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ABSTRACT

Modeling population dynamics is a fundamental problem with broad scientific
applications. Motivated by real-world applications including biosystems with di-
verse populations, we consider a class of population dynamics modeling with two
technical challenges: (i) dynamics to learn for individual particles are heteroge-
neous and (ii) available data to learn from are not time-series (i.e, each individual’s
state trajectory over time) but cross-sectional (i.e, the whole population’s aggre-
gated states without individuals matched over time). To address the challenges, we
introduce a novel computational framework dubbed correlational Lagrangian
Schrödinger bridge (CLSB) that builds on optimal transport to “bridge” cross-
sectional data distributions. In contrast to prior methods regularizing all individ-
uals’ transport “costs” and then applying them to the population homogeneously,
CLSB directly regularizes population cost allowing for population heterogeneity
and potentially improving model generalizability. Specifically our contributions
include (1) a novel population perspective of the transport cost and a new class of
population regularizers capturing the temporal variations in multivariate relations,
with the tractable formulation derived, (2) three domain-informed instantiations
of population regularizers on covariance, and (3) integration of population reg-
ularizers into data-driven generative models as constrained optimization and an
approximate numerical solution, with further extension to conditional generative
models. Empirically, we demonstrate the superiority of CLSB in single-cell se-
quencing data analyses (including cell differentiation and drug-conditioned cell
responses) and opinion depolarization. Codes will be released upon acceptance.

1 INTRODUCTION

Population dynamics sheds insight on the temporal evolution of systems, such as cytodynamics
(La Manno et al., 2018), fluid mechanics (Kundu et al., 2015) and single-cell omics (Macosko et al.,
2015), yet their direct observation is often restricted. Motivated by such real-world systems, this pa-
per targets generative population-dynamics models for heterogeneous populations whose states are
not available to track individual trajectories (time-series data) but only observed at the population
level at times (cross-sectional data as referred to in (Tong et al., 2020; Koshizuka & Sato, 2022)).
In the cross-sectional setting, states of a population are measured at each timestamp without indi-
vidual match or even population match across timestamps. In other words, the cross-sectional data
are sampled independently at various timestamps rather than jointly across timestamps. One such
example is single-cell omics that study cell populations behaviours with unprecedented data (Gas-
ton & Spicer, 2013; Purvis & Hector, 2000): As each measurement at any timestamp is made with
cells fixed and stained or chemically destroyed, measurements across time or condition can only be
observed from different samples of the cell population but not individual trajectories of the same set
of cells (e.g., developmental/immun omics (Keller, 2005; Schluter et al., 2020)).

Lacking individual trajectory data for direct supervision, current machine learning methods attempt
to “bridge” among cross-sectional distributions under certain principles, such as optimal transport
(Villani et al., 2009; Santambrogio, 2015). To characterize the evolutionary nature of the system,
besides matching the cross-sectional distributions, these methods also regularize certain transport
costs, which are typically determined by the domain knowledge of the system. These costs are asso-
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Data: Aim:

sampled from
Modeling
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1.
2. adheres to certain criteria (regularization).

given

Individual-level regularization:

Population-level regularization:

(data fitting);

is the domain-specific cost function.

Figure 1: (Left) Overview of the proposed approach and (right) computational simulation of the expressions
of gene ABCA3 (x-axis) and A1BG (y-axis) during the embryonic stem cell development under different reg-
ularizations. Notably, our proposed population-level regularization facilitates a more accurate modeling of
distributions, with quantitative evidence detailed in Sec. 4 and more visualization in Appdx. I.

ciated with certain physical quantities on individual particle’s states, such as the restraint on particle
motions (Schiebinger et al., 2019; Yang & Uhler, 2018), or the alignment to empirical densities or
velocities (Tong et al., 2020; Koshizuka & Sato, 2022). However, some physical quantities are only
defined in the population level. For example of gene co-expressions: Gene expression covariance
is only among a population of cells, while each individual cell has different/heterogeneous gene
expressions. Uniformly restraining the states of individuals is thus oblivious to such knowledge.

To fill such a gap, we hypothesize that principled regularizers, if directly and appropriately formu-
lated for the states of the population (as opposed to the states of individuals), can lead to more ac-
curate modeling of dynamics for heterogeneous systems. The rationale of the hypothesis is directly
related to the needs: As the ensemble statistics of individual states, population states (i) respect the
diversity (heterogeneity) of individual states, and importantly, (ii) can accommodate domain priors
previously not utilized at the population level, , e.g., the co-expression relations among genes of
cellular systems, derived from bulk sequencing techniques (Stuart et al., 2003; Horvath & Dong,
2008). A nutshell overview of individual v.s. population restraint can be found in Fig. 1 (left).

Contributions. We propose a novel learning framework dubbed correlational Lagrangian
Schrödinger bridge (CLSB) to model the dynamics of heterogeneous systems from cross-sectional
data using principled regularization at the population level (see Fig. 1 for an overview). To the best
of our knowledge, CLSB is the first framework to incorporate population-level domain prior into
diffusion Schrödinger bridge for generative dynamics, with substantial benefits demonstrated for
heterogeneous systems including biosystems. Specifically we make the following contributions.

(1) A novel perspective of the principled regularizer for transport cost with tractable formulations.
How to formulate the principled regularizer at the population level? Motivated by the principle of
least action (Schiebinger et al., 2019; Yang & Uhler, 2018), we propose to conserve certain popula-
tion states when bridging across cross-sectional data, where the extent of conservation is measured
by the temporal variations in certain statistical characteristics. Accordingly, we introduce a new cat-
egory of population regularizers termed correlational Lagrangian, which is designed to capture the
extent of temporal changes in multivariate relations expressed as moments (Parzen, 1999; Kumar &
Varaiya, 2015) (Sec. 3.1). As the novel population regularizer poses a challenge of intractability that
it cannot be computed numerically, we derive a computationally tractable formulation by applying
the Fokker-Planck equation (Risken, 1996) with mild assumptions (Sec. 3.2).

(2) Effective domain-informed instantiations of population regularization. How to instantiate pop-
ulation regularizers with domain-informed priors? The generic formulation of the correlational
Lagrangian is highly versatile, that is able to characterize arbitrary multivariate relations in arbitrary
orders. Inspired by the concept of co-expression stability in genetics that the co-expression rela-
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tions among genes should be robust to environments (Patil et al., 2011; Srihari & Leong, 2012), we
propose to enforce temporal conservation on the states of covariance, focusing on the 1st- and 2nd-
order variations of bivariate statistics, termed covariance kinetics (Sec. 3.3.1). We also leverage the
existing evidence of co-expression by constructing covariance potential, which enforces alignment
between the modeled covariance and the observed interactions from literature (Sec. 3.3.2).

(3) Practical numerical solution to model training. How to integrate population regularizers with
data-driven generative modeling of dynamics? We formulate a constrained optimization problem
referred to as CLSB, which is designed to minimize correlational Lagrangian subject to the con-
straints imposed by cross-sectional observations, optimizing on the parametrized dynamics using
neural stochastic differential equations (SDEs) (Li et al., 2020; Tzen & Raginsky, 2019). To solve
CLSB, we propose a numerical approximation via unconstrained optimization (Sec. 3.4).

Furthermore, we extend the CLSB framework into conditional dynamics generation, by re-
engineering neural SDEs for taking the additional conditions as inputs. Empirically, we validate that
CLSB outperforms state-of-the-art competitors in the experiments of (unconditional) developmen-
tal simulation and (conditional) drug-response prediction in cellular systems (Sec. 4). Population
regularizers also showed benefits in opinion depolarization (Appdx. I).

2 PRELIMINARIES

Table 1: Notation settings.

Notations Descriptions
Upright letters (x) Random variables

Italicized letters (x) Their realizations

Lowercase boldfaced (x) Vectors
Uppercase boldfaced (X) Matrices

Lowercase non-boldfaced (x) Scalars

Superscripts with brackets (x(i)) For multiple realizations
Subscripts with square brackets (x[i]) For indexed elements

∇ Divergence operator
• Inner product

s Number of Time Stamps
d Variable Dimensionality

m, k Order of Prior (in Derivative)

M̃ Multiset of Varible Indices
M Set Collection of Multisets M̃

Data generation from dynamics.
The main notation used in the paper is
described in Tab. 1. Let’s assume that
data are generated from a stochastic
process (xt)t∈[0,1] following the dis-
tribution (pt)t∈[0,1] and obeying the
dynamics below:

dxt = ft(xt)dt+Gt(xt)dwt, (1)

where xt ∈ Rd, ft : Rd → Rd

is the drift function, (wt)t∈[0,1] is a
Wiener process in Rdwie , and Gt :
Rd → Rd×dwie is the diffusion func-
tion. Consequently, the evolution
of marginal distribution pt satisfies
the Fokker–Planck equation (Risken,
1996) as:

∂

∂t
pt(x) = −∇ • (pt(x)ft(x)) +

1

2
(∇∇⊤) •

(
pt(x)Gt(x)G

⊤
t (x)

)
. (2)

Generative modeling via Schrödinger bridge. As stated in Eq. (2), the distribution (pt)t∈[0,1] is
characterized by the drift and diffusion terms in Eq. (1). Thus, by parametrizing ft(·) and Gt(·)
with neural networks vt(·; θ) and Σt(·; θ), respectively, and with the observations from the finite-
dimensional distribution as Dfdim = {x(i)

t : t ∈ {t1, ..., ts}, i ∈ {1, ..., n}, (x(i)
t1 , ...,x

(i)
ts ) ∼

pt1,...,ts} where t1 = 0, ts = 1, a line of prior works attempt to construct the generative
model (πt)t∈[0,1] (parametrized by vt(·; θ),Σt(·; θ)) via solving the collective form of the (static)
Schrödinger bridge problem as (De Bortoli et al., 2021; Liu et al., 2022):

min
θ

1

s− 1

s−1∑
i=1

KL(πti,ti+1
||p̂ti,ti+1

), (Trajectory Fitting) (3.1)

s.t. πti = p̂ti , i ∈ {1, ..., s}, (Marginal Fitting) (3.2)
(πt)t∈[0,1] is induced from vt(·; θ),Σt(·; θ), t ∈ [0, 1] via Eq. (1), (Parametrization) (3.3)

where p̂t1,...,ts is the empirical distribution of Dfdim. Conceptually, Optimization in (3) requires the
parametrized (πt)t∈[0,1] to align with the reference joint distribution p̂ti,ti+1 as well as marginal p̂ti
of the data.

Lagrangian Schrödinger bridge for cross-sectional data. Trajectory observations Dfdim from the
finite-dimensional distribution are not always available. In practice, data might be only observed

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

from the marginal distributions Dmarg = {x(i)
t : t ∈ {t1, ..., ts}, i ∈ {1, ..., n},x(i)

t ∼ pt} where s
is the number of time stamps which can be observed. For such cross-sectional observations, Opt. (3)
is not applicable since the reference distributions p̂ti,ti+1

, i ∈ {1, ..., s− 1} in the objective (3.1) are
not available. Accordingly, existing solutions propose to solve an alternative optimization problem
called Lagrangian Schrödinger bridge (LSB), which adopts the principled regularizer of least action
instead to guide the evolution of dynamics as (Koshizuka & Sato, 2022; Neklyudov et al., 2023):

min
θ

1

(s− 1)d

s−1∑
i=1

d∑
j=1

∫ ti+1

ti

Lind(πt, j,m)dt, s.t. Constraints (3.2) & (3.3), (4)

where Lind(πt, j,m) =

Summarization︷︸︸︷
Eπt [

Lagrangian to measure
individual action︷ ︸︸ ︷∣∣∣ d
dt

((xt,[j])
m)

∣∣∣2 ], (Principled Regularizer
for Individuals)

where p̂t1,...,ts is overwrote re-wrote as the empirical distribution of Dmarg. It is typical to set
m = 1 and approximate the Lagrangian with expectation as | ddtxt,[j]|

2 ≈ |vt,[j](xt; θ)|2 +

Σ⊤
t,[j,:](xt; θ)Σt,[j,:](xt; θ) to restrain individual motions (Mikami, 2008; Tong et al., 2020). More

related works are detailed in Appdx. C.

3 METHODS

We first introduce a novel regularizer from a fresh perspective of population state conservation (Sec.
3.1) and then address the intractability issue of regularizers resulting from the implicit distribution
parametrization in diffusion models, by using the Fokker-Planck equation (Sec. 3.2). For practical
implementation, we provide three biology-inspired instantiations of covariance regularizers (Sec.
3.3.1) and an approximate numerical solution to unconstrained optimization of the framework, while
the exact solution of constrained, non-convex optimization is daunting (Sec. 3.4).

3.1 THE PRINCIPLE OF LEAST POPULATION ACTION

The Lagrangian Schrödinger bridge (LSB) problem (4) enforces the least actions for individual par-
ticles during the evolution, i.e., the conservation of individual states. Two assumptions could be
violated in real-world applications such as single-cell omics. First, time-series data for individuals
may not be available, e.g., measuring trajectories of individual cells is still technically challeng-
ing. Second, particles could be heterogeneous in nature (Gaston & Spicer, 2013; Purvis & Hector,
2000), while the simple regularizer Lind(·) is formulated for individual states (via action measure-
ment | ddt (·)|

2) and then applied homogeneously to all particles (via summarization Eπt
[·]), which

violates the nature of population heterogeneity.

To address the two challenges above, we propose to shift the focus of regularizers to population-level
and reorient the emphasis of conservation strategies to population states. Specifically, we formulate
an optimization problem with population regularizer Lpop(·), by interchanging the order of action
measurement | ddt (·)|

2 and summarization Eπt
[·] in Lind(·) as follows:

min
θ

1

(s− 1)d

s−1∑
i=1

d∑
j=1

∫ ti+1

ti

Lpop(πt, j,m)dt, s.t. Constraints (3.2) & (3.3), (5)

where Lpop(πt, j,m) =
∣∣∣ d
dt

Population state︷ ︸︸ ︷
Eπt [(xt,[j])

m]
∣∣∣2︸ ︷︷ ︸

Action measurement

, (Principled Regularizer for Population)

where it is assumed
∫
|x[j]|mπt(x)dx < ∞, j ∈ {1, ..., d} (Spanos, 2019) for the interchangeabil-

ity. The proposed population-level regularizer Lpop(·) essentially captures the temporal variations in
certain population characteristics, contrasting with the focus on individual-state dynamics in Lind(·).
In this context, the population state is quantified by the mth-order moment of each variable j, the
determinacy of which is studied in the Hamburger moment problem (Shohat & Tamarkin, 1950;
Akhiezer, 2020). Thus, Opt. (5) aims to find the evolution (πt)t∈[ti,ti+1] between terminal distribu-
tions πti = p̂ti and πti+1 = p̂ti+1 such that the characteristics of distributions evolve smoothly.
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Moving beyond Opt. (5) we will present a conceptually more complete and computationally
tractable formulation for population regularizers in the next subsections.

3.2 CORRELATIONAL LAGRANGIAN SCHRÖDINGER BRIDGE

Conservation of correlation during evolution. The initial extension from individual to population
regularization in Opt. (5) falls short in capturing the relations among data variables, which accounts
for a rich family of observed behaviors especially in biological systems (Patil et al., 2011; Srihari
& Leong, 2012). Thus, we propose to extend the objective formulation in Opt. (5) by involving
multivariate relations, resulting in the optimization problem referred as correlational Lagrangian
Schrödinger bridge (CLSB) as:

min
θ

1

(s− 1)|M|

s−1∑
i=1

∑
M̃∈M

∫ ti+1

ti

Lcorr(πt,M̃, k)dt, s.t. Constraints (3.2) & (3.3) (6)

where Lcorr(πt,M̃, k) =
∣∣∣ dk
dtk

Correlational characteristic︷ ︸︸ ︷
Eπt

[
∏

(j,m)∈M̃

(xt,[j])
m]

∣∣∣2
︸ ︷︷ ︸

Correlational Lagrangian

,
(Population Regularizer

on Multivariate Correlation)

where k ∈ Z>, M = {...,M̃i, ...} that each M̃i = {(j, m̄i(j)) : j ∈ M̄i ⊂ {1, ..., d}, m̄i :
{1, ..., d} → Z>} is a multiset consisting of variable indices and their corresponding occurrences,
identifying the targeted multivariate relation which is quantified by the mixed moment (Parzen,
1999; Kumar & Varaiya, 2015). We refer to Lcorr(·) as correlational Lagrangian capturing temporal
variations in multivariate correlations.

The CLSB formulation (6) is the more general framework, capable of imposing domain priors for
arbitrary multivariate relations (specified by M̃ in Lcorr(·)) in arbitrary order (specified by k). For
instance, by setting k = 1 andM = {M̃j : M̃j = {(j,m)}, j = 1, ..., d}, CLSB degenerates to
Opt. (5) that involves null multivariate correlations.

Analytical expression of correlational Lagrangian. The current formulation of correlational La-
grangian Lcorr(·) in Opt. (6) is not yet in a tractable form for practical implementation due to
the existence of the k-order time derivative. Our following proposition provides the derivation of
tractable analytical expressions under mild assumptions.

Proposition 1. For k = 1, correlational Lagrangian in Opt. (6) admits the analytical expression as:

Lcorr(πt,M̃, 1) =
∣∣∣Eπt

[∇
(∏

(j,m)∈M̃
(xt,[j])

m
) Variation resulting

from drift vt(·;θ)︷ ︸︸ ︷
• vt(xt; θ) ]

+
1

2
Eπt [(∇∇⊤

(∏
(j,m)∈M̃

(xt,[j])
m
)
)

Variation resulting
from diffusion Σt(·;θ)︷ ︸︸ ︷

•(Σt(xt; θ)Σ
⊤
t (xt; θ))]

∣∣∣2, (7)

if for the set of functions H = {h(x)πt(x)vt(x), πt(x)D(x)∇h(x), πt(x)∇⊤Dt(x)h(x),
h(x)Dt(x)∇πt(x)} (θ is omitted for simplicity) that h(x) =

∏
(j,m)∈M̃(xt,[j])

m, Dt(x) =

Σt(x)Σ
⊤
t (x), it satisfies: (i) Continuity: h′ ∈ H is continuously differentiable w.r.t. x; (ii) Light

tail: The probability density function πt(x) is characterized by tails that are sufficiently light, such
that

∮
S∞

h′(x) • da = 0 for h′ ∈ H, where a is the outward pointing unit normal on the S∞
boundary.

For k ≥ 2, correlational Lagrangian Lcorr(πt,M̃, k) in Opt. (6) admits a more complex analytical
expression, which can be derived iteratively in a similar way if certain conditions of continuity and
light tails are met. The detailed formulation is postponed to Appdx. A to avoid distraction.

Proof. See Appdx. A.

The key step in the derivation involves applying the Fokker–Planck equation (2) to establish a con-
nection between the temporal variation d

dtEπt [·] and the (parametrized) force field vt(·; θ),Σt(·; θ).

5
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Both conditions are moderate and can be easily ensured by appropriately constructing the architec-
tures of the drift and diffusion functions (Schulz et al., 2018; Song et al., 2020). Thereby, Propos. 1
enables the tractable computation of correlational Lagrangian for practical implementation.

3.3 DOMAIN-INFORMED INSTANTIATIONS OF CORRELATIONAL LAGRANGIAN IN
BIOLOGICAL SYSTEMS

3.3.1 COVARIANCE KINETICS

Conserving bivariate relations for co-expression stability. Existing literature in genetics indicates
the phenomenon of co-expression stability, i.e., the co-expression among genes could be robust to
environments (Patil et al., 2011; Srihari & Leong, 2012). We numerically validate such phenomena
in our dataset (see Appdx. D for details). We are therefore inspired to incorporate such prior into
the population regularizer, by focusing correlational Lagrangian specifically on bivariate relations,
thereby restraining temporal variations of the states of covariance. We term it as covariance kinet-
ics to demonstrate the idea of restricting the “motion” of the population (Frost & Pearson, 1961;
Lifschitz & Pitajewski, 1983), with two specific instantiations as follows.

Instantiation 1: Restraining the “velocity” of covariance. The first instantiation to enforce mod-
els simulate stably co-expressed genes in cells, is through restraining the 1st-order moment of the
covariance, such that it (representing co-expression relations) changes slowly during temporal evo-
lution. In formulation, denotingMcov =

{
{(i, 1), (j, 1)} : i ∈ {1, ..., d}, j ∈ {1, ..., d}

}
for all the

pairs among d variables, the objective in Opt. (6) is analytically instantiated as:∑
M̃∈Mcov

Lcorr(πt,M̃, 1) =
∥∥∥ d

dt
Eπt

[xtx
⊤
t ]
∥∥∥2
F

=
∥∥∥Eπt

[xtvt(xt)
⊤ + vt(xt)x

⊤
t +

1

2
Σt(xt)Σ

⊤
t (xt)]

∥∥∥2
F
. (8)

Instantiation 2: Restraining the “acceleration” of covariance. The second instantiation is more
relaxed, allowing greater temporal variation in co-expression, which however, should not be “irreg-
ular”. We achieve this by restraining the second-order moment of the covariance, ensuring that it
evolves ”regularly” during dynamics, with the objective formulated as:∑

M̃∈Mcov
Lcorr(πt,M̃, 2) =

∥∥∥ d2

dt2
Eπt

[xtx
⊤
t ]
∥∥∥2
F

=
∥∥∥Eπt

[
xt(

d

dt
vt(xt))

⊤ + (
d

dt
vt(xt))x

⊤
t +

1

2

d

dt
(Σt(xt)Σ

⊤
t (xt))

]
+ Eπt

[
xt(∇vt(xt)vt(xt))

⊤ + (∇vt(xt)vt(xt))x
⊤
t + 2vt(xt)vt(xt)

⊤ +
1

2
∇(Σt(xt)Σ

⊤
t (xt))i1i2i3v

i3
t (xt)

]
+ Eπt

[
∇vt(xt)Σt(xt)Σ

⊤
t (xt) +Σt(xt)Σ

⊤
t (xt)∇⊤vt(xt) +

1

2
xt(∇∇⊤(vt(xt))i1i2i3(Σt(xt)Σ

⊤
t (xt))

i2i3)⊤

+
1

2
(∇∇⊤(vt(xt))i1i2i3(Σt(xt)Σ

⊤
t (xt))

i2i3)x⊤
t +

1

4
∇∇⊤(Σt(xt)Σ

⊤
t (xt))i1i2i3i4(Σt(xt)Σ

⊤
t (xt))

i3i4
]∥∥∥2

F
,

(9)

where we adopt the Einstein notation C = AijB
jk (Barr, 1991) for tensor operations that C[i,k] =∑

j A[i,j]B[j,k]. The matrix-form derivations of instantations (8) & (9) are based on Propos. 1, and
we provide a more detailed explanation of the derivation of complicated Eq. (9) in Appdx. B.

Standardized covariance kinetics within a projected space. The original covariance may be
sensitive to dataset-dependent parameters, such as batch effects in sequencing techniques (Zhang
et al., 2019; Luo et al., 2010), which can limit its generalizability. We have further re-wrote the
regularization (8) & (9) to account for the standardized covariance, which is more robust and better
encompasses co-expression priors across different datasets. The re-written objective for the velocity
term (8) is formulated as:∑

M̃∈Mcov
Lcorr-std(πt,M̃, 1) =

∥∥∥ d

dt

(
Eπt [xtx

⊤
t ]− Eπt [xt]E⊤

πt
[xt]

)∥∥∥2
F

6
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=
∥∥∥Eπt

[xtvt(xt)
⊤ + vt(xt)x

⊤
t +

1

2
Σt(xt)Σ

⊤
t (xt)]− Eπt

[xt]E⊤
πt
[vt(xt)]− Eπt

[vt(xt)]E⊤
πt
[xt]

∥∥∥2
F
.

(10)

Similarly for the acceleration term (9), the standardized formulation is detailed in Appdx. E.

Furthermore, the regularizer constructed with domain-specific priors operates in a space that may
not correspond to that of the data (where the diffusion generative model is built in). For instance,
high-dimensional single-cell sequencing data often undergoes principal component analysis (Wold
et al., 1987) prior to further processing. In this scenario, when gene expressions are linearly mapped
from the principal components as xgene = Wx + b, the projected (and standardized) k-th order
covariance kinetics are then represented in matrix form as:∑

M̃∈Mcov
Lcorr-std-linproj(πt,M̃, k) =

∥∥∥W dk

dtk

(
Eπt

[xtx
⊤
t ]− Eπt

[xt]E⊤
πt
[xt]

)
W⊤

∥∥∥2
F
. (11)

The derivation of the more complicated, non-linear projected space is detailed in Appdx. G.

3.3.2 COVARIANCE POTENTIAL

Instantiation 3: Aligning covariance with observed bivariate interactions (“prior position”).
There exists abundant observed evidence of co-expression relations among genes, sourced from nu-
merous experiments which represent these interactions in a statistical context (Mering et al., 2003;
Oughtred et al., 2019). We hope to leverage such prior knowledge in the generative modeling of
cells. Specifically, denoting the observed co-expression as Y ∈ [0, 1]d×d where Y[i,j] is the con-
fidence score of genes i and j being co-expressing, we construct the principled regularizer termed
covariance potential, which borrows the idea of enforcing alignment with the “correct position” of
the population states as:∑

M̃∈Mcov
Lcorr(πt,M̃, 0) = U

(
Eπt [xtx

⊤
t ],Y

)
, (12)

where U(·) is the designated potential function detailed in Appdx. F, and the notation Lcorr(·) is
reused here, as it was previously undefined for k = 0.

3.4 NUMERICAL SOLUTIONS TO CLSB

Approximation via unconstrained optimization. The exact solution to CLSB (6) remains chal-
lenging despite that we provide a tractable objective in Sec. 3.3, due to its non-convex objective
and constraints w.r.t. network parameters. Thus, we propose a practical, approximate solution via
grappling with an unconstrained optimization problem as:

min
θ

1

(s− 1)

s−1∑
i=1

(
Ldist(πti+1, p̂ti+1) + αind

1

d

d∑
j=1

∫ ti+1

ti

Lind(πt, j, 1)dt

+

2∑
k=0

αcorr,k
1

|Mcov|
∑

M̃∈Mcov

∫ ti+1

ti

Lcorr(πt,M̃, k)dt
)
, (13)

where Ldist(·) is the distribution discrepancy measure, and αind, αcorr,0, αcorr,1, αcorr,2 are the weights
for different regularization objectives, which are treated as hyperparameters with tuning details de-
scribed in Appdx. I. Here we also adopt the individual regularizer Lind(·) and adjust its weight αind
for a more general framework encompassing Opt. (4) & (6), which is solved via gradient descent.
The parametrization of neural SDEs (vt(·; θ) and Σt(·; θ)) is described in Appdx. H.

Extension to conditional generative modeling. We further extend CLSB into the conditional
generation scenario, where we are tasked to model (pt(·|c))t∈[0,1]. The application encompasses
modeling cellular systems in response to perturbations c such as drug treatments or genetic muta-
tions (Srivatsan et al., 2020; Dong et al., 2023). Such extension can be achieved by re-engineering
the neural SDEs vt(·; θ),Σt(·; θ) to input additional featurized conditions, which is re-written as
vt(·, c; θ),Σt(·, c; θ), without altering the rest of the framework. We detail the neural network
parametrization in Appdx. H.
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4 EXPERIMENTS

We evaluate the proposed CLSB (13) in two real-world applications of modeling cellular systems in
the unconditional (Sec. 4.1) and conditional generation scenarios (Sec. 4.2).

4.1 UNCONDITIONAL GENERATION: DEVELOPMENTAL MODELING OF EMBRYONIC STEM
CELLS
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Figure 2: Visualization of the simulated gene expressions and tra-
jectories with different methods. The trajectories are plotted for
the gene pairs with the highest correlation (ABCA3 and A1BG),
and along the first two PCs.

Data. Deciphering the developmen-
tal behavior of cells is the quintessen-
tial goal in the field of stem cell
research (Alison et al., 2002; Za-
krzewski et al., 2019). The exper-
iment is conducted on scRNA-seq
data of embryonic stem cells (Moon
et al., 2019), which is collected dur-
ing the developmental stages over
a period of 27 days, split into five
phases: t0 (days 0-3), t1 (days 6-
9), t2 (days 12-15), t3 (days 18-
21), and t4 (days 24-27). Follow-
ing the setting in (Tong et al., 2020;
Koshizuka & Sato, 2022), gene ex-
pressions are (linearly) projected into
a lower-dimensional space through
principal component analysis (PCA)
(Wold et al., 1987) prior to conduct-
ing the experiments, which also can
be re-projected to the original space
for evaluation. We also conduct ex-
periments on an additional cell-differentiation dataset (Weinreb et al., 2020) in Appdx. I to demon-
strate the effectiveness of our method.

Evaluation and compared methods. To evaluate the (biological) validity of the proposed popu-
lation regularizers, we conduct model training using data from the terminal stages (t0, t4) without
access to the intermediate (t1, t2, t3), which are held out for evaluation. Following the setting in
(Tong et al., 2020; Koshizuka & Sato, 2022), the model is evaluated in the scenarios where the tra-
jectories xti are generated based on p̂t0 (referred as “all-step” prediction) or based on p̂ti−1 for πti
(“one-step”), and the performance is quantified for the intermediate stages, based on the discrepancy
in the Wasserstein distance (Villani et al., 2009; Santambrogio, 2015) between the predicted and the
ground truth principal components, using the GeomLoss library (Feydy et al., 2019).

The compared baselines include random expressions sampled from a non-informative uniform distri-
bution and simple population average across time stamps, ODE-based approaches OT-Flow (Onken
et al., 2021) and TrajectoryNet (Tong et al., 2020), and SDE-based approaches DMSB (Chen et al.,
2023), NeuralSDE (Li et al., 2020; Tzen & Raginsky, 2019) and NLSB (Koshizuka & Sato, 2022).
The proposed CLSB falls under the category of SDE-based approaches. We adopt neural SDEs for
parametrizing dynamics, with the regularization weights tuned via grid search.

Results (i). Population regularization leads to more accurate modeling of cell developmental
dynamics. The results of developmental modeling of embryonic stem cells are shown in Tab. 2.
Compared with the competitors, CLSB with population regularizers alone and without individual
regularizers (αind = 0) attains the lowest average rank, predicting developmental gene expressions
closest in Wasserstein distance to the ground truth. The improvement is particularly evident in the
most challenging stage of t2, which is far from both end points observed at t0 and t4. This demon-
strates the effectiveness of the proposed population regularizers in the heterogeneous systems of
cell clusters. We also observe that in comparison to ODE-based methods, SDE-based ones perform
better, echoing the inherently stochastic and diffusive nature of cell expression priors (Koshizuka &
Sato, 2022). The predicted gene-expression trajectories are visualized and compared in Fig. 2 for
two genes with the highest correlation (top two rows) and for all genes along the first two principal
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Table 2: Evaluation in the unconditional generation scenario of modeling embryonic stem-cell development.
Reported are Wasserstein distances, where lower values are preferable, with means ± standard deviations
across experiments. The best and the second-best performances in each case and across cases (‘A.R.’ stands
for average ranking) are highlighted in red and salmon, respectively. Methods are evaluated in the scenarios
of all-step prediction on πti|t0 where πt0 = p̂t0 , and one-step prediction on πti|ti−1

where πti−1 = p̂ti−1 ,
i ∈ {1, 2, 3}.

Methods All-Step Prediction One-Step Prediction A.R.
t1 t2 (Most Challenging) t3 t1 t2 t3

Random 1.873±0.014 2.082±0.011 1.867±0.011 1.870±0.013 2.084±0.010 1.868±0.012 10.0
SimpleAvg 1.670±0.019 1.801±0.014 1.749±0.016 1.872±0.014 2.085±0.011 1.868±0.012 9.3
OT-Flow 1.921 2.421 1.542 1.921 1.151 1.438 9.0

OT-Flow+OT 1.726 2.154 1.397 1.726 1.186 1.240 7.6
TrajectoryNet 1.774 1.888 1.076 1.774 1.178 1.315 6.8

TrajectoryNet+OT 1.134 1.336 1.008 1.134 1.151 1.132 3.6
DMSB 1.593 2.591 2.058 – – – 10.3

NeuralSDE 1.507±0.014 1.743±0.031 1.586±0.038 1.504±0.013 1.384±0.016 0.962±0.014 6.1
NLSB(E) 1.128±0.007 1.432±0.022 1.132±0.034 1.130±0.007 1.099±0.010 0.839±0.012 2.6

NLSB(E+D+V) 1.499±0.005 1.945±0.006 1.619±0.016 1.498±0.005 1.418±0.009 0.966±0.016 6.8

CLSB(αind > 0) 1.099±0.019 1.419±0.028 1.132±0.038 1.098±0.018 1.117±0.009 0.826±0.010 2.5
CLSB(αind = 0) 1.074±0.009 1.244±0.016 1.255±0.022 1.095±0.009 1.106±0.014 0.842±0.012 2.1

components (bottom two rows), which also qualitatively attests to the effectiveness of population
regularizers. Visualizations for more gene pairs and more principal components are provided in
Appdx. I. Comparison with more SOTAs (Tong et al., 2023a;b) is also shown in Tab. 12, and
experiments on dataset CITE-Seq (Kim et al., 2020) at larger scale are shown in Tab. 13.

Beyond cellular systems, we also conduct more experiments on a well-controlled synthetic dataset
with results shown in Tab. 15, and of other applications of opinion depolarization (Liu et al., 2022)
to validate our method with results shown in Tab. 14.

(ii) Different population regularization strategies serve varied functions. We further carry out
ablation studies to examine the contributions of the three population regularizers to overall perfor-
mance, as detailed in Appdx. I. Interestingly, we find that they serve different functions. Specifi-
cally, restraining the “acceleration” of covariance (k = 2, instantiation 2 (9)) provides more benefit
in the early stage of development (i.e. t1), and restraining the “velocity” of covariance (k = 1,
instantiation 1 (8)) does so in the later stages (i.e. t2, t3). This observation could indicate that in
nature, co-expression relations among genes undergo larger magnitude variations in early develop-
ment stages, and tend to stabilize as development progresses. The benefit of aligning with known
gene-gene interactions (k = 0, instantiation 3 (12)) is present across all stages, albeit modestly.

4.2 CONDITIONAL GENERATION: DOSE-DEPENDENT CELLULAR RESPONSE PREDICTION
TO PERTURBATIONS

Data. Examining cellular responses to chemical perturbations is one of the fundamental tasks in the
drug discovery process (Dong et al., 2023; Bunne et al., 2023). The experiment utilizes the sci-Plex

Table 3: Evaluation in the conditional generation scenario of dose-dependent cellular response prediction to
chemical perturbations. Numbers indicate the mean and median Wasserstein distances on all drug conditions,
and the best and the second-best performances in each case and across cases (‘A.R.’ stands for average ranking)
are highlighted in red and salmon, respectively.

Methods t1 t2 (Most Challenging) t3 A.R.Mean Median Mean Median Mean Median

Random 5.236±3.349 4.895±4.080 5.215±3.416 5.037±4.311 5.247±3.346 5.011±4.108 8.0
NeuralSDE(RandInit) 2.300±1.204 2.235±1.212 2.314±1.224 2.285±1.332 2.317±1.208 2.265±1.259 7.0

VAE 1.387±0.926 1.144±0.676 1.029±0.524 0.935±0.453 0.855±0.290 0.804±0.294 4.6
NeuralODE 0.914±0.272 0.831±0.206 1.064±0.413 0.985±0.414 1.004±0.296 0.937±0.286 5.3
NeuralSDE 0.905±0.416 0.829±0.425 1.053±0.547 0.962±0.532 1.032±0.409 0.943±0.351 5.0
NLSB(E) 0.503±0.106 0.418±0.054 0.574±0.115 0.496±0.063 0.667±0.159 0.555±0.058 2.8

CLSB(αind > 0) 0.516±0.163 0.401±0.054 0.571±0.189 0.452±0.062 0.631±0.235 0.471±0.072 2.1
CLSB(αind = 0) 0.476±0.109 0.393±0.052 0.531±0.121 0.449±0.063 0.564±0.122 0.455±0.056 1.0
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data for three cancer cell lines under different drug treatments (Srivatsan et al., 2020), where data
are collected for treatment doses of 10 nM, 100 nM, 1 µM, and 10 µM. In this context, we consider
the drug dose as pseudo-time (denoted as t1, t2, t3, t4, respectively; whereas zero-dose control is
denoted as t0). Gene expression dynamics is conditioned on the embedding of graph-structured
drug data (see more details of datasets in Appdx. H).

Evaluation and compared methods. We train our model using samples from the terminal stages
(t0, t4), reserving samples from the intermediate stages (t1, t2, t3) for evaluation. During inference,
expressions are generated based on the state at t0. Performance is then assessed on the Wasserstein
distance on PCs across all drug conditions, which is compared on the mean and median values.
Evaluation on the original gene expressions is also provided in Appdx. I. The compared baselines
include the random expressions, VAE (Kingma & Welling, 2013), NeuralODE (Onken et al., 2021),
NeuralSDE (Li et al., 2020; Tzen & Raginsky, 2019), and NLSB (Koshizuka & Sato, 2022).

Results (iv). Application of population regularization leads to more accurate prediction of
perturbation effects. The results of dose-dependent cellular response prediction to chemical per-
turbations are shown in Tab. 3. Compared with the competitors, CLSB with population regular-
ization alone (αind = 0) attains the lowest average rank, which indicates it replicates treated gene
expressions in better alignment with the ground truth, and the benefit of population regularization
is presented in all the three stages. This coincides the effectiveness of the proposed population
regularization. We also observe the similar phenomenon that SDE-based approaches outperform
ODE-based approaches, and the classical VAE. Lastly, we split the data based on drug perturbations
and showed our model’s superior predictions for new drugs in Tab. 5.

5 CONCLUSIONS

In this paper, we introduce a novel framework termed Correlational Lagrangian Schrödinger Bridge
(CLSB), effectively addressing the challenges posed by restricted cross-sectional samples and the
heterogeneous nature of individual particles. By shifting the focus of regularization from individual-
level to population, CLSB acknowledges and leverages the inherent heterogeneity in systems to
improve model generalizability. In developing CLSB, we address the technical challenges including
(1) a new class of population regularizers capturing with the tractable formulation, (2) domain-
informed instantiations, and (3) the integration of into data-driven generative models. Numerically,
we validate the superiority of CLSB in modeling cellular systems.

Admittedly, there are remaining gaps that need to be filled in the future. These include, but are not
limited to, the reliance on the domain-informed priors of CLSB instantiations (Sec. 3.3) and the
approximability of the numerical solution (Sec. 3.4). In broader impacts, the proposed approach
could be used to help develop new treatments, such as for cancer cells.
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APPENDIX

A PROOF FOR PROPOSITION 1

Proposition 1. For revisit, correlational Lagrangian is defined as:

Lcorr(πt,M̃, k) =
∣∣∣ dk
dtk

Eπt
[

∏
(j,m)∈M̃

(xt,[j])
m]

∣∣∣2.
For k = 1, correlational Lagrangian in Opt. (6) admits the analytical expression as:

Lcorr(πt,M̃, 1) =
∣∣∣Eπt

[∇
( ∏

(j,m)∈M̃

(xt,[j])
m
)
• vt(xt; θ)]

+
1

2
Eπt [(∇∇⊤

( ∏
(j,m)∈M̃

(xt,[j])
m
)
) • (Σt(xt; θ)Σ

⊤
t (xt; θ))]

∣∣∣2,
if for the set of functions H = {h(x)πt(x)vt(x), πt(x)D(x)∇h(x), πt(x)∇⊤Dt(x)h(x),
h(x)Dt(x)∇πt(x)} (θ is omitted for simplicity) that h(x) =

∏
(j,m)∈M̃(xt,[j])

m, Dt(x) =

Σt(x)Σ
⊤
t (x), it satisfies: (i) Continuity: h′ ∈ H is continuously differentiable w.r.t. x; (ii) Light

tail: The probability density function πt(x) is characterized by tails that are sufficiently light, such
that

∮
S∞

h′(x) • da = 0 for h′ ∈ H, where a is the outward pointing unit normal on the S∞
boundary.

Table 4: Notation settings for k ≥ 2.

Notations Descriptions

S<k> Set of Operators Defining Lcorr(πt,M̃, k)

S̃ ∈ S<k> Sequence of Operators of the form S̃ ′ ∪ {Υ′
<i′,j′>} in S<k>

S̃ ′ Sequence of Operators up to the Penultimate One in S̃
Υ′

<i′,j′> The Last Operator in S̃

We here use another notation to re-express Lcorr(πt,M̃, 1), in order to facilitate the following iter-
ative derivation from k − 1 to k for Lcorr(πt,M̃, k). Specifically, we re-express Lcorr(πt,M̃, 1) in
the form of:

Lcorr(πt,M̃, 1) =
∣∣∣ ∑
S̃∈

{
{∇<0,0>},{(∇∇⊤)<0,0>}

}Γ(S̃)
∣∣∣2

=
∣∣∣Γ({∇<0,0>}) + Γ({(∇∇⊤)<0,0>})

∣∣∣2
such that we show that for all Lcorr(πt,M̃, k) it can be expressed in the form of |

∑
S̃ Γ(S̃)|2. By

denoting S<1> = {{∇<0,0>}, {(∇∇⊤)<0,0>}} the collection of these S̃ for k = 1, we have that
for k ≥ 2, it admits the analytical expression in an iterative manner as:

Lcorr(πt,M̃, k) =
∣∣∣ ∑

S̃∈S<k−1> that
S̃=S̃′∪{Υ′

<i′,j′>}

Γ(S̃ ′ ∪Υ′
<i′+1,j′>) + Γ(S̃ ′ ∪Υ′

<i′,j′+1>)

+ Γ(S̃ ∪ ∇<0,0>) + Γ(S̃ ∪ (∇∇⊤)<0,0>)
∣∣∣2, (14)

where we denote the ordered sequence of operators S̃ = {...,Υ<i,j>, ...} that Υ ∈ {∇,∇∇⊤}, i ∈
Z>, j ∈ Z> such that:

Υ<i,j>(x) =
di

dti
Υ(

∏
(k,m)∈M̃

(x[k])
m) •

dj

dtj
γ(x), γ(x) =

{
vt(x), if Υ=∇

Σt(x)Σ
⊤
t (x), else if Υ=∇∇⊤ ,
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and denote the function Γ(·) operating on the ordered sequence S̃ and ◦ as function composition
such that:

Γ(S̃) = cS̃Eπt
[◦Υ<i,j>∈S̃Υ<i,j>(xt)], cS̃ = 2−|{Υ<i,j>:Υ<i,j>∈S̃,Υ=∇∇⊤}|,

and further denote S<k> as the set of S̃ used to compute Lcorr(πt,M̃, k), e.g., S<1> =

{{∇<0,0>}, {(∇∇⊤)<0,0>}}. With the given notations, it is noticed that Lcorr(πt,M̃, 1) can be
rewritten in the form of Eq. (14) as Lcorr(πt,M̃, 1) = |Γ({∇<0,0>}) + Γ({(∇∇⊤)<0,0>})|2.

The conditions for if for the equality in Eq. (14) are that, for the set of functions H =
{h(x)πt(x)vt(x), πt(x)D(x)∇h(x), πt(x)∇⊤Dt(x)h(x), h(x)Dt(x)∇πt(x)} that h(x) =

◦Υ<i,j>∈S̃Υ<i,j>(x), ∀S̃ ∈ S<k−1>, it satisfies: (i) Continuity. h′ ∈ H is continuously differ-
entiable w.r.t. x; (ii) Light tail. The probability density function πt(x) is characterized by tails that
are sufficiently light, such that

∮
S∞

h′(x) • da = 0 for h′ ∈ H.

Proof. Expression for k = 1. For simplicity, we omit θ in notations that vt(x; θ),Σt(x; θ) are re-
ferred as vt(x),Σt(x), respectively. Denoting h : Rd → R as the mapping satisfying the continuity
and light tail conditions, for k = 1, we have:

d

dt
Eπt

[h(xt)]

(a)
=

d

dt

∫
h(x)πt(x)dx =

∫
h(x)(

d

dt
πt(x))dx

(b)
=

∫
h(x)

(
−∇ • (πt(x)vt(x)) +

1

2
∇ • ∇ • (πt(x)Σt(x)Σ

⊤
t (x))

)
dx

=

∫ (
− h(x)

)(
∇ • (πt(x)vt(x))

)
dx+

∫ (1
2
h(x)

)(
∇ • ∇ • (πt(x)Σt(x)Σ

⊤
t (x))

)
dx

(c)
=

Part (i)︷ ︸︸ ︷∫
∇
(
h(x)

)
•

(
πt(x)vt(x)

)
dx+

Part (ii)︷ ︸︸ ︷∫
−∇ •

(
h(x)πt(x)vt(x)

)
dx

+

Part (iii)︷ ︸︸ ︷∫
−∇

(1
2
h(x)

)
•

(
∇ • (πt(x)Σt(x)Σ

⊤
t (x))

)
dx

+

Part (iv)︷ ︸︸ ︷∫
∇ •

((1
2
h(x)

)(
∇ • (πt(x)Σt(x)Σ

⊤
t (x))

))
dx,

where (a) is attained through the standard definition of integration, (b) results from the application
of the Fokker-Planck equation (2) to substitute the time derivative term with the divergence term,
and (c) is achieved by applying integration by parts on the right-hand side (RHS) of Eq. (b). Next,
we solve the four parts on RHS of Eq. (c). For part (i), we have:∫

∇
(
h(x)

)
•

(
πt(x)vt(x)

)
dx

=

∫ (
∇h(x) • vt(x)

)
πt(x)dx

= Eπt
[∇h(x) • vt(x)].

For part (ii), we have: ∫
−∇ •

(
h(x)πt(x)vt(x)

)
dx

(a)
= −

∮
S∞

(
h(x)πt(x)vt(x)

)
• da

(b)
= 0,
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where (a) is accomplished through the application of Gauss’s theorem (Temple, 1936), that a is the
outward pointing unit normal at each point on the boundary at infinity S∞, under the satisfaction of
the continuity condition, and (b) is achieved by considering the light tail condition.

For part (iii), we have:∫
∇
(
h(x)

)
•

(
∇ • (πt(x)Σt(x)Σ

⊤
t (x))

)
dx

(a)
=

∫
∇ •

(
πt(x)Σt(x)Σ

⊤
t (x)∇h(x)

)
dx−

∫ (
∇∇⊤h(x)

)
•

(
πt(x)Σt(x)Σ

⊤
t (x)

)
dx

(b)
=

∮
S∞

(
πt(x)Σt(x)Σ

⊤
t (x)∇h(x)

)
• da− Eπt

[
(
∇∇⊤h(x)

)
•

(
Σt(x)Σ

⊤
t (x)

)
]

(c)
= − Eπt

[
(
∇∇⊤h(x)

)
•

(
Σt(x)Σ

⊤
t (x)

)
],

where (a) is achieved by applying integration by parts, (b) is accomplished through the application of
Gauss’s theorem under the satisfaction of the continuity condition, and (c) is achieved by considering
the light tail condition.

For part (iv), we have:∫
∇ •

((
h(x)

)(
∇ • (πt(x)Σt(x)Σ

⊤
t (x))

))
dx

(a)
=

∫
∇ •

((
h(x)

)(
∇ • (Σt(x)Σ

⊤
t (x))

)
πt(x)

)
dx+

∫
∇ •

((
h(x)

)(
∇πt(x) • (Σt(x)Σ

⊤
t (x))

))
dx

(b)
=

∮
S∞

((
h(x)

)(
∇ • (Σt(x)Σ

⊤
t (x))

)
πt(x)

)
• da+

∮
S∞

((
h(x)

)(
∇πt(x) • (Σt(x)Σ

⊤
t (x))

))
• da

(c)
= 0,

where (a) is achieved by applying the product rule, (b) is accomplished through the application of
Gauss’s theorem under the satisfaction of the continuity condition, and (c) is achieved by considering
the light tail condition.

By combining them and setting h(x) =
∏

(j,m)∈M̃(x[j])
m, we eventually have:

Lcorr(πt,M̃, 1) =
∣∣∣Eπt

[∇
( ∏

(j,m)∈M̃

(xt,[j])
m
)
• vt(xt)]

+
1

2
Eπt

[(∇∇⊤
( ∏

(j,m)∈M̃

(xt,[j])
m
)
) • (Σt(xt)Σ

⊤
t (xt))]

∣∣∣2.
Expression for k ≥ 2. We present a more general form of correlational Lagrangian, by denoting
the ordered sequence of operators S̃ = {...,Υ<i,j>, ...} that Υ ∈ {∇,∇∇⊤}, i ∈ Z>, j ∈ Z> such
that

Υ<i,j>(x) =
di

dti
Υ(

∏
(k,m)∈M̃

(x[k])
m) •

dj

dtj
γ(x), γ(x) =

{
vt(x), if Υ=∇

Σt(x)Σ
⊤
t (x), else if Υ=∇∇⊤ ,

and denote the function Γ(·) operating on the ordered sequence S̃ such that

Γ(S̃) = cS̃Eπt
[◦Υ<i,j>∈S̃Υ<i,j>(xt)], cS̃ = 2−|{Υ<i,j>:Υ<i,j>∈S̃,Υ=∇∇⊤}|,

and then we can rewrite correlational Lagrangian for the k = 1 case:

Lcorr(πt,M̃, 1) =
∣∣∣Γ({∇<0,0>}) + Γ({(∇∇⊤)<0,0>})

∣∣∣2.
We further denote S<k> as the set of S̃ used to compute Lcorr(πt,M̃, k), e.g., S<1> =
{{∇<0,0>}, {(∇∇⊤)<0,0>}} according to the above formulation. Thus, for k ≥ 2, we have:

Lcorr(πt,M̃, k) =
∣∣∣ ∑
S̃∈S<k−1>

d

dt
Γ(S̃)

∣∣∣2.
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To calculate this general formulation, denoting S̃ = S̃ ′ ∪ {Υ′
<i′,j′>}, we utilize the following

equation:

d

dt
Γ(S̃) = d

dt
Γ(S̃ ′ ∪ {Υ′

<i′,j′>})

(a)
= cS̃

d

dt
Eπt

[◦Υ<i,j>∈S̃Υ<i,j>(xt)]

(b)
= cS̃

d

dt

∫
di

′

dti′
Υ′

(
◦Υ<i,j>∈S̃′ Υ<i,j>(x)

)
•

( dj
′

dtj′
γ′(x)

)
πt(x)dx

(c)
= cS̃

∫
di

′+1

dti′+1
Υ′

(
◦Υ<i,j>∈S̃′ Υ<i,j>(x)

)
•

( dj
′

dtj′
γ′(x)

)
πt(x)dx

+ cS̃

∫
di

′

dti′
Υ′

(
◦Υ<i,j>∈S̃′ Υ<i,j>(x)

)
•

( dj
′+1

dtj′+1
γ′(x)

)
πt(x)dx

+ cS̃

∫
di

′

dti′
Υ′

(
◦Υ<i,j>∈S̃′ Υ<i,j>(x)

)
•

( dj
′

dtj′
γ′(x)

)( d

dt
πt(x)

)
dx

(d)
= Γ(S̃ ′ ∪ {Υ′

<i′+1,j′>}) + Γ(S̃ ′ ∪ {Υ′
<i′,j′+1>}) + cS̃

∫ (
◦Υ<i,j>∈S̃ Υ<i,j>(x)

)( d

dt
πt(x)

)
dx,

where (a, b) is established through definitions, (c) is realized by applying the product rule, and (d)
is also derived from standard definitions. Denoting h(x) = ◦Υ<i,j>∈S̃Υ<i,j>(x), we have:

cS̃

∫
h(x)(

d

dt
πt(x))dx

(a)
= cS̃Eπt

[∇h(x) • vt(xt)] +
cS̃
2
Eπt

[(∇∇⊤(h(x))) • (Σt(xt)Σ
⊤
t (xt))]

(b)
= Γ(S̃ ∪ {∇<0,0>}) + Γ(S̃ ∪ {(∇∇⊤)<0,0>}),

where (a) follows the same derivation of correlational Lagrangian for k = 1, under the satisfaction
of the continuity condition and light tail conditions, and (b) is established through definitions.

By combining them, we eventually have:

Lcorr(πt,M̃, k) =
∣∣∣ ∑

S̃∈S<k−1>,

S̃=S̃′∪{Υ′
<i′,j′>}

Γ(S̃ ′ ∪Υ′
<i′+1,j′>) + Γ(S̃ ′ ∪Υ′

<i′,j′+1>)

+ Γ(S̃ ∪ ∇<0,0>) + Γ(S̃ ∪ (∇∇⊤)<0,0>)
∣∣∣2.

B DERIVATION OF COVARIANCE ACCELERATION

The derivation of covariance acceleration (Eq. (9)) is carried out by applying Propos. 1 (Eq. (14))
as follows:∑

M̃∈Mcov

Lcorr(πt,M̃, 2) =
∥∥∥ d2

dt2
Eπt

[xtx
⊤
t ]
∥∥∥2
F

=
∥∥∥

Matrix collection of Γ(S̃′∪Υ′
<i′,j′+1>

) terms in Eq. (14)︷ ︸︸ ︷
Eπt

[
xt(

d

dt
vt(xt))

⊤ + (
d

dt
vt(xt))x

⊤
t +

1

2

d

dt
(Σt(xt)Σ

⊤
t (xt))

]
+

Γ(S̃′∪Υ′
<i′+1,j′>)︷︸︸︷
0

+

Γ(S̃∪∇<0,0>)︷ ︸︸ ︷
Eπt

[
xt(∇vt(xt)vt(xt))

⊤ + (∇vt(xt)vt(xt))x
⊤
t

+ 2vt(xt)vt(xt)
⊤ +

1

2
∇(Σt(xt)Σ

⊤
t (xt))i1i2i3v

i3
t (xt)

]
18
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+

Γ(S̃∪(∇∇⊤)<0,0>)︷ ︸︸ ︷
Eπt

[
∇vt(xt)Σt(xt)Σ

⊤
t (xt) +Σt(xt)Σ

⊤
t (xt)∇⊤vt(xt)

+
1

2
xt(∇∇⊤(vt(xt))i1i2i3(Σt(xt)Σ

⊤
t (xt))

i2i3)⊤ +
1

2
(∇∇⊤(vt(xt))i1i2i3(Σt(xt)Σ

⊤
t (xt))

i2i3)x⊤
t

+
1

4
∇∇⊤(Σt(xt)Σ

⊤
t (xt))i1i2i3i4(Σt(xt)Σ

⊤
t (xt))

i3i4
]∥∥∥2

F
.

C MORE RELATED WORKS

Modeling population dynamics with machine learning. A significant body of research has been
dedicated to modeling population dynamics using data-driven approaches. This includes the devel-
opment of continuous normalizing flows (Chen et al., 2018; Mathieu & Nickel, 2020), which model
the dynamics through ordinary differential equations (ODEs). Furthermore, an advancement of neu-
ral ODEs, namely neural SDEs, has been introduced to capture both drift and diffusion processes
using neural networks (Li et al., 2020; Tzen & Raginsky, 2019). In scenarios where ground truth
trajectories are inaccessible, regularization strategies for flows have been developed. These strate-
gies emphasize enforcing constraints on the motion of individual trajectories. Examples include
the regularization of kinetic energy and its Jacobian (Tong et al., 2020; Finlay et al., 2020), as well
as the inclusion of dual terms derived from the Hamilton–Jacobi–Bellman equation (Koshizuka &
Sato, 2022; Onken et al., 2021), aiming to guide the model towards realistic dynamic behaviors.

In a very general sense, these methods are categorized under the optimal transport framework, char-
acterized by varying choices of cost objectives (Somnath et al., 2023; De Bortoli et al., 2021; Bunne
et al., 2023; 2022; Schiebinger et al., 2019; Neklyudov et al., 2023; Liu et al., 2022; Pariset et al.,
2023; Tamir et al., 2023; You et al., 2023). It is crucial within this framework to thoughtfully con-
struct cost functions, as they impose various priors on the dynamics data. This often leads to the
imposition of homogeneous priors across all individual particles, affecting both learning accuracy
and efficiency. In contrast, our work aims to model heterogeneous particle behaviors, as observed
in various real-world population dynamics. For example, cell-to-cell variations in gene expression
are inherent to biological systems, with changes in such variations linked to disease phenotypes
and aging. Consequently, our approach enhances accuracy by employing appropriate and justifiable
population-level priors to learn the dynamics of heterogeneous particles.

Developmental modeling of embryonic stem cells. The modeling of embryonic stem cell devel-
opment represents a cutting-edge intersection of developmental biology, computational science, and
systems biology (Alison et al., 2002; Zakrzewski et al., 2019; Weinreb et al., 2020). This field aims
to unravel the complex processes governing the differentiation and proliferation of embryonic stem
cells into the diverse cell types that form an organism. Given the foundational role of these pro-
cesses in understanding both normal development and various diseases, developmental modeling of
embryonic stem cells has garnered significant interest. At its core, developmental modeling seeks
to simulate and predict the dynamic behavior of stem cells as they progress through various stages
of development. This involves mapping the intricate pathways that lead to cell fate decisions, a
challenge that requires sophisticated computational models and deep biological insights.

Dose-dependent cellular response prediction to chemical perturbations. The prediction of dose-
dependent cellular responses to chemical perturbations is pivotal in pharmacology, toxicology, and
systems biology (Dong et al., 2023; Bunne et al., 2023; Roohani et al., 2022; Lotfollahi et al., 2023).
It aims to understand how cells react to varying concentrations of chemical compounds, which is
crucial for drug development, safety assessment, and personalized medicine. This field combines
quantitative biology, computational modeling, and high-throughput experimental techniques to map
out the intricate cellular mechanisms activated or inhibited by drugs and other chemical agents at
different doses. At the heart of dose-dependent cellular response prediction is the need to accurately
model the complex, nonlinear interactions between chemical perturbations and cellular pathways.
This involves determining the specific dose at which a chemical agent begins to have a biological
effect (the threshold), the range over which the response changes (the dynamic range), and the dose
causing maximal response (the ceiling).

Connection with Probability Flow Ordinary Differential Equation. Our model is able to
integrate the Probability Flow Ordinary Differential Equation (Song et al., 2020) to accelarate
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the sampling in scenarios where the score function can be expressed. For our parametrized
SDE dxt = vt(xt)dt + Σt(xt)dωt, the corresponding probability flow ODE sharing the same
marginal probability densities is formulated as dxt = vt(xt) − 1

2∇ ·
[
Σt(xt)Σt(xt)

⊤] −
1
2Σt(xt)Σt(xt)

⊤∇x log pt(xt)dt which requires the expression of ∇x log pt(xt) (the score func-
tion). Since ∇x log pt(xt) is in general not directly derivable, (Song et al., 2020) constructs the
(known) artificial dynamics between data and white noise in a certain way such that ∇x log pt(xt)
can be approximated with a neural-network parametrized score model.

Thus, in scenarios where the score function can be explicitly expressed, we are able to con-
struct PF-ODE. An example is described as follows: p0 is the mixture of Gaussian that p0(x) =∑n

i=1 wiN (x;µ0,i, σ
2
0,i); The SDE is linear such that vt(xt) = axt + b, Σt(xt) = c; Denot-

ing µt,i = exp(at)µt,i +
b
a (exp(at) − 1), σ2

t,i = σ2
0,i exp(2at) +

c2

2a (exp(2at) − 1); The score

function can then be expressed as ∇xpt(xt) =

∑n
i=1 wi

−(xt−µt,i)

σ2
t,i

N (xt;µt,i,σ
2
t,i)∑n

i=1 wiN (xt;µt,i,σ2
t,i)

. In the scenar-
ios where the PF-ODE is constructed, we can speed up the sampling process via: By denoting
ht(xt) = vt(xt) − 1

2∇
[
Σt(xt)Σt(xt)

⊤] − 1
2Σt(xt)Σt(xt)

⊤∇x log pt(xt), we can then compute
the exact log-likelihood via log pt(xt) = log p0(x0) +

∫ t

0
∇ · hs(xs)ds.

Connection with Flow Matching. Our model is potentially capable of integrating the flow matching
objective (FM) (Lipman et al., 2022), since FM is an orthogonal objective to our proposed regulariza-
tion, focusing on capturing the mismatch between generated and observed data. More specifically,
FM is an alternative to the (Wasserstein) data matching loss in our framework formulated in Opt.
(13). The integration can be conducted by further adding the FM loss into our optimization objec-
tive. The advantages of the FM loss are well-known: it is simple, effective in capturing distribution
mismatches, and stable during training (Lipman et al., 2022). Therefore, integrating it could lead to
better estimation of the terminal distribution, and faster, more stable convergence when training the
diffusion model which is left to the future works.

D STABILITY OF GENETIC CO-EXPRESSION RELATIONS

Stability of genetic co-expression relations. The majority of co-expression relationships among
gene pairs remain relatively stable over time, as evidenced by the first column of Fig. 3. Population
regularization effectively preserves this stability, a feature that is often lost with individual-level
regularization by comparing between the second and third columns of Fig. 3.
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Figure 3: Visualization of temporal variations of the covariance of embryonic stem cell expression. The first
row of figures presents direct plots of the covariance at time t, while the second row displays violin plots
illustrating the differences between time t and t− 1.
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E FORMULATION TO RESTRAIN “ACCELERATION” OF STANDARDIZED
COVARIANCE

The formulation to restrain the “acceleration” of standardized covariance is expressed as:∑
M̃∈Mcov

Lstd-corr(πt,M̃, 2) =
∥∥∥ d2

dt2

(
Eπt

[xtx
⊤
t ]− Eπt

[xt]E⊤
πt
[xt]

)∥∥∥2
F

=
∥∥∥

Matrix collection of Γ(S̃′∪Υ′
<i′,j′+1>

) terms in Eq. (14)︷ ︸︸ ︷
Eπt

[
xt(

d

dt
vt(xt))

⊤ + (
d

dt
vt(xt))x

⊤
t +

1

2

d

dt
(Σt(xt)Σ

⊤
t (xt))

]

− Eπt [xt]E⊤
πt
[
d

dt
vt(xt)]− Eπt [

d

dt
vt(xt)]E⊤

πt
[xt] +

Γ(S̃′∪Υ′
<i′+1,j′>)︷︸︸︷
0

+

Γ(S̃∪∇<0,0>)︷ ︸︸ ︷
Eπt

[
xt(∇(vt(xt))vt(xt))

⊤ + (∇(vt(xt))vt(xt))x
⊤
t + 2vt(xt)vt(xt)

⊤

+
1

2
∇(Σt(xt)Σ

⊤
t (xt))i1i2i3v

i3
t (xt)

]
− Eπt

[xt]E⊤
πt
[∇(vt(xt))vt(xt)]− Eπt

[∇(vt(xt))vt(xt)]E⊤
πt
[xt]− 2Eπt

[vt(xt)]E⊤
πt
[vt(xt)]

+

Γ(S̃∪∇∇⊤
<0,0>)︷ ︸︸ ︷

Eπt

[
∇(vt(xt))Σt(xt)Σ

⊤
t (xt) +Σt(xt)Σ

⊤
t (xt)∇⊤(vt(xt))

+
1

4
∇∇⊤(Σt(xt)Σ

⊤
t (xt))i1i2i3i4(Σt(xt)Σ

⊤
t (xt))

i3i4

+
1

2
xt(∇∇⊤(vt(xt))i1i2i3(Σt(xt)Σ

⊤
t (xt))

i2i3)⊤ +
1

2
(∇∇⊤(vt(xt))i1i2i3(Σt(xt)Σ

⊤
t (xt))

i2i3)x⊤
t

]
− 1

2
Eπt [xt]E⊤

πt
[∇∇⊤(vt(xt))i1i2i3(Σt(xt)Σ

⊤
t (xt))

i2i3 ]

− 1

2
Eπt

[∇∇⊤(vt(xt))i1i2i3(Σt(xt)Σ
⊤
t (xt))

i2i3 ]E⊤
πt
[xt]

∥∥∥2
F
.

F FORM OF COVARIANCE POTENTIAL

Denoting D = Eπt [xtx
⊤
t ] − Eπt [xt]E⊤

πt
[xt] D̃ ∈ Rd×d, D̃[i,j] =

{
0, if i ̸=j

1/
√

D[i,j], else, , the designated
form of potential covariance is expressed as:∑

M̃∈Mcov

Lcorr(πt,M̃, 0) =
∥∥∥D̃⊤DD̃ − Y

∥∥∥2
F
.

G STANDARDIZED COVARIANCE KINETICS WITHIN A NON-LINEAR
PROJECTED SPACE

We assume the diffusion generative model is built in a non-linear latent space as:

xt =
←−
h (zt), dzt = f(zt)dt+D(zt)dwt,

and then the correlation Lagrangian can be computed as:

d

dt
E[xt,[i]xt,[j]] =

d

dt
E[
←−
h [i](zt)

←−
h [j](zt)]

=E
[
∇{
←−
h [i](zt)

←−
h [j](zt)} • f(zt) +

1

2
∇2{
←−
h [i](zt)

←−
h [j](zt)}•D2(zt)

]
=E

[←−
h [j](zt)(∇

←−
h [i](zt) • f(zt)) +

←−
h [i](zt)(∇

←−
h [j](zt) • f(zt))
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+
1

2

{
∇
←−
h [i](zt)∇

←−
h ⊤

[j](zt) +∇
←−
h [j](zt)∇

←−
h ⊤

[i](zt) +
←−
h [i](zt)∇2←−h [j](zt) +

←−
h [j](zt)∇2←−h [i](zt)

}
•D2(zt)

]
.

The first part of the last line can be written in the matrix form as:

Part 1 = E
[←−
h (zt)(∇

←−
h (zt)f(zt))

⊤ + (∇
←−
h (zt)f(zt))

←−
h ⊤(zt)

]
.

The second part of the last line can be written in the matrix form as:

Part 2 =
1

2
E
[〈(
⟨∇
←−
h (zt)i1i2 ,∇

←−
h (zt)i3i4⟩i1i3i2i4 + ⟨∇

←−
h (zt)i1i2 ,∇

←−
h (zt)i3i4⟩i3i1i2i4

+ ⟨
←−
h (zt)i1 ,∇2←−h (zt)i2i3i4⟩i1i2i3i4 + ⟨

←−
h (zt)i1 ,∇2←−h (zt)i2i3i4⟩i2i1i3i4

)
i1i2i3i4

, D2(zt)i3i4

〉i1i2]
,

which can be simplified as follows if D is diagonal:

Part 2 =
1

2
E
[〈(
⟨∇
←−
h (zt)i1i2 ,∇

←−
h (zt)i3i2⟩i1i3i2 + ⟨∇

←−
h (zt)i1i2 ,∇

←−
h (zt)i3i2⟩i3i1i2

+ ⟨
←−
h (zt)i1 ,∇2

Diag
←−
h (zt)i2i3⟩i1i2i3 + ⟨

←−
h (zt)i1 ,∇2

Diag
←−
h (zt)i2i3⟩i2i1i3

)
i1i2i3

, D2(zt)i3

〉i1i2]
.

Since based on Propos. 1 we have:

d

dt
E[
←−
h [i](zt)] = E[∇

←−
h [i](zt) • f(zt) +

1

2
∇2←−h [i](zt) •D

2(zt)],

and then we can express the normalized form as:

d

dt

(
E[
←−
h (zt)

←−
h ⊤(zt)]− E[

←−
h (zt)]E⊤[

←−
h ⊤(zt)]

)
=Part 1 + Part 2− E[

←−
h (zt)]E⊤[∇

←−
h (zt)f(zt)]− E[∇

←−
h (zt)f(zt)]E⊤[

←−
h (zt)]

− 1

2
E[
←−
h (zt)]E⊤[⟨∇2←−h (zt)i1i2i3 , D

2(zt)i2i3⟩i1 ]−
1

2
E[⟨∇2←−h (zt)i1i2i3 , D

2(zt)i2i3⟩i1 ]E⊤[
←−
h (zt)].

H NEURAL NETWORK PARAMETRIZATION OF (CONDITIONAL) NEURAL
SDES

Neural network parametrization of drift vt(·; θ) and diffusion Σt(·; θ). We follow the architec-
ture in (Onken et al., 2021) to parametrize the drift and diffusion functions. Specifically, given the
time embedding zt for a time stamp t, we first construct a potential function Φt : Rd → R as:

Φt(x) = wTMLP(CAT(x, zt);ϕ1) +
1

2
x⊤A⊤Ax+ b⊤x+ c,

where MLP(·;ϕ1) is a multi-layer perceptron, and CAT(·) is the concatenation function. The drift
is then computed by taking the gradient as:

vt(x; θ) = ∇xΦt(x).

For the diffusion, we simply construct it as:

Σt(x; θ) = MLP(CAT(x, zt);ϕ2).

The learnable parameter collection is expressed as θ = {ϕ1, ϕ2,w,A, b, c}. Model predictions are
generated through SDE simulation using Eq. (1) with the torchsde library (Li et al., 2020).

Neural network parametrization of conditional drift and diffusion. A small-molecule drug can
be routinely represented as a graph G (You et al., 2020). Thus, we leverage graph neural networks
(GNNs) to embed it into vector space as zG = GNN(G;ϕ3). The conditional drift and diffusion are
then expressed as:

vt(x; θ) = ∇x

(
wTMLP(CAT(x, zt, zG);ϕ1) +

1

2
x⊤A⊤Ax+ b⊤x+ c

)
,

Σt(x; θ) = MLP(CAT(x, zt, zG);ϕ2).
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The learnable parameter collection is expressed as θ = {ϕ1, ϕ2, , ϕ3,w,A, b, c}. We adopt the
graph attention network architecture (Velickovic et al., 2017) for drug embedding.

Computational resources. Experiments are distributed on computer clusters with NVIDIA A100
GPU (40 GB memory), which in general can be finished within two days.

Additional details on the dataset of conditional generation. Dimensionality: The generative
model training is conducted in 256 hidden dimensions. The hidden (latent) space is constructed by
training an autoencoder on the training data, which contains the 2,000 most differentially expressed
genes. Pre-processing: The pre-processing of sci-plex is standardized by adopting the code from
(Wu et al., 2022). Steps include QC filtering, normalization, log1p transformation, and differentially
expressed gene selection. Number of drugs: All 188 drugs contained in the dataset are used. Split:
In the paper, we focus on dose-effect prediction conditional on different drug perturbations, each
labeled with five dose effects (t0-t4). We use the dose effects of t0&t4 for training and validation,
and perform testing on t1-t3 as described in the main text. We also used the perturbation split to test
performances on new drugs.

Regarding the significance of dose splitting, understanding the dose-effect relationship is crucial
in therapeutics. Intuitively, the dose impacts drug concentration, which can lead to very different
phenotypic outcomes (Holford & Sheiner, 1981). The sci-plex dataset provides treated cellular
expressions under various drugs and doses. We therefore treat dose as a pseudo-time variable and
construct a conditional generative model to simulate the evolution of dose effects. Similar efforts
are described in (Lotfollahi et al., 2023), which are useful for guiding the clinical use of new drugs.

We also conducted an experiment using a dataset split based on drug perturbations and compared it
with the SOTA CellOT (Bunne et al., 2023) in our implementation. The results, presented in Tab. 5,
demonstrate the effectiveness of our method.

Table 5: Experiments on the sci-plex dataset based on drug perturbation split (predicting dose-dependent
cellular response to new drugs).

Methods VAE CellOT Ours

WDist ↓ 8.07 1.42 1.38

I MORE RESULTS AND VISUALIZATIONS

Hyperparameter tuning. The appropriate weighting of different loss functions in the unconstrained
optimization (13) for an approximated CLSB solution is important. We perform tuning for αcorr,0 in
{1e-2, 1e-1, 1, 1e1, 1e2}, αcorr,1 in {1, 1e1, 1e2, 1e3, 1e4}, and αcorr,2 in {1, 1e1, 1e2, 1e3, 1e4}
via grid search. Validation results are shown in Tab. 6 and test results in Tab. 7. αind is tuned in {0,
1}, which does not lead to a significant impact on performance.

For the experiment in Sec. 4.1: Tab. 6 provides the validation performance for a single type of
correlational regularization (out of a total of three as in Opt. (13)), and Tab. 7 showcases their
corresponding test performances. The ultimate test performance in Tab. 2 is achieved by applying
all three regularizations with weights tuned according to Tab. 6.

Intuition: By experimenting with the single regularization presented in Tab. 7, we aim to understand
how the three types of regularizations contribute differently to the ultimate performance: Regular-
ization on “position” provides less benefit compared to the other two; “acceleration” benefits the
early stages more, and “velocity” provides more benefit in the later stages. For the experiment in
Sec. 4.2: We simply adopt the hyperparameter setting from Sec. 4.1.

Evaluation of the original gene expressions in conditional generation (Sec. 4.2). We also per-
form evaluations on the original gene expressions beyond principal components, as shown in Tab.
8. We compute the Wasserstein distance between gene expressions and calculate both the mean and
median across all drug conditions, with mean and standard deviation computed for all genes. The
Wasserstein distance is computed using the SciPy library (Virtanen et al., 2020).
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Table 6: Evaluation on the validation data in the unconditional generation scenario of developmental modeling
of embryonic stem cells.

Methods All-Step Prediction One-Step Prediction
t1 t2 t3 t1 t2 t3

αcorr,0 = 0, αcorr,1 = 0, αcorr,2 = 0 1.563±0.008 1.916±0.008 1.695±0.018 1.561±0.008 1.362±0.011 1.067±0.017

αcorr,0 = 1e-2, αcorr,1 = 0, αcorr,2 = 0 1.532±0.008 1.886±0.012 1.670±0.016 1.533±0.007 1.356±0.011 1.051±0.018
αcorr,0 = 1e-1, αcorr,1 = 0, αcorr,2 = 0 1.618±0.006 1.968±0.008 1.701±0.015 1.617±0.005 1.395±0.011 1.093±0.019
αcorr,0 = 1, αcorr,1 = 0, αcorr,2 = 0 1.598±0.007 1.949±0.010 1.700±0.017 1.598±0.008 1.367±0.012 1.053±0.020
αcorr,0 = 1e1, αcorr,1 = 0, αcorr,2 = 0 1.635±0.008 1.736±0.014 1.514±0.022 1.635±0.008 1.273±0.014 1.062±0.018
αcorr,0 = 1e2, αcorr,1 = 0, αcorr,2 = 0 1.653±0.009 1.743±0.018 1.672±0.030 1.651±0.010 1.471±0.014 1.209±0.013

αcorr,0 = 0, αcorr,1 = 1, αcorr,2 = 0 1.547±0.008 1.895±0.008 1.678±0.018 1.547±0.006 1.345±0.011 1.048±0.019
αcorr,0 = 0, αcorr,1 = 1e1, αcorr,2 = 0 1.471±0.009 1.801±0.009 1.642±0.018 1.471±0.007 1.293±0.011 1.040±0.018
αcorr,0 = 0, αcorr,1 = 1e2, αcorr,2 = 0 1.337±0.008 1.628±0.009 1.538±0.021 1.337±0.007 1.200±0.013 0.967±0.018
αcorr,0 = 0, αcorr,1 = 1e3, αcorr,2 = 0 1.053±0.007 1.484±0.010 1.549±0.019 1.052±0.007 1.098±0.015 0.910±0.015
αcorr,0 = 0, αcorr,1 = 1e4, αcorr,2 = 0 1.042±0.004 1.482±0.009 1.494±0.018 1.041±0.005 1.129±0.012 0.927±0.017

αcorr,0 = 0, αcorr,1 = 0, αcorr,2 = 1 0.982±0.005 1.470±0.010 1.482±0.019 0.983±0.005 1.135±0.013 0.985±0.018
αcorr,0 = 0, αcorr,1 = 0, αcorr,2 = 1e1 1.074±0.010 1.499±0.016 1.556±0.025 1.074±0.011 1.095±0.013 0.896±0.016
αcorr,0 = 0, αcorr,1 = 0, αcorr,2 = 1e2 1.110±0.015 1.498±0.016 1.511±0.024 1.111±0.012 1.064±0.014 0.901±0.017
αcorr,0 = 0, αcorr,1 = 0, αcorr,2 = 1e3 1.277±0.018 1.662±0.019 1.586±0.023 1.281±0.016 1.101±0.010 0.859±0.012
αcorr,0 = 0, αcorr,1 = 0, αcorr,2 = 1e4 1.341±0.014 1.786±0.015 1.761±0.020 1.345±0.013 1.142±0.009 0.849±0.014

Table 7: Evaluation on the test data in the unconditional generation scenario of developmental modeling of
embryonic stem cells.

Methods All-Step Prediction One-Step Prediction
t1 t2 t3 t1 t2 t3

αcorr,0 = 0, αcorr,1 = 0, αcorr,2 = 0 1.499±0.005 1.945±0.006 1.619±0.016 1.498±0.005 1.418±0.009 0.966±0.016

αcorr,0 = 1e-2, αcorr,1 = 0, αcorr,2 = 0 1.468±0.005 1.908±0.007 1.586±0.015 1.467±0.004 1.416±0.009 0.957±0.016
αcorr,0 = 0, αcorr,1 = 1e3, αcorr,2 = 0 1.035±0.005 1.557±0.012 1.523±0.021 1.034±0.005 1.164±0.011 0.865±0.014
αcorr,0 = 0, αcorr,1 = 0, αcorr,2 = 1 0.946±0.004 1.503±0.007 1.440±0.015 0.946±0.004 1.205±0.008 0.917±0.013

Table 8: Evaluation in the conditional generation scenario of dose-dependent cellular response prediction to
chemical perturbations. Numbers (×1e-3) indicate the mean and median Wasserstein distances for all genes,
where lower values are preferable.

Methods t1 t2 (Most Challenging) t3
Mean Median Mean Median Mean Median

Random 573.0±51.3 516.9±24.2 578.7±51.7 520.2±24.6 577.5±52.9 519.0±25.1
NeuralSDE(RandInit) 529.9±73.4 578.7±46.2 536.5±73.4 592.5±45.3 536.3±75.8 585.7±53.0

VAE 227.6±87.5 168.6±107.1 215.7±74.7 159.6±87.8 210.0±70.0 150.5±77.7
NeuralODE 177.7±43.2 108.3±38.7 192.3±56.1 119.8±50.0 183.5±58.4 115.5±51.4
NeuralSDE 170.1±40.8 102.0±44.8 183.0±53.2 117.3±57.1 182.3±63.4 117.8±55.0
NLSB(E) 78.6±35.1 59.8±29.3 93.1±43.1 70.0±35.8 104.0±47.9 75.9±39.6

CLSB(αind > 0) 79.3±36.4 61.0±29.6 87.3±44.8 67.0±34.6 92.0±50.0 69.4±38.1
CLSB(αind = 0) 76.9±33.7 60.9±27.4 89.1±39.9 72.2±32.5 93.3±43.2 74.8±35.4

Terminal state evaluation. Our model not only demonstrates advantages in generating the inter-
mediate state populations between t1 and t3 as shown in Sec. 4, but it also excels in generating the
terminal state at t4, as illustrated in the Tabs. 9 & 10.

Table 9: Evaluation on the terminal state t4 for the stem-cell dataset.

Methods OT-Flow OT-Flow+OT TrajectoryNet TrajectoryNet+OT NLSB(E) NLSB(E+D+V) Ours(CLSB-α >0) Ours(CLSB-α =0)

WDist ↓ 0.799 0.748 0.702 0.692 0.755 0.716 0.707 0.687

Table 10: Evaluation on the terminal state t4 for the sci-Plex dataset.

Methods NeuralSDE(RandInit) VAE NeuralODE NeuralSDE NLSB(E) Ours(CLSB-α >0) Ours(CLSB-α =0)

WDist ↓ 2.26 1.03 1.04 1.07 1.28 0.80 0.70
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Experiment on an additional cell-differentiation dataset. Beyond the experiment using the cell-
differentiation dataset (Moon et al., 2019), we conducted additional experiments on a dataset curated
from (Weinreb et al., 2020) to further validate the proposed population-level regularization. We
adopted SBAlign (Somnath et al., 2023) as the base model (following the same experimental set-
tings) and further restrained the covariance velocity (Eq. (8)) in the training objective. The results
are shown in Tab. 11, demonstrating the effectiveness of our method on three out of four metrics.

Table 11: Means and standard deviations (in parentheses) of maximum-mean-discrepancy (MMD), ℓ2, RMSD,
and cell-type classification accuracy on cellular expression simulation, following the evaluation pipeline of
(Somnath et al., 2023).

Methods MMD ↓ ℓ2 ↓ RMSD ↓ Classification Accuracy ↑
w/o CorrLagr 1.07e-2±0.01e-2 1.24±0.02 0.21e-1±0.01e-1 56.3%±0.7%
w/ CorrLagr 1.61e-2±0.06e-2 1.07±0.04 8.93e-1±0.01e-1 57.6%±1.4%

Comparison with more SOTAs. We further compare with more baselines including (Tong et al.,
2023a;b). We follow the leave-one-out setting in (Tong et al., 2023a;b) and experiment on the
embryonic body dataset with results shown in Tab. 12.

Table 12: Experiments on the embryonic stem cell dataset following the leave-one-out setting in (Tong et al.,
2023a)

Methods DSBM DSB Reg.CFN TrajNet NLSB OT-CFN SF2M Ours

WDist ↓ 1.755 0.862 0.825 0.848 0.970 0.790 0.793 0.736

Experiment on larger and higher-dimensional dataset of CITE-Seq. We also examine the scala-
bility of our model in the larger and higher-dimensional dataset of CITE-Seq (Kim et al., 2020). We
follow the leave-one-out setting on 50 principal components as (Tong et al., 2023a), with the results
shown in Tab. 13 strikingly demonstrate the distinguished scalability of our method. We believe the
observed improvement is due to differences in the evaluation, where in the CITE-Seq experiment
the distribution mismatch was evaluated using 50 PCs versus≤10 PCs in the standard setting. Eval-
uating on more PCs further reveals the capability of different models in different aspects, showing
how they capture the ”main” distribution shifts (in the top PCs) versus how they handle “minor”
distribution shifts. This interestingly demonstrates that our model effectively captures both ”major”
and ”minor” distribution shifts during dynamic modeling.

Table 13: Experiments on the CITE-Seq dataset (high-dimensional setting) following the setting in (Tong et al.,
2023a)

Methods DSBM I-CFM OT-CFM SF2M Ours

WDist ↓ 53.81 41.83 38.76 38.52 9.07

Experiment on a non-biological application of opinion depolarization. Beyond single-cell ap-
plications, we conducted experiments on the application of opinion depolarization (Gaitonde et al.,
2021) to further validate the proposed population-level regularization. Our focus is on a type of
opinion dynamics that often results in strong polarization, meaning particles’ opinions tend to form
into distinct groups with opposite viewpoints. Take the party model as an example: particles receive
random pieces of information from a predetermined distribution. They update their opinions based
on these random inputs and an underlying rule: if the new information aligns with their current opin-
ions, they are more likely to adopt it; if it contradicts, they typically reject it. This approach, known
as biased assimilation, can easily lead to polarization, where the population divides into groups with
strongly opposed views. For more background, we refer the readers to (Liu et al., 2022).

The dimension of opinion depolarization is 2 following the original setting. We adopt DeepGSB
(Liu et al., 2022) as the base model, maintaining the same experimental settings, with two different
parametrizations for the actor-critic and critic roles. Additionally, we further restrain the covariance
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velocity (Eq. (8)) in the training objective. The results are shown in Tab. 14, demonstrating the
effectiveness of our method.

Table 14: Wasserstein distance between the simulation and ground-truth in the opinion depolarization experi-
ment, following the evaluation pipeline of (Liu et al., 2022).

Methods Actor-Critic Parametrization Critic Parametrization

w/o CorrLagr 8.45e-2 4.09e-2
w/ CorrLagr 8.36e-2 4.02e-2

Experiment on synthetic datasets. We conduct experiments on a synthetic dataset by referencing
(Tong et al., 2023a), to learn the transport from 8 Gaussian (mixture of Gaussian) to 1 Gaussian
distribution. To establish an ideal setting for evaluating our proposed regularization on correlation
conservativeness, we intentionally ensure that the source and target distributions have the same
covariance matrix. Thus, the PDFs of the source and target distributions are formulated as follows:

• Source 8 Gaussian:
∑8

i=1 wiN (µi,Σi) where
∑8

i=1 wi = 1, wi ≥ 0;

• Target 1 Gaussian: N (µ + d,Σ) where µ =
∑8

i=1 wiµi,Σ =∑8
i=1 wi

(
Σi + (µi − µ)(µi − µ)⊤

)
;

• Here, ∥d∥ reflects the difficulty of learning such a transport from one aspect (the larger ∥d∥, the
more difficult).

Building on the SF2M base model and its training paradigm (Tong et al., 2023a), we compare the
performance with and without our correlational regularization, using the Wasserstein 1 distance as
the metric. The Tab. 15 results demonstrate the effectiveness of our method, especially in difficult
cases.

Table 15: Wasserstein distance between the simulation and ground-truth in the synthetic experiment, following
the evaluation pipeline of (Tong et al., 2023a).

∥d∥ = 50 100 200

w/o CorrLagr 1.48 1.92 3.27
w/ CorrLagr 1.39 1.63 1.77

More visualization in unconditional generation (Sec. 4.1). We provide more visualization of the
simulated gene expressions (or their principal components) and trajectories as follows.
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Figure 4: Visualization of local dynamics for genes A2M-AS1 and A1BG.
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Figure 5: Visualization of local dynamics for genes A2ML1 and A2M.
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Figure 6: Visualization of local dynamics for genes A4GALT and A2M.
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Figure 7: Visualization of local dynamics for genes A4GALT and A2ML1.
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Figure 8: Visualization of local dynamics for genes AACS and A1BG.
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Figure 9: Visualization of local dynamics for genes AADAT and A2M.
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Figure 10: Visualization of local dynamics for genes AAK1 and A1BG-AS1.

N
ul

l
 R

eg
ul

ar
iza

tio
n

Ge
ne

 A
1B

G-
AS

1 t0

Obs_Expres
Pred_Expres
Pred_Traj

t1 t2 t3 t4

In
di

vi
du

al
 R

eg
ul

ar
iza

tio
n

Ge
ne

 A
1B

G-
AS

1

Gene AAR2

Po
pu

la
ti

on
 R

eg
ul

ar
iza

tio
n

Ge
ne

 A
1B

G-
AS

1

Gene AAR2 Gene AAR2 Gene AAR2 Gene AAR2

Figure 11: Visualization of local dynamics for genes AAR2 and A1BG-AS1.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

N
ul

l
 R

eg
ul

ar
iza

tio
n

PC
2

In
di

vi
du

al
 R

eg
ul

ar
iza

tio
n

PC
2

PC1

Po
pu

la
ti

on
 R

eg
ul

ar
iza

tio
n

PC
2

PC1 PC1 PC1 PC1

Figure 12: Visualization of global dynamics for principle components 1 and 2.
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Figure 13: Visualization of global dynamics for principle components 1 and 3.
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Figure 14: Visualization of global dynamics for principle components 1 and 4.
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Figure 16: Visualization of global dynamics for principle components 2 and 3.

N
ul

l
 R

eg
ul

ar
iza

tio
n

PC
4

In
di

vi
du

al
 R

eg
ul

ar
iza

tio
n

PC
4

PC2

Po
pu

la
ti

on
 R

eg
ul

ar
iza

tio
n

PC
4

PC2 PC2 PC2 PC2

Figure 17: Visualization of global dynamics for principle components 2 and 4.
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Figure 18: Visualization of global dynamics for principle components 2 and 5.
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Figure 19: Visualization of global dynamics for principle components 3 and 4.
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Figure 20: Visualization of global dynamics for principle components 3 and 5.
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Figure 21: Visualization of global dynamics for principle components 4 and 5.
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Figure 22: Aggregated visualization of generated dynamics for Fig. 2.
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