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ABSTRACT

Large Language Models (LLMs) have been shown to be capable of performing high-
level planning for long-horizon robotics tasks, yet existing methods require access
to a pre-defined skill library (e.g. picking, placing, pulling, pushing, navigating).
However, LLM planning does not address how to design or learn those behaviors,
which remains challenging particularly in long-horizon settings. Furthermore,
for many tasks of interest, the robot needs to be able to adjust its behavior in a
fine-grained manner, requiring the agent to be capable of modifying low-level
control actions. Can we instead use the internet-scale knowledge from LLMs for
high-level policies, guiding reinforcement learning (RL) policies to efficiently solve
robotic control tasks online without requiring a pre-determined set of skills? In this
paper, we propose Plan-Seq-Learn (PSL): a modular approach that uses motion
planning to bridge the gap between abstract language and learned low-level control
for solving long-horizon robotics tasks from scratch. We demonstrate that PSL is
capable of solving 25+ challenging single and multi-stage robotics tasks on four
benchmarks at success rates of over 85% from raw visual input, out-performing
language-based, classical, and end-to-end approaches. Video results and code at
https://mihdalal.github.io/planseqlearn/

1 INTRODUCTION

In recent years, the field of robot learning has witnessed a significant transformation with the
emergence of Large Language Models (LLMs) as a mechanism for injecting internet-scale knowledge
into robotics. One paradigm that has been particularly effective is LLM planning over a predefined set
of skills (Ahn et al., 2022; Singh et al., 2023; Huang et al., 2022b; Wu et al., 2023), producing strong
results across a wide range of robotics tasks. These works assume the availability of a pre-defined
skill library that abstracts away the robotic control problem. They instead focus on designing methods
to select the right sequence skills to solve a given task. However, for robotics tasks involving contact-
rich robotic manipulation (Fig. 1), such skills are often not available, require significant engineering
effort to design or train a-priori or are simply not expressive enough to address the task. How can
we move beyond pre-built skill libraries and enable the application of language models to general
purpose robotics tasks with as few assumptions as possible? Robotic systems need to be capable of
online improvement over low-level control policies while being able to plan over long horizons.

End-to-end reinforcement learning (RL) is one paradigm that can produce complex low-level control
strategies on robots with minimal assumptions (Akkaya et al., 2019; Herzog* et al., 2023; Handa
et al., 2022; Kalashnikov et al., 2018; 2021; Chen et al., 2022; Agarwal et al., 2023). Unlike
hierarchical approaches which impose a specific structure on the agent which may not be applicable
to all tasks, end-to-end learning methods can, in principle, learn a better representation directly from
data. However, RL methods are traditionally limited to the short horizon regime due to the significant
challenge of exploration in RL, especially in high-dimensional continuous action spaces characteristic
of robotics tasks. RL methods struggle with longer-horizon tasks in which high-level reasoning and
low-level control must be learned simultaneously; effectively decomposing tasks into sub-sequences
and accurately achieving them is challenging in general (Sutton et al., 1999; Parr & Russell, 1997).

Our key insight is that LLMs and RL have complementary strengths and weaknesses. Prior work (Ahn
et al., 2022; Huang et al., 2022a; Wu et al., 2023; Singh et al., 2023; Song et al., 2023) has shown that
when appropriately prompted, language models are capable of leveraging internet scale knowledge to
break down long-horizon tasks into achievable sub-goals, but lack a mechanism to produce low-level
robot control strategies Wang et al. (2023), while RL can discover complex control behaviors on
robots but struggles to simultaneously perform long-term reasoning (Nachum et al., 2018). However,
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Figure 1: Long horizon task visualization. We visualize PSL solving the NutAssembly task, in which the goal
is to put both nuts on their respective pegs. After predicting the high-level plan using an LLM, PSL computes a
target robot pose, achieves it using motion planning and then learns interaction via RL (third row).

directly combining the two paradigms, for example, via training a language conditioned policy to
solve a new task, does not address the exploration problem. The RL agent must now simultaneously
learn language semantics and low-level control. Ideally, the RL agent should be able to follow the
guidance of the LLM, enabling it to learn to efficiently solve each predicted sub-task online. How
can we connect the abstract language space of an LLM with the low-level control space of the RL
agent in order to address the long-horizon robot control problem?

In this work, we propose a learning method to solve long-horizon robotics tasks by tracking language
model plans using motion planning and learned low-level control. Our approach, called Plan-Seq-
Learn (PSL), is a modular framework in which a high-level language plan given by an LLM (Plan) is
interpreted and executed using motion planning (Seq), enabling the RL policy (Learn) to rapidly
learn short-horizon control strategies to solve the overall task. This decomposition enables us to
effectively leverage the complementary strengths of each module: language models for abstract
planning, vision-based motion planning for task plan tracking as well as achieving robot states and RL
policies for learning low-level control. Furthermore, we improve learning speed and training stability
by sharing the learned RL policy across all stages of the task, using local observations for efficient
generalization, and introducing a simple, yet scalable curriculum learning strategy for tracking the
language model plan. To our knowledge, ours is the first work enabling language guided RL agents
to efficiently learn low-level control strategies for long-horizon robotics tasks.

Our contributions are: 1) A novel method for long-horizon robot learning that tightly integrates large
language models for high-level planning, motion planning for skill sequencing and RL for learning
low-level robot control strategies; 2) Strategies for efficient policy learning from high-level plans,
which include policy observation space design for locality, shared policy network and reward function
structures, and curricula for stage-wise policy training; 3) An extensive experimental evaluation
demonstrating that PSL can solve over 25 long-horizon robotics tasks, outperforming SOTA baselines
across four benchmark suites at success rates of over 85% purely from visual input. PSL produces
agents that solve challenging long-horizon tasks such as NutAssembly at 96% success rate.

2 RELATED WORK
Classical Approaches to Long Horizon Robotics: Historically, robotics tasks have been approached
via the Sense-Plan-Act (SPA) pipeline (Paul, 1981; Whitney, 1972; Vukobratović & Potkonjak, 1982;
Kappler et al., 2018; Murphy, 2019), which requires comprehensive understanding of the environment
(sense), a model of the world (plan), and a low-level controller (act). Traditional approaches range
from manipulation planning (Lozano-Perez et al., 1984; Taylor et al., 1987), grasp analysis Miller
& Allen (2004), and Task and Motion Planning (TAMP) Garrett et al. (2021), to modern variants
incorporating learned vision (Mahler et al., 2016; Mousavian et al., 2019; Sundermeyer et al., 2021).
Planning algorithms enable long horizon decision making over complex and high-dimensional action
spaces. However, these approaches can struggle with contact-rich interactions (Mason, 2001; Whitney,
2004), experience cascading errors due to imperfect state estimation (Kaelbling & Lozano-Pérez,
2013), and require significant manual engineering and systems effort to setup (Garrett et al., 2020b).
Our method leverages learning at each component of the pipeline to sidestep these issues: it handles
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Figure 2: Method overview. PSL decomposes tasks into a list of regions and stage termination conditions
using an LLM (top), sequences the plan using motion planning (left) and learns control policies using RL (right).

contact-rich interactions using RL, avoids cascading failures by learning online, and sidesteps manual
engineering effort by leveraging pre-trained models for vision and language.

Planning and Reinforcement Learning: Recent work has explored the integration of motion
planning and RL to combine the advantages of both paradigms (Lee et al., 2020; Yamada et al.,
2021; Cheng & Xu, 2022; Xia et al., 2020; James & Davison, 2022; James et al., 2022; Liu et al.,
2022). GUAPO Lee et al. (2020) is similar to the Seq-Learn components of our method, yet their
system considers the single-stage regime and is focused on keeping the RL agent in areas of low pose-
estimator uncertainty. Our method instead considers long-horizon tasks by encouraging the RL agent
to follow a high-level plan given by an LLM using vision-based motion planning. MoPA-RL Yamada
et al. (2021) also bears resemblance to our method, yet it opts to learn when to use the motion planner
via RL, requiring the RL agent to discover the right decomposition of planner vs. control actions on
its own. Furthermore, roll-outs of trajectories using MoPA can result in the RL agent choosing to
motion plan multiple times in sequence, which is inefficient - one motion planner action is sufficient
to reach any position in space. In our method, we instead explicitly decompose tasks into sequences
of contact-free reaching (motion planner) and contact-rich environment interaction (RL).

Language Models for RL and Robotics LLMs have been applied to RL and robotics in a wide
variety of ways, from planning Ahn et al. (2022); Singh et al. (2023); Huang et al. (2022a;b); Wu et al.
(2023); Liu et al. (2023a); Rana et al. (2023); Lin et al. (2023), reward definition Kwon et al. (2023);
Yu et al. (2023), generating quadrupedal contact-points Tang et al. (2023), producing tasks for policy
learning Du et al. (2023); Colas et al. (2020) and controlling simulation-based trajectory generators
to produce diverse tasks Ha et al. (2023). Our work instead focuses on the online learning setting and
aims to leverage language model driven planning to guide RL agents to solve new robotics tasks in a
sample efficient manner. BOSS Zhang et al. (2023) is closest to our overall method; this concurrent
work also leverages LLM guidance to learn new skills via RL. Crucially, their method depends on the
existence of a skill library and learns skills that are combination of high-level actions. Our method
instead efficiently learns low-level robot control skills without depending on a pre-defined skill library,
by taking advantage of motion planning to track an LLM plan.

3 PLAN-SEQ-LEARN

In this section, we describe our method for solving long-horizon robotics tasks, PSL, outlined in Fig. 2.
Given a text description of the task, our method breaks up the task into meaningful sub-sequences
(Plan), uses vision and motion planning to translate sub-sequences into initialization regions (Seq)
from which we can efficiently train local control policies using RL (Learn).

3.1 PROBLEM SETUP

We consider Partially Observed Markov Decision Processes (POMDP) of the form
(S,A, T ,R, p0,O, pO, γ). S is the set of environment states, A is the set of actions, T (s′ | s, a) is
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the transition probability distribution,R(s, a, s′) is the reward function, p0 is the distribution over the
initial state s0 ∼ p0, O is the set of observations, pO is the distribution over observations conditioned
on the state O ∼ pO(O|s) and γ is the discount factor. In our case, the observation space is the set of
all RGB-D (RGB and depth) images. The reward function is defined by the environment. The agent’s
goal is to maximize the expected sum of rewards over the trajectory, E [

∑
t γ

tR(st, at, st+1)]. In our
work, we consider POMDPs that describe an embodied robot agent interacting with a scene. We
assume that a text description of the task, gl, is provided to the agent in natural language.

3.2 OVERVIEW

Algorithm 1 Plan-Seq-Learn Overview

Require: LLM, Pose Estimator P, task description
gl, Motion Planner MP, low-level horizon Hl

Planning Module
High-level plan P ← Prompt(LLM, gl)
for p ∈ P do
Sequencing Module

target region (t), termination condition← p

Compute pose qtarget = P (Oglobal
t , t)

Achieve pose MP(qtarget, O
global
t )

Learning Module
for i = 1, ...,Hl do

Get action at ∼ πθ(O
local
t )

Get next state Olocal
t+1 ∼ p(|st, at).

Store (Olocal
t , at, O

local
t+1 , r) intoR

update πθ using RL
if fstage(Oglobal) then

break
end if

end for
end for

To solve long-horizon robotics tasks, we need
a module capable of bridging the gap between
zero-shot language model planning and learned
low-level control. Observe that many tasks of in-
terest can be decomposed into alternating phases
of contact-free motion and contact-rich interac-
tion. One first approaches a target region and
then performs interaction behavior, prior to mov-
ing to the next sub-task. Contact-free motion
generation is exactly the motion planning prob-
lem. For estimating the position of the target
region, we note that state-of-the-art vision mod-
els are capable of accurate language-conditioned
state estimation (Kirillov et al., 2023; Zhou et al.,
2022; Liu et al., 2023b; Bahl et al., 2023; Ye
et al., 2023; Labbé et al., 2022). As a result, we
propose a Sequencing Module which uses off-
the-shelf vision models to estimate target robot
states from the language plan and then achieves
these states using a motion planner. From such
states, we train interaction policies that optimize
the task reward using RL. See Alg. 1 and Fig. 2
for an overview of our method.

3.3 PLANNING MODULE: ZERO-SHOT HIGH-LEVEL PLANNING

Long-horizon tasks can be broken into a series of stages to execute. Rather than discovering these
stages using interaction or using a task planner Fikes & Nilsson (1971) that may require privileged
information about the environment, we use language models to produce natural language plans zero
shot without access to the environment. Specifically, given a task description gl by a human, we
prompt an LLM to produce a plan. Designing the plan granularity and scope are crucial; we need
plans that can be interpreted by the Sequencing Module, a vision-based system that produces and
achieves robot poses using motion planning. As a result, the LLM predicts a target region (a natural
language label of an object/receptacle in the scene, e.g. “silver peg”) which can be translated into a
target pose to achieve at the beginning of each stage of the plan.

When the RL policy is executing a step of the plan, we propose to add a stage termination condition
(e.g. grasp, place, turn, open, push) to know the stage is complete and to move onto the next stage.
This condition is defined as a function fstage(O

global) that takes in the current observation of the
environment and evaluates a binary success criteria as well as a natural language descriptor of the
condition for prompting the LLM (e.g. ‘grasp’ or ‘place’). These stage termination conditions
are estimated using visual pose estimates. We describe the stage termination conditions in greater
detail in Sec. 3.5 and Appendix D. The LLM prompt consists of the task description gl, the list
of supported stage termination conditions (which we hold constant across all environments) and
additional prompting strings for output formatting. We format the language plans as follows: (“Region
1”, “Termination Condition 1”), ... (“Region N”, “Termination Condition N”), assuming the LLM
predicts N stages. Given the prompt, the LLM outputs a natural language plan in the format listed
above. Below, we include an example prompt and plan for the Nut Assembly task.
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Prompt: Stage termination conditions: (grasp, place). Task description: The silver nut goes on the
silver peg and the gold nut goes on the gold peg. Give me a simple plan to solve the task using only
the stage termination conditions. Make sure the plan follows the formatting specified below and make
sure to take into account object geometry. Formatting of output: a list in which each element looks like:
(<object/region>, <stage termination condition>). Don’t output anything else.
Plan: [(“silver nut”,“grasp”), (“silver peg”, “place”), (“gold nut”, “grasp”), (“gold peg”, “place”)]

While any language model can be used to perform this planning process, we found that of a variety of
publicly available LLMs (via weights or API), only GPT-4 OpenAI (2023) was capable of producing
correct plans across all the tasks we consider. We sample from the model with temperature 0 for
determinism. We also delete components of the plan that contain LLM hallucinations (if present).
We provide additional details in Appendix D and example prompts in Appendix G.

3.4 SEQUENCING MODULE: VISION-BASED PLAN TRACKING

Given a high-level language plan, we now wish to step through the plan and enable a learned RL policy
to solve the task, using off-the-shelf vision to produce target poses for a motion planning system to
achieve. At stage X of the high-level plan, the Sequencing Module takes in the corresponding step
high-level plan (“Region Y”, “Termination Condition Z”) as well as the current global observation of
the scene Oglobal (RGB-D view(s) that cover the whole scene), predicts a target robot pose qtarget
and then reaches the robot pose using motion planning.

Vision and Estimation: Using a text label of the target region of interest from the high-level plan
and observation Oglobal, we need to compute a target robot state qtarget for the motion planner to
achieve. In principle, we can train an RL policy to solve this task (learn a policy πv to map Oglobal to
qtarget) given the environment reward function. However, observe that the 3D position of the target
region is a reasonable estimate of the optimal policy π∗

v for this task: intuitively, we wish to initialize
the robot nearby to the region of interest so it can efficiently learn interaction. Thus, we can bypass
learning a policy for this step by leveraging a vision model to estimate the 3D coordinates of the
target region. We opt to use Segment Anything Kirillov et al. (2023) to perform segmentation, as it
is capable of recognizing a wide array of objects, and use calibrated depth images to estimate the
coordinates of the target region. We convert the estimated region pose into a target robot pose qtarget
for motion planning using inverse kinematics.

Motion Planning: Given a robot start configuration q0 and a robot goal configuration qtarget of a
robot, the motion planning module aims to find a trajectory of way-points τ that form a collision-free
path between q0 and qtarget. For manipulation tasks, for example, q represents the joint angles
of a robot arm. We can use motion planning to solve this problem directly, such as search-based
planning Cohen et al. (2010), sampling-based planning Kuffner Jr. & LaValle (2000) or trajectory
optimization Schulman et al. (2013). In our implementation, we use AIT* Strub & Gammell (2020),
a sampling-based planner, due to its minimal setup requirements (only collision-checking) and
favorable performance on planning. For implementation details, please see Appendix D.

Overall, the Sequencing Module functions as the connective tissue between language and control
by moving the robot to regions of interest in the plan, enabling the RL agent to quickly learn
short-horizon interaction behaviors to solve the task.

3.5 LEARNING MODULE: EFFICIENTLY LEARNING LOCAL CONTROL

Once the agent steps through the plan and achieves states near target regions of interest, it needs to
train an RL policy πθ to learn low-level control for solving the task. We train πθ using DRQ-v2 Yarats
et al. (2021), a SOTA visual model-free RL algorithm, to produce low-level control actions (joint
control or end-effector control) from images. Furthermore, we propose three modifications to the
learning pipeline in order to further improve learning speed and stability.

First, we train a single RL policy across all stages, stepping through the language plan via the
Sequencing Module, to optimize the task reward function. The alternative, training a separate policy
per stage, would require designing stage specific reward functions per task. Instead, our design
enables the agent to solve the task using a single reward function by sharing the policy and value
functions across stages. This simplifies the training setup and allowing the agent to account for future
decisions as well as inaccuracies in the Sequencing Module. For example, if πθ is initialized at a
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sub-optimal position relative to the target region, πθ can adapt its behavior according to its value
function, which is trained to model the full task return E [

∑
t γ

tR(st, at, st+1)].

Second, instead of executing πθ for a fixed number of steps per stage Hl, we predict a stage
termination condition fstage(O

global) using the language model and evaluate the condition at every
time-step to test if a stage is complete, otherwise it times out after Hl steps. For most conditions,
fstage is evaluated by computing the pose estimate of the relevant object and thresholding. This
process functions as a form of curriculum learning: only once a stage is completed is the agent
allowed to progress to the next stage of the plan. As we ablate in Sec. 5, stage termination conditions
enable the agent to learn more performant policies by preventing dithering behavior at each stage. As
an example, in the nut assembly task shown in Fig. 1, once πθ places the silver nut on the silver peg,
the placement condition triggers (by compare the pose of the nut to the peg pose) and the Sequencing
Module moves the arm to near the gold peg.

Finally, as opposed to training the policy using the global view of the scene (Oglobal), we train using
local observations Olocal, which can only observe the scene in a small region around the robot (e.g.
wrist camera views for robotic manipulation). This design choice affords several unique properties
that we validate in Appendix C, namely: 1) improved learning efficiency and speed, 2) ease of
chaining pre-trained policies. Our policies are capable of leveraging local views because of the
decomposition in PSL: the RL policy simply has to learn interaction behaviors in a small region, it
has no need for a global view of the scene, in contrast to an end-to-end RL agent that would need to
see a global view of the scene to know where to go to solve a task. For additional details in regarding
the structure and training process of the Learning Module, see Appendix D.

4 EXPERIMENTAL SETUP

4.1 TASKS

We conduct experiments on single and multi-stage robotics tasks across four simulated environment
suites (Meta-World, Obstructed Suite, Kitchen and Robosuite) which contain obstructed settings,
contact-rich setups, and sparse rewards (Fig. F.1). See Appendix F for additional details.

Meta-World: Yu et al. (2020) is an RL benchmark with a rich source of tasks. From Meta-World,
we select four tasks: MW-Disassemble (removing a nut from a peg), MW-BinPick (picking and
placing a cube), MW-Assembly (putting a nut on a peg), MW-Hammer (hammering a nail).

ObstructedSuite: Yamada et al. (2021) contains tasks that evaluate our agent’s ability to
plan, move and interact with the environment in the presence of obstacles. It consists of three
tasks: OS-Lift (cube lifting in a tall box), OS-Push (push a block surrounded by walls), and
OS-Assembly (avoiding obstacles to place table leg at target).

Kitchen: Gupta et al. (2019); Fu et al. (2020) tests two aspects of our agent: its ability to
handle sparse terminal rewards and its long-horizon manipulation capabilities. The single-stage
kitchen tasks include K-Slide (open slide cabinet), K-Kettle (push kettle forward), K-Burner
(turn burner), K-Light (flick light switch), and K-Microwave (open microwave). The
multi-stage Kitchen tasks denote the number of stages in the name and include combinations of the
aforementioned single tasks.

Robosuite: Zhu et al. (2020) contains a wide array of robotic manipulation tasks rang-
ing from single stage (RS-Lift: cube lifting, RS-Door: door opening) to multi-stage
(RS-NutRound,RS-NutSquare, RS-NutAssembly: pick-place nut(s) onto target peg(s) and
RS-Bread, RS-Cereal, RS-Milk, RS-Can, RS-CerealMilk, RS-CanBread: pick-place
object(s) into appropriate bin(s)). Robosuite emphasizes realism and fidelity to real-world control,
enabling us to highlight the potential of our method to be applied to real systems.

4.2 BASELINES

We compare against two types of baselines, methods that learn from data and methods that perform
offline planning. We include additional details in Appendix D.

Learning Methods:

• E2E: Yarats et al. (2021) DRQ-v2 is a SOTA model-free visual RL algorithm.
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Figure 3: Sample Efficiency Results. We plot task success rate as a function of the number of trials. PSL
improves on the sample efficiency of the baselines across each task in Robosuite, Kitchen, Meta-World, and
Obstructed Suite. PSL is able to do so because it initializes the RL policy near the region of interest (as predicted
by the Plan and Sequence Modules) and leverages local observations to efficiently learn interaction. Additional
learning curves in Appendix C.

• RAPS: Dalal et al. (2021) is a hierarchical RL method that modifies the action space of the
agent with engineered subroutines (primitives). RAPS greatly accelerates learning speed,
but is limited in expressivity due to its action space, unlike PSL.

• MoPA-RL: Yamada et al. (2021) is similar to PSL in its integration of motion planning and
RL but differs in that it does not leverage an LLM planner; it uses the RL agent to decide
when and where to call the motion planner.

Planning Methods:

• TAMP: Garrett et al. (2020a) is a classical baseline that uses a privileged view of the world
to perform joint high-level (task planning) and low-level planning (motion planning with
primitives) for solving long-horizon robotics tasks.

• SayCan: a re-implementation of SayCan Ahn et al. (2022) using publicly available LLMs
that performs LLM planning with a fixed set of pre-defined skills. Following the SayCan
paper, we specify a skill library consisting of object picking and placing behaviors using
pose-estimation, motion-planning and heuristic action primitives. We do not learn the pick
skill as done in SayCan because our setup does not contain a separate set of train and
evaluation environments. In this work, we evaluate the single-task RL regime in which the
agent is tested with held out poses, not held out environments.

4.3 EXPERIMENT DETAILS

We evaluate all methods aside from TAMP and MoPA-RL (which use privileged simulator infor-
mation) using visual input. SayCan and PSL use Oglobal and Olocal. For E2E and RAPS, we
provide the learner access to a single global fixed view observation from Oglobal for simplicity and
speed of execution; we did not find including Olocal improves performance (Fig. C.5) We measure
performance in terms of task success rate with respect to the number of trials. We do so to provide a
fair metric for evaluating a variety of different control implementations across PSL, RAPS, and E2E.
Each method is trained for 10K episodes total. We train on each task using the default environment
reward function. For each method, we run 7 seeds on every task and average across 10 evaluations.

5 RESULTS
We begin by evaluating PSL on a variety of single stage tasks across Robosuite, Meta-World, Kitchen
and ObstructedSuite. Next, we scale our evaluation to the long-horizon regime in which we show that
PSL can leverage LLM task planning to efficiently solve multi-stage tasks. Finally, we perform an
analysis of PSL, evaluating its sensitivity to pose estimation error and stage termination conditions.

5.1 LEARNING RESULTS

PSL accelerates learning efficiency on a wide array of single-stage benchmark tasks. For
single-stage manipulation, (in which the LLM predicts only a single step in the plan), the Sequencing
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RS-Bread RS-Can RS-Milk RS-Cereal RS-NutRound RS-NutSquare

E2E .52 ± .49 0.32 ± .44 .02 ± .04 0.0 ± 0.0 .06 ± .13 0.02 ± .045
RAPS 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
TAMP 0.9 ± .01 1.0 ± 0.0 .85 ± .06 1.0 ± 0.0 0.4 ± 0.3 .35 ± .2
SayCan .93 ± .09 1.0 ± 0.0 0.9 ± .05 .63 ± .09 .56 ± .25 .27 ± .21

PSL 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 .98 ± .04 .97 ± .02

Table 1: Robosuite Two Stage Results. Performance is measured in terms of success rate on two-stage (2
planner actions) tasks. SayCan is competitive with PSL on pick-place style tasks, but SayCan’s performance
drops considerably (86.5% to 41.5% on average) on contact-rich tasks involving assembling nuts due to
cascading failures. Online learning methods (E2E and RAPS) make little progress on the long-horizon tasks in
Robosuite. On the other hand, PSL is able to solve each task with at least 97% success rate.

Module motion plans to the specified region, then hands off control to the RL agent to complete the
task. In this setting, we solely evaluate the learning methods since the planning problem is trivial
(only one step). We observe improvements in learning efficiency (with respect to number of trials) as
well as final performance in comparison to the learning baselines E2E, RAPS and MoPA-RL, across
11 tasks in Robosuite, Meta-World, Kitchen and ObstructedSuite (Fig. 3, left). For all learning curves,
please see the Appendix C. PSL especially performs well on sparse reward tasks, such as in Kitchen,
for which a key challenge is figuring out which object to manipulate and where it is. Additionally, we
observe qualitatively meaningful behavior using PSL: PSL learns to use the gripper to grasp and turn
the burner knob, unlike E2E or RAPS which end up using other joints to flick the burner.

PSL efficiently solves tasks with obstructions by leveraging motion planning. We now consider
three tasks from the Obstructed Suite in order to highlight PSL’s effectiveness at learning control
in the presence of obstacles. As we observe in Fig. 3 and Fig. C.2, PSL is able to do so efficiently,
solving each task within 5K episodes, while E2E fails to make progress. PSL is able to do so because
the Sequencing Module handles the obstacle avoidance implicitly via motion planning and initializes
the RL policy in advantageous regions near the target object. In contrast, E2E spends a significant
amount of time attempting to reach the object in spite of the obstacles, failing to learn the task. While
MoPA-RL is also able to solve many of the tasks, it requires more trials than PSL even though it
operates over privileged state input, as the agent must simultaneously learn when and where to motion
plan as well as how to manipulate the object.

PSL enables visuomotor policies to learn long-horizon behaviors with up to 10 stages. Two-stage
results across Robosuite and Meta-World are shown in Table 1 and Table C.2, with learning curves
in Fig. 3 (right) and Fig. C.3. On the Robosuite tasks, E2E and RAPS fail to make progress: while
they learn to reach the object, they fail to consistently grasp it, let alone learn to place it in the target
location. On the Meta-World tasks, the learning baselines perform well on most tasks, achieving
similar performance to PSL due to shaped rewards, simplified low-level control (no orientation
changes) and small pose variations. However, PSL is significantly more sample-efficient than E2E
and RAPS as shown in Fig. C.3. TAMP and SayCan are able to achieve high performance across each
PickPlace variant of the Robosuite tasks (93.75%, 86.5% averaged across tasks), as the manipulation
skills do not require significant contact-rich interaction, reducing failure skill failure rates. Cascading
failures still occur due to the baselines’ open-loop nature of execution, imperfect state estimation
(SayCan), planner stochasticity (TAMP). Only PSL is able to achieve perfect performance across
each task, avoiding cascading failures by learning from online interaction.

On multi-stage tasks (involving 3-10 stages), we find that TAMP and SayCan performance drops
significantly in comparison to PSL (38% and 37% vs. 95% averaged across tasks). For multiple
stages, the cascading failure problem becomes all the more problematic, causing all three baselines
to fail at intermediate stages, while PSL is able to learn to adapt to imperfect Sequencing Module
behavior via RL. See Table 2 for a detailed breakdown of the results.

PSL solves contact-rich, long-horizon control tasks such as NutAssembly. In these experi-
ments, we show that PSL can learn to solve contact-rich tasks (RS-NutRound, RS-NutSquare,
RS-NutAssembly) that pose significant challenges for classical methods and LLMs with pre-
trained skills due to the difficulty of designing manipulation behaviors under continuous contact.
By learning an interaction policy whose purpose is to produce locally correct contact-rich behavior,
we find that PSL is effective at performing contact-rich manipulation over long horizons (Table 1,
Table 2), outperforming SayCan by a wide margin (97% vs. 35% averaged across tasks). Our
decomposition into contact-free motion generation and contact-rich interaction decouples the what
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RS-CerealMilk RS-CanBread RS-NutAssembly K-MS-3 K-MS-5 K-MS-7 K-MS-10
Stages 4 4 4 3 5 7 10

E2E 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0
RAPS 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 .89 / 0.1 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0
TAMP .71 / .05 .72 / .25 0.2 / 0.3 1.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0
SayCan .73 / .05 .63 / .21 .23 / .21 1.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0

PSL .85 ± .21 0.9 ± 0.2 .96 ± .08 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

Table 2: Multistage (Long-horizon) results. Performance is measublack in terms of mean task success rate
at convergence. PSL is the consistently solves each task, outperforming planning methods by over 70% on
challenging contact-intensive tasks such as NutAssembly.

(target nut) and where (peg) from the how (precision grasp and contact-rich place), allowing the RL
agent to simply focus on the aspect of the problem that is challenging to estimate a-priori: how to
interact with the objects in the appropriate manner.

5.2 ANALYSIS

We now turn to analyzing PSL, evaluating its robustness to pose estimates and the importance of our
proposed stage termination conditions. We include additional analysis of PSL in Appendix C.

σ = 0 σ = 0.01 σ = 0.025 σ = 0.1 σ = 0.5

SayCan 1.0 ± 0.0 .93 ± .05 .27 ± .12 0.0 ± 0.0 0.0 ± 0.0
PSL 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 .75 ± .07 0.0 ± 0.0

Table 3: Noisy Pose Ablation Results. We add noise sampled fromN (0, σ) to the pose estimates and evaluate
SayCan and PSL. PSL is able to handle noisy poses by training online with RL, only observing performance
degradation beyond σ = 0.1.

PSL leverages stage termination conditions to learn faster. While the target object sequence is
necessary for PSL to plan to the right location at the right time, in this experiment we evaluate if
knowledge of the stage termination conditions is necessary. Specifically, on the RS-Can task, we
evaluate the use of stage termination condition checks in PSL to trigger the next step in the plan versus
simply using a timeout of 25 steps. We find that it is in fact critical to use stage termination condition
checks to enable the agent to effectively sequence the plan; use of a timeout results in dithering
behavior which slows down learning. After 10K episodes we observe a performance improvement of
31% (100% vs. 69%) by including plan stage termination conditions in our pipeline.

PSL produces policies that are robust to noisy pose estimates. In real world settings, there is often
noise in pose estimation due to noisy depth values, imperfect camera calibration or even network
prediction errors. Ideally, the agent should be adapt to such potential failure modes: open-loop
planning methods such as TAMP and SayCan are not well-suited to do so because they do not
improve online. In this experiment we evaluate the PSL’s ability to handle noisy/inaccurate poses
by leveraging online interaction via RL. On the RS-Can task, we add zero-mean Gaussian noise
to the pose, with σ ∈ 0.01, 0.025, .1, .5 and report our results in Table. 3. While SayCan struggles
to handle σ > 0.01, PSL is able to learn with noisy poses at σ = .1, at the cost of slower learning
performance. Neither method performs well at σ = 0.5, however at that point the poses are not near
the object and the effect is similar to resetting to a random robot pose in the workspace every episode.

6 CONCLUSIONS

In this work, we propose PSL, a method that integrates the long-horizon reasoning capabilities of
language models with the dexterity of learned RL policies via a skill sequencing module. At the heart
of our method lies the decomposition of robotics tasks into sequential phases of contact-free motion
generation (using language model planning) and environment interaction. We solve these phases using
motion planning (informed by visual pose-estimation) and model-free RL respectively, an approach
which we validate via an extensive experimental evaluation. We outperform state-of-the-art methods
for end-to-end RL, hierarchical RL, classical planning and LLM planning on over 20 challenging
vision-based control tasks across four benchmark environment suites. In the future, this work could
be extended to improving a pre-existing robot skill library over time using RL, enabling an agent to
perform planning with an ever increasing repertoire of skills that can be refined at a low-level. PSL
can also be applied to sim2real transfer, since the policies we train in this work use local observations,
they are more amenable to sim2real transfer Agarwal et al. (2023).
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B ETHICS, IMPACTS AND LIMITATIONS

B.1 ETHICAL CONSIDERATIONS

There exist potential ethical concerns from the use of large-scale language models trained on internet-
scale data. These models have been trained on vast corpi that may contain harmful content and
implicit or even explicit biases expressed by internet users and may be capable of generating such
content when queried. However, these issues are not specific to our work, rather they are inherent to
LLMs trained at scale and other works that use LLMs face a similar ethical concern. Furthermore,
we note that our research only makes use of LLMs to guide the behavior of a robot at a coarse level -
specifying where a robot should go and how to leave the area. Our LLM prompting scheme ensures
that this is all that is outputted from the LLM. Such outputs leave little scope for abuse, the LLM
is not capable of performing the low-level control itself, which is learned through a task reward
independently.

B.2 BROADER IMPACTS

Our research on guiding RL agents to solve long-horizon tasks using LLMs has potential for both
positive and negative impacts. PSL draws connections between work on language modeling, motion
planning and reinforcement learning for low-level control, which could lead to advancements in
learning for robotics. PSL reduces the engineering burden on the human, instead of manually
specifying/pre-training a library of behaviors, only a reward function and task description need be
specified. More broadly, enabling robots to autonomously solve challenging robotics tasks increase
the likelihood of robots one day being able to complete labor intensive work in dangerous situations.
However, with increased automation, there are risks of potential job loss. Furthermore, with increased
robot capabilities, there is a risk of misuse by bad actors, for which appropriate safeguards should be
designed.

B.3 LIMITATIONS

There are several limitations of PSL which leave scope for future work. 1) We impose a specific
structure on the language plans and task solution (go to location X, interact there, so on). While this
assumption covers a broad set of tasks as well illustrate in our experimental evaluation, tasks that
involve interacting with multiple objects simultaneously or continuous switching between interaction
and movement in a fluid manner may not be directly applicable. Future work can explore integrating
a more expressive plan structure with the Sequencing Module. 2) Use of motion-planning makes
application to dynamic tasks challenging. To that end, research on motion-planner distillation, such
as Motion Policy Networks Fishman et al. (2022) could enable much faster, reactive behavior. 3)
Although the RL agent is capable of adapting pose estimation errors, in the current formulation, there
is not much the Learning Module can do if the high-level plan itself is entirely incorrect, or if the
Sequencing module misinterprets the language instruction and moves the robot to the wrong object.
One extension to address this limitation would be to fine-tune the Plan and Seq Modules online using
RL as well, to adapt the large models to the specific environment and reward function.
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C ADDITIONAL EXPERIMENTS

We perform additional analyses of PSL in this section.
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Figure C.1: Camera View Learning Performance Ablation. wrist camera views clearly accelerate
learning performance, converging to near 100% performance 4x faster than using fixed-view and 3x
faster than using wrist+fixed-view observations.

Effect of camera view on policy learning performance: As discussed in Sec. 3, for PSL we use
local observations to improve learning performance and generalization to new poses. We validate
this claim on the Robosuite Can task, in which we hypothesize that the local wrist camera view will
accelerate policy learning performance. This is because the image of the can will be independent of
the can’s position in general since the Sequencing Module will initialize the RL agent as close to the
can as possible. As observed in Fig. C.1, this is indeed the case - PSL learns 4x faster than using a
fixed view camera in terms of the number of trials. We additionally test if combining wrist and fixed
view inputs (a common paradigm in robot learning) can alleviate the issue, however PSL with wrist
cam is still 3x faster at solving the task.

Effect of camera view on chaining pre-trained policies: In this ablation, we illustrate another
important effect of using local views, such as wrist cameras: ease of chaining pre-trained policies.
Since we leverage motion planning to sequence between policy executions, chaining pre-trained
policies is relatively straightforward: simply execute the Sequencing Module to reach the first region
of interest, execute the first pre-trained policy till its stage termination condition is triggered, then
call the Sequencing Module on the next region, and so on. However, to do so, it is also crucial that
the observations do not change significantly, so that the inputs to the pre-trained policies are not
out of distribution (OOD). If we use a fixed, global view of the scene, the overall scene will change
as multiple policies are executed, resulting in future policy executions failing due to OOD inputs.
In Table C.1, we observe this exact phenomenon, in which any version of PSL that is provided a
fixed-view input fails to chain pre-trained policies effectively, while PSL with local (wrist) views
only is able to chain pre-trained policies on every task, up to 5 stages.

Effect of incorrect plans on training policies using PSL: As noted in the Limitations Section
(Sec. B), we acknowledge that as defined, if the Plan Module or Sequence Module fail catastrophically
(incorrect plan or moving to the wrong region in space), there is currently no concrete mechanism
for the Learning Module to adapt. However, we run an experiment in which we train the agent
using PSL using an incorrect high-level plan on two stage tasks (MW-Assembly, MW-Bin-Picking,
MW-Hammer) and find that in some cases, the agent can still learn to solve the task, achieving
performance close to E2E (Fig. C.4. Intuitively, this is possible because in PSL, the high-level plan is
not expressed as a hard constraint, but rather as a series of regions for the agent to visit and a set of
exit conditions for those regions. In the end, however, only the task reward is used to train the RL
policy so if the plan is wrong, the Learn Module must learn to solve the entire task end-to-end from
sub-optimal initial states.

Ablating Camera View choice for Baselines: We evaluate if including Olocal in addition to Oglobal

improves performance across four tasks (RS-Lift, RS-Door, RS-Can, RS-NutRound) and
include the results in Fig. C.5. In general there is little to no performance improvement for RAPS or
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E2E across the board. The additional local view marginally improves sample efficiency but it does
not resolve the fundamental exploration problem for these tasks.

K-Single-Task K-MS-3 K-MS-4 K-MS-5

PSL-Wrist 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
PSL-Fixed 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PSL-Wrist+Fixed 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Table C.1: Chaining Pre-trained Policies Ablation. PSL can leverage local views (wrist cameras) to chain
together multiple pre-trained policies via motion-planning using the Sequencing Module. While PSL with each
camera input is able to produce a capable single-task policy, chaining only works with wrist camera observations
as the observations are kept in-distribution.
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Figure C.2: Single Stage Results. We plot task success rate as a function of the number of trials. PSL improves
on the efficiency of the baselines across single-stage tasks (plan length of 1) in Robosuite, Kitchen, Meta-World,
and Obstructed Suite, achieving an asymptotic success rate of 100% on all 11 tasks.
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Figure C.3: Meta-World Two Stage Learning Curves. We plot task success rate as a function of the number
of trials. PSL learns faster than the baselines by employing high-level planning to accelerate RL performance.
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MW-BinPick MW-Assembly MW-Hammer

E2E 1.0 ± 0.0 0.4 ± 0.5 0.0 ± 1.0
RAPS 0.0 ± 0.0 0.3 ± .25 1.0 ± 0.0
TAMP 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0
SayCan 1.0 ± 0.0 0.5 ± .08 1.0 ± 0.0

PSL 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

Table C.2: Metaworld Two Stage Results. While the baselines perform well on most of the tasks, only PSL
is able to consistently solve every task. This is because the LLM planning and Sequencing modules ease the
learning burden for the RL policy, enabling it to learn contact-rich, long-horizon behaviors.
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Figure C.4: PSL Bad Plans. We plot task success rate as a function of the number of trials. Even when given
the wrong high-level plan, PSL is able to learn to solve the task, albeit at a slower rate.
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Figure C.5: Ablating Camera Views for Baselines. We plot task success rate as a function of the number of
trials. As seen in the figure above, including Olocal does not improve the performance of E2E or RAPS.
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D PSL IMPLEMENTATION DETAILS

Algorithm 2 PSL Implementation
Require: LLM, task description gl, Motion Planner MP, low-level horizon Hl, segmentation model S , RGB-D

global cameras, RGB wrist camera, Camera Matrix Kglobal

1: initialize RL: πθ , replay bufferR
Planning Module

2: High-level plan P ← Prompt(LLM, gl)
3: for episode 1...N do
4: for p ∈ P do

Sequencing Module
5: target region (t), termination condition← p

6: PCglobal = Projection(Oglobal
1 , Oglobal

2 , Kglobal)
7: Mrobot,Mobj = Segmentation(Oglobal

1 , Oglobal
2 , robot, object)

8: PCrobot , PCobject = Mrobot ∗ PCglobal, Mobj ∗ PCscene

9: PCscene = PCglobal − PCrobot

10: eetarget = mean(PCobj)
11: qtarget = IK(eetarget)
12: MotionPlan(MP, qtarget, PCscene)

Learning Module
13: for i = 1, ..., h low-level steps do
14: Get action at ∼ πθ(O

local
t )

15: Get next state Olocal
t+1 ∼ p(|st, at).

16: Store (Olocal
t , at, O

local
t+1 , r) intoR

17: Sample (Olocal
k , at, O

local
k+1 , r) ∼ R ▷ k = random index

18: update πθ using RL
19: if post-condition then
20: break
21: end if
22: end for
23: end for
24: end for

D.1 PLANNING MODULE

Given a task description gl, we prompt an LLM using the format described in Sec. 3.3 to produce
a language plan. We experimented with a variety of publicly available and closed-source LLMs
including LLAMA Touvron et al. (2023a), LLAMA-2 Touvron et al. (2023b), GPT-3 Brown et al.
(2020), Chat-GPT, and GPT-4 OpenAI (2023). In initial experiments, we found that GPT-based
models performed best, and GPT-4 in particularly most closely adhered to the prompt and produced
the most accurate plans. As a result, in our experiments, we use GPT-4 as the LLM planner for
all tasks. We sample from the model with temperature 0 for determinism. Sometimes, the LLM
hallucinates non-existent stage termination conditions or objects. As a result, we add a pre-processing
step in which we delete components of the plan that contain such hallucinations.

D.2 SEQUENCING MODULE

The input to the Sequencing Module is Oglobal. In our experiments, we use two camera views,
Oglobal

1 and Oglobal
2 , which are RGB-D calibrated camera views of the scene, to obtain unoccluded

views of the scene. We additionally provide the current robot configuration, which is joint angles for
robot arms: qjoint and the target region label around which the RL policy must perform environment
interaction. From this information, the module must solve for a collision free path to a region near
the target. This problem can be addressed by classical motion planning. We take advantage of
sampling-based motion planning due to its minimal setup requirements (only collision-checking)
and favorable performance on planning. In order to run the motion planner, we require a collision
checker, which we implement using point-clouds. To compute the target object position, we use
predicted segmentation along with calibrated depth, as opposed to a dedicated pose estimation
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Motion Planner (AIT*)
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Figure D.1: Sequencing Module. Inputs to the Sequencing Module are two calibrated RGB-D fixed views,
Oglobal, the proprioception qjoint and the target object. It performs visual motion planning to the target object
by computing a scene point-cloud (PCglobal), segmenting the target object (Mobj) to estimate its pose (qtarget),
segmenting the robot (Mrobot) to remove it from PCglobal and motion planning using AIT*.

network, primarily because state of the art segmentation models (Kirillov et al., 2023; Zhou et al.,
2022) have significant zero-shot capabilities across objects.

Projection: In this step, we project the depth map from each global view of the scene, Oglobal
1 and

Oglobal
2 into a point-cloud PCglobal using their associated camera matrices Kglobal

1 and Kglobal
2 . We

perform the following processing steps to clean up PCglobal: 1) cropping to remove all points outside
the workspace 2) voxel down-sampling with a size of 0.005 m3 to reduce the overall size of PCglobal

3) outlier removal, which prunes points that are farther from their 20 neighboring points than the
average in the point-cloud as shown in Fig. D.1.

Segmentation: We compute masks for the robot (Mrobot) and the target object (Mobj) by using a
segmentation model (SAM Kirillov et al. (2023)) S which segments the scene based on RGB input.
We reduce noise in the masks by filling holes, computing contiguous mask clusters and selecting
the largest mask. We use Mrobot to remove the robot from PCglobal, in order to perform collision
checking of the robot against the scene. Additionally, we use Mobj along with PCglobal to compute
the object point-cloud PCobj , which we average to obtain an estimate of object position, which is the
target position for the motion planner. For the manipulation tasks we consider in the paper, this is the
target end-effector pose of the robot, eetarget.

Visual Motion Planning: Given the target end-effector pose eetarget, we use inverse kinematics (IK)
to compute qtarget and pass qjoint, qtarget, PCglobal into a joint-space motion planner. To that end,
we use a sampling-based motion planner, AIT* Strub & Gammell (2020), to perform motion planning.
In order to implement collision checking from vision, for a sampled joint-configuration qsample, we
compute the corresponding position of the robot mesh and compute the occupancy of each point in
the scene point-cloud against the robot mesh. If the object is detected as grasped, then we additionally
remove the object from the scene pointcloud, compute its convex hull and use the signed distance
function of the joint robot-object mesh for collision checking. As a result, the Sequencing Module
operates entirely over visual input, and achieves a pose near the region of interest before handing
off control to the local RL policy. We emphasize that the Sequencing Module does not need to be
perfect, it merely needs to produce a reasonable initialization for the Learning Module.

D.3 LEARNING MODULE

D.3.1 STAGE TERMINATION DETAILS

As described in Section 3, we use stage termination conditions to determine when the Learning
Module should hand control back to the Sequencing Module to continue to the next stage in the plan.
For most of the tasks we consider, these stage termination conditions amount to checking for a grasp
or placement for the target object in the stage. For example, for RS-NutRound, the plan for the first
stage is (grasp, nut) and the plan for the second stage is (place, peg). Placements are straightforward
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to check: simply evaluate if the object being manipulated is within a small region near the target
object. This can be computed using the estimated pose of the two objects (current and target). Grasps
are more challenging to estimate and we employ a two stage pipeline to detecting a grasp. First, we
estimate the object pose and then evaluate if the z value has increased from when the stage began.
Second, in order to ensure the object is not simply tossed in the air, we check if the robot’s gripper is
tightly caging the object. We do so by collision checking the object point-cloud against the gripper
mesh. We use the same collision checking procedure as outlined in Sec 3 for checking collision
between the scene point-cloud and robot mesh.

To estimate the turned condition, we compute the mask of the burner knob, evaluate its principal axis
and measure its angle from vertical. If it is greater than X radians then the stage condition triggers.
Checking the pushed condition is straightforward, the object needs to have moved by X distance
forward from the start pose in xy. Finally, for checking the opened condition, we estimate the handle
pose relative to the hinge and compute the angle of the door. If it is greater than X radians we consider
the door opened. For the slide cabinet the handle pose itself can be used to check opening. Closing is
likewise estimated as the inverse of opening. For all conditions, we take the threshold X from the
environment success condition or reward function.

D.3.2 TRAINING DETAILS

For all tasks, we use the reward function defined by the environment, which may be dense or sparse
depending on the task. We find that for PSL, it is crucial to use an action-repeat of 1, in general we
found that increasing this harmed performance, in contrast to the E2E baseline which performs best
with an action repeat of 2. For training policies using DRQ-v2, we use the default hyper-parameters
from the paper, held constant across all tasks. We train policies using 84x84 images. We use the
”medium” difficult exploration schedule defined in Yarats et al. (2021), which anneals the exploration
σ from 1.0 to 0.1 over the course of 500K environment steps. Due to memory concerns, instead of
using a replay buffer size of 1M as done in Yarats et al. (2021), ours is of size 750K across each task.
Finally, for path length, we use the standard benchmark path length for E2E and MoPA-RL, 5 per
stage for RAPS following Dalal et al. (2021), and 25 per stage for PSL.
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E BASELINE IMPLEMENTATION DETAILS

E.1 RAPS

For this baseline, we simply take the results from the RAPS Dalal et al. (2021) paper as is, which use
Dreamer Hafner et al. (2019) and sparse rewards. In initial experiments, we attempted to combine
RAPS with DRQ-v2 Yarats et al. (2021) and found that Dreamer performed better, which is consistent
with RAPS+Dreamer having the best results in Dalal et al. (2021). We additionally tried to run RAPS
with dense rewards, but found that the method performed significantly worse. One potential reason
for this is that it is not clear exactly how to aggregate the dense rewards across primitive executions -
we tried simply taking the dense reward after executing a primitive as well as simply summing the
rewards of intermediate primitive executions. Both performed worse than training RAPS with sparse
rewards. Note that PSL outperforms RAPS even when both methods have only access to sparse
rewards, e.g. the Kitchen environments. We observe clear benefits over RAPS on the single-stage
(Fig. C.2) and multi-stage (Table 2) tasks.

E.2 MOPA-RL

As described in the main paper, we take the results from MoPA-RL Yamada et al. (2021) as is on the
Obstructed Suite of tasks. Those results were run from state-based input and leveraged the simulator
for collision checking. We do so as we were unable to successfully combine MoPA-RL with DRQ-v2
based on the publicly released implementations of both methods.

E.3 TAMP

We use PDDLStream Garrett et al. (2020a) as the TAMP algorithm of choice as it has been shown
to have strong planning performance on long-horizon manipulation tasks in Robosuite (Dalal et al.,
2023; Mandlekar et al., 2023). The PDDLStream planning framework models the TAMP domain
and uses the adaptive algorithm, a sampling based algorithm, to plan. This TAMP method uses
samplers for grasp generation, placement sampling, inverse kinematics, and motion planning, making
performance stochastic. Hence we average performance across 50 evaluations to reduce variance. We
adapt the authors TAMP implementation (from (Dalal et al., 2023; Mandlekar et al., 2023)) for our
tasks. Note this method uses privileged access to the simulator, leveraging knowledge about the task
(which must be explicitly specified in a problem file), the scene (from the domain file and access to
collision checking) and 3D geometry of the environment objects.

E.4 SAYCAN

As described in the main paper, we re-implement SayCan Ahn et al. (2022) using GPT-4 (the same
LLM we use in our methdo) and manually engineered pick/place skills that use pose-estimation
and motion-planning. Following our Sequencing module: 1) we build a 3D scene point-cloud using
camera calibration and depth images 2) we perform vision-based pose estimation using segmentation
along with the scene point cloud and 3) we run motion planning using collision queries from the
3D point-cloud, which is used for collision queries. Finally, we use heuristically engineered pick
and place primitives to perform interaction behavior which we describe as follows. We note that for
our tasks of interest, the pick motion can be represented as a top-grasp. Once we position the robot
near the object; we then simply lower the robot arm till the end-effector (not the grippers) come in
contact with the object. We then close the gripper to execute the grasp. For place, we follow the
implementation of Ahn et al. (2022) and lower the held object until contact with a surface, then
release (open the gripper) and lift the robot arm. We set the affordance function for both skills to 1,
following the design in Ahn et al. (2022) for motion planned skills.

For LLM planning, we specify the following prompt:

Given the following library of robot skills: ... Task description: ... Make sure to take into account
object geometry. Formatting of output: a list of robot skills. Don’t output anything else.
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This prompt is the same as our prompt except we specify the robot skill library in terms of object
centric behaviors, instead of stage termination conditions.

Given the following library of robot skills: ... Task description: ... Give me a simple plan to
solve the task using only the provided skill library. Make sure the plan follows the formatting
specified below and make sure to take into account object geometry. Formatting of output: a list
of robot skills. Don’t output anything else.

Robosuite

Skill Library: pick can, pick milk, pick cereal, pick bread slice, pick silver nut, pick gold nut,
put can on/in X, put milk on/in X, put cereal on/in X, put bread slide on/in X, put silver nut on/in
X, put gold nut on/in X, grasp door handle, turn door handle, pick cube

Kitchen

Skill Library: grasp vertical door handle for slide cabinet, move left, move right, grasp hinge
cabinet, grasp top left burner with red tip, rotate top left burner with red tip 90 degree clockwise,
rotate top left burner with red tip 90 degrees counterclockwise, push light switch knob left, push
light switch knob right, grasp kettle, lift kettle, place kettle on/in X, grasp microwave handle,
pull microwave handle

Metaworld:

Skill Library: grasp cube, place cube on/in X, grasp hammer, place hammer, hit nail with
hammer, grasp wrench, lift wrench

Obstructed-Suite

Skill Library: grasp can, place can in bin, insert table leg in X, move table leg, grasp cube,
place cube on table, push cube
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F TASKS

(a) MW-Hammer (b) MW-Assembly (c) MW-Disassemble (d) MW-Bin-Picking

(e) OS-Lift (f) OS-Assembly (g) OS-Push (h) K-Slide

(i) K-Kettle (j) K-Microwave (k) K-Burner (l) K-Light

(m) RS-Lift (n) RS-Door (o) RS-NutRound (p) RS-NutSquare

(q) RS-NutAssembly (r) RS-Can (s) RS-Cereal (t) RS-Milk

(u) RS-Bread (v) RS-CanBread (w) RS-CerealMilk

Figure F.1: Task Visualizations. PSL is able to solve all tasks with at least 80% success rate from purely visual
input.
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We discuss each of the environment suites that we evaluate using PSL. All environments are simulated
using the MuJoCo simulator Todorov et al. (2012).

1. Meta-World (Row 1 of Fig. F.1). Meta-World, introduced by Yu et al. (2020), aims to offer
a standardized suite for multi-task and meta-learning methods. The benchmark consists
of 50 separate manipulation tasks with a Sawyer robot, well-shaped reward functions,
involve manipulating a single object to a randomized goal position, or multiple objects to a
deterministic goal position. We evaluate on the single-task, multi-goal, v2 variants of the
Meta-World environments. All environments use end-effector position control - a 3DOF
arm action space along with gripper control - orientation is fixed. In our evaluation we use
the default environment task rewards, a fixed camera view for the baselines and a wrist
camera for our local policies. We refer the reader to the Meta-World paper for additional
details regarding the environment suite.

2. Obstructed Suite (Rows 1-2 of Fig. F.1). The Obstructed Suite of tasks introduced by Ya-
mada et al. (2021) are a challenging set of tasks requiring a Sawyer arm to perform obstacle
avoidance while solving the task. The OS-Lift task requires the agent to pick up a can
that is inside a tall box, requiring it to reach over the walls to grab the object and then lift
it without making contact with the edges of the bin. The OS-Push environment tasks the
agent with push a block to the goal in the present of a bin that forces the agent to adjust its
motion in order to avoid being blocked by its upper joints. Finally, the OS-Assembly task
involves moving the robot arm to a precise placement location while avoiding obstacles,
then performing the table leg placement. Note that we evaluate our method on these envi-
ronments from visual input, a more challenging setting than the one considered by Yamada
et al. (2021).

3. Kitchen (Rows 2-3 of Fig. F.1). The Kitchen manipulation suite introduced in the Relay
Policy Learning paper Gupta et al. (2019) and maintained in D4RL Fu et al. (2020) is a set
of challenging, sparse reward, joint-controlled manipulation tasks in a single kitchen. We
modify the benchmark to use end-effector control as we find that this significantly improves
learning performance. The tasks require the ability to explore efficiently whilst also being
able to chain skills across long temporal horizons, to achieve behaviors such as opening
the microwave, moving the kettle, flicking the light switch, turning the top left burner, and
finally sliding the cabinet door (K-MS-5). Aside from the single-stage tasks described in
Section 4, we evaluate on three multi-stage tasks which require chaining the single-stage
tasks in a particular order. K-MS-3 involves moving the kettle, flicking the light switch and
turning the top left burner, K-MS-7 involves opening the right hinge cabinet, turning the
top right burner and then doing the same tasks as K-MS-5 and K-MS-10 involves opening
the right hinge cabinet, turning the top right, bottom left, and bottom right burners, closing
the right hinge cabinet and then performing the rest of the tasks in K-MS-5.

4. Robosuite (Rows 3-6 of Fig. F.1). The Robosuite benchmark from Zhu et al. (2020) contains
challenging, long-horizon manipulation tasks involving pick-place and nut assembly, as well
as simpler tasks that involve lifting a cube and opening a door. The rewards are coarsely
defined in terms of distances to targets as well as grasp/placement conditions, which, in
fact, are straightforward to implement in the real world as well using pose estimation. This
stands in contrast to Meta-World which spends considerable engineering effort defining
well-shaped dense rewards often by taking advantage of object geometry. As a result,
learning-based methods struggle to make any progress on Robosuite tasks that involve
more than a single-stage - optimizing the reward function tends to leave the agent a local
minima. The suite also contains a well-tuned, realistic Operation Space Control Khatib
(1987) implementation that we leverage to train policies in end-effector space.
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G LLM PROMPTS AND PLANS

In this section, we list the LLM prompts per task.
Overall prompt structure:

Stage termination conditions: (grasp, place, push, open, close, turn). Task description: ... Give
me a simple plan to solve the task using only the stage termination conditions. Make sure the
plan follows the formatting specified below and make sure to take into account object geometry.
Formatting of output: a list in which each element looks like: (<object/region>, <operator>).
Don’t output anything else.

G.1 ROBOSUITE

RS-PickPlaceCan:

Task Description can goes into bin 1.
Plan: [(“can”, “grasp”), (“bin 1”, “place”)])

RS-PickPlaceCereal:

Task Description: cereal goes into bin 3.
Plan: [(“cereal”, “grasp”), (“bin 3”, “place”)])

RS-PickPlaceMilk:

Task Description: milk goes into bin 2.
Plan: [(“milk”, “grasp”), (“bin 2”, “place”)])

RS-PickPlaceBread:

Task Description: bread slice goes into bin 4.
Plan: [(“bread slice”, “grasp”), (“bin 4”, ”place”)])

RS-PickPlaceCanBread:

Task Description: can goes into bin 1, bread slice in bin 4.
Plan: [(“can”, “grasp”), (“bin 1”, “place”), (“bread slice”, ”grasp”), (“bin 4”, ”place”)])

RS-PickPlaceCerealMilk:

Task Description: milk goes into in bin 2, cereal in bin 3.
Plan: [(“cereal”, “grasp”), (“bin 3”, “place”), (“milk”, “grasp”), (“bin 2”, “place”)])

RS-NutAssembly:

Task Description: The silver nut goes on the silver peg and the gold nut goes on the gold peg.
Plan: [(“silver nut”, “grasp”), (“silver peg”, “place”),(“gold nut”, “grasp”), (“gold peg”,
“place”)]
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RS-NutAssemblySquare:

Task Description: The gold nut goes on the gold peg.
Plan: [(“gold nut”, “grasp”), (“gold peg”, “place”)]

RS-NutAssemblyRound:

Task Description: The silver nut goes on the silver peg.
Plan: [(“silver nut”, “grasp”), (“silver peg”, “place”)]

RS-Lift:

Task Description: lift the red cube.
Plan: [(“red cube”, ”grasp”)]

RS-Door:

Task Description: open the door.
Plan: [(“door handle”, “grasp”)]

G.2 META-WORLD

MW-Assembly:

Task Description: put the green wrench on the maroon peg.
Plan: [(“green wrench”, “grasp”), (“maroon peg”, “place”)]

MW-Disassemble:

Task Description: remove the green wrench from the peg.
Plan: [(“green wrench”, “grasp”)]

MW-Hammer:

Task Description: use the red hammer to push in the nail.
Plan: [(“red hammer”, “grasp”), (“nail”, “push”)]

MW-Bin-Picking:

Task Description: move the cube in the red bin into the blue bin.
Plan: [(“cube in red bin”, “grasp”), (“blue bin”, “place”)]

G.3 KITCHEN

Kitchen-Microwave:

Task Description: pull the microwave door open.
Plan: [(“microwave door handle”, “open”)]

28



Kitchen-Slide

Task Description: use the rightmost vertical bar to slide the door.
Plan: [(“rightmost vertical bar”, “open”)]

Kitchen-Light

Task Description: use the round knob to flick the light switch.
Plan: [(“knob”, “turn”)]

Kitchen-Burner

Task Description: rotate the top left burner with the red tip.
Plan: [(“top left burner with the red tip”, “turn”)]

Kitchen-Kettle

Task Description: move the kettle forward.
Plan: [(“kettle”, “push”)]

G.4 OBSTRUCTED SUITE

OS-Lift:

Task Description: lift red can from wooden bin.
Plan: [(“red can’, “grasp”)]

OS-Assembly:

Task Description: move the table leg, which is already in your hand, into the empty hole.
Plan: [(“empty hole’, “place”)]

OS-Push:

Task Description: push the red block onto the green circle.
Plan: [(“red block”, “grasp”)]
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