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Abstract

This work entails remote telemanipulation of cer-
tain objects using Dexmo Haptic glove (DHG)
and Allegro Robotic Hand (ARH). We introduce
an estimation mechanism to quantify the expected
goal pose of fingers of the human user, wearing
the DHG, as its intent, defined in terms of the ex-
pected rotation angle of the object (about the view-
ing plane) that is held between the end-effectors of
ARH. A significant amount of delay is observed
to generate this intent due to communication and
control latencies when the robot is remotely con-
trolled. Hence, an attention based mechanism is
leveraged to model the trajectory of estimated in-
tent and predict its estimate for a lookahead of m
time units from the current n*” estimated sample
to compensate for the delays. We evaluate the per-
formances of the estimation mechanism, and the
attention mechanism on the stated robotic setup
in a real-work networking scenario against some
benchmark methodologies. The effect of varying
lookahead is analysed against the accuracy of esti-
mation/prediction of the intent. The testing MSE
achieved in prediction of the human intent (uti-
lizing attention model) is reported to be 0.00047
for m=1, which characterizes as ~ 38 — 42 times
lesser in comparison to our previous work (utiliz-
ing LSTM).

1. Introduction

The study of teleoperated robotic systems has been wit-
nessed in literature for numerous decades (Hokayem &
Spong, 2006; D’Ettorre et al., 2021; Chao et al., 2021).
These studies have resulted in significant advancements in
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several fields, including tele-medicine (Prokhorenko et al.,
2023; Scimeca et al., 2022; Yang et al., 2020), virtual-reality
/augmented-reality (Gamelin et al., 2021), precise automa-
tion (Luo et al., 2023; Zhu et al., 2022), and industrial
applications, (Girbes-Juan et al., 2020; Doolani et al., 2020).
Achieving accurate control of a robot situated at a remote
location necessitates the conversion of motion signals ema-
nating from the human operator onto the robot, accompanied
by the provision of feedback to the human controller for
its assistive or corrective followup. The repetitive cycle
of human-centric control and coordination enables a robot
to perform in-hand manipulation of objects with a signif-
icant accuracy. The manipulation of the object through
movements across the end-effectors of the robot requires
precise control of both the motion of the end-effectors and
the applied force to avoid any potential undesired outcomes.
However, such a move-and-wait paradigm entails communi-
cational and control delays in conjunction to human-reaction
time. Hence, it is desirable to predict the desired set of ac-
tions of the human controller ahead of time to compensate
for the associated delays. Secondly, the transformation of
the high-dimensional joint motion signals from the human
fingers onto the robotic hand is not trivial. It requires an
estimation mechanism to represent the input signals in terms
of the desired action that the human intends to perform.

This work utilizes Dexmo Haptic Glove (DHG)-driven con-
trol of a remotely placed robotic hand (ARH). The control
signals perceived from the fingers of the human user are
captured by the DHG, and the corresponding joint motion
signals from the DHG are transformed into reliable con-
trol signals for the ARH. The system is complex due to the
dissimilarity in the kinematics of the robotic hand, the ex-
oskeleton glove, and the human hand. In contrast to perceive
control information from 19 odd joints in the human hand,
the DHG represents such information across its 11-degrees
of freedom which is to be realized by the ARH in 16-degrees
of freedom. Furthermore, the limitations imposed on the
torque that is perceived by the DHG, restricts the movement
across all the joints. Hence, the DHG under-represents the
perceived information from the human hand. In this premise,
the contributions of this work are listed as follows:

* A human-intent template is characterized in terms of
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desired goal configuration of the object in hand based

on the underrepresented motion signals captured by
the DHG.

* The estimated intent template is approximated using an
attention-based (Vaswani et al., 2017) neural network
for predicting its futuristic estimate to compensate for
delays occurring in the move-and-wait model.

* A control algorithm/transformation scheme is provided
for the ARH to undergo actuation towards the desired
goal pose in coherence to the estimated/predicted in-
tent.

* We analyse the performance of the attention-based
(Vaswani et al., 2017) prediction with respect to vary-
ing lookahead of the prediction window.

2. Methodology

An end-to-end workflow of the proposed system towards es-
timation/prediction of human intent and subsequent control
architecture is illustrated in Fig. 1.

2.1. Control Methodology for transformation of pose
matrix to the joint rate of robotic hand

The scenario considered in this study is to undergo rotation
of the object within the grasp of the ARH as a baseline
in-hand manipulation task with the premise that all other in-
hand manipulation tasks are a repeated set of these rotation
operations. Consider ‘ay’, ‘a,’, and ‘ap’ to denote the
number of joints in the DHG, ARH and the human hand,
respectively. For each serial chain s; , v; (1 < 7 < )
represents the vector from the centroid of the object to the
point of contact on its surface with the end-effectors of
the ARH, and Vv; denotes its corresponding cross product
matrix. Similar to the task shown in Fig. 1, the current joint
configuration vector of ARH, denoted as q € R, and the
desired joint configuration vector of the ARH to achieve
the desired goal pose, denoted as q, € R?", the torque
applied (7) at the end-effectors of ARH is given as 7 =
Amg +B(dg — q) + C(qg, 4g) + Dglag) + K(qg —a).
where A denotes the mass matrix of ARH, K, B represent
the gain matrices (Della Santina et al., 2020), and Dg(.)
represents the gravity compensation term. It is known that
SE(3) characterizes the current pose and the desired goal
pose configuration of the held object. Hence, a pose matrix
defining the state of the object at time ‘n’ can be represented

T 0 T
as P, = [ rTn 1 } , where R,, € R¥*3, |R,| = 1,

n
and R,,”R, = I3x3, and r, € R3. The trajectory of
screw rotation, at the object level, denoted by F,, defines
the transition of the object from its current position to the
intended goal position. The twist of the end-effectors of the

ARH, is represented as Fruy = Jr g, where Jg denotes
the Jacobian Matrices that establish the relationship of joint
rates () of the active joints in ARH to the observable twist
in the end-effectors of ARH. Also, Fru = JoFo, where
F,, denotes the twist in the object, and Jacobian matrices
(Jo) relate the twist in the object to the observable twist
(Frp) in the ARH’s end-effectors. Hence it is collated that,

dg = JEFRH and qg = q+ AggAt €))

where, A € R controls the incremented value to the current
joint configuration towards the desired goal pose in the time
interval (At). A separate vision-based subsystem calculates
the object’s current pose matrix (P.) utilizing a position
sensitive marker (such as ArUco). The pose of the object is
calculated relative to the pose of the ARH. Once this sub-
system is calibrated offline, the objects pose is determined
by segmenting the marker on the object and calculating its
relative angle with respect to the ARH, in real-time.

2.2. Estimating human intent template

We leverage superposition of the twist observed by the
end-effectors of DHG onto the twist observed by the end-
effectors of the ARH which is based on the premise of
similar tree-type structure of their respective serial chains.
The twist across the end effectors of DHG is formulated as,

Fpuc = Jed’ (2)

Jg represents the Jacobian Matrices that establish the re-
lationship of joint rates (¢’) of the active joints of DHG
to the twist (Fpug) of its end-effectors. Also, the vec-
tor Fo = [%,] comprising the object’s linear velocity
(% € R?) and angular velocity (1,[) € R?) of the object. Sim-
ilarly, Fpac = JoFo, where F,, denotes the twist in the
object, and Jacobian matrices (J,) relate the velocities in
the object to the twist in the end-effectors of DHG. It is
collated that Fg, = J 0+FDHC;,. Hence, the displacement
(x € R3) and the angular displacement (1) € R?) in the
object upto time ‘¢’ can be determined as x = |, (f Xdt and
P = fot &dt. Since, the contemplated intent is a rotation,
only the angular velocity terms (v = [wg; Py wz]T)
contribute to the contemplated intent of the human. The es-
timated intent captured in the form of angular displacement,
is further processed by a recurrent neural network (discussed
in the next section) that yields a predicted estimate of the

intent (4 = [¢, 1), z[}z]T). Finally, the pose matrix for

RT 01"
the predicted intent is formulated as, P, = [ « 1 } s
where R = E?(1 fcos(||1/:v||2) +E(sin(||1m|2) +1I343, and
N A T
OA wz *}py
E= _wz 0 ’(/}:z:

¢y _'(;ac 0
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Figure 1. The proposed system workflow for estimation & the prediction of human intent with corresponding control setup.

2.3. Prediction of Intended Goal pose using
Attention-based neural network

To pursue mitigation of the effect of these delays, an
attention-based prediction strategy is introduced in the esti-
mation algorithm, that is effective to preserve the temporal
features in the human behavior. Our proposal is based in
the observation that humans frequently employ prehensile
manipulation in tasks that involve repetitive actions, ne-
cessitating the utilization of sequence learning techniques.
The architectural specifications of the attention model are
illustrated in Fig. 2. The encoder examines a sequence of
preceding r = 20 samples of ¥ in order to generate an ap-
proximation 1/3 of the desired outcome. Consider A,, € R”
a sequence of previous integral solutions of angular displace-
ment (about certain axis) at any arbitrary time n > r, as
A, ={¢Yn—r+1],9¥[n—r],...,[n]}. This can be con-
sidered for all axes of rotation (depending upon the need).
A sequence of A, is given as input to the encoder block.
Here, we do not explicitly add any positional embedding
due to the afixed serialized nature of the input. However,
convolutional layers are added after the attention block to
capture spatial variance. The kernels tend to extract the
variance in across the subsamples in its input (Ahmed et al.,
2021). Since the input is a 1-dimensional sequence, the
spatial variance captured correlates to temporal variance.
Hence, some temporal characteristics could be preserved.
The encoder block is cascaded 4 times. The output is pro-
cessed by two cascaded fully connected layers. The output
is a vector 1/3 € R™, m € Z*. It is seen in the results later
that an ablation study is sought to analyse the performance
of the discussed mechanism by predicting n 4+ m futuristic
values of the input.

3. Experimental Results

(Dataset). The motion signals generated from DHG are
11-dimensional in contrast to 16-dimensional joint angle
configuration of the ARH. These data from these signals
along with the estimated representation of the intent (in
terms of the angle observed by the object being manipu-
lated) are curated to form a dataset. Being high-dimensional
representations, there is no direct mapping of the signals.
Fig. 3 illustrates a snapshot of the joint motion signals ob-
served in the dataset during a random manipulation of an
object.

(Prediction of Intent). The hyperparameters set during
training the attention-based prediction network are illus-
trated in Table 1. The performance of the proposed system
is illustrated in Fig.4.

Table 1. Hyperparameters space of training the prediction network.

Hyperparameter Space

Learning Rate 0.0001,

Optimizer Adam

Loss MSE (Mean Squared Error)
Epochs 200, 200, 500

Batch-size 8, 16

4. Discussion

(Ablation Study). An ablation study was considered to vary
the length of the output vector (1[; e R™ 1 <m < 20).
The number of nodes in the second fully connected layer
are equal to m. The pose matrix P, is framed using the
value corresponding to the m!" element of the predicted
output vector. The effect of changing the dimensions of the
output is observed empirically. Variation of the predicted
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Figure 2. Proposed attention-based neural network based architecture for intent prediction.

value (¢p(n)) from the ground truth value (3(n) about a
certain axis (y) at time n is quantified as MSE, given as
LS (b (k) — ¢, (K))?, where d is the number of sam-
ples in the dataset. It is observed that the mean squared
error, across training, validation and test samples, increases
with the increasing value of lookahead (as illustrated in Fig.
6). The test MSE is reported to be 0.00047, 0.00047, 0.0013,
0.0007, 0.0016, 0.00415, 0.0025, 0.00346, 0.0026, 0.0040,
0.0138, 0.0184, for lookahead = 1,2,3,4,5,6,7,8,9,10,15,20,
respectively. In comparison to our previous work (Kumar
et al., 2021) utilizing LSTM, the test MSE was reported
to be 0.018, 0.06, 0.12, 0.11, 0.26, 0.42, 0.30, 0.54, 0.71,
0.40, 0.68, 0.78, for lookahead =1,2,3,4,5,6,7,8,9,10,15,20,
respectively. As seen from these results, the proposed atten-
tion model surpasses the performance of the LSTM model
in the same scenario by having about about ~ 38 — 42 times
lesser error in prediction.

(Profiling of delays). It is experimentally observed mo-
tion in the object at the ARH lags in time with respect to
the motion at the DHG owing to the delay in processing,
control, and communication. However, by the introduc-
tion of the prediction network, the effect of delays is mit-
igated. There exists a trade-off between the value of m
and the error observed. The integral value of m is reported
to compensate for equal number of round-trip delay com-
ponents, albeit with a subsequent increase in error as the
value of m increases. The system is tested on a real-world
4G-network with an average round-trip latency of ~ 70 ms
(over Robotic Operating System - ROS setup). The channel
latency delay is dependent on the network dynamics (which
is beyond the scope of this study). However, it is desirable
to know the mitigation influence of the prediction mecha-
nism in compensating for the delays observed. Hence, the
proposed system consumes a total time of ~ 11.1 — 32.25
ms to and compensate the effect of delay of approximately
76.25 — 100 ms (without the human reaction time), which
would otherwise occur in singular round trip of control-
feedback signals.

(Observation of Human Behavior). We present the ob-
served understanding that when manipulating objects by
fingertips, humans intent tends to exhibit a sigmoidal be-
havior (as illustrated in Fig.6). This behavior entails an
initial phase of acceleration accompanied by marginal dis-
placement of the object, followed by a prolonged period of
substantial displacement, and subsequently a phase of small
motion and significant deceleration. The cumulative effect
of the human intention, in relation to the goal pose, becomes
apparent only once the deceleration phase commence, which
cause an apparent lag in the motion of the ARH with respect
to the DHG in addition to the communication latency.

(Generalizability, Extension and Comparison). In this
work, the intent is quantified in terms of the desired goal
pose configuration undergoing rotation within the grip of
ARH that is controlled by DHG. All other motions (such as,
in-hand translation) could be modelled as a composition of
these rotations. Since, the estimation mechanism is depen-
dent on the forwards kinematics of the robot, the proposed
methodology is robust to variation in object’s shape. The
generalizability across human subjects is inherent to the de-
sign of DHG. We compare our proposed methodology with
benchmark work (McGhan et al., 2015) in the literature,
where a vision dataset of 11200 samples is modelled using
Markov Decision Processes, to classify the data across 8
different motion types with a true positive rate of 93.5% in
~ 625 ms. While as, the proposed approach in our work is
generalized as the predicted output is a continuous value in-
stead of categories. It predicts/estimates the intent of motion
with an MSE of 0.0018 within 11.1 — 32.5 ms time-frame.

5. Conclusion

This paper presents an initial advancement in the towards
control of a robotic hand by a differently structured ex-
oskeleton glove. Firstly, a methodology is proposed to
model the underrepresented actuation of the human fingers
via DHG in terms of the intended motion of the object. This
is augmented by an attention-driven neural network that
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Figure 3. A snapshot of the Joint Motion signal in the dataset during arbitrary motion of an object signifying a complex relationship of the
mapping algorithm.
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predicts the motion of the object to compensate for process-
ing/communication delays. Subsequently, a reliable control
algorithm is introduced for the ARH enabling it to manipu-
late an object and rotate it to a desired pose. Experiments
are carried out to analyse the trade-off between the accuracy
of the proposed methodology in predicting the human intent
by varying the span of predicted values. The challenges
related to mitigation of delays, patterns in human behaviour,
and generalizability are discussed. The code and additional
results are available

References

Ahmed, M., Masood, S., Ahmad, M., and Abd El-Latif,
A. A. Intelligent driver drowsiness detection for traffic
safety based on multi cnn deep model and facial subsam-
pling. IEEE Transactions on Intelligent Transportation

Systems, 23(10):19743-19752, 2021.

Chao, Y.-W., Yang, W., Xiang, Y., Molchanov, P., Handa, A.,
Tremblay, J., Narang, Y. S., Van Wyk, K., Igbal, U., Birch-
field, S., et al. Dexycb: A benchmark for capturing hand
grasping of objects. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp- 9044-9053, 2021.

Della Santina, C., Catalano, M. G., Bicchi, A., Ang, M.,
Khatib, O., and Siciliano, B. Soft robots. Encyclopedia
of Robotics, 489, 2020.

Doolani, S., Wessels, C., Kanal, V., Sevastopoulos, C.,
Jaiswal, A., Nambiappan, H., and Makedon, F. A review
of extended reality (xr) technologies for manufacturing
training. Technologies, 8(4):77, 2020.

D’Ettorre, C., Mariani, A., Stilli, A., y Baena, F. R., Valdas-
tri, P, Deguet, A., Kazanzides, P., Taylor, R. H., Fischer,
G. S., DiMaio, S. P, et al. Accelerating surgical robotics
research: A review of 10 years with the da vinci research
kit. IEEE Robotics & Automation Magazine, 28(4):56-78,
2021.

Gamelin, G., Chellali, A., Cheikh, S., Ricca, A., Dumas,
C., and Otmane, S. Point-cloud avatars to improve spa-
tial communication in immersive collaborative virtual
environments. Personal and Ubiquitous Computing, 25:
467-484, 2021.

Girbes-Juan, V., Schettino, V., Demiris, Y., and Tornero,
J. Haptic and visual feedback assistance for dual-arm
robot teleoperation in surface conditioning tasks. IEEE
Transactions on Haptics, 14(1):44-56, 2020.

Hokayem, P. F. and Spong, M. W. Bilateral teleoperation:
An historical survey. Automatica, 42(12):2035-2057,
2006.

Kumar, R., Gandotra, P., Lall, B., Kherani, A. A., and
Mukherjee, S. Estimation and prediction of determin-
istic human intent signal to augment haptic glove aided
control of robotic hand. CoRR, abs/2110.07953, 2021.
URL https://arxiv.org/abs/2110.07953.

Luo, J., Liu, W., Qi, W, Hu, J., Chen, J., and Yang, C. A
vision-based virtual fixture with robot learning for teleop-
eration. Robotics and Autonomous Systems, 164:104414,
2023.

McGhan, C. L., Nasir, A., and Atkins, E. M. Human intent
prediction using markov decision processes. Journal of
Aerospace Information Systems, 12(5):393-397, 2015.

Prokhorenko, L., Klimov, D., Mishchenkov, D., and Podu-
raev, Y. Modular robot interface for a smart operating
theater. Journal of Robotic Surgery, pp. 1-13, 2023.

Scimeca, L., Hughes, J., Maiolino, P., He, L., Nanayakkara,
T., and Iida, F. Action augmentation of tactile percep-
tion for soft-body palpation. Soft robotics, 9(2):280-292,
2022.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Yang, G., Lv, H., Zhang, Z., Yang, L., Deng, J., You, S., Du,
J., and Yang, H. Keep healthcare workers safe: applica-
tion of teleoperated robot in isolation ward for covid-19
prevention and control. Chinese Journal of Mechanical
Engineering, 33(1):1-4, 2020.

Zhu, C., Yang, C., Jiang, Y., and Zhang, H. Fixed-time
fuzzy control of uncertain robots with guaranteed tran-
sient performance. IEEE Transactions on Fuzzy Systems,
2022.


https://github.com/muneebpandith/TeleoperationWork
https://arxiv.org/abs/2110.07953

