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Abstract

Individual differences in human intelligence can be modeled and predicted from1

in vivo neurobiological connectivity. Many established modeling frameworks for2

predicting intelligence, however, discard higher-order information about individ-3

ual differences in brain network topology, and show only moderate performance4

when generalized to make predictions in out-of-sample subjects. In this paper,5

we propose that connectome-based predictive modeling, a common predictive6

modeling framework for neuroscience data, can be productively modified to incor-7

porate information about brain network topology and individual differences via the8

incorporation of bagged decision trees and the network based statistic. These modi-9

fications produce a novel predictive modeling framework that leverages individual10

differences in cortical tractography to generate accurate regression predictions11

of intelligence. Network topology-based feature selection provides for natively12

interpretable networks as input features, increasing the model’s explainability. In-13

vestigating the proposed modeling framework’s efficacy, we find that advanced14

connectome-based predictive modeling generates neuroscience predictions that15

account for a significantly greater proportion of variance in intelligence than previ-16

ously established methods, advancing our scientific understanding of the network17

architecture that underlies human intelligence.18

1 Predicting Individual Differences in General Intelligence19

Cognitive neuroscience research has begun to turn greater attention to individual differences in neuro-20

biology and cognition (1), motivating the development of research methods that more directly address21

individual differences in neurosceicne data. Integrating cognitive neuroscience and computer science22

methods and perspectives together promises to advance the explanability and replicability of scientific23

results (2), and will be of particular importance for advancing research into the neruosceince of24

inter-individual differences (3). In this paper, we propose a novel predictive modeling framework that25

modifies connectome-based predictive modeling (CPM) (4; 5), an existing computational approach26

for predicting behavioral data from neuroscience data, and demonstrate the method’s efficacy for27

predicting intelligence using individual differences in cortical topography.28

1.1 Existing Computational Cognitive Neuroscience Approaches for Predicting Intelligence29

Intelligence is a central trait underpinning individual differences in cognitive ability (6). While the30

neurobiological basis of intelligence has long been identified with the architecture of specific brain31
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networks (7), recent work has begun to establish that that systemwide brain network topology and32

dynamics are critical sources of the broad individual differences observed in cognitive ability (8).33

Several previous methods have been applied to model and predict human intelligence from neu-34

roscience data. Connectome-based predictive modeling (CPM) has previously been deployed to35

predict fluid intelligence scores (4), showing that CPM’s predictions could account for 25% of the36

variance observed across actual fluid intelligence. Other approaches, such as cortical hyperalignment,37

have accounted for up to 39% of the variance in general intelligence on the basis of single brain38

region’s connectivity, and on average account for 27% of variance in general intelligence when using39

whole-brain connectivity (9). The efficiency of weakly-connected edges (extracted from windowed40

functional connectivity) have been used in a correlation framework to account for 37.5% of the41

variance in IQ (10). Elastic net models are able to account for 20% of the variance in intelligence,42

on the basis of distributed network of resting state connections that span the functional connectome43

(11). Each method has desirable properties—use of strong connections, use of weak connections,44

native interpretability, predictive accuracy—that our advanced modeling framework will attempt to45

incorporate.46

Modeling and generating predictions from individual differences in functional connectivity remains47

an important goal for neuroscience (12), requiring interpretable AI methods that model individual48

variability in neuroscience data (3). Here, we investigated the feasibility of modifying CPM to create49

an advanced predictive modeling framework that incorporates information about network topology50

and individual differences. One previously unremarked feature of CPM is that it ablates brain network51

topology during feature selection (see (5)). As neuroscience evidence suggests that individual52

differences in network topology are important for explaining cognitive abilities, we incorporated a53

natively interpretable network-based feature selection into our advanced CPM to extract individual54

differences in cortical topology.55

1.2 Connectome-Based Predictive Modeling56

We first deployed standard connectome-based predictive modeling to quantify the baseline variance in57

general intelligence in our sample accounted for by standard CPM (5). CPM filters brain regions using58

mass-unvariate statistical thresholding against the behavioral outcome, maximizing the proportion59

of true positives edges included in the model. These features are then summarized (i.e., added) to60

create a single value per subject, which train a linear model between aggregate neuroscience data61

and behavioral outcome. The procedure is performed under cross-validation to generate behavioral62

predictions for each subject. Our baseline implementation of CPM incorporated edges with both63

positive and negative relationships to intelligence simultaneously, aggregating edges by sign and then64

combining those two values to produce a single value per subject.65

1.3 Network-Based Statistic66

To include interpretable information about network topology, our advanced CPM replaces mass-67

univariate feature selection with a network based statistic (NBS) model (13). NBS uses permutation68

testing to assess the relationship between individual network edges and a behavioral outcome,69

explicitly considering network topology while deploying an interpretable linear model to identify70

edges that form a significant and topologically connected network. Although isolated functional71

edges contains information about the BOLD timeseries of two incident regions, the mesoscale and72

macroscale topology of the larger networks cannot be easily inferred or reconstructed from many73

such aggregated edge weights. Deploying NBS to perform feature selection allows our advanced74

CPM framework to train on features that not only relate significantly to intelligence, but also form a75

connected network, explicitly including network topology information into the modeling process.76

1.4 Bootstrap Aggregation77

We further modified CPM to attend to individual differences by eliminating the feature summarization78

step, instead training with disaggregated features (i.e., topologically connected functional edges)79

using bagged random forests (14). Bagged random forests have have several desirable properties,80

including a low number of model parameters and resistance to overfitting in the training population81

(as individual trees are uncorrelated). Here, we selected bagged random forests for two primary82

reasons. First, disaggregating edge strengths preserves individual difference information about83
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network topology, and bagged random forests are capable of training on these individual edges84

and producing a regression output. Second, each tree is bootstrapped by oversampling from a85

subpopulation in the data (ie, bootstrap resampling), allowing for an ensemble of models that are86

trained (and overfit) with variability unique to subpopulation of individuals. The resulting decision87

trees do not model variability common to the whole sample, but instead will overfit to variance unique88

to the bootstrap replicate, characterizing sources of individual difference unique to that subpopulation.89

Aggregating the predictions of many uncorrelated decision trees can lead to good performance for90

generalizing from highly variable data (such as functional connectivity data, see (15)).91

1.5 Data Acquisition92

We acquired a large (N = 297) dataset of 10-minute resting state EPI scans using 3 Tesla MRI, and93

processed them using reproducible methods for analysis of neuroimaging data (via ICA-AROMA94

denoising (16) through FMRIPREP (17) and xcpEngine (18)). Diffusion tensor imaging data was95

also acquired in N = 288 subjects on the half-shell and processed using FSL’s FDT and bedpostx for96

probabalistic diffusion tensor tractography (19). Imaging data were parcellated using a multimodal97

360-region atlas of cortical grey matter (20). Additionally, we administered a comprehensive battery98

of neuropsychological tests and deployed structural equation modeling to assess individual differences99

in general, fluid, and crystallized intelligence.100

1.6 Results and Discussion101

(a) NBS identifies a network of weak connections from resting state connectivity data at t < −3.5 and
p < .01 (finding that functional edge strength was inversely related with intelligence).

(b) NBS identifies a network of dense structural connections from diffusion tensor tractography that are
positively associated with intelligence at t > 3.5 and p < .01.

Figure 1: Network-based statistic provides natively interpretable feature selection in functional (a)
and structural (b) connectivity data.
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(a) Connectome-based predictive modeling results
predict intelligence at r = 0.25 and p = .02.

(b) Advanced CPM using resting state connectivity
predicts intelligence at r = 0.79 and p < .01.

(c) Advanced CPM using structural connectivity
predicts intelligence at r = 0.84 and p < .01.

(d) Advanced CPM with multimodal selection pre-
dicts intelligence at r = 0.87 and p < .01.

Figure 2: Predictive model performance for CPM (a) and advanced CPM (b,c,d).

CPM predictive accuracy (fig. 2a) was notably lower than in a previous report (4), possibly explained102

by our smaller sample size, our more robust motion artifact removal (21), and the broader set of103

cognitive operations entailed by our dependent variable g. Network-based statistic identified both104

functional and structural networks reliably associated with general intelligence (fig. 1), and these105

network edges produced reliable N-fold predictions of intelligence when combined with bagged106

random forests, accounting for 63–70% of the variance between subjects (figs. 2b and 2c). The range107

of predictions was notably narrow—this may be due in part to the sign consistency of feature-selected108

edges imposed by NBS (either all positive or all negative) as a consequence of t-thresholding.109

CPM trains using edges both positively and inversely associated with intelligence, unlike the indi-110

vidual sign-consistent networks identified by NBS from DTI and fMRI data. Finally, to induce this111

bidirectional property in advanced CPM, we feature selected the union of network edges identified112

from fMRI and DTI data. This multimodal network selection retained weak functional connections113

inversely associated with intelligence, and added functional edges for which underlying white matter114

connectivity was positively associated with intelligence. Incorporating both strong and weak func-115

tional edges improved prediction spread and accounted for 76% of the variance in intelligence (fig.116

2d).117

In all cases, variance explained by advanced CPM exceeded previous findings in the literature118

(4; 9; 10; 11). We showed that advanced CPM generates reliable behavioral predictions when trained119

using individual difference in natively interpretable cortical networks. Our results suggest that both120

strong and weak functional edges contain important predictive signals, and that multimodal feature121

selection produces the highest accuracy predictions, suggesting that individual differences in global122

network topology are critical in producing intelligence. These findings motivate future work using123

Shapley values to more precisely interpret individual differences in topological feature importance.124

Our findings highlight the utility of incorporating intrepretable information about network topology125

into the study of individual differences in cognition, and further advance our scientific understanding126

of the network architecture underlying human intelligence.127
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