
Stitching Sparse Autoencoders of Different Sizes

Anonymous Author(s)
Affiliation
Address
email

Abstract

Sparse autoencoders (SAEs) are a promising method for decomposing the activa-1

tions of language models into a learned dictionary of latents, the size of which is2

a key hyperparameter. However, the effect of the dictionary size hyperparameter3

on the learned latents remains poorly understood. In this work, we investigate4

how increasing the dictionary size of SAEs trained on the activations of GPT-25

and Pythia-410M affects their latents. We find that latents in SAEs fall into two6

distinct categories. There are reconstruction latents that are either present in smaller7

SAEs or are more fine-grained versions of them, but we also find novel latents that8

capture information missed by smaller SAEs. Novel latents can be inserted into a9

smaller SAE to improve performance, while reconstruction latents degrade it. The10

existence of novel latents when larger SAEs are trained suggests that researchers11

may be using SAEs which miss out on features crucial to the task studied. The12

category of a latent can be effectively predicted with the cheap proxy of taking the13

maximum cosine similarity with each latent in the smaller SAE’s decoder: novel14

latents have low cosine similarity, whereas reconstruction have high. Utilizing15

this insight, we introduce SAE stitching: a method that inserts or swaps novel16

latents from a larger SAE into a smaller one, allowing for smooth interpolation be-17

tween SAE sizes with monotonically decreasing reconstruction error. Our findings18

shed light on the trade-offs between dictionary size, sparsity, and reconstruction19

performance in SAEs, enhancing the understanding of feature learning in these20

models.21

1 Introduction22

Mechanistic interpretability aims to reverse-engineer neural networks into human-interpretable23

algorithms [5]. Sparse autoencoders (SAEs) have emerged as a promising tool for recovering24

monosemantic and interpretable features from the activations of large language models [2, 3]. A25

key hyperparameter in SAEs is the dictionary size, which determines the number of latents the26

SAE can learn. Despite its importance, the impact of dictionary size on the learned latents remains27

understudied.28

Previous work has shown mixed findings regarding how SAEs scale with dictionary size. For29

instance, [7] observed that larger SAEs learn latents absent in smaller ones, such as specific chemical30

elements. Conversely, [2] found similar latents across various SAE sizes, noting that latents in smaller31

SAEs sometimes split into multiple latents as the dictionary size increases (Appendix A.1 includes32

such examples taken from our SAEs). This raises important questions about how latents evolve33

with dictionary size and how to effectively leverage larger SAEs for improved performance and34

interpretability.35

0*These authors contributed equally to this work.

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

Figure 1: Change in MSE when adding each feature from GPT2-1536 to GPT2-768, plotted against
the maximum cosine similarity of that feature to any feature in GPT2-768. Features with cosine
similarity less than 0.7 tend to improve MSE, while more redundant features hurt performance. A
few extreme outliers with very high cosine similarity and effect on MSE are not visible in this plot.

We extend this investigation to a range of SAE sizes trained on GPT-2-small and Pythia-410M (see36

Appendix A.2 for the full list of SAEs). In particular, we demonstrate it is possible to stitch SAEs37

of different sizes together by replacing latents in one with latents in another. This analysis provides38

evidence of two classes of latent in pairs of larger SAEs and smaller SAEs 1:39

1. Novel latents that capture information entirely absent in smaller SAEs. These latents can be40

freely introduced into smaller SAEs, often improving reconstruction performance without41

degradation.42

2. Reconstruction latents that are either already present in smaller SAEs or are more precise43

versions of them. Introducing these latents into smaller SAEs without degrading performance44

requires the removal of corresponding latents from the smaller model.45

We find that the maximum decoder cosine similarity between a latent and a target SAE effectively46

predicts whether a latent is novel or a reconstruction latent. Furthermore it is computationally cheap,47

as it does not require evaluating the SAE.48

Building on these insights, we propose a method called SAE stitching, which allows for the interpola-49

tion between SAEs of different sizes and their reconstruction performance. By using the decoder50

cosine similarity to identify which latents to insert or swap, we can construct hybrid SAEs that51

benefit from the strengths of both smaller and larger models. This approach could enable domain52

specialization in small, generic SAEs by replacing general latents in smaller SAEs with specialized53

ones from larger SAEs.54

Our contributions in this paper include:55

• A characterization of how SAE latents evolve with dictionary size, providing insights into56

latents learning in these SAEs;57

• The introduction of maximum decoder cosine similarity as an effective and cheap metric for58

identifying related latents across different SAE sizes;59

1Throughout this paper we refer to SAEs in pairs of larger and smaller SAEs, and our results relate to these
pairs, rather than a broader concept of what constitutes a small or large SAE. Furthermore, we refer to the
learned elements of the SAE as latents, rather than as features, which is how we describe properties of the data.

2

• The development of SAE stitching, a method for interpolating between SAEs of different60

sizes to improve performance and enable domain specialization.61

Our findings highlight the trade-offs between dictionary size, sparsity, and reconstruction performance62

in SAEs. By enhancing the understanding of latents learning and providing practical methods for63

combining dictionaries, we contribute to the science of sparse dictionary learning.64

2 Method65

We follow the setup from [2] to train SAEs that reconstruct the residual stream of LLMs. The66

encoding function is defined as fi(x) = ReLU(Wenc
i x + benc

i), and the reconstruction is given by67

x̂ = bdec +
∑F

i=1 fi(x)W
dec
i .68

The encoder and decoder weights (Wenc, benc, Wdec, bdec) are optimized to minimize the loss69

function:70

L = Ex

[
∥x− x̂∥22 + λ

F∑
i=1

fi(x)

]
,

which combines an L2 reconstruction penalty and an L1 activation penalty.71

To study the impact of adding latents from one SAE to another, consider two base SAEs:72

SAE1(x) = bdec
1 +

F1∑
i=1

f1,i(x), and SAE2(x) = bdec
2 +

F2∑
i=1

f2,i(x).

We construct a hybrid SAE by introducing a latent from one to the other—for example, adding latent73

38 from SAE1 to SAE2:74

SAE⋆
2 (x) = f1,38(x) + bdec

2 +

F2∑
i=1

f2,i(x).

More generally, we add latents from SAE1 to SAE2 and possibly remove latents from SAE2. We75

define a latent as novel if its introduction reduces the reconstruction loss without needing to remove76

any latents from SAE2. Conversely, a latent is a reconstruction latent if its addition increases the77

reconstruction loss unless certain latents in SAE2 are removed.78

Determining the latents that should be removed when introducing reconstruction latents requires79

testing all combinations of latents. This is computationally infeasible due to the exponential number80

of candidate groups. Therefore we propose using decoder cosine similarity to identify similar features,81

which is correlated with the change in reconstruction when adding a feature, as shown in Figure 1.82

We classify a latent as belonging to the reconstruction group if its maximum decoder cosine similarity83

is greater than 0.7, and otherwise to the novel group. We expand on how we chose this threshold in84

Appendix A.4.85

3 Experiments86

In our experiments we used SAEs trained on the residual stream of GPT2-Small [6] and Pythia-87

410M-deduped [1]. In this section we focus on the results from GPT2-Small, but have replicated with88

Pythia-410m. Full details of the SAE sizes are given in Appendix Table 1.89

Appendix Figure 9 shows the impact of adding latents in random order from an SAE to a different90

SAE half its size, separately for the novel latent group (green) and the reconstruction group (red). We91

observe that across SAE sizes, the novel group generally leads to a decrease in the reconstruction92

error, whereas the reconstruction group generally leads to an increase in the reconstruction error. In93

particular we see a 10% decrease in the reconstruction MSE of GPT2-768 just from introducing the94

novel latents from GPT2-1536 with no fine-tuning required.95

In order to insert reconstruction features from a larger SAE into a smaller SAE, we must swap them96

with their similar features. To find groups of latents to swap, we construct a bipartite graph where97

the latents in the smaller SAE form one vertex set, and the latents in the larger SAE form the other.98

3

Figure 2: It is possible to smoothly interpolate between sparse autoencoders of different sizes by
inserting or switching latents, where every insertion or switch results in a strict improvement in
reconstruction (MSE). First, novel latents are added result in an increase in the L0; then the remaining
latents are replaced with their similar latents in the larger SAE, leading to a decrease in the L0.

Latents in the two sets are connected if their decoder cosine similarity is greater than the threshold.99

Then, for every connected subgraph, we say that the subgraph latents from the smaller SAE and the100

subgraph latents from the larger SAE may be swapped (see Appendix A.7 for examples).101

As shown in Appendix Figure 8, the effect of swapping the subgraph latents generally slightly worsens102

the reconstruction of the smaller SAE but also increases sparsity; this contrasts with novel latents,103

which improve reconstruction at the cost of L0.104

Combining our methods for adding and swapping latents, we first add the novel latents to the smaller105

SAE and then swap in the remaining latents. The resulting reconstruction loss are shown in Figure 2,106

where we see this method interpolates reconstruction performance between SAEs of different sizes.107

We also briefly explored whether stitching could be used to construct better performing SAEs at a108

smaller dictionary size, however this resulted in a trade-off between sparsity and dictionary size. This109

approach is described in Appendix A.6.110

4 Conclusion111

In this brief investigation into latents in SAEs of different sizes, we identified the existence of two112

classes of latent in larger SAEs in comparison to smaller ones: a group of novel latents that are113

entirely missing from the smaller SAE, and a reconstruction group of similar latents that sparsify114

latents in the smaller SAE. We demonstrate that decoder cosine similarity is a simple and effective115

similarity metric, that we used to interpolate between SAEs of different sizes. Furthermore, stitching116

could allow for the domain specialisation of small SAEs without needing to construct domain specific117

datasets.118

Our results provide new insight into how the dictionary size hyperparameter effects the latents learned119

by SAEs, in particular the existence of the novel and reconstruction categories of latents. Whilst we120

focused on GPT-2 and Pythia-410m, we would encourage future work that validates these results on121

a more SAEs and base models, such as [4].122

4

References123

[1] Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien,124

Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward125

Raff, et al. Pythia: A suite for analyzing large language models across training and scaling. In126

International Conference on Machine Learning, pages 2397–2430. PMLR, 2023.127

[2] Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly,128

Nick Turner, Cem Anil, Carson Denison, Amanda Askell, et al. Towards monosemanticity:129

Decomposing language models with dictionary learning. Transformer Circuits Thread, 2, 2023.130

[3] Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-131

coders find highly interpretable features in language models. arXiv preprint arXiv:2309.08600,132

2023.133

[4] Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat,134

Vikrant Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open135

sparse autoencoders everywhere all at once on gemma 2. arXiv preprint arXiv:2408.05147, 2024.136

[5] Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.137

Zoom in: An introduction to circuits. Distill, 5(3):e00024–001, 2020.138

[6] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.139

Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.140

[7] Adly Templeton, Tom Conerly, and et al. Scaling monosemanticity: Extracting interpretable141

features from claude 3 sonnet. Anthropic, 2024.142

A Appendix / supplemental material143

A.1 Example latents144

Figure 3 shows a histogram of the maximum decoder cosine similarity for each latent in GPT2-1536145

over all latents in GPT2-768. On the right-hand-side, there is a cluster of latents with high cosine146

similarity.147

Figure 3: Distribution of maximum cosine similarities between decoder weights of latents in GPT2-
1536 and GPT2-768. Many latents in the larger SAE have high similarity to latents in the smaller
SAE, but there is also a long tail of novel latents.

Figure 4 shows an example of a latent from GPT-1536 and a latent from GPT-768 that have a cosine148

similarity of 0.99. We see that both of these latents activate strongly on the same inputs, and boost149

similar logits.150

5

Figure 4: Examples latents with high cosine similarity (Redacted URL)

However, GPT2-1536 has a latent for "make sure" that has no counterpart in GPT-768. The nearest151

latents have a decoder cosine similarity of around 0.3, and are shown in152

Figure 5: Example GPT2-1536 latent with no similar latent in GPT-768, with the three most similar
latents shown (Redacted URL)

We evaluate the reconstruction performance of the two SAEs on inputs where this latent is active and153

inactive. The reconstruction performance of the smaller SAE is considerably worse on inputs where154

this larger SAE latent is active, compared to inputs where the latent is not active.155

Latent inactive Latent active Difference
GPT2-1536 2.225 2.518 0.293
GPT2-768 2.703 3.292 0.589

Averaging this metric across all 657 latents in GPT-1536 that have low maximum cosine similarity156

with all latents in GPT-768, we see a similar pattern (Figure 6)157

6

https://www.neuronpedia.org/
https://www.neuronpedia.org/

Figure 6: Reconstruction MSE of SAEs on inputs where novel latents in the larger SAE are active
and inactive

A.2 Open source SAE weights158

Table 1: The SAEs used in this study. All GPT2-small SAEs were trained on the layer 8 residual
stream, and the Pythia-410m SAEs were trained on the layer 3 residual stream. CELR is the
cross entropy loss recovered from either zero or mean ablation. The GPT2 SAEs are available on
Neuronpedia at Redacted URL. We used the TransformerLens (https://transformerlensorg.
github.io/TransformerLens/) implementations of GPT2 and Pythia.

Name Model Dict. size L0 MSE CELR Zero CELR Mean
GPT2-768 gpt2-small 768 35.2 2.72 0.915 0.876

GPT2-1536 gpt2-small 1536 39.5 2.22 0.942 0.915
GPT2-3072 gpt2-small 3072 42.4 1.89 0.955 0.937
GPT2-6144 gpt2-small 6144 43.8 1.631 0.965 0.949

GPT2-12288 gpt2-small 12288 43.9 1.456 0.971 0.958
GPT2-24576 gpt2-small 24576 42.9 1.331 0.975 0.963
GPT2-49152 gpt2-small 49152 42.4 1.210 0.978 0.967
GPT2-98304 gpt2-small 98304 43.9 1.144 0.980 0.970
Pythia-8192 pythia-410m-deduped 8192 51.0 0.030 0.977 0.972
Pythia-16384 pythia-410m-deduped 16384 43.2 0.024 0.983 0.979

A.3 Comparison between latent similarity measures159

[2] measure latent similarity via masked cosine similarity of activations, we suggest using the cosine160

similarity between latent decoder weights. We find that decoder weight cosine similarity is correlated161

with high latent similarity (Figure 7) and is more efficient to compute.162

7

https://transformerlensorg.github.io/TransformerLens/
https://transformerlensorg.github.io/TransformerLens/

Figure 7: Comparison between decoder cosine similarity and masked activation similarity as used by
[2]

A.4 Selecting a cosine similarity threshold163

The cosine similarity threshold for related latents is manually set to provide a balance between164

labeling reconstruction latents as novel latents and vice versa, however values ±0.1 give similar165

results. Figure 1, plots the maximum cosine similarity of each latent in GPT2-1536 with latents in166

GPT-768 against the change in reconstruction loss of GPT2-768 when adding that latent.167

Based on the selected threshold value, we find that a small proportion of latents labeled as novel,168

which should decrease reconstruction MSE, result in an increase in the reconstruction MSE; and a169

larger proportion of latents labeled as reconstruction latents, which should increase reconstruction170

MSE, result in a decrease in MSE. These results are displayed in Table 2.171

Table 2: Number of latents in GPT2-1536 grouped by whether they reduce or increase GPT-768
reconstruction, and whether their maximum cosine similarity is below the 0.7 threshold.

Novel latents # Reconstruction latents
δ MSE <0 626 281
δ MSE >0 29 598

8

A.5 Swapping latents172

Figure 8: Effects on MSE and L0 when swapping reconstruction latents from larger SAEs to smaller
ones. Swapping latent structures generally increases the MSE but almost always decreases L0.
Outliers are not shown. The percentual effects per swap get smaller for larger models as the effects
are distributed over more swaps.

Figure 9: Percentage change of MSE of adding in latents from a larger SAE to a smaller SAE in a
random order. Adding in all the latents with cosine <= 0.7 from GPT-1536 in GPT-768 reduces the
MSE by almost 10%.

A.6 Frankenstein’s SAEs173

We briefly explored whether these methods can be used to construct better performing models at the174

same dictionary size as existing SAEs by choosing better latents to introduce to the dictionary. We175

9

Figure 10: Reconstruction performance (MSE) of Stitched SAEs compared to the original SAEs of
various sizes. The Stitched SAEs achieve lower MSE than comparably sized normal SAEs.

construct a Frankenstein’s SAE from our base SAE model (GPT2-768) by iteratively adding latents176

from larger SAEs that have low cosine similarity with the stitched SAE latents, as described in 1.177

Algorithm 1 Constructing a Frankenstein’s SAE
Require: Base SAE model M0 with n0 latents
Require: Set of larger SAEs M1,M2, ...,Mk with n1 < n2 < ... < nk latents
Require: Cosine similarity threshold θ = 0.7
Menhanced ←M0

for i← 1 to k do
Fnovel ← ∅
for each latent f ∈Mi do

if maxg∈Menhanced
(CosineSimilarity(f, g)) < θ then

Fnovel ← Fnovel ∪ f
end if

end for
Menhanced ←Menhanced ∪ Fnovel

end for
Retrain decoder weights of Menhanced for 100M tokens
return Menhanced

We find that these stitched SAEs have lower reconstruction MSE at a given dictionary size than178

the base SAEs, roughly achieving the same reconstruction performance as an SAE twice their size.179

However, they do this at a higher L0 than the base SAEs, making direct comparisons between SAEs180

and stitched SAEs difficult.181

10

A.7 Latent families182

Figure 11: Connected subgraphs of the bipartite graph of latent in GPT2-768 and GPT2-1536.

11

	Introduction
	Method
	Experiments
	Conclusion
	Appendix / supplemental material
	Example latents
	Open source SAE weights
	Comparison between latent similarity measures
	Selecting a cosine similarity threshold
	Swapping latents
	Frankenstein's SAEs
	Latent families

