the Appendix.
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Figure 4: Editing results for ViT/B-16 on the proposed benchmark.

5 Experiments

In this section, we first describe the experimental setups and then present comparison results on the
proposed editing benchmark.

5.1 Experiment Setups

Evaluation Metrics Following [29], we evaluate all model editing methods on the single-example
editing task and compare their performance using three evaluation metrics. The first is the success
rate (SR), which indicates the reliability (i.e., accuracy) of the edited model f

(
·; θ(e)

)
:

SR(f,Dr) =
1

|Dr|
∑

(x,y)∈Dr

I

[
y = f

(
x; θ(e)(x, y)

)]
, (8)

where Dr = Dn

⋃
Da consists of all MAD-searched and AI-generated images, and we make it

explicit the dependence of the updated parameters θ(e) on the editing sample (x, y). The second
metric is the generalization rate (GR), which assesses the accuracy of the edited model on neighboring
samples that fall within the editing scope:

GR(f,S) = 1

|S|(|S| − 1)

∑
(x′,y′)∈S

∑
(x,y)∈S\(x′,y′)

I

[
y = f

(
x; θ(e)(x′, y′)

)]
, (9)

where S denotes one of the 18 groups in the proposed editing benchmark. We further average the
GR values across all groups as an overall indicator of generalization. The third metric is the locality
rate (LR), which examines whether the edited model maintains its predictions on unrelated samples
outside the editing scope:

LR(f,Dr,Dl) =
1

|Dr||Dl|
∑

(x′,y′)∈Dr

∑
(x,y)∈Dl

I

[
y = f

(
x; θ(e)(x′, y′)

)]
, (10)

where Dl includes out-of-scope images. Using the validation set from ImageNet-1k as Dl does
not adequately examine locality, as the majority are easy samples that lie far from the decision
boundary [16]. To more closely examine the adverse effects of model editing, we have carefully
curated 2, 071 images near the decision boundary of the base model from the validation sets of
ImageNet-1k [47], ImageNet-R [25], and ImageNet-Sketch [57], whose predictions are more suscep-
tible to change. Our selection criteria rely on the predicted probabilities of the pre-trained ViT/B-16
model as follows: 1) the predicted probability for the true label is the highest, and 2) the difference
between the top two predicted probabilities is less than 0.05, suggesting a highly ambiguous class.
We also employ the GR-LR curve to delineate the generalization and locality trade-off.

Base Models For all model editing methods, we experiment with two ViT backbones, ViT-B/16
and ViT/S-16, both pre-trained on ImageNet-21k and ImageNet-1k [53, 47].
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Figure 5: Ablation results of the hypernetwork for ViT/B-16.

Competing Methods We compare our method with several recent model editing approaches as
follows. 1) Fine-tuning (FT) updates the 8-th to 10-th FFNs, which have been identified as the most
effective layers using greedy search (see Fig. 2). 2) FT-ℓ2 [39] incorporates ℓ2-norm regularization
during fine-tuning. 3) T-Patcher [29] adds and tunes a single neuron in the last FFN. 4) KN [8]
and 5) SPT [23] select key parameters based on integrated gradient information. 6) ROME [38] is
implemented to adjust the second FC layer of the last FFN by solving a constrained least squares
problem. 7) LoRA [28] introduces trainable low-rank matrices to update the queries and values of all
MSAs. 8) KE [9] and 9) MEND [40] employ hypernetworks to generate parameter updates for the
last three FFNs. In line with previous work [40, 39], early stopping is applied when the training loss
drops below 0.01 or the maximum of 100 editing steps is reached. Detailed implementations of the
competing methods and additional training configurations are provided in the Appendix.

5.2 Main Results

Fig. 4 shows the GR-LR curves for different editing methods applied to ViT-B/16, averaged across
18 groups in the proposed benchmark. We highlight several interesting observations. First, correcting
a single predictive error is generally feasible, as evidenced by a nearly 100% SR for most methods.
Second, achieving high levels of generalization and locality simultaneously proves to be a significant
challenge. T-Patcher and ROME utilize previously seen data to maintain locality. Nevertheless,
T-Patcher, which relies on an editing scope classifier, exhibits noticeable generalization variability
across different editing samples. ROME, being specifically designed for language-based GPT [15],
shows limited promise in generalizing to ViTs. LoRA manages to maintain locality because of
its low-rank updates but struggles to generalize. Both KE and MEND exhibit low locality on the
MAD-searched natural images and poor generalization to the AI-generated images. Third, our method
achieves the new state-of-the-art without relying on previously trained data to explicitly enforce
locality. Similar conclusions can be drawn for ViT-S/16, shown in the Appendix.

We then evaluate our method across different parameter sparsity levels in the three FFNs from
{0.25, 0.50, 0.75, 0.90, 0.95}, corresponding to {12.4%, 8.25%, 4.13%, 1.65%, 0.83%} parameters
of the entire model, by adjusting ρ in Eq. (6). The competing methods—FT-ℓ2, KN, and SPT—are
adjusted to comparable levels of parameter sparsity by tuning their respective hyperparameters. Note
that our method reduces to FT when ρ = 0. The resulting GR-LR curves are shown in Fig. 4. As
expected, increasing the parameter sparsity in KN, SPT, and our method improves locality at the
expense of generalization. Notably, our method achieves the best Pareto front among all methods,
which we believe arises from our proposed strategy of learning where to edit towards editing success.

5.3 Ablation Studies

Localization Effectiveness To substantiate that the effectiveness of our method is indeed due to
the successful localization of a specific subset of key parameters, rather than merely due to sparsity,
we compare the binary masks produced by our hypernetwork to random masks at the same sparsity
levels, together with FT-ℓ1 and FT-ℓ2. As depicted in Fig. 5a, FT-ℓ1 generally surpasses FT-ℓ2 at
various regularization levels as ℓ1-norm is more effective in zeroing out less important parameters.
Applying random masks shows effects akin to FT-ℓ1. When the ratio of editing parameters falls below
1.65%, the performance of random masking becomes significantly inferior to our method.
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Figure 6: Mask specificity results.

Mask Specificity To confirm the specificity of the parameters identified by the hypernetwork for
different editing samples, we compute the intersection over union (IoU) of the corresponding binary
masks at the 0.95 sparsity level for samples within and outside the same groups in the natural image
subset. Fig. 6b illustrates that the identified parameters demonstrate substantial overlaps for images
within the same group and much lower overlaps between images from different groups. These
findings support that the hypernetwork successfully pinpoints key parameters necessary to correct
specific errors while effectively excluding parameters associated with other unrelated samples. This
learned mask specificity allows our method to balance effectively between generalization and locality.

More Editing Samples We further evaluate our method when multiple editing samples in the same
group (i.e., with similar failure causes) are available. As a straightforward extension, we compute the
average of the continuous masks generated from each sample, followed by binarization using Eq. (6).
Fig. 5b presents the results of using one, two, and three samples for model editing. Remarkably, the
editing performance improves with more editing samples, which can be attributed to more precise
parameter localization as a result of the ensemble of masks.

More Ablation Studies More ablation studies (e.g., the alternative pseudo-sample generation
strategy, the sparsity regularization in the outer loop, the gradient step and learning rate in the inner
loop, and the number of attention blocks in the hypernetwork) are in the Appendix.

6 Conclusion and Discussion

We have introduced a model editing method to correct predictive errors in ViTs. Our method
prioritizes where-to-edit over how-to-edit by meta-training a hypernetwork to identify a subset
of structured parameters for editing. By applying ℓ1-norm regularization, our method promotes
sparsity in the generated mask, thereby indirectly ensuring locality without needing to retrain on
previously used data. Comprehensive tests on the proposed editing benchmark confirm that our
method effectively corrects predictive errors in ViTs. Moreover, the introduced edits are not only
reliable but also generalize well to neighboring samples, while maintaining a high rate of locality.

Our work is among the early endeavors in CV model editing, and it raises several intriguing questions
for future research. First, our approach utilizes the CutMix technique [62] to generate cost-effective
pseudo-samples for training, but its effectiveness has only been confirmed empirically. The reasons
why the hypernetwork trained on such synthetic data achieves reasonable generalization and the
identification of optimal synthetic data generation techniques remain wide open. Second, it would be
beneficial to adapt our method to other vision architectures, such as convolutional networks or Swin
Transformers [35], and extend its application to other vision areas like dense prediction, generative
modeling, and multimodal LLMs. Third, exploring how to apply our method in a batch-editing setting
represents a promising avenue. In such scenarios, the use of a decoupling trick (see more details in
the Appendix) may prove essential for effectively reducing computational and memory demands.
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A More Details about the Editing Benchmark

A.1 Natural Image Subset

Table A: Statistics of the natural image subset. The first column lists identifiers for each object
category in ImageNet-1k. The “Class Name” in the second column is in the format as “prediction by
the stronger model”-“prediction by the base model.”

Group Identifier Class Name Sample Number
890-430 volleyball-basketball 123
933-923 cheeseburger-plate 133
470-644 candle-matchstick 113
900-437 water tower-beacon 159
609-586 jeep-half track 410
543-422 dumbbell-barbell 240
879-762 umbrella-restaurant 49
417-865 balloon-toyshop 75
573-751 go-kart-racer 172
880-671 unicycle-mountain bike 149
954-582 banana-grocery store 75
752-890 racket-volleyball 137
640-539 manhole cover-doormat 80
407-654 ambulance-minibus 155
562-975 fountain-lakeside 155
888-718 viaduct-pier 129

We divide the MAD-searched natural image subset into 16 groups, whose statistics are listed in
Table A. Visual examples in each group are shown in Figs. A and B. These images are sourced from
Flickr, prior to the advent of Stable Diffusion, and are licensed under creative commons.

A.2 AI-generated Image Subset

We adopt Textural Inversion [56] and PUG [5] to construct the AI-generated image subset, encom-
passing the oil painting and stage light shifts, respectively. The statistics are given in Table B.

Specific classes in the oil painting subset include stingray, bullfrog, box turtle, garter
snake, harvestman, crayfish, hermit crab, mongoose, rhinoceros beetle, weevil, wood
rabbit, capuchin, african elephant, breastplate, drumstick, envelope, hand blower,
shovel, spatula, syringe, wine bottle, and corn.

Specific classes in the stage light subset include barrel, cofee mug, washer, jack o lantern,
vase, throne, soccer ball, basketball, car wheel, vacuum, birdhouse, laptop, piano,
pool table, carousel, jellyfish, convertible, motor scooter, mask, sewing machine,
hay, gasmask, bell pepper, drum, table lamb, backpack, chicken hen, tennis ball,
safe, pay phone, cabbage, and pineapple.

Visual examples of the oil painting and stage light images are shown in Fig. C and Fig. D, respectively.

A.3 Potential Dataset Filtering

Recall that the editing benchmark is designed to challenge the ViT/B-16 model. Thus, it is likely
that some images might not induce predictive errors in other base models, which vary in terms of
training data, model architecture, loss function, and optimization pipeline. For the ViT/S-16 model,
the benchmark is subject to an additional filtering process based on its predictions. Consequently,
65% of the natural images and 100% of the AI-generated images are retained.
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Group 890-430: volleyball-basketball Group 933-923: cheeseburger-plate

Group 470-644:candle-matchstick Group 900-437: water tower-beacon

Group 609-586: jeep-half track Group 543-422: dumbbell-barbell

Group 879-762: umbrella-restaurant Group 417-865: balloon-toyshop

Figure A: Visual examples in each group of the natural image subset. Part 1/2.

Table B: Statistics of the AI-generated image subset.
Group Class Number Sample Number

oil painting 22 860
stage light 32 1,092

B More Experimental Details

In this section, we give more implementation details of the proposed and competing model editing
methods. Algorithm 1 presents the pseudo-code of our method.

B.1 More Details of Our Method

Decoupling Trick In meta-learning, optimization of the hypernetwork entails differentiating the
outer-loop loss with respect to the output of the inner loop ϕ(T ), and propagating the gradient through
the inner-loop optimization to the output of the hypernetwork m̂ (approximated by Eq. (4)), and
finally to the parameters of the hypernetwork, φ. This extended chain of computation not only
demands substantial computational resources but also hampers efficient optimization. To mitigate
these, we decouple the pathway of hypernetwork optimization from the meta-learning gradient.
Specifically, we introduce an auxiliary variable m̃, matching the dimensionality of m̂, to substitute
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Group 573-751: go-kart-racer Group 880-671: unicycle-mountain bike

Group 954-582: banana-grocery store Group 752-890: racket-volleyball

Group 640-539: manhole cover-doormat Group 407-654: ambulance-minibus

Group 562-975: fountain-lakeside Group 888-718: fountain-lakeside

Figure B: Visual examples in each group of the natural image subset. Part 2/2.

for the hypernetwork’s output during bi-level optimization. As a result, ϕ(T ) is now dependent on m̃,
rather than m̂. We first optimize the auxiliary variable:

m̃⋆ = argmin
m̃

ℓ
(
x, y;ϕ(T )

)
+ λ∥m̃∥1. (11)

Subsequently, m̃⋆ directs the parameter optimization of the hypernetwork using the element-wise KL
divergence averaged across all positions:

φ⋆ = argmin
φ

1

dim(m̃⋆)

∑
i

KL
(
gi

(
e
(
x;ϕ(0)

)
;φ
)
, m̃⋆

i

)
, (12)

where i is the positional index and dim(m̃⋆) = Nm × 6 in our implementation.

Pseudo-sample Generation When applying CutMix, we vary the sizes of the pasted patches from
48× 48 to 128× 128, ensuring the preservation of the primary structural and textural details in the
original images, which are 224× 224 in size.

Hypernetwork Architecture We design the hypernetwork to mirror the architecture of its corre-
sponding base model (i.e., ViT/B-16 or ViT/S-16), with the same input and intermediate dimensions.
Nevertheless, we reduce the number of attention blocks to five.
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corn rhinoceros beetle capuchin

breastplate shovel wine bottle

Figure C: Visual examples of the AI-generated oil painting images.

coffee mug vase washer

Figure D: Visual examples of the AI-generated stage light images.

Hyperparameter Configuration We set the learning rate in the inner loop as 0.001, and perform
gradient descent for five steps (i.e., T = 5). In the outer loop, we apply the Adam optimizer with
a learning rate of 0.1 to optimize m̃ from random initialization for a total of ten steps. For the
hypernetwork optimization, RMSProp5 is utilized with a learning rate of 10−4, a minibatch size of
eight, and a maximum iteration number of 7, 000. Training a hypernetwork for the base ViT/B-16
takes approximately 9 hours on a single RTX A6000 GPU (48G).

5https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
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Algorithm 1 Hypernetwork Meta-training via Standard Implementation / Decoupling Trick

Require: Hypernetwork, g(·;φ); ViT feature extractor, e
(
·;ϕ(0)

)
; CutMix dataset, B; training itera-

tion, MaxIter; inner-loop learning rate, α; inner-loop step, T ; outer-loop hypernetwork learning
rate, β; outer-loop m̃ learning rate, γ; outer-loop step, MaxOuterIter; trade-off parameter, λ

1: Randomly initialize φ
2: for MainIter = 1 to MaxIter do
3: Create a CutMix dataset B from ImageNet-1k
4: for (x′, x) ∈ B do
5: Calculate m̂ = g

(
e
(
x;ϕ(0)

)
;φ
)

// Approximated by Eq. (4)
6: Set ∆ϕ(0) = 0
7: for t = 1 to T do
8: ∆ϕ(t) = ∆ϕ(t−1) − α∇ϕℓ

(
x, p

(
y|x′;ϕ(0)

)
;ϕ(t−1)

)
9: ϕ(t) = ϕ(0) + m̂⊙∆ϕ(t)

10: end for
11: φ← φ− β∇φ

[
ℓ
(
x, p

(
y|x′;ϕ(0)

)
;ϕ(T )

)
+ λ∥m̂∥1

]
12: Randomly initialize m̃
13: for OuterIter = 1 to MaxOuterIter do
14: for t = 1 to T do
15: ∆ϕ(t) = ∆ϕ(t−1) − α∇ϕℓ

(
x, p

(
y|x′;ϕ(0)

)
ϕ(t−1)

)
16: ϕ(t) = ϕ(0) + m̃⊙∆ϕ(t)

17: end for
18: m̃← m̃− γ∇m̃

[
ℓ
(
x, p

(
y|x′;ϕ(0)

)
;ϕ(T )

)
+ λ∥m̃∥1

]
19: end for
20: end for
21: φ← φ− β∇φKL (m̂, m̃)
22: end for

B.2 Implementation Details of Competing Methods

For methods that involve updating the base model parameters through backpropagation—including
FT, FT-ℓ2, KN [8], SPT [23], and our method—we follow [9] and adopt RMSProp as the optimizer,
where the learning rate is set to 2× 10−5 for ViT/B-16 and 10−4 for ViT/S-16, respectively.

T-Patcher [29] adds one neuron in the last FFN, together with a trainable multiplier initialized as 10.
The new parameters are optimized using Adam with a learning rate of 5× 10−3.

ROME [38] employs Adam with a learning rate of 0.01 to obtain the target hidden representations of
the last FFN, and then solves a constrained least squares problem to update the second FC layer.

We follow the default setting in LoRA [28], adding learnable matrices with a rank of eight. These
low-rank matrices are optimized by Adam with a learning rate of 10−4.

For KE [9] and MEND [9], we adhere to their training protocols to edit the six FC layers within the
last three FFNs. The hypernetworks are meta-trained on editing samples sourced from ImageNet-1k
to alter the base model’s predictions to match the top-k randomly selected classes. The optimizer is
Adam [31] with a learning rate of 10−5.

C More Experimental Results

C.1 More Editing Results for ViT/B-16

In the main paper, we report the averaged editing results for ViT/B-16 across the sixteen groups in
the natural image subset. Here, we further report the editing results on each group in Fig. E.
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Figure E: Editing results for ViT/B-16 on the sixteen groups in the natural image subset.
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Figure F: Editing results for ViT/S-16 on the proposed benchmark.

C.2 Editing Results for ViT/S-16

Fig. F presents the editing outcomes for ViT/S-16, where our method continues to exhibit the opti-
mal generation-locality trade-off, demonstrating its adaptability across various model architectures.
Meanwhile, Fig. G presents the editing results on each group in the natural image subset.

C.3 More Analysis

We present the training curves of the hypernetwork in Fig. H. We find that the mask sparsity increases
rapidly at the beginning of training from 0.0 to 0.86, which poses challenges for successful edits. As
training progresses, the mask sparsity stabilizes while the KL divergence decreases. This suggests
that the hypernetwork has effectively located key parameters relevant to successful edits.
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Figure G: Editing results for ViT/S-16 on the sixteen groups in the natural image subset.
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Figure H: Training curves of the hypernetwork.
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Figure I: Binary mask IoU results for samples
among eight groups of the natural image subset.

C.4 Ablation Studies

Mask Specificity We further compute the averaged IoU results of the binary masks at the 0.95
sparsity level for editing samples among eight groups in the natural image subset. The results in
Fig. I show that the identified parameters exhibit substantial overlaps for samples within the same
group and much lower overlaps for samples from different groups.

Alternative Strategy for Pseudo-sample Generation We examine another more computationally
expensive pseudo-sample generation strategy, i.e., PGD [37], which has been validated to capture
diverse distribution variations [19, 48]. Given a natural image x′ with the label y′ in the pre-training
set, we apply PGD [37] on x′ to obtain the pseudo-sample x with the prediction different from
y′. We set the number of attack steps to 10 with a step size of 2/255, under the feasible set of
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Figure J: Editing results for ViT/B-16 on the proposed benchmark, using the hypernetworks meta-
trained by two different pseudo-sample generation approaches.
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Figure K: Ablation results of the hyperparameter λ in the outer-loop optimization of Problem (2).
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Figure L: Ablation results of the gradient step T in the inner loop.
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Figure M: Ablation results of the learning rate in the inner loop.

ℓ∞(x, x′) ≤ 8/255. During training, we employ the cross-entropy loss ℓ
(
x, y′;ϕ(t)

)
to correct the

prediction of x.
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Figure N: Ablation results of the number of attention blocks in the hypernetwork.

Fig. J shows the editing results of two hypernetworks meta-trained using the two different pseudo-
sample generation approaches. Remarkably, the simple CutMix rivals PGD in simulating distribution
shifts, even in the two AI-generated image subsets.

Sparsity Regularization in the Outer Loop In the outer loop, we introduce a trade-off hyperpa-
rameter, λ, to balance the reliability objective with the sparsity regularizer. Here, we explore the
impact of λ and observe that the sensitivity of hypernetwork to this trade-off parameter is minimal,
as shown in Fig. K.

Gradient Step in the Inner Loop For the gradient step, T , in the inner loop, we test values of
{1, 5, 10}. The performance of ViT/B-16 for each setting is illustrated in Fig. L, where we find that
one gradient step yields slightly inferior results compared to more steps. Five and ten steps perform
similarly, yet ten steps have greater training costs. Thus, we opt for five gradient steps as the default.

Learning Rate in the Inner Loop We explore the impact of the learning rate in the inner loop with
values from {10−4, 10−3, 10−2}. The editing results shown in Fig. M indicate that a lower learning
rate (i.e., 10−4) exhibits slightly inferior performance than a larger learning rate. This may arise
because a lower learning rate results in minimal updates to the base model within five gradient steps,
thereby ineffective in guiding the hypernetwork training.

Number of Attention Blocks We additionally conduct ablative experiments to evaluate the impact
of the number of attention blocks in the hypernetwork. We test values of {1, 3, 5}, and the editing
performance for ViT/B-16 is illustrated in Fig. N, where we find that a small hypernetwork can
achieve comparable performance to larger hypernetworks. Decreasing the number of attention blocks
in the hypernetwork from five to three, and to one, does not incur a noticeable performance drop.

D Limitations

See the Conclusion and Discussion section in the main text.

E Broader Impact

Model editing has a broad impact by accelerating innovation in AI development through rapid
iterations and refinements without extensive retraining, thus conserving resources and reducing
environmental impact. The proposed method enables error correction of CV models, thereby enhanc-
ing adaptability and accessibility. We believe our method has great potential in addressing ethical
concerns by mitigating biases and improving fairness in CV applications, while also increasing the
robustness of CV systems against security threats like adversarial attacks.
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• It should be clear whether the error bar is the standard deviation or the standard error
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preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Computer resources are provided in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In appendix E.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pre-trained language models,
image generators, or scraped datasets)?

Answer:[Yes]

Justification: For the 2354 images scraped from the Internet, we check the images manually
to ensure the safety.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The authors cite the original paper that produced the dataset used in this paper.
The Internet-searched images from the website are used under the copyright, which is stated
in Appendix A.1.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: The paper does not release new assets before acceptance.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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