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ABSTRACT

A major challenge in reinforcement learning is specifying tasks in a manner that
is both interpretable and verifiable. One common approach is to specify tasks
through reward machines—finite state machines that encode the task to be solved.
We introduce skill machines, a representation that can be learned directly from
these reward machines that encode the solution to such tasks. We propose a
framework where an agent first learns a set of base skills in a reward-free setting,
and then combines these skills with the learned skill machine to produce composite
behaviours specified by any regular language, such as linear temporal logics. This
provides the agent with the ability to map from complex logical task specifications
to near-optimal behaviours zero-shot. We demonstrate our approach in both a
tabular and high-dimensional video game environment, where an agent is faced with
several of these complex, long-horizon tasks. Our results indicate that the agent is
capable of satisfying extremely complex task specifications, producing near optimal
performance with no further learning. Finally, we demonstrate that the performance
of skill machines can be improved with regular off-policy reinforcement learning
algorithms when optimal behaviours are desired.

1 INTRODUCTION

Reinforcement learning (RL) is a promising framework for developing truly general agents capable
of acting autonomously in the real world. Despite recent successes in the field, ranging from video
games (Badia et al., 2020) to robotics (Levine et al., 2016), there are several shortcomings to existing
approaches that hinder RL’s real-world applicability. One issue is that of sample efficiency—while it
is possible to collect millions of data points in a simulated environment, it is simply not feasible to do
so in the real world. This inefficiency is exacerbated when a single agent is required to solve multiple
tasks (as we would expect of a generally intelligent agent). Another issue arises when an agent is
required to solve a long horizon task in the presence of a sparse learning signal. In this case, it is
often near impossible for the agent to solve the task, regardless of how much data it collects, since the
sequence of actions to execute before a learning signal is received is too large (Arjona-Medina et al.,
2019). However, this can be mitigated by leveraging higher-order skills, which shorten the planning
horizon (Sutton et al., 1999).

A desirable characteristic of generally intelligent agents is their ability to reuse learned behaviours
to solve new tasks (Taylor & Stone, 2009), preferably without further learning. One approach to
overcoming this challenge is to rely on composition, where an agent first learns individual skills and
then combines them to produce novel behaviours. There are several notions of compositionality in
the literature, such as temporal composition, where skills are invoked one after the other (Sutton
et al., 1999; Barreto et al., 2019), and concurrent composition, where skills are combined to produce
a new behaviour to be executed (Todorov, 2009; Saxe et al., 2017; Van Niekerk et al., 2019; Alver &
Precup, 2022).

Notably, work by Nangue Tasse et al. (2020) has demonstrated how an agent can learn skills that can
be combined using Boolean operators, such as negation and conjunction, to produce semantically
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meaningful behaviours without further learning. An important benefit of this compositional approach
is that it provides a way to address another key issue with RL: tasks, as defined by reward functions,
can be notoriously difficult to specify. This may lead to undesired behaviours that are not easily
interpretable and verifiable. Composition that enables simpler task specifications and produces
reliable behaviours thus represents a major step towards safe AI (Cohen et al., 2021).

Unfortunately, these compositions are strictly concurrent and cannot be chained to solve temporally-
specified tasks. One solution to this issue is reward machines—finite state machines that encode
the tasks to solve (Icarte et al., 2018). While this obviates the sparse reward problem, the agent is
still required to learn how to solve a given task through environment interaction, and the subsequent
solution is monolithic, restricting its applicability to new tasks and limiting the reliability of resulting
behaviours.

In this work, we combine these two approaches to develop an agent capable of zero-shot concurrent
and temporal composition. We particularly focus on temporal logic composition, such as linear
temporal logic (LTL) (Pnueli, 1977), allowing agents to sequentially chain and order their skills while
ensuring certain conditions are always or never met. We make the following contributions: (a) we
propose skill machines, a finite state machine that can be autonomously learned by a compositional
agent, and which can be used to solve any task expressible as a finite state machine without further
learning; (b) we prove that these skill machines are satisficing—given a task specification, an agent
can successfully solve it while adhering to any constraints; and (c) we demonstrate our approach
in several environments, including a high-dimensional video game domain. Having learned a set
of base skills in a reward-free setting, our results indicate that our method is capable of producing
near-optimal behaviour for a variety of long-horizon tasks without further learning.

2 BACKGROUND

We model the agent’s interaction with the world as a Markov Decision Process (MDP), given by
(S,A, P,R, γ), where (i) S ⊆ Rn is the n-dimensional state space; (ii) A is the set of (possibly
continuous) actions available to the agent; (iii) P (s′|s, a) is the dynamics of the world, representing
the probability of the agent reaching state s′ after executing action a in state s; (iv) R is a reward
function bounded by [RMIN, RMAX] that represents the task the agent needs to solve; and (v) γ ∈ [0, 1]
is a discount factor.

The aim of the agent is to compute a Markov policy π from S to A that optimally solves a given task.
Instead of directly learning a policy, an agent will often instead learn a value function that represents
the expected return following policy π from state s: V π(s) = Eπ [

∑∞
t=0 γ

tR(st, at)]. A more useful
form of value function is the action-value function Qπ(s, a), which represents the expected return
obtained by executing a from s, and then following π. The optimal action-value function is given by
Q∗(s, a) = maxπ Q

π(s, a) for all states s and actions a, and the optimal policy follows by acting
greedily with respect to Q∗ at each state.

2.1 LOGICAL COMPOSITION IN THE MULTITASK SETTING

We are interested in the multitask setting, where an agent is required to reach a set of goals in
some goal space G ⊆ S. We assume that all tasks share the same state space, action space and
dynamics, but differ in their reward functions. We model this setting by defining a background MDP
M0 = ⟨S0,A0, P0, R0⟩ with its own state space, action space, transition dynamics and background
reward function. Any individual task τ is then specified by a task-specific reward function Rτ that is
non-zero only for states in G. The reward function for the resulting MDP is then simply R0 +Rτ .

Nangue Tasse et al. (2020) consider the case where Rτ ∈ {RMIN, RMAX} and develop a framework
that allows agents to apply the Boolean operations of conjunction (∧), disjunction (∨) and negation
(¬) over the space of tasks and value functions. This is achieved by first defining the goal-oriented
reward function R̄ which extends the task rewards r to penalise an agent for achieving goals different
from the one it wished to achieve:

R̄(s, g, a) :=

{
R̄MIN if g ̸= s and s is absorbing
R(s, a) otherwise,

(1)

where R̄MIN is a large negative penalty that can be derived from the bounds of the reward function.
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Using Equation 1, we can define the related goal-oriented value function as:

Q̄(s, g, a) = R̄(s, g, a) + γ

∫
S
V̄ π̄(s′, g)P(s,a)(ds

′), (2)

where V̄ π̄(s, g) = Eπ̄

[∑∞
t=0 γ

tR̄(st, g, at)
]
.

If a new task can be represented as the logical expression of previously learned tasks, Nangue Tasse
et al. (2020) prove that the optimal policy can immediately be obtained by composing the learned
goal-oriented value functions using the same expression. For example, the union (∨), intersection (∧),
and negation (¬) of two goal-reaching tasks A and B can be solved as follows (we omit the value
functions’ parameters for readability):

Q̄∗
A∨B = Q̄∗

A ∨ Q̄∗
B := max{Q̄∗

A, Q̄
∗
B}

Q̄∗
A∧B = Q̄∗

A ∧ Q̄∗
B := min{Q̄∗

A, Q̄
∗
B}

Q̄∗
¬A = ¬Q̄∗

A :=
(
Q̄∗

SUP + Q̄∗
INF

)
− Q̄∗

A,

where Q̄∗
SUP and Q̄∗

INF are the goal-oriented value functions for the maximum task (r = RMAX for
all G) and minimum task (r = RMIN for all G), respectively . Following Nangue Tasse et al. (2022),
we refer to these goal-oriented value functions as world value functions (WVFs).

2.2 REWARD MACHINES

One difficulty with the standard MDP formulation is that the agent is often required to solve a complex
long-horizon task using only a scalar reward signal as feedback from which to learn. To overcome
this, Icarte et al. (2018) propose reward machines (RMs), which provide structured feedback to the
agent in the form of a finite state machine. RMs encode a reward function using a set of propositional
symbols P that represent abstract environment features as follows:
Definition 1 (Reward Machine). Given a set of propositional symbols P , states S and actions A,
a reward machine is a tuple RPSA = ⟨U, u0, F, δu, δr⟩ where (i) U is a finite set of states; (ii)
u0 ∈ U is an initial state; (iii) F is a finite set of terminal states; (iv) δu : U × 2P → U ∪ F is the
state-transition function; and (v) δr : U → [S ×A× S → R] is the state-reward function.

RMs consist of a finite set of states U , each of which represents a set of propositions that are true at
a given environment state. Transitions between RM states are governed by δu, and the RM emits a
reward function according to δr. A particular instantiation of an RM that is used in practice is a simple
reward machine (SRM), which restricts the form of the state-reward function to be δr : U × 2P → R
(Icarte et al., 2018). In other words, when a transition between u, u′ ∈ U is made, the SRM emits a
single scalar instead of a function (as in the case of RMs).

To incorporate RMs into the RL framework, the agent must be able to determine which abstract
propositions are true at any given state. To achieve this, the agent is equipped with a labelling
function L : S × A × S → 2P that assigns truth values to the propositions based on the agent’s
interaction with its environment. The agent can then learn a policy in a new decision process where
the reward function in the original MDP is replaced with the RM, which is defined by the tuple
⟨S,A, P, γ,P, L, U, u0, F, δu, δr⟩. The agent’s aim is now to learn a policy over the joint MDP and
RM state space π : S × U → A, which can be achieved with standard algorithms such as Q-learning
(Icarte et al., 2018).

3 LEVERAGING SKILL COMPOSITION FOR TEMPORAL LOGIC TASKS

To describe our approach to temporal composition, we use the Office Gridworld (Icarte et al., 2018)
as a running example. In the environment, illustrated by Figure 1a, an agent (blue circle) can move
to adjacent cells in any of the cardinal directions. It can also pick up coffee or mail at locations
K or B respectively, and it can deliver them to the office at location x. Cells marked ✽ indicate
decorations that are broken if the agent collides with them, and cells marked A–D indicate the centres
of the corner rooms. The reward machines that specify tasks in this environment are defined over 10
propositions: P = {A,B,C,D,✽,K,B, x,B+, x+}, where the first 8 propositions are true when
the agent is at their respective locations,B+ is true when the agent is atB and there is mail to be
collected, and x+ is true when the agent is at x and there is someone in the office.
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(a) Office Gridworld

0.5

(b) Skill machine

Figure 1: Illustration of (a) the office gridworld where the blue circle represents the agent and (b)
the skill machine for the task “deliver coffee and mail to the office without breaking any decoration”
where the black dots labeled t represent terminal states.

3.1 TASK SPACE

We now define the set of tasks to be considered. We first introduce the concept of constraints C ⊆ P ,
which are the set of propositions that an agent should avoid setting to true and corresponds to the
global operator G in a linear temporal logic (LTL) specification. An example of a constraint might be
that the agent should complete a task, but avoid breaking any decorations while doing so. We can
now define the notion of base (primitive) tasks, which will later be composed.
Definition 2 (Task Primitive). Let M = ⟨S0,A0, P0, R0⟩ be a background MDP. We define a set of
task primitives in this domain asMG = {⟨S,A, P,R, γ⟩} with absorbing goal space G = 2P and
labelling function L, where

S := (S0 × 2C) ∪ 2P ,where C is the set of constraints;
A := A0 ×Aτ , where Aτ = {0, 1} represents whether or not to terminate a task;

P (⟨s0, c⟩, ⟨a0, aτ ⟩) :=
{
L(s0, a0, s

′
0) if aτ = 1

⟨s′0, c′⟩ otherwise
,

where s′0 ∼ P0(·|s0, a0) and c′ = c ∪ (c ∩ L(s0, a0, s
′
0));

R(⟨s0, c⟩, ⟨a0, aτ ⟩) :=
{
Rτ ∈ {RMIN, RMAX} if aτ = 1

R0(s0, a0) otherwise.

The above defines the tasks’ state space to be the product of the environment state and the set of
constraints, incorporating the set of propositions that are currently true. The action space is augmented
with a terminating action following Barreto et al. (2019) and Nangue Tasse et al. (2020), which
indicates that the agent wishes to achieve the goal it is currently at, and is similar to an option’s
termination condition (Sutton et al., 1999). The transition dynamics update the environment state and
constraints set to true when a regular action is taken, and use the labelling function to return the set of
propositions achieved when the agent decides to terminate. Finally, the agent receives the regular
environment reward when taking an action, but a task-specific goal reward when it terminates. We
will assume that the environment and task-specific rewards are such that the optimal policies for all
tasks are guaranteed to attain desired reachable goal states—a common example is to have a reward
of 1 at desired goal states and no rewards everywhere else.

Equipped with this definition, we can now define the set of all tasks under consideration:
Definition 3 (Task space). The set of all tasksM is all linear preferences over task primitives:

M =
{
⟨S,A, P,Rw, γ⟩ : Rw(s, a) =

|MG |∑
i=1

wiRi(s, a) where
|MG |∑
i=1

wi = 1 and w ∈ R|MG |
}
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This definition of task space provides a general notion of tasks that are still grounded in achieving
goals. It also subsumes most definitions considered in the composition literature, including Boolean
algebra tasks (Nangue Tasse et al., 2020) and linear preference tasks (Barreto et al., 2020). Hence,
we will restrict our attention to reward machines whose rewards per state originate from the defined
task space (instead of arbitrary real-valued functions that are not grounded in achieving goals in an
environment). We denote such reward machines as RMSA = ⟨U, u0, F, δu, δM⟩ where δM maps
from RM states to task rewards.

3.2 SKILL MACHINES

The goal space of a primitive task is defined by a set of Boolean propositions. We can leverage prior
work to solve each individual task using a set of base primitive skills (Nangue Tasse et al., 2020). We
therefore only need concern ourselves with how to solve any task expressed as a linear combination
of the primitive tasks. Fortunately, Theorem 1 below demonstrates that a linear combination of base
skills does just this (proofs of all theorems are presented in the Appendix).
Theorem 1. Let RMG be a vector of rewards for each primitive task, and Q̄∗

G be the corresponding
vector of optimal WVFs. Then, for a task m ∈M with reward function Rw = w ·RMG , we have

Q̄∗
m = w · Q̄∗

G .

We now have agents capable of solving any logical and linear composition of tasks by learning a finite
set of base skills Q̄∗

G for task primitivesMG . We refer to this basis set of skills as skill primitives.
Given this compositional ability over skills, and reward machines that expose the structure of tasks,
agents can solve temporally extended tasks with little or no further learning. To achieve this, we
define a skill machine (SM) as a representation of logical and temporal knowledge over skills.
Definition 4 (Skill Machine). Given a set of propositional symbols P with constraints C ⊆ P , their
corresponding skill primitives Q̄∗

G and task spaceM, states S and actions A, a skill machine is a
tuple Q̄∗

SA = ⟨U, u0, F, δu, δQ,wU ,wG⟩ where (i) U , u0, F , δu are defined as for reward machines;
(ii) wU : U × U → R is a preference function over state transitions; (iii) wG : S × G → R is a
preference function over goals; and (v) δQ : S × U ×A → [S ×A → R] is the state-skill function
defined by:

δQ(s, u, a) 7→
∑
g∈G

∑
u′∈U

wG(s, u, g)wU (u, u
′)Q̄∗

u,u′(s, g, a),

where Q̄∗
u,u′ is the WVF obtained by composing the skill primitives Q̄∗

G according to the Boolean
expression for the transition δu = u′.

For a given state s in the environment and state u in the skill machine, the skill machine uses its
preference over transitions wU and goals wG to compute a skill Q(s, a) := δQ(s, u, a) that an agent
can use to take an action a. The environment then transitions to the next state s′ ← P (s, a) and
the skill machine transitions to u′ ← δu(u, L(s, a, s

′)). wU represents cases where there is not
necessarily a single desirable transition to follow given the current SM state. This is illustrated by
the SM in Figure 1b, where mail and coffee are equally desirable at the initial state. Similarly, wG
represents cases where there may be a single desirable task, but its goals are not necessarily equally
desirable given the environment state—for example when the agent needs to first pick up coffee but
there are two coffee locations. Interestingly, there always exists a choice for wU and wG that is
optimal with respect to the corresponding reward machine, as shown in Theorem 2.
Theorem 2. Let π∗(s, u) be the optimal policy for the cross-product MDP between a reward machine
and a task spaceM, with C = P . Then there exists a corresponding skill machine with a wG and
wU such that

π∗(s, u, a) ∈ argmax
a

δQ(s, u, a),

where δQ is given by wG and wU as per Definition 4.

Theorem 2 shows that skill machines can be used to solve tasks without having to relearn action level
policies. The next section shows how an agent can approximate a skill machine by planning over
simple reward machines.
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3.3 FROM REWARD MACHINES TO SKILL MACHINES

(a) Reward machine (b) Value iterated RM (c) Skill machine

Figure 2: The reward machine, value iterated RM and skill machine for the task “Deliver coffee to
the office without breaking any decoration”. This task is specified using LTL as (F (K∧X(F x)))∧
(G ¬✽)), where F = Finally,X = neXt,G = Globally are LTL operators. The corresponding
RM is obtained by converting the LTL into a finite state machine and then giving a reward of 1 for
accepting transitions and 0 otherwise. The black dots labeled t represent terminal states.

In the previous section, we introduced skill machines and showed that they can be used to represent
the logical and temporal composition of skills needed to solve reward machines. We now show how
for simple RMs their approximate SM can be obtained zero-shot without further learning. To achieve
this, we first plan over the reward machine (using value iteration, for example) to obtain Q-values
for each transition. We then select the skills for each SM state greedily. This process is illustrated
in Figure 2. While this only holds for cases where the greedy skills are always satisfiable from any
environment state, this still covers many tasks of interest. In particular, this holds for any RM with
non-zero rewards of RMAX at accepting transitions,1 as shown in Theorem 3.
Theorem 3. Let RMSA = ⟨U, u0, F, δu, δM⟩ be a satisfiable simple reward machine with non-zero
rewards RMAX only for accepting transitions, and for which all valid transitions (u, u′) are achievable
from any state s ∈ S. Define the skill machine Q̄∗

SA = ⟨U, u0, F, δu, δQ,wU ,wG⟩ with

wU (u, u
′) :=

{
1 if u′ = argmaxu′′ Q∗(u, u′′),

0 otherwise

wG(s, u, g) :=

{
1 if g = argmaxg′ maxa

∑
u′ wU (u, u

′)Q̄∗
u,u′(s, g′, a),

0 otherwise

where Q∗ is the optimal transition-value function for RPSA. Then following the policy π∗(s, u) ∈
argmaxa δQ(s, u, a) will reach an accepting transition.

Theorem 3 is critical as it provides soundness guarantees, ensuring that the policy derived from
the skill machine will always satisfy the task requirements when it is possible to do so. Finally, in
cases where the composed skill δQ obtained from the approximate SM is not sufficiently optimal,
we can use any off-policy algorithm to learn a new skill Qnew few-shot. This is achieved by using
the maximising Q-values max{βQnew, (1− β)δQ} in the behaviour policy during learning. Here,
β ∈ [0, 1] is a parameter that determines how much of the composed policy to use. It can also be
seen as decreasing the potentially overestimated values of δQ, since δQ is greedy with respect to both
goals and RM transitions. Algorithm 1 illustrates this process with Q-learning where β = γ, which
guarantees convergence since δQ will never dominate the optimal Q-values in the max.

4 EXPERIMENTS

4.1 ZERO-SHOT TEMPORAL LOGICS

We consider the Office Gridworld domain presented by Icarte et al. (2018) and depicted in Figure 1a.
This environment is used as a multitask domain, consisting of the four tasks described in Table 1.

1Accepting transitions are transitions at which the high level task—described, for example, by linear temporal
logics—is satisfied.
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Algorithm 1: Few-shot Q-learning using skill machines
Input : γ, α,P, L, U, u0, F, δu, δQ
Initialise : Q(s, u, a)
foreach episode do

Observe initial state s ∈ S and get initial u← u0

while episode is not done do
/* Using the composed skill δQ in the behaviour policy */

a←

{
argmax

a∈A
(max{γQ(s, u, a), (1− γ)δQ(s, u, a)}) if Bernoulli(1− ϵ) = 1

a random action otherwise
Take action a and observe next state s′

Get reward r ← δr(u)(s, a, s
′) and the next RM state u′ ← δu(u, L(s, a, s

′))

Q(s, u, a)
α←− r if s′ is terminal or u′ ∈ F else

[
r + γmax

a′
Q(s′, u′, a′)

]
s← s′

Task Description

1 Deliver coffee to the office without breaking any decoration
2 Patrol rooms A, B, C, and D without breaking any decoration
3 Deliver coffee and mail to the office without breaking any decoration
4 Deliver mail to the office until there is no mail left, then deliver coffee to office while there

are people in the office, then patrol rooms A-B-C-D-A, and never break a decoration

Table 1: Tasks in the Office Gridworld.

We begin by evaluating how long it takes an agent to learn a policy that can solve all four tasks.
The agent iterates through the tasks, changing from one to the next after each episode. In all of
our experiments, we compare the performance of skill machines with that of state-of-the-art RM-
based learning approaches like counterfactual RMs (CRM)—where the Q-functions are updated
with respect to all possible RM transitions from a given environment state—and hierarchical RMs
(HRM)—where an agent learns options per RM state that are grounded in the environment states
(Icarte et al., 2018). Note that CRM and HRM are theoretically capable of solving the multi-task
problem setup because they can use experience from solving one task to update the policies for
solving other tasks. However, skill machines can additionally share both experience between tasks
when learning the skill primitives, as well as use the composition of these primitives to generalise to
more difficult tasks without further learning.

We run 80 independent trials and report the average reward per step across the four tasks in Table 1.
In addition to learning all four tasks, we also experiment with Tasks 3 and 4 in isolation. For these
experiments, 80 independent trials are run and the average reward per step computed. In the single
task domains, the difference between CRM, HRM, skill machines and Q-learning should be less
pronounced, since CRM, HRM and skill machines now cannot leverage prior knowledge. Thus, the
comparison between multi-task and single-task learning in this setting will evaluate the benefit of the
compositionality afforded by skill machines.

The results of these three experiments are shown in Figure 3. Regular Q-learning struggles to learn
Task 3 and completely fails to learn the hardest task (Task 4). Additionally, notice that while QL and
CRM can theoretically learn the tasks optimally given infinite time, only HRM and SM are able to
learn hard long horizon tasks in practice. It is important to note that we train all algorithms for the
same amount of time during these experiments and previous work (Nangue Tasse et al., 2020) has
shown that learning the WVFs takes longer than learning task-specific skills. In addition, the skill
machines are being used to zero-shot generalise to the office tasks using skill primitives. Thus using
the skill machines in isolation (labelled SM and shown in blue on Figure 3) may provide sub-optimal
performance compared to the task-specific agents, since the skill machines have not been trained to
optimality and are not specialised to the domain. Even under these conditions, we observe that skill
machines perform near-optimally in terms of final performance, and due to the amortised nature of
learning the WVF will achieve its final rewards from the first epoch.
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Figure 3: Average returns during training in the Office Gridworld.

4.2 FEW-SHOT TEMPORAL LOGICS

It is possible to pair the skill machines with a learning algorithm such as Q-learning to achieve few-
shot generalisation. From the results shown in Figure 3, it is apparent that skill machines paired with
Q-learning (labelled QL-SM and shown in orange on Figure 3) achieves the best performance for both
the single-task and multi-task setting. While it is not clear from the rewards that adding Q-learning
provides significant improvements to the skill machine, their trajectories show that Q-learning does
indeed improve on the skill machine policies when they are not optimal (Appendix 7). Additionally,
skill machines with Q-learning always begin with a significantly higher reward and converge on their
final performance faster than all benchmarks—except the zero-shot one which is (near) optimal in all
cases. The speed of learning is due to the compositionality of the skill primitives with skill machines,
and the high final performance is due to the generality of the learned primitives being paired with
the domain specific Q-learner. In sum, skill machines provide fast composition of skills and achieve
optimal performance compared to all benchmarks when paired with a learning algorithm.

4.3 MOVING TARGETS DOMAIN

We now demonstrate our temporal logic composition approach in a canonical object collection
domain with high dimensional pixel observations (Nangue Tasse et al., 2020) (Figure 4a). The agent
here needs to pick up objects of various shapes and colors; picked objects respawn at random empty
positions similarly to previous object collection domains (Barreto et al., 2020). There are 3 object
colours—beige, blue, purple—and 2 object shapes—squares, circles. To learn the WVF for a given
task primitive, we use the goal oriented Q-learning method of Nangue Tasse et al. (2020) where the
agent keeps track of reached goals and uses deep Q-learning (Mnih et al., 2015) to update the WVF
with respect to all seen goals at every time step.

We first train the agent on three base task primitives: pick up blue objects, pick up purple objects,
and pick up squares. We then use the learned skill primitives to solve multiple temporal logic tasks.
Figure 4b shows the average returns of the optimal policies and SM policies for the four tasks
described in Table 2 with a maximum of 50 steps per episode. Our results show that even when using
function approximation with sub-optimal skill primitives, the zero-shot policies obtained from skill
machines are very close to optimal on average. We also observe that for very challenging tasks like
Tasks 3 and 4 (where the agent must satisfy difficult temporal constraints), the compounding effect of
the sub-optimal policies sometimes leads to failures. In such cases, learning new skills few-shot by
leveraging the SM would guarantee convergence to optimal policies as demonstrated in Section 4.2.

Task Description

1 Pick up any object. Repeat this forever.
2 Pick up blue then purple objects, then objects that are neither blue nor purple. Repeat this

forever.
3 Pick up blue objects or squares, but never blue squares. Repeat this forever.
4 Pick up non-square blue objects, then non-blue squares in that order. Repeat this forever.

Table 2: Tasks in the Moving Targets domain. Objects respawn in random positions when picked.
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(a) Moving Targets domain

Blue Purple Square 1 2 3 4
Tasks

0

10

20

30

40

Av
er

ag
e 

Re
tu

rn
s

Optimal
Composed
Random

(b) Average returns over 100 runs for tasks in Table 2.

Figure 4: Illustration of the domain and plots of the average returns over 100 runs for tasks in Table 2.

5 RELATED WORK

One family of approaches to concurrent composition leverages forms of regularisation to achieve
semantically meaningful disjunction (Todorov, 2009; Van Niekerk et al., 2019) or conjunction
(Haarnoja et al., 2018; Hunt et al., 2019). Weighted composition has also been demonstrated; for
example, Peng et al. (2019) learn weights to compose existing policies multiplicatively to solve
new tasks. Approaches that leverage the successor feature (SF) framework (Barreto et al., 2017)
are capable of solving tasks defined by linear preferences over features (Barreto et al., 2020). Alver
& Precup (2022) show that an SF basis can be learned that is sufficient to span the space of tasks
under consideration, while Nemecek & Parr (2021) determine which policies should be stored in
limited memory so as to maximise performance on future tasks. In contrast to these approaches, our
framework allows for both concurrent composition (including operators such as negation that other
approaches do not support) and temporal composition such as LTL.

A popular way of achieving temporal composition is through the options framework (Sutton et al.,
1999; Bacon et al., 2017). Here, high-level skills are first discovered and then executed sequentially
to solve a task (Konidaris & Barto, 2009; Bagaria & Konidaris, 2019). Barreto et al. (2019) leverage
the SF and options framework and learn how to linearly combine skills, chaining them sequentially
to solve temporal tasks. However, these options-based approaches offer a relatively simple form of
temporal composition. By contrast, we are able to solve tasks expressed through regular languages
zero-shot, while providing soundness guarantees.

Work has also centred on approaches to defining tasks using human-readable logic operators. For
example, Li et al. (2017) and Littman et al. (2017) specify tasks using LTL, which is then used to
generate a standard reward signal for an RL agent. Camacho et al. (2019) show how to perform
reward shaping given LTL specifications, while Jothimurugan et al. (2019) develop a formal language
that encodes tasks as sequences, conjunctions and disjunctions of subtasks. This is then used to obtain
a shaped reward function that can be used for learning. All of these approaches focus on how an
agent can improve learning given such specifications or structure, but we show how an explicitly
compositional agent can immediately solve such tasks using WVFs without further learning.

6 CONCLUSION

We proposed skill machines—finite state machines that can be learned from reward machines—that
allow agents to solve extremely complex tasks involving temporal and concurrent composition. We
demonstrated how skills can be learned and encoded in a specific form of goal-oriented value function
that, when combined with the learned skill machines, are sufficient for solving subsequent tasks
without further learning. Our approach guarantees that the resulting policy adheres to the logical task
specification, which provides assurances of safety and verifiability to the agent’s decision making,
important characteristics that are necessary if we are to ever deploy RL agents in the real world.
While the resulting behaviour is provably satisficing, empirical results demonstrate that the agent’s
performance is near optimal; further fine-tuning can be performed should optimality be required,
which greatly improves the sample efficiency. We see this approach as a step towards truly generally
intelligent agents, capable of immediately solving human-specifiable tasks in the real world with no
further learning.
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A APPENDIX

A.1 PROOFS OF THEORETICAL RESULTS

Theorem 1. Let RMG be a vector of rewards for each primitive task, and Q̄∗
G be the corresponding

vector of optimal WVFs. Then, for a task m ∈M with reward function Rw = w ·RMG , we have

Q̄∗
m = w · Q̄∗

G .

Proof.

Q̄∗
m(s, g, a) = Eπ̄∗

[ ∞∑
t=0

γtw · R̄MG (st, g, at)

]

= w · Eπ̄∗

[ ∞∑
t=0

γtR̄MG (st, g, at)

]
;

since the world policies are independent of task Nangue Tasse et al. (2020)[Lemma 2].

= w · Q̄∗
G

Theorem 2. Let π∗(s, u) be the optimal policy for the cross-product MDP between a reward machine
and a task spaceM, with C = P . Then there exists a corresponding skill machine with a wG and
wU such that

π∗(s, u) ∈ argmax
a

δQ(s, u),

where δQ is given by wG and wU as per Definition 4.

Proof. Let wU (u, ·) = 1
Nδu

where Nδu is the number of possible RM transitions from u. Also let
wG(s, u, ·) be 1 for the set of propositions g ∈ 2C that are satisfied when following π∗(s, u), and
zero everywhere else. Then π∗(s, u) ∈ argmaxa δQ(s, u) since wU (u, u

′)Q̄∗
u,u′(s, g, a) is optimal

using Theorem 1 and optimal policies are assumed to reach task goals.

Theorem 3. Let RMSA = ⟨U, u0, F, δu, δM⟩ be a satisfiable simple reward machine with non-zero
rewards RMAX only for accepting transitions, and for which all valid transitions (u, u′) are achievable
from any state s ∈ S. Define the skill machine Q̄∗

SA = ⟨U, u0, F, δu, δQ,wU ,wG⟩ with

wU (u, u
′) :=

{
1 if u′ = argmaxu′′ Q∗(u, u′′),

0 otherwise

wG(s, u, g) :=

{
1 if g = argmaxg′ maxa

∑
u′ wU (u, u

′)Q̄∗
u,u′(s, g′, a),

0 otherwise

where Q∗ is the optimal transition-value function for RPSA. Then following the policy π∗(s, u) ∈
argmaxa δQ(s, u) will reach an accepting transition.

Proof. This follows from the optimality of π∗(s, u) and Q∗, since each transition of the RM is
satisfiable from any environment state.
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A.2 OFFICE WORLD ADDITIONAL FIGURES

(a) Room A (b) Room B

(c) Room C (d) Room D

(e) Decoration ✽ (f) CoffeeK

(g) MailB (h) Office x

(i) Mails presentB+ (j) People present x+

Figure 5: The policies (arrows) and value functions (heat map) of the base primitive tasks in the
Office Gridworld. These are obtained by maximising over the goals of the learned WVFs. All errors
in the figures are due to training the WVFs for 200000 time steps, hence not to convergence.
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(a) 1(B ∧ ¬✽) +
0(K ∧ ¬✽)

(b) 0.75(B∧¬✽)+
0.25(K ∧ ¬✽)

(c) 0.5(B ∧ ¬✽) +
0.5(K ∧ ¬✽)

(d) 0.25(B∧¬✽)+
0.75(K ∧ ¬✽)

(e) 0(B ∧ ¬✽) +
1(K ∧ ¬✽)

Figure 6: The policies (arrows) and value functions (heat map) for various preferences over the tasks
“get a mail without breaking decorations” (B ∧ ¬✽) and “get coffee without breaking decorations”
(K ∧ ¬✽). These are obtained by first doing the weighted sum of the composed WVFs according to
the preferences, and then maximising over the goals and actions. All errors in the figures are due to
training the base WVFs for 200000 time steps, hence not to convergence.

(a) Task 1 zero-shot (b) Task 1 few-shot

(c) Task 2 zero-shot (d) Task 2 few-shot

(e) Task 3 zero-shot (f) Task 3 few-shot

Figure 7: Agent trajectories for various tasks in the Office Gridworld (Table 1) using the skill machine
without further learning (left) and with further learning (right).
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