
DSBC : Data Science task Benchmarking with Context engineering

Anonymous ACL submission

Abstract

Recent advances in large language models001
(LLMs) have significantly impacted data sci-002
ence workflows, giving rise to specialized data003
science agents designed to automate analyti-004
cal tasks. Despite rapid adoption, systematic005
benchmarks evaluating the efficacy and limi-006
tations of these agents remain scarce. In this007
paper, we introduce a comprehensive bench-008
mark specifically crafted to reflect real-world009
user interactions with data science agents by ob-010
serving usage of our commercial applications.011
We evaluate three LLMs: Claude-4.0-Sonnet,012
Gemini-2.5-Flash, and OpenAI-o4-Mini across013
three approaches: zero-shot with context engi-014
neering, multi-step with context engineering,015
and with SmolAgent. Our benchmark assesses016
performance across a diverse set of eight data017
science task categories, additionally exploring018
the sensitivity of models to common prompting019
issues, such as data leakage and slightly am-020
biguous instructions. We further investigate the021
influence of temperature parameters on overall022
and task-specific outcomes for each model and023
approach. Our findings reveal distinct perfor-024
mance disparities among the evaluated models025
and methodologies, highlighting critical factors026
that affect practical deployment. The bench-027
mark dataset and evaluation framework intro-028
duced herein aim to provide a foundation for029
future research of more robust and effective030
data science agents.031

1 Introduction032

Large Language Models (LLMs) have recently033

gained prominence due to their capability to auto-034

mate and enhance various data science tasks. This035

growing capability has led to increased adoption036

of specialized data science agents across multiple037

domains. Despite widespread usage, there is a038

clear gap in comprehensive evaluations that accu-039

rately reflect practical user interactions and realistic 040

task scenarios. This gap makes it challenging for 041

practitioners and researchers to understand the true 042

efficacy and limitations of these agents in applied 043

settings. 044

In response to this, we introduce a detailed 045

benchmark tailored to reflect actual usage patterns 046

of data science agents, derived from observations 047

of end-user behavior. We evaluate three leading 048

LLMs, Claude-4.0-Sonnet (Anthropic, 2025), Gem- 049

ini 2.5 Flash (Team, 2025), and OpenAI-o4-Mini 050

(OpenAI, 2025), using three distinct methodolo- 051

gies: zero-shot with context engineering, multi- 052

step with context engineering, and using SmolA- 053

gent (Roucher et al., 2025). Our benchmark covers 054

diverse and practical data science tasks while also 055

examining how sensitive these models are to com- 056

mon prompting issues like data leakage and slight 057

ambiguity. 058

The performance of agents or Large Language 059

Models (LLMs) critically depends on the context 060

provided during inference, including both the max- 061

imum context length available and the efficiency 062

of its utilization. (Mei et al., 2025). While most 063

benchmarks come with a manually written or syn- 064

thetically generated summary or a description of 065

the datasets used, we use a standardized context 066

through context engineering. 067

Additionally, we analyze the impact of varying 068

temperature settings on both overall performance 069

and task-specific effectiveness. Our findings under- 070

score significant differences in the capabilities of 071

evaluated models and strategies, identifying crucial 072

considerations for practical deployment. Through 073

this work, we aim to provide a foundational re- 074

source for furthering the development of more reli- 075

able and effective data science agents. 076

1

Prior Work Domain of Context added Avg. row count Avg. col count Span Multiple Prompt Temp. Sample
Benchmark about data files In Data files In Data files task types Variations Variations Count

Other Domain
Spider (Yu et al., 2018a) Text-to-SQL N/A - - - No No 1,034

MLAgentBench (Huang et al., 2024a) Machine learning N/A - - - No No 13
SWE-Bench (Jimenez et al., 2024) Software engineering N/A - - - No No 2,294

Same Domain
DS-1000 (Lai et al., 2023) Data Science Manually N/A N/A No Yes No 1,000

QRData (Liu et al., 2024) Data Science Manually 15,186 46 Yes No No 411

Arcade (Yin et al., 2023) Data Science Notebook Cells N/A N/A - No No 1,078

Spider2V (Cao et al., 2024) Data Science Manually N/A N/A - - Yes 494

DSEval (Zhang et al., 2024) Data Science Manually 1,544 12 - No Partial 827

DSBench (Jing et al., 2025) Data Science Data Files N/A N/A - No No 466

DA-Code (Huang et al., 2024b) Data Science Manually 9,639 11 No No No 500

DataSciBench (Zhang et al., 2025) Data Science Manually N/A N/A - No No 222

DABstep (Egg et al., 2025) Data Science Manually N/A N/A - No No 450

Ours (DSBC) Data Science Structured 7,793 10 Yes Yes Yes 303

Table 1: Overview of some similar prior works in other domains and other existing Data Science benchmarks.

2 Related Works077

An overview of key differences between our bench-078

mark and other benchmarks of the same domain079

can be seen in Table 1. Examples of samples for080

each of the benchmarks can be seen in Figure 1.081

Other similar domain benchmarks: Several082

prior works exist that benchmark code generation083

and other closely related tasks. One such promi-084

nent one is HumanEval (Chen et al., 2021) for code085

generation from text descriptions, along with Spi-086

der (Yu et al., 2018b), MBPP (Austin et al., 2021),087

and APPS (Hendrycks et al., 2025). Other similar088

works include software engineering task bench-089

marks like automating code/PR review (Yang et al.,090

2016; Li et al., 2022; Tufano, 2023), bug localiza-091

tion (Kim et al., 2019; Chakraborty et al., 2018),092

testing (Kang et al., 2023; Xia et al., 2024; Wang093

et al., 2024), program repair (Xia and Zhang, 2022;094

Fan et al., 2023; Sobania et al., 2023), and guiding095

code-editing (Chakraborty and Ray, 2021; Zhang096

et al., 2022; Fakhoury et al., 2023).097

Data-Science Benchmarks : DS-1000 (Lai et al.,098

2023) is one of the earliest works for data sci-099

ence task evaluation with simple data analysis tasks100

sourced from StackOverflow; however, these ques-101

tions lack usage of data files and require simpler 1-2102

line code for many samples. DABstep (Egg et al.,103

2025) contains both unstructured and structured104

data files for the benchmark with most queries that105

can be solved in under 5 lines of code beyond load-106

ing of data files. DataSciBench (Zhang et al., 2025)107

consists of prompts that resemble text-to-code in-108

structions, with the query itself providing con-109

text on necessary data file information. DA-Code110

(Huang et al., 2024b) also consists of queries that111

No.of Task types Sample Count
One task categories 63

Two task categories 154

Three task categories 86

Table 2: Multi-label task category statistics of the
queries (303) in our benchmark

resemble text-to-code tasks, as the queries them- 112

selves provide step-by-step instructions on what 113

steps to take to solve the given query. DS-Bench 114

(Jing et al., 2025) contains tasks that are primar- 115

ily designed for Excel-based workflows sourced 116

from Modeloff competitions. DSEval (Zhang et al., 117

2024) covers queries whose solutions mostly range 118

from 1 to 3 lines of code, with a subset of questions 119

being Leetcode problems. Arcade (Yin et al., 2023) 120

consists of tasks in a notebook environment, while 121

the previous cell of code provides the required con- 122

text. QRData (Liu et al., 2024) is a benchmark 123

that closely resembles our benchmark with manu- 124

ally written data file descriptions appended to input 125

prompts to provide the models with context. How- 126

ever, a majority of questions were MCQs. 127

3 Our Benchmark 128

Most prior benchmarks either have sourced or man- 129

ually created descriptions of the data files used for 130

the task, which are passed along with the query to 131

the evaluation models. Few other works use data 132

files of limited size that can be directly added in 133

the context. This introduces randomness in the 134

results based on how the data files’ descriptions 135

are written, what information is added, and what is 136

withheld. 137

The benchmark consists of 303 questions, which 138

2

Figure 1: An example each from our benchmark along with some works cited above which were published less than
2 years ago.

span 8 categories of tasks, with most questions139

covering more than one type of task. The cate-140

gories and their descriptions, as well as their sam-141

ple counts in the benchmark, can be seen below.142

Table 2 shows the number of task categories each143

sample in the benchmark spans.144

• Correlation Analysis (44) : Computing and145

interpreting relationships between variables146

using correlation coefficients, covariance ma-147

trices, and statistical significance testing.148

• Statistics (172) : Performing descriptive and149

inferential statistical operations including con-150

fidence intervals, probability calculations, and151

computing mean, min, max, median etc.152

• Data Parsing & Understanding (113) : In-153

terpreting data structure, content patterns, and154

contextual meaning to infer data origins, iden-155

tify column semantics, and extract implicit156

information from datasets.157

• Data Pre-processing (69) : Cleaning and158

preparing raw data through handling missing159

values, removing duplicates, removing empty160

rows and columns, removal of redundant fea-161

tures, outlier detection, and basic data quality162

assurance.163

• Feature Engineering (91) : Creating new164

variables and features from existing data165

through mathematical transformations, aggre-166

gations, binning, cumulative and rolling fea-167

tures, and domain-specific feature construc-168

tion.169

Figure 2: An overview of the annotation process used
in our benchmark construction

• Feature Transformation (85) : Applying 170

scaling, normalization, encoding categorical 171

variables, dimensionality reduction, rounding 172

and mathematical transformations. 173

• Distribution Analysis (33) : Examining 174

data distributions through descriptive statis- 175

tics, probability density functions, normality 176

tests, and distributional property assessment. 177

• Data Visualization (22) : Creating charts, 178

plots, and visual representations to explore 179

patterns, communicate insights, and present 180

analytical findings effectively. 181

Annotation : The overview of the annotation pro- 182

cess can be seen in Figure 2. The annotators have 183

3

created the dataset samples by observing how the184

clients were using the organization’s data science185

agents. The distribution of task types was made to186

be close to the observed task type usage distribu-187

tion. Queries were annotated, with their solutions188

manually coded and verified. Additionally, a copy189

of the raw queries was made to avoid data leak-190

age, i.e., the clean queries. During annotation of191

task types for each query, the annotators were in-192

structed to assign 1-3 task category tags to each193

query. In case the query appeared to be spanning194

more than 3 categories, they were instructed to as-195

sign the closest three. Samples where there was196

no consensus among the 2 sets of annotators were197

later manually verified after further discussion. The198

samples with no consensus were 26 out of 303, i.e.,199

approximately 8.5%. More details about annotator200

guidelines can be found in Appendix C.201

4 Context Engineering :202

Organizations handling sensitive data face signifi-203

cant challenges when working with externally de-204

ployed or proprietary models. Direct file sharing205

raises privacy and security concerns, making it im-206

practical to include raw data files in model contexts207

(even if they fit within the context limit). A struc-208

tured approach that extracts only essential meta-209

data, such as column counts, data types, categori-210

cal values, and temporal ranges, provides necessary211

context while maintaining data confidentiality and212

compliance requirements.213

Further, manual dataset documentation becomes214

increasingly burdensome as organizations scale215

their data operations. Writing detailed descrip-216

tions for hundreds or thousands of data files is217

time-consuming and resource-intensive. While au-218

tomated description generation using LLMs offers219

a potential solution, it often produces incomplete220

or inaccurate characterizations that can mislead221

downstream analysis and compromise benchmark222

reliability.223

We hence use context engineering to provide224

the models with the data files’ description in a225

structured format covering several features like row226

and column count, column names, and data types,227

among other features. This can be seen in detail in228

Table 3, which describes the features used in the229

context as a nested JSON dictionary.230

5 Datasets used 231

The benchmarks utilize 11 different data files 232

sourced from Kaggle, each of which covers a differ- 233

ent domain: Farm produce data (Hirapara, 2023), 234

Walmart sales (Mikhail, 2024), COVID-19 mortal- 235

ity data (Nizri, 2022), weather datasets (Biswas, 236

2024), insurance claims dataset (Choi, 2021), stock 237

price datasets (Crow, 2020), food inflation data 238

(Tanwar, 2023), world population stats (DS, 2024), 239

air quality data (Jha, 2024), electricity load data 240

(Shahane, 2023), and life expectancy datasets (Ped- 241

ersen, 2023). The statistics about the data files can 242

be seen in Table 4. 243

key Differences : The data files chosen for the 244

benchmarks have tricky features, which would 245

make the benchmarks’ samples more challenging 246

compared to the rest. For instance, 8 of the 11 247

data files have a date or time column but not in a 248

date-time datatype. The models/agents were pro- 249

vided with the first 5 rows of the data file through 250

context engineering and are required to compre- 251

hend and figure out whether they need to perform 252

a datatype conversion to successfully solve a query. 253

One such tricky feature is the change of data fre- 254

quency. The frequency of data for the population 255

dataset changes midway from once every 5 years to 256

yearly. Using the provided unique values list, the 257

model/agent is required to figure out the necessary 258

changes in the approach towards solving a query. 259

Issues like these make the current benchmark more 260

challenging than prior works. 261

6 Query Types 262

The raw (original) queries were rewritten (referred 263

to as clean queries) to ensure no data leakage oc- 264

curs even though the impact is negligible. Though 265

the effect could be negligible, this was done to com- 266

pare the change in results with both sets of queries. 267

Most queries of usage of our commercial agents re- 268

sembled the format of raw queries. Table 5 shows 269

an example for the raw and clean query of one 270

of the samples. Another difference between Raw 271

and Clean queries is that Clean prompts require an 272

SQL-like approach, as demonstrated in Table 6. 273

7 Evaluation 274

We evaluate the samples using 3 models (Claude-4- 275

Sonnet, Gemini-2.5-Flash, and OpenAI-o4-Mini) 276

in 3 settings (directly with context engineering with 277

4

Item Description
Rows Number of Rows whether index is correctly ordered

Columns Numbers of Columns and names of columns
Data Types Data types of each of the columns
Null Counts Null value counts of each of the columns

Numeric Summary If the column is Numeric then the Minimum, Maximum, Mean,
Median, 25th percentile value, 75th percentile value

Categorical Summary If the column is Categorical or has low unique
count (i.e <20), then the unique value counts

DateTime Summary If the column is already DateTime type, then
the start and end dates and whether the
column values’ frequency is uniform

Sample rows ** First 5 rows’ data of each data file

Table 3: Features and description of info added through Context engineering

** If the data file is of private nature, this is excluded

Dataset Rows Cols Null.cols DT STR CAT BOOL INT FLT AVG.ACC
Insurance 1,200 7 0 0 3 5 2 2 2 71.78
Weather 8,616 8 0 0 2 3 0 2 4 53.02
Power 3,624 17 0 0 1 3 2 3 13 48.06

COVID 10,000 21 0 0 1 19 3 20 0 45.31
AQI 8,737 23 21 0 2 3 0 0 21 41.60

Inflation 4,548 8 5 0 3 2 0 0 5 40.33
Sales 409,695 5 0 0 1 2 1 2 1 36.92

Health 13,942 5 0 0 2 1 0 1 1 34.78
Stocks 4,932 7 0 0 2 1 0 1 4 33.08

Population 3,290 14 3 0 5 2 0 6 3 30.91
Production 9,464 9 6 0 1 3 0 2 5 27.34

Table 4: Features of datasets used for our benchmark : Row Count (ROW), Column Count (COLS), No.of columns
with at least one null value (NULL.COLS), No.of Datetime (DT),String (STR), Categorical (CAT), Boolean (BOOL),
Integer (INT) and float (FLT) columns respectively and the average score obtained from all attempts and temperature
values over the queries using that dataset (AVG)

Queries Example 1
Raw Among those who have died,

how many deaths were not
attributed to COVID-19 ?

Clean Did any deaths occur not due to
COVID-19? If so, how many?

Table 5: An example of Raw and Clean prompts : The
raw prompt assumes deaths occurred (data leakage),
while the clean prompt requires the model to check if
deaths happened first.

Queries Example 2
Raw Which three countries have had

the most stable fertility rates ?
Clean Which countries have had the

most stable fertility rates?
List the top 3.

Table 6: An example of Raw and Clean prompts : The
raw prompt directly requests the top 3 countries, while
the clean prompt follows a SQL-like approach of first
identifying all stable countries, then selecting the top 3.

5

Figure 3: Success rates for each sample (303) of our benchmark over several (165) attempts

Figure 4: Variation in Accuracies through each set of (LLM, query type and approach)

LLMs (ReACt), multi-step with context engineer-278

ing using LLMs (ReAct), and SmolAgent) and279

through 2 query types (raw and clean). These 15280

unique setups 1 were tested over 11 temperature281

1SmolAgent was initially tested with 1 randomly chosen
temperature value over all 3 models; no change was observed
in results between the Raw and Clean queries. Hence, due to a
limited compute budget, SmolAgent was only tested on clean
queries for all temperature values.

values ranging from 0.0 to 1.0 in 0.1 increments. 282

This resulted in a total of 165 attempts over each 283

of the samples whose results are described below. 284

The generated output and explanation/rationale 285

by the model/agent were evaluated using VLM- 286

as-Judge using Gemini-2.5-Flash. Three of the 287

165 attempts (one from each LLM) were checked 288

manually to see whether the VLM-as-a-judge is 289

6

LLM used Approach Used Query Type Highest Highest at Lowest Highest at Overall Standard
Accuracy Temperature Accuracy Temperature Accuracy Deviation

Claude-4-Sonnet SmolAgent Clean 57.756 0.0 52.475 0.5 55.236 1.625
OpenAI-o4-Mini SmolAgent Clean 51.485 0.7 45.215 1.0 49.385 1.618
Gemini-2.5-Flash SmolAgent Clean 54.455 0.0 46.535 0.1 49.415 2.162
Claude-4-Sonnet Multi-Code Clean 61.056 0.9 54.785 0.1 58.356 1.812
Claude-4-Sonnet Multi-Code Raw 62.376 0.2 55.776 0.5 59.916 1.673
OpenAI-o4-Mini Multi-Code Clean 44.554 0.4 39.274 0.8 41.524 1.913
OpenAI-o4-Mini Multi-Code Raw 45.545 0.9 38.944 0.7 43.054 1.931
Gemini-2.5-Flash Multi-Code Clean 54.785 0.9 42.244 0.7 49.055 3.488
Gemini-2.5-Flash Multi-Code Raw 50.165 0.7 39.274 0.5 44.164 3.452
Claude-4-Sonnet Single-Code Clean 29.043 0.3 23.762 0.4 26.163 1.561
Claude-4-Sonnet Single-Code Raw 29.703 0.3 24.422 0.8 25.953 1.594
OpenAI-o4-Mini Single-Code Clean 33.663 0.1 26.733 0.4 31.443 1.873
OpenAI-o4-Mini Single-Code Raw 33.993 0.1 26.403 0.2 30.633 2.420
Gemini-2.5-Flash Single-Code Clean 26.733 0.0 20.462 1.0 23.792 1.859
Gemini-2.5-Flash Single-Code Raw 27.393 0.7 19.802 0.5 23.342 1.889

Table 7: Results from each of the 15 attempts : Overall Accuracy and Standard Deviation with varying temperature

indeed evaluating the responses accurately. JSON290

schema was used for the VLM-as-a-judge setup,291

where the VLM responds with a single word, either292

’Yes’ or ’No,’ based on whether the response is293

accurate. To account for noise, these responses294

were parsed through regex as a final step.295

The success rate (the percentage of attempts296

(165) that resulted in an accurate response) had a297

mean of 40.8% and a median of 41.21%. No ques-298

tion was answered correctly in all attempts. Only299

two questions were answered incorrectly in all at-300

tempts, both of which are reasonably hard ques-301

tions. These samples and why the models/agents302

always resulted in an incorrect response were elab-303

orated in detail in Appendix D. The maximum304

success rate was 93.33%, and only 23 samples had305

a success rate > 80%. More can be seen in Figure 3.306

7.1 Using LLMs Directly with Context307

Engineering308

In this approach, the execution was done in a single-309

step ReAct (Yao et al., 2023) loop with sandboxed310

code execution, where the LLM generates code311

that takes the query and added context as input; the312

code is then executed locally, which becomes the313

final output. When generating the code, the LLM is314

also instructed to add its rationale for the generated315

code. The rationale and code were returned as a316

JSON, which are then individually parsed through317

predefined functions.318

7.2 Using LLMs in multiple steps with319

Context Engineering320

This approach is similar to the previous approach,321

but with one minor change: the code and explana-322

tions generated were divided into 2-3 steps. Unlike323

the traditional ReAct workflow, in this approach 324

the LLM generates 2-3 code snippets (one for each 325

step) to solve the query in one go, which are then ex- 326

ecuted one by one. The rationale is generated sepa- 327

rately for each snippet, which are then appended to 328

one another in the end. 329

7.3 Using SmolAgent 330

In this approach, we use SmolAgent’s CoderAgent 331

out of the box with minor changes: adding the data 332

files to the execution environment’s runtime and 333

adding the path to the files in the query. No addi- 334

tional context is provided to the agent. The agent 335

then uses some of its multiple steps allowed to iter- 336

atively gain context on what the data files contain 337

and answers the query in subsequent attempts. A 338

computational and time limit was assigned at 8 339

steps and 90 seconds, respectively, for each sample. 340

None of the samples’ 33 attempts (3 LLMs * 11 341

temperature values) resulted in a timeout error. 342

8 Results 343

Effect of temperature on results : Results from 344

each of the 15 attempts can be seen in Table 7, 345

which combines all samples across each tempera- 346

ture value. No significant pattern was seen among 347

the change in accuracies versus each temperature 348

value for all sets of prompt, model, and approach, 349

as seen in Figure 46. Claude-4-Sonnet, through 350

multiple code snippets in a single step, clearly out- 351

performed the rest, including SmolAgent with sev- 352

eral steps, irrespective of temperature. Multi-step 353

and SmolAgent performed significantly better than 354

single-cell direct use of LLMs when looking at the 355

overall results. However, when looking at the same 356

7

results for each task category separately, there is a357

large variation in the same plot. This can be seen358

in Appendix F.359

Variations in results with Model and approach :360

Gemini-2.5-Flash demonstrated greater sensitivity361

to temperature compared to the other two LLMs362

tested, especially with the multi-code-cell approach363

and through SmolAgent. For single code cell imple-364

mentation, o4-mini clearly outperformed the other365

two LLMs, but the performance of o4-mini was366

closer to SmolAgent and lower than Gemini-2.5-367

Flash in multi-code-cell implementation, as seen in368

Figure 4.369

Variations in results with Model and approach :370

Certain domains’ samples had higher accuracy than371

the rest irrespective of model, approach, or query372

type despite the code complexity and task difficulty373

being the same. The temperature values that pro-374

duced the better results in each of the domains also375

varied by a considerable extent.376

9 Error Analysis377

Figure 5: Error cause distribution overall : temperature
wise

Among the unsuccessful cases, roughly 70%378

were due to incorrect final responses, another 20%379

were due to other errors in code, 6% were due to380

data error from not being able to access the data,381

and the rest were due to formatting errors by the382

LLM in returning the code. This can be seen in383

Figure 5 for all attempts combined for each tem-384

perature value used. The formatting errors did not385

occur through SmolAgent due to the use of ReAct386

and are from the rest of the approaches. Format-387

ting errors disproportionately occurred while using388

o4-mini as the LLM as compared to the other two389

LLMs. In the single-code-cell approach, the count390

Figure 6: Average accuracy with each attempt VS num-
ber of task categories the query covers

of code errors outnumbered the count of instances 391

where an incorrect response was generated. More 392

on this can be seen in Appendix H. 393

Error rate on single and multi-task samples : 394

The overall accuracy, including all attempts with 395

all temperature values over samples that cover 1, 396

1,2 and 3 task categories, is 55.86%, 43.13%, and 397

25.46%, respectively; i.e., the accuracy drops sig- 398

nificantly if the query requires code that spans more 399

than one task type, as in section 3. The compar- 400

ison of accuracies for each attempt over samples 401

that span varying numbers of task types can be 402

seen below in Figure 6. Reasoning models like 403

OpenAI-o4-mini have observed smaller drops in 404

performance with increasing complexity of queries, 405

i.e., queries that span several task types, while a 406

non-reasoning model might be an efficient choice 407

for simpler queries. Additionally, we have also 408

seen that certain tasks benefit from expensive ap- 409

proaches (SmolAgent or multi-cell code), while 410

many other tasks do not, as seen in Appendix F. 411

This hints that an efficient query-based model rout- 412

ing could be built that can reduce costs incurred 413

while retaining similar performance by solving sim- 414

pler queries with a less expensive approach and 415

LLM. 416

10 Conclusion 417

Through this paper, we introduce DSBC, a data 418

science agent benchmark with context engineering 419

and additional parallel prompts. The benchmark 420

closely resembles the type and way of usage of the 421

organization’ commercial data science agent. The 422

benchmark is being released through the Apache 423

2.0 license to facilitate further research in the do- 424

main of data science agents. 425

8

Limitations426

The benchmark does not include multilingual or427

multi-modal questions and is limited to text based428

queries. Multilingual queries can work through429

agents with additional steps for translation and back430

translation, however they haven’t been tested.431

References432

Anthropic. 2025. Introducing the next generation of433
claude.434

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten435
Bosma, Henryk Michalewski, David Dohan, Ellen436
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.437
Program synthesis with large language models. arXiv438
preprint arXiv:2108.07732.439

Bhanu Pratap Biswas. 2024. Weather data.440

Ruisheng Cao, Fangyu Lei, Haoyuan Wu, Jixuan Chen,441
Yeqiao Fu, Hongcheng Gao, Xinzhuang Xiong, Han-442
chong Zhang, Wenjing Hu, Yuchen Mao, et al. 2024.443
Spider2-v: How far are multimodal agents from au-444
tomating data science and engineering workflows?445
Advances in Neural Information Processing Systems,446
37:107703–107744.447

Saikat Chakraborty, Yujian Li, Matt Irvine, Ripon Saha,448
and Baishakhi Ray. 2018. Entropy guided spec-449
trum based bug localization using statistical language450
model. arXiv preprint arXiv:1802.06947.451

Saikat Chakraborty and Baishakhi Ray. 2021. On multi-452
modal learning of editing source code. In 2021 36th453
IEEE/ACM International Conference on Automated454
Software Engineering (ASE), pages 443–455. IEEE.455

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming456
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-457
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,458
Greg Brockman, et al. 2021. Evaluating large459
language models trained on code. arXiv preprint460
arXiv:2107.03374.461

Miri Choi. 2021. Insurance.462

Jackson Crow. 2020. Stock market dataset.463

Anxo DS. 2024. World population and forecast dataset.464

Alex Egg, Martin Iglesias Goyanes, Friso Kingma, An-465
dreu Mora, Leandro von Werra, and Thomas Wolf.466
2025. Dabstep: Data agent benchmark for multi-step467
reasoning. arXiv preprint arXiv:2506.23719.468

Sarah Fakhoury, Saikat Chakraborty, Madan Musuvathi,469
and Shuvendu K Lahiri. 2023. Towards generating470
functionally correct code edits from natural language471
issue descriptions. arXiv preprint arXiv:2304.03816.472

Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roy- 473
choudhury, and Shin Hwei Tan. 2023. Automated 474
repair of programs from large language models. 475
In 2023 IEEE/ACM 45th International Conference 476
on Software Engineering (ICSE), pages 1469–1481. 477
IEEE. 478

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man- 479
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns, 480
Samir Puranik, Horace He, Dawn Song, et al. 2025. 481
Measuring coding challenge competence with apps. 482
In Thirty-fifth Conference on Neural Information Pro- 483
cessing Systems Datasets and Benchmarks Track. 484

Aradhana Hirapara. 2023. Farm produce data 80 years. 485

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. 486
2024a. Mlagentbench: Evaluating language agents 487
on machine learning experimentation. In Inter- 488
national Conference on Machine Learning, pages 489
20271–20309. PMLR. 490

Yiming Huang, Jianwen Luo, Yan Yu, Yitong Zhang, 491
Fangyu Lei, Yifan Wei, Shizhu He, Lifu Huang, Xiao 492
Liu, Jun Zhao, et al. 2024b. Da-code: Agent data sci- 493
ence code generation benchmark for large language 494
models. In Proceedings of the 2024 Conference on 495
Empirical Methods in Natural Language Processing, 496
pages 13487–13521. 497

Abhishek Jha. 2024. Time series air quality data of 498
india (2010-2023). 499

Carlos E. Jimenez, John Yang, Alexander Wettig, 500
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik 501
Narasimhan. 2024. Swe-bench: Can language mod- 502
els resolve real-world github issues? 503

Liqiang Jing, Zhehui Huang, Xiaoyang Wang, Wen- 504
lin Yao, Wenhao Yu, Kaixin Ma, Hongming Zhang, 505
Xinya Du, and Dong Yu. 2025. Dsbench: How far 506
are data science agents from becoming data science 507
experts? In The Thirteenth International Conference 508
on Learning Representations. 509

Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023. 510
Large language models are few-shot testers: Explor- 511
ing llm-based general bug reproduction. In 2023 512
IEEE/ACM 45th International Conference on Soft- 513
ware Engineering (ICSE), pages 2312–2323. IEEE. 514

Yunho Kim, Seokhyeon Mun, Shin Yoo, and Moon- 515
zoo Kim. 2019. Precise learn-to-rank fault localiza- 516
tion using dynamic and static features of target pro- 517
grams. ACM Transactions on Software Engineering 518
and Methodology (TOSEM), 28(4):1–34. 519

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, 520
Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih, Daniel 521
Fried, Sida Wang, and Tao Yu. 2023. Ds-1000: A 522
natural and reliable benchmark for data science code 523
generation. In International Conference on Machine 524
Learning, pages 18319–18345. PMLR. 525

9

https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://www.kaggle.com/datasets/bhanupratapbiswas/weather-data
https://www.kaggle.com/datasets/mirichoi0218/insurance
https://www.kaggle.com/datasets/jacksoncrow/stock-market-dataset
https://www.kaggle.com/datasets/anxods/world-population-and-forecast-dataset
https://www.kaggle.com/datasets/aradhanahirapara/farm-produce-data-80-years
https://www.kaggle.com/datasets/abhisheksjha/time-series-air-quality-data-of-india-2010-2023
https://www.kaggle.com/datasets/abhisheksjha/time-series-air-quality-data-of-india-2010-2023
https://www.kaggle.com/datasets/abhisheksjha/time-series-air-quality-data-of-india-2010-2023
http://arxiv.org/abs/2310.06770
http://arxiv.org/abs/2310.06770
http://arxiv.org/abs/2310.06770

Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh526
Jannu, Grant Jenks, Deep Majumder, Jared Green,527
Alexey Svyatkovskiy, Shengyu Fu, et al. 2022. Au-528
tomating code review activities by large-scale pre-529
training. In Proceedings of the 30th ACM Joint Eu-530
ropean Software Engineering Conference and Sym-531
posium on the Foundations of Software Engineering,532
pages 1035–1047.533

Xiao Liu, Zirui Wu, Xueqing Wu, Pan Lu, Kai-Wei534
Chang, and Yansong Feng. 2024. Are LLMs capable535
of data-based statistical and causal reasoning? bench-536
marking advanced quantitative reasoning with data.537
In Findings of the Association for Computational538
Linguistics ACL 2024, pages 9215–9235, Bangkok,539
Thailand and virtual meeting. Association for Com-540
putational Linguistics.541

Lingrui Mei, Jiayu Yao, Yuyao Ge, Yiwei Wang, Bao-542
long Bi, Yujun Cai, Jiazhi Liu, Mingyu Li, Zhong-Zhi543
Li, Duzhen Zhang, Chenlin Zhou, Jiayi Mao, Tianze544
Xia, Jiafeng Guo, and Shenghua Liu. 2025. A survey545
of context engineering for large language models.546

Mikhail. 2024. Walmart sales.547

Meir Nizri. 2022. Covid-19 dataset.548

OpenAI. 2025. o4-mini system card.549

Ulrik Thyge Pedersen. 2023. Life expectancy.550

Aymeric Roucher, Albert Villanova del Moral, Thomas551
Wolf, Leandro von Werra, and Erik Kaunismäki.552
2025. ‘smolagents‘: a smol library to build great553
agentic systems.554

Saurabh Shahane. 2023. Electricity load forecasting.555

Dominik Sobania, Martin Briesch, Carol Hanna, and556
Justyna Petke. 2023. An analysis of the auto-557
matic bug fixing performance of chatgpt. In 2023558
IEEE/ACM International Workshop on Automated559
Program Repair (APR), pages 23–30. IEEE.560

Ansh Tanwar. 2023. Monthly food price estimates.561

Gemini Team. 2025. Gemini 2.5: Pushing the fron-562
tier with advanced reasoning, multimodality, long563
context, and next generation agentic capabilities.564

Rosalia Tufano. 2023. Automating code review. In565
2023 IEEE/ACM 45th International Conference on566
Software Engineering: Companion Proceedings567
(ICSE-Companion), pages 192–196. IEEE.568

Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu,569
Song Wang, and Qing Wang. 2024. Software testing570
with large language models: Survey, landscape, and571
vision. IEEE Transactions on Software Engineering,572
50(4):911–936.573

Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian,574
Michael Pradel, and Lingming Zhang. 2024.575
Fuzz4all: Universal fuzzing with large language mod-576
els. In Proceedings of the IEEE/ACM 46th Interna-577
tional Conference on Software Engineering, pages578
1–13.579

Chunqiu Steven Xia and Lingming Zhang. 2022. Less 580
training, more repairing please: revisiting automated 581
program repair via zero-shot learning. In Proceed- 582
ings of the 30th ACM Joint European Software Engi- 583
neering Conference and Symposium on the Founda- 584
tions of Software Engineering, pages 959–971. 585

Xin Yang, Raula Gaikovina Kula, Norihiro Yoshida, and 586
Hajimu Iida. 2016. Mining the modern code review 587
repositories: A dataset of people, process and product. 588
In 2016 IEEE/ACM 13th Working Conference on 589
Mining Software Repositories (MSR), pages 460–463. 590

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 591
Shafran, Karthik Narasimhan, and Yuan Cao. 2023. 592
React: Synergizing reasoning and acting in language 593
models. In International Conference on Learning 594
Representations (ICLR). 595

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek 596
Rao, Yeming Wen, Kensen Shi, Joshua Howland, 597
Paige Bailey, Michele Catasta, Henryk Michalewski, 598
et al. 2023. Natural language to code generation in 599
interactive data science notebooks. In Proceedings 600
of the 61st Annual Meeting of the Association for 601
Computational Linguistics (Volume 1: Long Papers), 602
pages 126–173. 603

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, 604
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn- 605
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir 606
Radev. 2018a. Spider: A large-scale human-labeled 607
dataset for complex and cross-domain semantic pars- 608
ing and text-to-SQL task. In Proceedings of the 2018 609
Conference on Empirical Methods in Natural Lan- 610
guage Processing, pages 3911–3921, Brussels, Bel- 611
gium. Association for Computational Linguistics. 612

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, 613
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn- 614
ing Yao, Shanelle Roman, et al. 2018b. Spider: A 615
large-scale human-labeled dataset for complex and 616
cross-domain semantic parsing and text-to-sql task. 617
In Proceedings of the 2018 Conference on Empiri- 618
cal Methods in Natural Language Processing, pages 619
3911–3921. 620

Dan Zhang, Sining Zhoubian, Min Cai, Fengzu Li, 621
Lekang Yang, Wei Wang, Tianjiao Dong, Ziniu Hu, 622
Jie Tang, and Yisong Yue. 2025. Datascibench: An 623
llm agent benchmark for data science. 624

Jiyang Zhang, Sheena Panthaplackel, Pengyu Nie, 625
Junyi Jessy Li, and Milos Gligoric. 2022. Coditt5: 626
Pretraining for source code and natural language edit- 627
ing. In Proceedings of the 37th IEEE/ACM Interna- 628
tional Conference on Automated Software Engineer- 629
ing, pages 1–12. 630

Yuge Zhang, Qiyang Jiang, XingyuHan XingyuHan, 631
Nan Chen, Yuqing Yang, and Kan Ren. 2024. Bench- 632
marking data science agents. In Proceedings of the 633
62nd Annual Meeting of the Association for Compu- 634
tational Linguistics (Volume 1: Long Papers), pages 635
5677–5700. 636

10

https://aclanthology.org/2024.findings-acl.548
https://aclanthology.org/2024.findings-acl.548
https://aclanthology.org/2024.findings-acl.548
https://aclanthology.org/2024.findings-acl.548
https://aclanthology.org/2024.findings-acl.548
http://arxiv.org/abs/2507.13334
http://arxiv.org/abs/2507.13334
http://arxiv.org/abs/2507.13334
https://www.kaggle.com/datasets/mikhail1681/walmart-sales
https://www.kaggle.com/datasets/meirnizri/covid19-dataset
https://cdn.openai.com/pdf/4375e605-f9a6-438d-bcc8-190599c183a6/o3_cua_system_card.pdf
https://www.kaggle.com/datasets/ulrikthygepedersen/life-expectancy
https://www.kaggle.com/datasets/saurabhshahane/electricity-load-forecasting
https://www.kaggle.com/datasets/anshtanwar/monthly-food-price-estimates
http://arxiv.org/abs/2507.06261
http://arxiv.org/abs/2507.06261
http://arxiv.org/abs/2507.06261
http://arxiv.org/abs/2507.06261
http://arxiv.org/abs/2507.06261
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425

A Prompts Used 637

Prompt 1 : SmolAgent

INSTRUCTIONS : the final answer must contain the answer mentioned explicitly whether
if it is a text, list of answers, something numeric or text in the desired format.

QUERY :
{question}.

DATASET PATH :
{dataset_path}

638

Prompt 2 : Multi-Code-Cell

You are a data analyst. The user asked: "{user_query}"
Dataset information:
- First 5 rows: {sample_rows}
- Dataset description: {dataset_description}

1. Generate COMPLETE, STANDALONE code snippets (2-3 steps) that
could each run independently. For each step, provide:
1. A text explanation of what this step does
2. The Python code snippet that implements this step

Format your response as JSON with this structure:
{{
"steps": [
{{
"explanation": "Detailed explanation of what this step accomplishes",
"code": "Complete Python code with imports, analysis, and output"

}}
]

}}

REQUIREMENTS:
- Use pandas to load and analyze the data: pd.read_csv('{filepath}')
- MUST include at least one visualization using matplotlib/seaborn
- Include necessary imports in each relevant snippet
- Complete analysis logic
- Clear visualization code when applicable
- Proper print() statements to show results
- Don't use markdown formatting, just pure JSON

639

11

Prompt 3 : Explanation prompt

A user submitted the following question about their dataset: "{user_question}"

Dataset Context:
{dataset_info}
Generated Analysis Code:
{code}
Execution Results:
{answer}

Please provide a clear, comprehensive explanation that:
1. Directly addresses the user's original question
2. Interprets the results in the context of the dataset
3. Explains what the findings mean in practical terms
4. Highlights any key insights or patterns discovered
5. Always use first-person when speaking.

Your explanation should be written in plain language that a business
stakeholder could easily understand.

640

Prompt 4 : Single-Code-Cell

You are a data analyst. Generate Python code to analyze a CSV file and answer
the following query: {user_query}

Dataset information:
{dataset_description}
#
Requirements:
- Use pandas to load and analyze the data: pd.read_csv('data.csv')
- Include necessary imports
- Use print() statements to show results
- For visualizations, use matplotlib/seaborn
- Handle data type conversions if needed
- Return ONLY executable Python code, no markdown formatting

- The dataframe is already loaded in a variable called 'data'. Do not re-read it
- Have the answer ready in a variable called 'answer'.
Just declare and add your values there.
- Do not have subplots, only main plots
Generate clean, executable Python code

For the Explination, it should describe why a step was taken and not whats done.
Use this format for the response :

{{
"explanation": "...",
"code": "..."

}}

641

12

Prompt 5 : VLM-as-a-Judge

Respond in this exact JSON format:
{
{
"Evaluation": 'Yes' 'No' 'The Evaluation should be Yes only when the response is
technically correct. Sometimes the answer might be of a different format but
still correct (Ex : March , 3 when asked the month etc..). For numerical values,
the rounded .2f values should match to be considered correct.'

}
}

You are being used for LLM-as-judge. In numeric solutions an error beyond the 2nd
decimal point after rounding can be ignored.

####
The Query by the user is :
{Q}

The Ground Truth for the query is :
{A}

The Code Snippet to obtain the ground truth was :
{C}

The Response by the model is :
{R}

The Code Snippet in the submission was :
{S}

The Reasoning given with the submission was :
{N}

642

B Reproducibility 643

The hyperparameters not specified or tested with multiple values through the paper are all use through 644

their default values. A max token limit of 8192 was used. All experiments were done on Google Cloud. 645

All inference runs combined have cost approx. 1200$, 200$ and 700$ respectively for Claude-4-Sonnet, 646

Gemini-2.5-Flash and OpenAI-o4-Mini respectively. For VLM-as-a-judge experiments, it cost us around 647

150$ using Gemini-2.5-Flash. For SmolAgent, we used a time limit of 90 seconds and step limit of 5 648

for each query during inference. Additional allowed imports were constrained to a few packages that 649

should be enough to solve the queries of the benchmarks : pandas, numpy, scipy, scikitlearn, matplotlib, 650

seaborn, re, math, datetime. For the same amount of inference samples, compared to single-code-cell, 651

multi-code-cell was 1.8x expensive and SmolAgent was 3.2x expensive when averaging costs across all 652

LLMs tested. All LLMs were used with a seed value of 1024. 653

654

13

C Annotation Guidelines655

Annotator Guidelines : Creating Samples

When creating training samples, focus on generating simple, realistic queries that
reflect actual user interactions you've encountered in client work or observed in
system usage logs. mirror the natural language patterns, terminology, and problem
types that real users typically present. Draw from common scenarios you've
witnessed, such as troubleshooting requests, feature questions, or workflow
clarifications, ensuring that each sample captures the authentic tone and
complexity level of genuine user inquiries rather than overly polished or
artificial examples.

656

Annotator Guidelines : Making Clean queries

When creating clean queries, remove language that leaks information or makes
assumptions about the data. The query "Among those who have died, how many deaths
were not attributed to COVID-19?" assumes non-COVID deaths exist in the dataset.
A cleaner version asks "Did any deaths not occur due to COVID-19? If so, how many?"
This removes the data leakage while keeping the same core question. Make sure that
the exact meaning of both the Clean query and Raw query is the same.

657

Annotator Guidelines : categorizing Samples

Categorize the queries based on what tasks they require to be performed to be
able to answer the queries. A query can be categorizied as atleast one category
and at most 3 categories. If the sample seems close to more than three categories,
assign the best matching three categores, use the below examples for reference :
{examples}.

658

14

D Unsolved Samples 659

The two unsolved samples, its solution and the common errors made by the LLMs/agents were : 660

Example 1 : Query ID 8

If it rains today, what is the likelihood that it will rain tomorrow as well?
import pandas as pd
Convert to datetime
df_AQI['From Date'] = pd.to_datetime(df_AQI['From Date'])
df_AQI['Date'] = df_AQI['From Date'].dt.date
Daily rainfall sums
daily_rain = df_AQI.groupby('Date')['RF (mm)'].sum().reset_index()
daily_rain = daily_rain.sort_values('Date').reset_index(drop=True)
Binary rain indicators (>0.1mm = rain)
daily_rain['Rain_Today'] = (daily_rain['RF (mm)'] > 0)
daily_rain['Rain_Tomorrow'] = daily_rain['Rain_Today'].shift(-1)
Remove last row (no tomorrow data)
daily_rain = daily_rain[:-1]
Calculate probability
rain_today_count = daily_rain['Rain_Today'].sum()
rain_both_days = ((daily_rain['Rain_Today'] == 1)

& (daily_rain['Rain_Tomorrow'] == 1)).sum()
probability = rain_both_days / rain_today_count if rain_today_count > 0 else 0
print(f"P(Tomorrow | Today) = {probability:.3f} ({probability*100:.1f}%)")

Mistakes made by the LLMs and Agents include, A) blind trust in "From Date" column
to be a date-time column without verifying, B) assuming "From Date" to cover daily data
rather than hourly data without verifying, C) using rainfall >0.1 mm as rain rather than
directly using 0.0, incorrectly assuming all rows are of .1f type

661

Example 2 : Query ID 226

Which of the calendar months typically experience the highest sales in an year ? List top 2
df_SALES['Date'] = pd.to_datetime(df_SALES['Date'])
df_SALES['Month'] = df_SALES['Date'].dt.month
monthly_sales = df_SALES.groupby('Month')['Weekly_Sales'].mean()
sorted_monthly_sales = monthly_sales.sort_values(ascending=False)
top_2_months = sorted_monthly_sales.head(2)
month_names = { 1: 'January', 2: 'February', 3: 'March', 4: 'April',

5: 'May', 6: 'June', 7: 'July', 8: 'August',
9: 'September', 10: 'October', 11: 'November', 12: 'December'}

top_2_month_names = [month_names[month] for month in top_2_months.index]
print(f"{top_2_month_names[0]} and {top_2_month_names[1]}")

Mistakes made by the LLMs and Agents include, A) grouping 2 month periods from start
rather than considering all possible rolling 2 month periods B) assuming dataset starts
and ends in same month. i.e if it starts in May for example and ends in July of a different
year. There is more data for June and hence considering sum() instead of mean() leads to a
incorrect response. C) assuming the question meant which 2 months despite being asked for
"calendar months"

662

15

E Task wise Success Rates663

The task wise success rates of each query spanning 165 attempts used can be seen in Figure 15, Figure 16,664

Figure 17, Figure 18, Figure 19, Figure 20, Figure 21, Figure 22 respectively for each task category665

separately. The overall success rates for the several task categories ranged from a lowest value of of 29.1%666

for Feature engineering to a highest value of 46.9% for Correlation analysis. the distributions of each of667

the tasks’ success rates are considerably skewed half each of either direction with differences between668

mean and median ranging from 4-15% among the samples of the same task category.

Figure 7: Success rates for each sample over several (165) attempts - Correlation Analysis

Figure 8: Success rates for each sample over several (165) attempts - Statistics

669

16

Figure 9: Success rates for each sample over several (165) attempts - Data Parsing

Figure 10: Success rates for each sample over several (165) attempts - Data Pre-processing

Figure 11: Success rates for each sample over several (165) attempts - Feature Engineering

17

Figure 12: Success rates for each sample over several (165) attempts - Feature Transformation

Figure 13: Success rates for each sample over several (165) attempts - Distribution Analysis

Figure 14: Success rates for each sample over several (165) attempts - Data Visualization

18

F Accuracies over Each Task 670

The task wise accuracies of each attempt compared to the temperature used can be seen in Figure 15, 671

Figure 16, Figure 17, Figure 18, Figure 19, Figure 20, Figure 21, Figure 22 respectively for each task 672

category separately. Some of the tasks had less variance between the accuracies obtained through each 673

attempt while the rest had very high variance. This hints that certain tasks might perform more or less 674

the same with any set of (temperature, LLM, approach, query type) while others perform clearly 675

better with a certain set of the same features. This is especially important as costs incurred can vary a 676

lot between using multi-code-cell approach or by SmolAgent compared to generating them directly by 677

an LLM in a single step. Though the difference in costs is only a few cents per sample, it can make a 678

difference when dealing with a large number of samples.

Figure 15: Results from each attempt over each temperature value used - Correlation Analysis

Figure 16: Results from each attempt over each temperature value used - Statistics

679

19

Figure 17: Results from each attempt over each temperature value used - Data Parsing

Figure 18: Results from each attempt over each temperature value used - Data Pre-processing

Figure 19: Results from each attempt over each temperature value used - Feature Engineering

20

Figure 20: Results from each attempt over each temperature value used - Feature Transformation

Figure 21: Results from each attempt over each temperature value used - Distribution Analysis

Figure 22: Results from each attempt over each temperature value used - Data Visualization

21

G Variation in Accuracies : task wise680

The task wise variations in accuracies of each attempt can be seen in Figure 23, Figure 24, Figure 25,681

Figure 26, Figure 27, Figure 28, Figure 29, Figure 30 respectively for each task category separately. Some682

task categories are less sensitive to temperature, while other tasks are more sensitive to changes in683

temperature. The accuracy ranges for each task types can be seen to vary between each task category i.e684

some LLMs and approaches perform better in some task categories while some other LLM and approach685

might be better at other task categories. Hence, Model and approach routing could be implemented by686

identifying the task category based on the input query.

Figure 23: Variation in Accuracies through - Correlation Analysis

Figure 24: Variation in Accuracies through - Statistics

687

22

Figure 25: Variation in Accuracies through - Data Parsing

Figure 26: Variation in Accuracies through - Data Pre-processing

Figure 27: Variation in Accuracies through - Feature Engineering

23

Figure 28: Variation in Accuracies through - Feature Transformation

Figure 29: Variation in Accuracies through - Distribution Analysis

Figure 30: Variation in Accuracies through - Data Visualization

24

H Error Analysis : Approach wise 688

Figure 31: Incorrect response cause distribution -

Figure 32: Incorrect response cause distribution -

25

Figure 33: Incorrect response cause distribution -

Figure 34: Incorrect response cause distribution -

26

Figure 35: Incorrect response cause distribution -

Figure 36: Incorrect response cause distribution -

27

Figure 37: Incorrect response cause distribution -

Figure 38: Incorrect response cause distribution -

28

Figure 39: Incorrect response cause distribution -

Figure 40: Incorrect response cause distribution -

29

Figure 41: Incorrect response cause distribution -

Figure 42: Incorrect response cause distribution -

30

Figure 43: Incorrect response cause distribution -

Figure 44: Incorrect response cause distribution -

31

Figure 45: Incorrect response cause distribution -

I Other Plots689

Figure 46: Results from each attempt over each temperature value used

32

