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Abstract
The emergence of large language models001
(LLMs) has sparked significant interest in ex-002
tending their remarkable language capabilities003
to speech. However, modality alignment be-004
tween speech and text remains an open problem.005
Current solutions can be categorized into cas-006
caded approaches, which limit the interaction007
between speech and LLMs, and end-to-end ap-008
proaches that rely on scarce speech instruction009
data. In this paper, we propose the BLSP ap-010
proach that Bootstraps Language-Speech Pre-011
training via behavior alignment, leveraging ex-012
isting ASR training data. We achieve this by013
developing a lightweight modality adapter be-014
tween a frozen speech encoder and an LLM,015
optimized to ensure that the LLM exhibits the016
same generation behavior irrespective of the017
modality of input: a speech segment or its tran-018
script. We primarily focus on the continuation019
writing behavior as it closely resembles next-020
token prediction in a broad sense but also found021
that introducing other behaviors could lead to022
improved performance. We demonstrate that023
this simple process can extend the capabilities024
of LLMs to speech and achieve competitive per-025
formance compared to cascaded systems, en-026
abling speech recognition, speech translation,027
spoken language understanding, and speech028
conversation, even in zero-shot cross-lingual029
scenarios.1030

1 Introduction031

Large Language Models (LLMs), trained on mas-032

sive amounts of textual data, have achieved sig-033

nificant success on various natural language pro-034

cessing tasks (Chowdhery et al., 2022; OpenAI,035

2023; Gao et al., 2023). Recent research efforts036

have attempted to expand LLMs’ capabilities to037

comprehend diverse modalities (Yin et al., 2023;038

Latif et al., 2023). Speech, as an important modal-039

ity, offers a plethora of benefits that complement040

1Video demos are available at https://anonymous4blsp.
github.io/arr/.

text-based communication. Speech not only serves 041

as the primary mode of human interaction but also 042

conveys rich emotions, tones, and intentions that 043

cannot be fully captured in text. Thus, enabling 044

LLMs to understand speech could greatly enhance 045

their utility in real-world scenarios. 046

However, effectively integrating and aligning 047

speech with LLMs remains a significant challenge. 048

Current approaches can be classified into two cate- 049

gories. One adopts a cascade paradigm, where the 050

LLM is equipped with an automatic speech recog- 051

nition (ASR) model to convert speech into text 052

(Huang et al., 2023; Shen et al., 2023), or the LLM 053

is fed output states from a separately trained recog- 054

nition system (Chen et al., 2023). In this setup, the 055

transfer of knowledge from the LLM to the speech 056

modality is hindered due to the separation between 057

ASR and LLM training. Recent efforts explore 058

training end-to-end speech-language LLMs for di- 059

rect speech interaction (Zhang et al., 2023; Shu 060

et al., 2023). Yet, this approach heavily relies on 061

scarce speech instruction data, which is challeng- 062

ing to collect in large quantities, and struggles to 063

generalize robustly across languages and speakers. 064

In this work, we address the question of whether it 065

is possible to align speech and text in a generalized 066

manner using existing cross-modal datasets like 067

ASR data, which is available in large volumes. 068

Our preliminary investigation has revealed that a 069

model trained to predict the ground-truth transcript 070

with speech input loses the ability to follow instruc- 071

tions. To achieve effective cross-modal alignment, 072

we introduce the BLSP approach, which bootstraps 073

language-speech pre-training via behavior align- 074

ment. The key idea is to develop a lightweight 075

modality adapter between a frozen speech encoder 076

and an LLM, optimized to ensure that the LLM 077

exhibits the same generation behavior irrespective 078

of the modality of input: a speech segment or its 079

transcript. Specifically, we first prompt an LLM 080

to generate text responses from speech transcripts. 081
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Then, we use these responses as supervised sig-082

nals to optimize the parameters of the modality083

adapter. Our primary focus is on the continuation084

writing behavior as it prompts the LLM to generate085

text that resembles the broad data it is trained on,086

without biasing toward a specific task. However,087

we have observed that incorporating other behav-088

iors, specifically repetition that mirrors the speech089

recognition task, could yield advantages in fine-090

grained lexical modeling. Our experiments reveal091

that the BLSP approach can effectively achieve092

cross-modal alignment and achieve competitive093

performance compared to cascaded systems, en-094

abling LLMs to understand speech while retaining095

their language capabilities.096

The contributions of our work are as follows:097

• We introduce a novel approach to bootstrap098

language-speech pre-training through behav-099

ior alignment, providing a new direction for100

cross-modal alignment in LLMs.101

• We develop a simple process that requires102

training only a lightweight modality adapter,103

leveraging a pretrained speech encoder and104

LLM, and utilizing existing speech recogni-105

tion data, thus eliminating the need to acquire106

speech instruction data.107

• We conduct quantitative evaluations and pro-108

vide video demonstrations to showcase that109

our BLSP approach effectively extends LLMs110

to speech inputs and achieves competitive per-111

formance compared to cascaded systems, en-112

abling speech recognition, speech translation,113

spoken language understanding, and speech114

conversation, even in zero-shot cross-lingual115

scenarios.116

2 Background117

Due to the scarcity of speech instruction data, a118

natural approach to align speech and text for lever-119

aging LLMs is to connect a pre-trained speech120

encoder to an LLM through a modality adapter121

trained on large volumes of speech-transcript pairs122

collected for speech recognition, as explored in123

(Shu et al., 2023; Xue et al., 2024). Similar meth-124

ods have achieved considerable success in vision-125

language models. Notably, BLIP-2 (Li et al., 2023)126

and MiniGPT-4 (Zhu et al., 2023) have demon-127

strated that training a learnable interface using128

aligned image caption data can effectively bridge129

CW-S
SA-S
SR-S
ST-S

CW-T
SA-T
SR-T
ST-T

Figure 1: T-SNE visualization of feature representations
learned from ASR task. Colors denote task instructions:
orange for continuation writing (CW), red for sentiment
analysis (SA), blue for speech recognition (SR), and
gray for speech translation (ST). Shapes distinguish
input modality: triangles for speech, crosses for text.
Note that speech inputs result in overlapping features.

the modality gap between vision and language, en- 130

abling an LLM to comprehend images while retain- 131

ing its capacity to follow text prompts. 132

However, this approach proves to be more intri- 133

cate when it comes to effectively achieving speech 134

and text alignment, crucial for extending the lan- 135

guage capabilities of LLMs to speech inputs. Our 136

preliminary investigation, detailed in Appendix A, 137

has found that training a modality adapter to pre- 138

dict the ground-truth transcript from speech input 139

can inadvertently restrict the LLM to performing 140

solely speech recognition tasks. This issue arises 141

despite the variety of transcription instructions used 142

during training, as the LLM tends to overlook any 143

textual instructions provided before the speech seg- 144

ment. We hypothesize that the reliance on homo- 145

geneous ASR training data results in a strong bias 146

in the learned speech representations, confining the 147

LLM’s functionality to the transcription task only. 148

To substantiate our hypothesis, we conducted an 149

analysis of the representations learned from ASR 150

task on speech and text pairs from the LibriSpeech 151

dataset (Panayotov et al., 2015). We consider four 152

distinct tasks: continuation writing (CW), senti- 153

ment analysis (SA), speech recognition (SR), and 154

speech translation (ST), prompt by instructions. 155

For each task, the same task-specific instruction 156

is employed to prompt the LLM to process either 157

speech or its corresponding transcript. The cross- 158

modal prompt is formatted as follows: 159

###[Human]:<instruction><speech/transcript>\n\n\n 160
###[Assistant]: 161

The learned representations of these inputs are 162

obtained by extracting the hidden state of the final 163
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Speech Encoder

LLM

###[Human]: Continue 
the following text. Modality Adapter

The two are lobbied 
by PikPocket, who is 

losing in 
gambling.\n\n\n###

[Assistant]:

The pickpocket decides to take what he can
get and robs the two of their money. He had
been losing in a nearby gambling den and
was desperate for a win.

###[Human]: Continue 
the following text.

\n\n\n###
[Assistant]:

?

ASR Data
text speech

LLM

FIRST STEP SECOND STEP

supervised signal

(Transcript: The two are … in gambling.)

Figure 2: An overview of our BLSP approach for behavior alignment. Text response generated given speech
transcripts as inputs by an LLM (in the first step) are used as supervisions to train the modality adapter given the
corresponding speech as inputs (in the second step).

layer for the last token of the cross-modal prompt,164

right before response generation. We provide a vi-165

sualization of the representations of 25 samples in166

Figure 1. Ideally, paired speech and transcript in-167

puts should yield similar representations, and these168

representations should be clustered based on task169

instructions. However, this visualization clearly170

demonstrates the separation between speech and171

text representations in the feature space. The LLM172

consistently projects speech input into almost iden-173

tical representations regardless of the instructions174

provided, resulting in overlapping markings in the175

figure. This indicates a lack of ability to adhere to176

instructions when processing speech inputs. We177

provide quantitative evidence in Appendix A. This178

inability to bridge the modality gap through ASR179

tasks prompts us to reevaluate what it means to180

align speech and text for LLMs.181

3 Method182

Our proposed approach, named Bootstrapping183

Language-Speech Pretraining (BLSP) via behavior184

alignment, is designed to align pre-trained speech185

encoders with large language models (LLMs), with186

the goal of extending the remarkable language ca-187

pabilities to speech input. Our model comprises188

three components: a speech encoder, an instruction-189

following LLM, and a modality adapter between190

the speech encoder and LLM. We keep both the191

speech encoder and the LLM frozen during the192

training process and only train the parameters of 193

the modality adapter. An overview of our model is 194

presented in Figure 2. We will next describe how 195

to construct data to train the modality adapter in an 196

end-to-end manner. 197

Instead of treating the speech-transcript pairs as 198

input-output mappings, we consider the speech and 199

its transcript in each pair as two independent inputs 200

to the LLMs. Intuitively, if the representations of a 201

speech segment are well aligned in the textual space 202

for an LLM, the LLM should behave the same no 203

matter whether it is given the speech segment or its 204

transcript as input, under the same instruction. In 205

other words, it should generate the same text. We 206

term this concept behavior alignment. 207

Based on this concept, the BLSP approach con- 208

sists of two steps. In the first step, we use speech 209

transcripts as input and instruct the LLM to gener- 210

ate responses using the following prompt: 211

###[Human]:<instruction><transcript>\n\n\n 212
###[Assistant]: 213

In the second step, we feed the corresponding 214

speech signals to the speech encoder and use the 215

speech representations produced by the modality 216

adapter as the input to the LLM, replacing the word 217

embeddings of the transcripts. We regard the re- 218

sponses produced in the first step as the ground 219

truth for supervised learning using language mod- 220

eling loss with the following prompt: 221

###[Human]:<instruction><speech>\n\n\n 222
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###[Assistant]:<response>223

In this work, we primarily focus on the continu-224

ation behavior, as it resembles universal generation225

in next-token prediction and can produce a diverse226

range of texts reflecting the extensive dataset used227

to train LLMs. This characteristic is crucial as it228

avoids over-fitting to more specific behaviors that229

exhibit a strong bias in the response, akin to issues230

encountered with ASR pretraining, as discussed in231

Section 2.232

While not inherently beneficial on their own, in-233

corporating data from certain specific behaviors234

alongside continuation data in modest proportions235

can enhance the performance of the model. For236

instance, integrating the repetition behavior, which237

resembles ASR pretraining, into the continuation238

data can assist the adapter in capturing fine-grained239

lexical information, as explored in this study. We240

leave the systematic investigation of other behav-241

iors for future research.242

See Table 1 for two instructions used to prompt243

behaviors. It is worth noting that since the response244

for repetition behavior is simply the original tran-245

script with minor changes based on how closely the246

LLM follows the repetition instruction, we can skip247

the first step and directly use the speech transcript248

as the response.249

Continuation: Continue the following text in a coherent
and engaging style with less than 40 words.

Repetition: Please repeat the following words.

Table 1: Instructions used to prompt LLM behaviors.

4 Experiment Setup250

4.1 Training Details251

We utilize the encoder part of Whisper-small (Rad-252

ford et al., 2022) as the speech encoder and employ253

Llama-2-7B (Touvron et al., 2023) as the large254

language model (LLM). To induce instruction-255

following capability2, we employ the publicly ac-256

cessible dataset Alpaca-52K (Taori et al., 2023) to257

fine-tune the LLM. The Alpaca-52k dataset con-258

sists of 52K (text instruction, text input, response)259

triplets, which we convert into (text instruction, re-260

sponse) pairs by combining the instructions and261

2We could have also used the official chat version of Llama-
2, but we opted to perform instruction finetuning using pub-
licly available data, as it offers flexibility for future research
involving multi-modal instruction data.

inputs. During this stage, we fine-tune all parame- 262

ters of the LLM for 3 epochs with a batch size of 263

128. 264

The modality adapter is composed of three 1- 265

dimensional convolution layers followed by a bot- 266

tleneck layer (Houlsby et al., 2019) with a hidden 267

dimension of 512. The convolution layers are de- 268

signed to reduce the length of the speech features 269

by a factor of 8, with each layer having a stride size 270

of 2, a kernel size of 5, and a padding of 2. To train 271

the modality adapter, we utilize publicly available 272

speech recognition datasets, including LibriSpeech 273

(Panayotov et al., 2015), GigaSpeech (Chen et al., 274

2021), and Common Voice 2.0 (Ardila et al., 2020). 275

We train two BLSP models. The primary BLSP 276

model is trained solely on continuation behavior, 277

using 8.8 million (speech, text continuation) pairs 278

obtained by performing the continuation writing 279

task on the ASR datasets with the fine-tuned Llama- 280

2 model. The secondary BLSP+RP model, in- 281

cluded for comparison, is trained on a 1:9 mixing 282

ratio of repetition data in the form of (speech, tran- 283

script) pairs and the aforementioned continuation 284

data. During this stage, we fine-tune the modality 285

adapter for one epoch with a batch size of 768. 286

4.2 Baselines 287

We compare our method with the following base- 288

lines. 289

Text+LLM The input to the LLM is the ground- 290

truth speech transcripts. 291

Whisper+LLM The input to the LLM is the 292

speech recognition output from whisper-small, 293

which is comprised of both an encoder (utilized 294

as the speech encoder in BLSP) and a decoder 295

(not employed in BLSP). When comparing BLSP 296

models to this baseline, it is important to note that 297

BLSP’s speech training data is much smaller than 298

that for Whisper models. 299

CTC+LLM The input to the LLM is the speech 300

recognition output from an in-house CTC-based 301

ASR model. This ASR model consists of a speech 302

encoder and adapter identical to those in BLSP, in 303

addition to a CTC projector. We freeze the speech 304

encoder and fine-tune the adapter and projector on 305

the same ASR datasets used for BLSP training. We 306

consider CTC+LLM as the most realistic cascaded 307

baseline for demonstrating the modeling power of 308

the BLSP approach. 309
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Method ASR (WER↓) ST (BLEU↑) SLU (ACC↑)

LibriSpeech TED-LIUM MUST-C CoVoST SNIPS FSC SLUE
test-clean 3 2.0 light-close VoxCeleb

Text+LLM 0.0 5.6 0.0 14.5 19.7 21.9 86.3 72.4 75.0
Whisper+LLM 3.4 5.9 4.3 20.4 16.6 16.9 83.2 56.3 74.1
CTC+LLM 6.2 10.8 8.4 20.7 13.3 13.2 79.0 60.4 74.7
ASR pretraining — 3.7 — 4.5 0.0 0.0 0.0 0.0 0.0

BLSP — 10.4 — 23.1 12.3 12.7 75.8 60.9 76.0
+RP — 6.4 — 8.1 14.9 13.8 78.8 77.5 75.5

Table 2: Overview of BLSP results on zero-shot speech-to-text tasks. For each ASR test set, we report two WER
scores: on the left for the standalone ASR component of a cascaded system, and on the right for instructing the
LLM to repeat the words recognized by the ASR component. The BLEU scores for the ST test sets are averaged
across multiple translation directions.

ASR pretraining The model utilizes the same310

architecture as BLSP, except the modality adapter311

is trained by predicting the ground-truth transcript,312

as discussed in Section 2 and detailed in Appendix313

A.314

5 Results315

We have found through experiments that the pro-316

posed BLSP approach is capable of empower-317

ing the LLM with speech understanding capabili-318

ties while maintaining fidelity to text instructions,319

achieving competitive performance compared to320

the cascaded baseline CTC+LLM. We conduct321

evaluations on multiple speech-related downstream322

tasks, including speech recognition (ASR), speech323

translation (ST), and spoken language understand-324

ing (SLU). It is important to note that the primary325

BLSP model is trained solely on the continuation326

writing task; therefore, all evaluations are con-327

ducted in a zero-shot setting, where we utilize328

text instructions to perform various speech-to-text329

generation tasks. For the BLSP+RP model, all330

evaluations except the ASR task are conducted in331

a zero-shot setting. We also demonstrate the open-332

ended generation capability of BLSP by conducting333

general-purpose QA. Additionally, we demonstrate334

that our model supports cross-modal conversations335

and develops multilingual capabilities, even though336

the alignment training is carried out only in En-337

glish.338

5.1 Quantitative Evaluations339

Instructed Zero-Shot Speech-to-Text Tasks340

We perform speech-to-text tasks by prompting the341

BLSP model with task-specific instructions, de-342

tailed in Table 11 in the Appendix, followed by343

the speech features as input to the LLM. The same344

instructions are also used in the baseline systems. 345

For the ASR task, we conduct quantitative evalu- 346

ations on both in-domain (LibriSpeech, Panayotov 347

et al., 2015) and out-of-domain (TED-LIUM 3, 348

Hernandez et al., 2018) test sets, utilizing Word 349

Error Rate (WER) as the evaluation metric. In a 350

cascaded system, the ASR task can be performed in 351

two ways: either directly using the standalone ASR 352

component or by instructing the LLM to repeat 353

the words recognized by the ASR component. We 354

compare these methods to assess the LLM’s ability 355

to follow ASR instructions. For the ST task, we use 356

SacreBLEU (Post, 2018) as the evaluation metric, 357

and report in-domain results on CoVoST-2 (Wang 358

et al., 2020) and out-of-domain results on MUST-C 359

(Di Gangi et al., 2019), averaged across five and 360

eight translation directions, respectively, as detailed 361

in Appendix B. For the SLU task, we evaluate on 362

intent classification (IC) datasets SNIPS (Saade 363

et al., 2019) and FSC (Lugosch et al., 2019), and 364

sentiment analysis (SA) dataset SLUE-VoxCeleb 365

(Shon et al., 2022), using accuracy as the evaluation 366

metric. 367

Results are presented in Table 2. Despite a sig- 368

nificant performance disparity in ASR and ST tasks 369

when compared to the cascaded system of Whis- 370

per+LLM, our primary BLSP model demonstrates 371

respectable outcomes across all evaluated tasks. 372

It’s important to note that the Whisper model, in- 373

corporating a decoder absent in our BLSP model, 374

benefits from training on a substantially larger cor- 375

pus of speech data than the BLSP model. However, 376

when contrasted with the most directly comparable 377

cascaded baseline, CTC+LLM, which has a similar 378

architecture and is trained on an equivalent volume 379

of speech data, the performance gap narrows con- 380

siderably. Remarkably, the BLSP model surpasses 381

CTC+LLM in the FSC and SLUE-VoxCeleb test 382
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sets for the SLU tasks. Conversely, the ASR pre-383

training method, frequently employed in prior re-384

search to facilitate cross-modal alignment in LLMs385

(Zhang et al., 2023; Shu et al., 2023), proves inef-386

fective in maintaining any capability for instruction-387

following in non-ASR tasks.388

Incorporating Additional Behaviors We ob-389

serve that the ASR component of a cascaded sys-390

tem has a significantly lower WER score than the391

cascaded system itself. This suggests that the392

LLM’s insufficient ability to closely follow the393

ASR instruction is one of the reasons the BLSP394

method performs less effectively than traditional395

ASR models in ASR tasks. As shown in Ta-396

ble 2, the BLSP+RP model, which utilizes rep-397

etition training data at a 1:9 mixing ratio with398

the continuation training data, achieves WER399

scores comparable to the ASR component of the400

CTC+LLM model, and significantly better scores401

than those achieved by the CTC+LLM method402

through prompting. Moreover, the inclusion of rep-403

etition data also leads to improved performance on404

other tasks, achieving better scores on both ST test405

sets and two of the three SLU test sets compared406

to the CTC+LLM baseline.407

General-Purpose QA We also evaluated the408

performance of our BLSP models on a general-409

purpose question-answering (QA) task. This410

task focuses on grasping the semantics conveyed411

through speech and encompasses a broader range412

of textual instructions. For this evaluation, detailed413

in Appendix C, we selected 1460 samples from414

the GigaSpeech test set and employed ChatGPT415

to create a question for each sample based on its416

transcript. We then utilized ChatGPT again to deter-417

mine the acceptability of the responses generated418

by different methods. The evaluation findings are419

summarized in Table 3. Both BLSP models ex-420

hibited competence in this task, achieving scores421

comparable to the cascaded baseline CTC+LLM422

(88.5%/88.3% vs 88.6%). This performance under-423

scores our approach’s ability to endow the LLM424

with a general comprehension of speech, thereby425

equipping it to adeptly handle diverse cross-modal426

instructions and produce satisfactory responses.427

5.2 Analysis428

Effectiveness as a Pre-Training Strategy We429

evaluate the BLSP method’s effectiveness as a pre-430

training strategy for downstream tasks, with a focus431

on speech translation. To do this, we follow the432

Method Accept Rate (%)
Text+LLM 94.5
Whisper+LLM 91.3
CTC+LLM 88.6
ASR pretraining 0.0

BLSP 88.5
+RP 88.3

Table 3: ChatGPT evaluation using acceptable rate.

same translation instruction as used in zero-shot 433

translation tasks and fine-tune the primary BLSP 434

model to predict target language translations di- 435

rectly from speech inputs. This fine-tuning process 436

utilizes training data across eight language pairs 437

from the MUST-C dataset. We apply LoRA (Low- 438

Rank Adaptation) (Hu et al., 2021) to modify the 439

key, query, value, and output layers of the LLM’s 440

self-attention mechanism, setting LoRA hyperpa- 441

rameters to R = 16 and α = 16. We also update 442

the speech encoder and the modality adapter’s pa- 443

rameters to enhance model performance. For con- 444

text, we compare these results with a commonly 445

used pre-training approach, specifically ASR pre- 446

training, as detailed in Section 4.2. 447

As illustrated in Table 4, our primary BLSP 448

model exhibits an advantage in pre-training the 449

modality adapter for the downstream speech trans- 450

lation task, achieving substantial improvements 451

over random initialization. While pre-training the 452

modality adapter using the ASR task proves ben- 453

eficial, it may introduce a bias that hinders its 454

ability to generalize across different downstream 455

tasks. This limitation is highlighted by the supe- 456

rior performance of our BLSP approach over ASR 457

pre-training. Our method achieves notably higher 458

COMET scores across all translation directions and 459

higher BLEU scores in six out of the eight direc- 460

tions evaluated. 461

Effectiveness in Speech-Text Alignment We 462

evaluate the effectiveness of the BLSP method in 463

aligning speech and text inputs, using the proce- 464

dures outlined in Section 2. As illustrated in Fig- 465

ure 3, the distribution of learned representations 466

from speech inputs by the primary BLSP model 467

no longer significantly differs from that of text 468

inputs. This is a departure from the results ob- 469

served with the ASR task, as depicted in Figure 1. 470

The representations of speech inputs now share the 471

same distribution as those of text inputs, with the 472
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Method en-de en-es en-fr en-it en-nl en-pt en-ro en-ru

w/o pretraining 21.1 / 74.4 25.4 / 76.1 29.9 / 75.6 20.6 / 76.1 23.6 / 76.8 25.3 / 76.7 16.4 / 74.7 13.7 / 73.5
ASR pretraining 22.7 / 76.6 27.9 / 78.7 32.1 / 77.7 22.3 / 78.2 25.4 / 78.7 27.3 / 79.6 18.6 / 77.4 14.9 / 76.2
BLSP 23.3 / 77.7 27.4 / 79.5 31.9 / 78.5 23.2 / 79.0 26.4 / 80.0 28.5 / 80.4 19.2 / 78.6 15.6 / 77.3

Table 4: ST results (BLEU / COMET) of fine-tuned models on MUST-C.

CW-S
SA-S
SR-S
ST-S

CW-T
SA-T
SR-T
ST-T

Figure 3: T-SNE visualization of feature representations
learned from BLSP. Selected paired speech and text
inputs are highlighted using dashed lines and circles.

representations of paired speech and text inputs473

being closely aligned, often overlapping. In Ap-474

pendix D, we provide quantitative evidence that475

our BLSP model can generate distinct represen-476

tations for the same speech input under different477

instructions, and that the representations for paired478

speech and text inputs closely match when given479

the same instructions. These results indicate that480

the BLSP approach effectively aligns speech and481

text inputs within the same space, thereby extend-482

ing the instruction-following capabilities of LLMs483

to speech inputs.484

Impact of Data Size We evaluate the impact485

of data size on model performance within the486

BLSP approach, utilizing measurements on out-487

of-domain datasets, specifically TED-LIUM 3 for488

zero-shot ASR performance and MUST-C en-de di-489

rection for zero-shot ST performance. In our exper-490

imental setup, we limit model training to a single491

epoch since the training loss converges well before492

the completion of one epoch. Consequently, we493

employ its performance at various training steps494

(approximately 0.8 million training samples for495

every 1,000 updates) as an estimate of its perfor-496

mance at different data scales. As shown in Figure497

4, we observe rapid improvement in model perfor-498

mance during the early stages of training, followed499

by convergence after approximately 8,000 updates500

(equivalent to around 6 million training samples).501
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Figure 4: ASR and ST results at different training steps
in one epoch.

5.3 Cross-Modal Conversation 502

We have observed that the BLSP approach can 503

enable multi-turn conversation capabilities with 504

LLMs using speech, thereby extending their re- 505

markable conversational capabilities learned from 506

text-only data to spoken languages. Figure 5 illus- 507

trates an example of engaging in a spoken conver- 508

sation in English with the model. More examples 509

are presented in Appendix E. Longer video demon- 510

strations are available online3. 511

5.4 Emergence of Multilingual Capabilities 512

Despite being trained solely on English ASR data 513

for behavior alignment in continuation writing, we 514

have observed that the BLSP model demonstrates 515

an understanding of non-English speech inputs. 516

This can be attributed to the multilingual capabili- 517

ties of both the speech encoder (Whisper, Radford 518

et al. (2022)) and the LLM (Llama-2, Touvron et al. 519

(2023)), as well as the specific design of the BLSP 520

training process. Note that both the speech encoder 521

and the LLM remain frozen during BLSP training, 522

suggesting that despite training solely on English 523

data, the modality adapter can learn to project the 524

multilingual space in Whisper encoder’s output to 525

the multilingual space for the LLM. 526

To quantitatively measure the multilingual ca- 527

3Video demos are available at https://anonymous4blsp.
github.io/arr/
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0:05

What is the longest river in the world? 

The longest river in the world is the Nile River, 
which runs for about 4,132 miles.

0:03

What about in America?

In America, the longest river is the Missouri River, 
which runs for about 2,341 miles.

0:03

About China?

In China, the longest river is the Yangtze River, which 
runs for about 3,900 miles.

Figure 5: Speech conversation in English.

0:05

世界上最长的河流是哪条？ ( Which is the longest 
river in the world? )

The word’s longest river is the Nile River, which runs 
for about 4,132 miles.

0:03

那美国最长的呢？(What about the longest in 
America?)

The longest river in the United States is the Missouri 
River, which runs for about 2,341 miles.

0:03

那中国呢？(What about China?)

The longest river in China is the Yangtze River, which 
runs for about 3,900 miles.

Figure 6: Speech conversation in Mandarin.

Method BSTC MSLT

zh-en de-en fr-en
Text+LLM 16.1 / 58.7 32.8 / 84.2 29.6 / 76.3
Whisper+LLM 11.1 / 54.3 25.3 / 79.4 24.1 / 71.5
CTC+LLM 1.1 / 41.3 5.3 / 60.4 4.0 / 53.4
BLSP 5.0 / 49.8 13.1 / 70.9 13.4 / 64.8

Table 5: ST results (BLEU / COMET) in X-to-English
directions.

pabilities, we evaluate the speech translation per-528

formance of our BLSP model in the Chinese (zh)529

to English (en) direction on BSTC (Zhang et al.,530

2021) and in the German (de) and French (fr) to531

English (en) directions on MSLT (Federmann and532

Lewis, 2016). As shown in Table 5, the BLSP533

model demonstrates reasonable multilingual trans-534

lation competency for source languages that were535

not observed during behavior alignment training.536

We note that there is a significant gap in translation537

quality, as measured by both BLEU and COMET,538

when compared to Whisper+LLM and Text+LLM.539

This highlights the potential for further advance-540

ments in multilingual training. On the other hand,541

the cascaded model CTC+LLM, which was trained542

on English data, does not have cross-lingual capa-543

bility.544

As illustrated in Figure 6, our model is capable545

of engaging in multi-turn conversations with non-546

speech (Mandarin) speech input. It is worth men-547

tioning that the model’s responses are always in548

English. This is a direct result of the English-only549

training procedure in BLSP, where the continua-550

tions are consistently in English. This observation551

also suggests that there is benefit in incorporating552

multilingual training in behavior alignment for fu- 553

ture research. 554

6 Related Works 555

Due to the lack of space, please see Appendix F for 556

a discussion on related works. 557

7 Conclusion 558

In this paper, we introduce the BLSP approach, 559

which bootstraps language-speech pre-training 560

through behavior alignment. Our training proce- 561

dure is straightforward, requiring only learning of 562

a lightweight modality adapter through a novel uti- 563

lization of speech recognition training data. As evi- 564

denced by quantitative evaluations in speech recog- 565

nition, speech translation, spoken language under- 566

standing, and illustrated through multi-turn conver- 567

sation demonstrations, BLSP effectively extends 568

the remarkable language capabilities of LLMs to 569

speech, enabling direct interaction with LLMs us- 570

ing speech input. BLSP represents a fresh and valu- 571

able perspective for achieving cross-modal align- 572

ment in LLMs, and there are numerous directions 573

for expansion and improvement in future research. 574

Limitations 575

Although our BLSP approach can extend the re- 576

markable language capabilities of LLMs to speech, 577

as evidenced by quantitative evaluations and illus- 578

trative demonstrations, there are several limitations 579

in our current study. 580

Alignment Quality. As indicated by the quanti- 581

tative evaluations, there exists a substantial perfor- 582

8



mance gap when using speech input as opposed to583

the cascaded approach. Our approach to behavior584

alignment of continuation writing, in its current585

form, tends to align speech and text at a semantic586

level that restricts its capacity to capture detailed587

phonetic information. Exploring more fine-grained588

loss designs or approaches for constructing more589

fine-grained training data, including in combina-590

tion with speech recognition, speech translation, or591

general speech instruction data, is worthy of further592

investigation.593

Paralinguistic Information. In this study, we594

mainly focus on aligning speech and text in the se-595

mantic space, without addressing the paralinguistic596

aspects of spoken language that cannot be simply597

described by words, such as emotions, tones, and598

intentions. It is possible to capture and incorporate599

paralinguistic information with LLMs by leverag-600

ing data from more diverse speech-related tasks,601

such as speaker identification, keyword spotting,602

and speech emotion recognition.603

Safety and Ethics. The use of continuous speech604

representations in our BLSP model could make605

it more susceptible to adversarial attacks and can606

potentially compromise the LLM’s established ad-607

herence to the HHN criteria (Harmless, Helpful,608

Honest). This is an area that is worthy of future re-609

search, both in identifying weaknesses and search-610

ing for solutions.611

Broader Applicability. While our study has fo-612

cused on the behavior alignment of continuation613

writing for speech-text alignment, the fundamen-614

tal principles underlying this approach could have615

broader applicability. This involves expanding ex-616

isting paired data in creative ways with the assis-617

tance of LLMs, ultimately benefiting LLMs. We618

leave it to future studies to extend this approach to619

diverse scenarios, including vision-language and620

multilingual alignments.621
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A Implementation Details of ASR823

Pretraining824

In the pre-experiments, the model architecture and825

training dataset used are the same as in BLSP.826

The only difference is that in BLSP, the modal-827

ity adapter is trained using the continuation task,828

while in the pre-experiments, the modality adapter829

is trained to predict the ground-truth transcript. Ad-830

ditionally, similar to the approach in SpeechGPT831

(Zhang et al., 2023), we utilize GPT-4 to generate832

100 distinct text instructions for prompting ASR833

tasks. These instructions are concatenated before834

the speech input. For visualization purposes, we835

construct cross-modal prompts to extract features836

using the instructions shown in Table 6. We then837

apply t-SNE dimensionality reduction mapping to838

all samples from the LibriSpeech test set.839

CW: Please continue the following sentence.

SA: Please classify the emotional tone of the following
text.

SR: Please transcribe the following audio into English
text.

ST: Please translate the following English text into Ger-
man text.

Table 6: Instructions used for extracting cross-modal
representations.

To further demonstrate the overfitting problem in840

the ASR task, as illustrated in Figure 1, we present841

the average cosine similarity between the learned 842

representations of the same input across different 843

task instructions in Table 7. Notably, the repre- 844

sentations for speech input are remarkably similar 845

regardless of the task instruction used, indicating a 846

deficiency in following instructions. Additionally, 847

Table 8 highlights consistently low similarity scores 848

between paired speech and text input representa- 849

tions under the same task instructions, suggesting 850

a lack of alignment between the representations of 851

speech and text inputs. 852

CW-S SA-S SR-S ST-S
CW-S 1.000 0.997 0.997 0.991
SA-S 0.997 1.000 0.997 0.992
SR-S 0.997 0.997 1.000 0.993
ST-S 0.991 0.992 0.993 1.000

Table 7: Average similarity between representations of
the same speech inputs under different task instructions
learned from ASR task.

CW SA SR ST
0.270 0.106 0.328 0.176

Table 8: Average similarity between representations of
paired speech/text inputs under the same task instruc-
tions learned from ASR task.

B Detailed Results for Zero-Shot 853

Speech-to-Text Tasks 854

We present the performance of speech translation 855

in each direction, as illustrated in Tables 9 and Ta- 856

ble 10. For CoVoST-2, we evaluate our method 857

on five translation directions: English (en) to Cata- 858

lan (ca), German (de), Indonesian (id), Slovenian 859

(sl), and Swedish (sv). Additionally, we conduct 860

experiments on MUST-C for all eight translation 861

directions: English (en) to Catalan (ca), German 862

(de), Indonesian (id), Slovenian (sl), and Swedish 863

(sv). The instructions used for each speech-to-text 864

generation task are presented in Table 11. 865

C The Data Construction and Evaluation 866

Process of General-Purpose QA 867

For our evaluation on the general-purpose ques- 868

tion answering task, we selected 1460 speech-text 869

pairs from the GigaSpeech test set. The selected 870

texts contain 40-60 words to ensure that the sam- 871

ples encompass relatively complete semantics. To 872
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Method en-ca en-de en-id en-sl en-sv

Text+LLM 24.8 21.9 22.0 12.9 27.8
Whisper+LLM 19.2 17.3 15.8 10.0 22.2
CTC+LLM 14.5 14.0 12.3 7.9 17.5

BLSP 13.9 14.0 12.1 7.0 16.6
+ RP 14.8 14.9 12.3 7.9 19.3

Table 9: ST results on in-domain dataset CoVoST-2.

Method en-de en-es en-fr en-it en-nl en-pt en-ro en-ru

Text+LLM 20.2 21.7 24.2 20.5 24.4 20.3 13.3 13.3
ASR+LLM 16.9 19.2 20.5 16.4 20.7 17.1 10.9 11.4
CTC+LLM 13.6 15.3 15.7 12.6 17.0 13.9 8.2 9.9

BLSP 13.0 14.7 14.4 11.6 17.0 12.6 6.2 9.2
+RP 14.2 16.4 17.5 13.2 17.5 16.1 9.2 10.2

Table 10: ST results on out-of-domain dataset MUST-C.

ASR: Please repeat the following words.

ST: Please translate the following English text into <tar-
get> text.

SNIPS: Please classify the intent of the text, choose from
[DecreaseBrightness, IncreaseBrightness, SetLightBright-
ness, SetLightColor, SwitchLightOff, SwitchLightOn].

FSC: Please classify the intent of the text, choose from
[bring newspaper, deactivate lamp, change language En-
glish, deactivate music, increase heat, change language
Korean, change language none, bring shoes, change lan-
guage German, activate lights, bring socks, change lan-
guage Chinese, decrease heat, decrease volume, increase
volume, activate music, activate lamp, bring juice].

SLUE-VoxCeleb: Please classify the emotional tone of
the text as either positive, negative, or neutral.

Table 11: Instructions used for speech-to-text generation
tasks.

formulate questions based on these transcripts, we873

utilized ChatGPT. As shown in Listing 1, we pro-874

vided ChatGPT with the transcript as the input, and875

the task for ChatGPT was to generate a suitable876

question based on the given text input.877

In the next step, we used different models to gen-878

erate responses to the questions posed by ChatGPT879

in the previous step. We then employed ChatGPT880

again to evaluate the acceptability of these gener-881

ated answers. As shown in Listing 2, we provided882

ChatGPT with the question, the ground-truth tran-883

script, and the answer generated by different mod-884

els. The task for ChatGPT was to evaluate whether885

the generated answer is acceptable.886

D Quantitative Analysis of 887

Representations from BLSP 888

As depicted in Table 12, the representations of 889

speech inputs learned from BLSP are distinct un- 890

der various task instructions, unlike in Table 7 for 891

ASR task. Table 13 illustrates the average cosine 892

similarity between representations of paired speech 893

and text inputs learned from BLSP, revealing a high 894

level of similarity between the two, as opposed to 895

the low similarity depicted in Table 8 for ASR task. 896

We want to point out that there remains a notable 897

gap between the representations for speech and text 898

inputs that is worthy of future research. 899

CW-S SA-S SR-S ST-S

CW-S 1.000 0.494 0.745 0.381
SA-S 0.494 1.000 0.501 0.278
SR-S 0.745 0.501 1.000 0.477
ST-S 0.381 0.278 0.477 1.000

Table 12: Average similarity between representations of
the same speech inputs under different task instructions
learned from BSLP.

CW SA SR ST

0.785 0.866 0.808 0.900

Table 13: Average similarity between representations of
paired speech/text inputs under the same task instruc-
tions learned from BLSP.
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E Selected Examples of Cross-Modal900

Conversation901

As demonstrated in Figure 7, BLSP provides ex-902

panded mechanisms to interact with LLMs. Users903

can freely switch between text and speech inputs,904

and directly employ speech instructions to carry905

out speech-to-text tasks.906

F Related Works907

Multi-Modal Large Language Models Current908

multi-modal large language models have been909

prominently focusing more on visual modality910

(OpenAI, 2023; Yin et al., 2023). These models911

utilize a pre-trained visual encoder to extract key912

visual features from images, which are then com-913

bined with text inputs to generate relevant outputs.914

PaLM-E (Driess et al., 2023) combines the huge915

540B PaLM (Chowdhery et al., 2022) and the 22B916

Vision Transformer (ViT) (Dosovitskiy et al., 2020)917

to create the largest vision-language model cur-918

rently reported. Since it would be costly to train919

a large multi-modal model in an end-to-end man-920

ner, many works introduce a learnable interface921

between the pre-trained visual encoder and LLM922

to connect different modalities while freezing the923

parameters of the pre-trained models. Flamingo924

(Alayrac et al., 2022), BLIP-2 (Li et al., 2023) and925

X-LLM (Chen et al., 2023) leverage a group of926

learnable query tokens to extract information in a927

query-based manner. LLaVa (Liu et al., 2023) con-928

nects the pre-trained CLIP (Radford et al., 2021)929

encoder and Vicuna (Chiang et al., 2023) with a930

simple projection layer. LLaMA-Adapter (Gao931

et al., 2023) and LaVIN (Luo et al., 2023) explore932

a parameter-efficient tuning manner, introducing933

a lightweight adapter module during training. Re-934

cent research has extended the above-mentioned935

approach to “audio” (Gong et al., 2023), which936

refers to natural sound, such as thunder and chirp.937

However, there is still a lack of exploration when it938

comes to human speech.939

Interact with LLMs through Speech After the940

introduction of ChatGPT, several studies have fo-941

cused on combining specialized speech models942

with LLMs, allowing for speech interaction with943

these language models. Initial endeavors in this944

field (e.g., HuggingGPT (Shen et al., 2023), Au-945

dioGPT (Huang et al., 2023)) employed a cascad-946

ing model structure, linking LLMs with additional947

ASR and TTS models to enable speech input and948

output. These models showcase heightened intri- 949

cacy, require substantial resources, and are sus- 950

ceptible to the inevitable issue of error accumula- 951

tion. Recent works have started to explore end- 952

to-end model architectures. SpeechGPT (Zhang 953

et al., 2023) takes the discretized output of a speech 954

model in self-supervised training and treats it as a 955

specialized linguistic unit, training it alongside a 956

large language model. However, due to the high 957

sampling frequency of the discrete unit, it is diffi- 958

cult for this method to achieve multiple rounds of 959

dialogue. LLaSM (Shu et al., 2023) has constructed 960

an extensive speech instruction dataset intended 961

for training the modal adapter to attain modality 962

alignment. Their methodology is predominantly 963

data-driven, with a lesser emphasis on the explicit 964

design of modality alignment. 965
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Listing 1: The prompt used to generate general-purpose QA data.
Please ask a question about the input and then answer the question based on the
input. The output format should be in json and contains question and the response.
Example:
input: ah yeah good day and welcome to this instructional video on how to ah wash
your car um with a baby . basically , you just ask them to do it . you know they
love this kind of stuff this bubbles and a brush and .
output: {" question ": What is the video about?, "answer ": the video is about how to
wash your car um with a baby.}
input: it is the gibraltar strait where you lost control and then you dived down ...
one of those cases where you let the wings go in the clouds but you lose

orientation completely
output: {" question ": Where did the incident occur?, "answer ": Gibraltar Strait .}
BEGIN:
input: ${ transcript}
output:

Listing 2: The prompt used to evaluate whether a response is acceptable.
Given a question , related input , and answer , please help determine whether the
answer is acceptable.
The output choose from acceptable or unacceptable.
Question: ${ question}
Input: ${ transcript}
Answer: ${ answer}
Your output:
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Hello!

Hello! How can I help you?

0:03

I am going to Beijing, can you give me 
some suggestions?

Sure, here are some suggestions for 
your trip to Beijing:
• Visit the Forbidden City and explore 

the ancient palace complex.
• Take a stroll along the Wangfujing

Street for some shopping and snacks.
• Visit the Tianmen Square and take a 

picture of the Monument of the 
People’s Heroes.

• Take a rickshaw ride in the hutongs 
and experience the local life.

• Enjoy a Peking Duck dinner at one of 
the local restaurants.

• Take a day trip to the Great Wall of 
China and hike along the wall.

• Visit the Summer Palace and admire 
the beautiful gardens.

0:01

Tell me about alpacas.

Alpaca are South American camelids 
that are known for their soft, luxurious 
wool. They are a domesticated species 
and have been bred for their fiber since 
pre-Incan times. Alpacas are very social 
animals and live in herds of up to 15 
individuals. They are an important 
source of income for many Peruvian 
and Bolivian farmers.

0:05

Translate the sentence ‘I have no mouth 
but I must scream’ into Spanish.

No tengo ninguna boca, pero debo
gritar.

0:03

List all Canadian provinces in 
alphabetical order.

Alberta, British Columbia, Manitoba, 
New Brunswick, Newfoundland and 
Labrador, Nova Scotia, Ontario, Prince 
Edward Island, Quebec, Saskatchewan.

Which province has the largest area?

The province with the largest area is 
Saskatchewan.

Figure 7: Selected examples of cross-modal conversation using BLSP model.
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