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ABSTRACT

We propose a method to solve k-HC,—the k-Hyperplane Clustering problem
which asks for finding k& hyperplanes that minimize the sum of squared 2-norm
(Euclidean) distances between each point and its closest hyperplane—to global
optimality via spatial branch-and-bound (SBB) techniques. Our method strength-
ens a mixed integer quadratically-constrained quadratic programming formulation
for k-HC, with constraints that arise when formulating the problem in p-norms
with p # 2. In particular, we show that, for every (suitably scaled) p € N U {00},
one obtains a variant of k-HC, whose optimal solutions yield lower bounds within
a multiplicative approximation factor. We focus on the case of polyhedral norms
where p = 1, 00 (which are disjunctive-programming representable), and prove
that strengthening the original formulation by including, on top of its 2-norm con-
straints, the constraints of one of the polyhedral norms leads to an SBB method
where nonzero lower bounds are obtained in a linear (rather than exponential)
number of SBB nodes. Experimentally, our method leads to very large speedups,
drastically improving the problem’s solvability to global optimality.

1 INTRODUCTION

Given m points {a1, . .., a,, } in R™, the k-Hyperplane Clustering problem, or k-HCs, asks for iden-
tifying k& hyperplanes which minimize the sum of the squares of the distances between each point
and the hyperplane closest to it in Euclidean (2-norm) distance. k-HC; arises when relationships of
co-linearity (in R?) or co-(hyper)planarity (in R™) are sought. One of the problem’s most natural
applications is line/surface detection in digitally-sampled images and in 3d environments Amaldi
& Mattavelli (2002). More applications are found in diverse areas such medical prognosis Bradely
& Mangasarian| (2000), linear facility location Megiddo & Tamir (1982)), discrete-time piecewise
affine hybrid system identification |[Ferrari-Trecate et al.| (2003)), principal/sparse component analy-
sis (Washizawa & Cichocki (2006); [He & Cichockil (2007); [Tsakiris & Vidal| (2017), nonlinear re-
gression He & Qin|(2010), dictionary learning |Zhang et al.|(2013), LiDAR data classification Kong
et al.[(2013), and sparse matrix representation |Georgiev et al.|(2007).

k-HCs was first introduced by Bradely & Mangasarian| (2000), where it is shown that, with k£ = 1,
the problem is solved by computing an eigenvalue-eigenvector pair of a suitably defined matrix built
as a function of the data points. k-HCs is AP-hard in any norm since fitting m points in R” with
k hyperplanes with 0 error is NP-complete even for n = 2 (Megiddo & Tamir}, [1982). To tackle
k-HC, (without optimality guarantees) when k£ > 2, Bradely & Mangasarian| (2000) proposed an
adaptation of the popular k-means heuristic by MacQueen et al.| (1967). An exact Mixed Integer
Quadratically Constrained Quadratic Programming (MI-QCQP) formulation for k-HCy which is
solvable with a spatial branch-and-bound method (SBB) is proposed by /Amaldi & Coniglio| (2013)),
together with a heuristic for larger-scale instances. Works addressing variants of k-HC, asking for
the smallest number of hyperplanes with a distance no larger than a given € > 0 are found in|Dhyani
& Liberti| (2008); |/Amaldi et al.| (2013)).

Contributions. We propose a method to solve k-HC; to global optimality via a spatial branch-
and-bound (SBB) techniques. We strengthen a classical mixed-integer quadratically-constrained
quadratic programming (MI-QCQP) formulation for k-HC, by including constraints (and variables)
that arise when formulating the problem in another p-norm (p # 2). We show that, under mild
assumptions, the inclusion of constraints stemming from a version of k-HC, formulated in one of
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the two polyhedral norms (where p = 1, oo) leads to an SBB method where a nonzero global lower
bounds is obtained in a linear number of SBB nodes, as opposed to the exponential number that is
necessary when the classical formulation is used. Our experiments reveal that our method leads to
very large speedups, substantially improving the problem’s solvability to global optimality.

2 PRELIMINARIES

Given a point a € R", its p-norm with p € N U {oc} is ||al, := limg—, (35—, lan]?)
particular, for p = 1,2, and oo we have |[ally = Y;_; |an|? [lallz == (35—, lanl? )1/2
llalloo = maxpepn {|ah|}l | The p-norm point -to-hyperplane distance d,(a, H) between a p01nt

a € R™and a hyperplane H:={z cR":2"w =4} of parameters (w,v) € R*" is defined
as the p-norm distance between a and the point y € H that is closest to it. Namely, dy,(a, H) :=
minyep ||a — y|p. Different arguments, including Lagrangian duality—see Mangasarian (1999),

can be used to show that dy(a, H) = M where p and p’ satisfy % + i = 1 For p = 2,

s

Twll,
dy(a, H) is called Euclidean pomt—to-hyperplane (or orthogonal) distance. In many applications,
such a distance is preferred as it leads to solutions that are invariant to rotations of the data points.

In spite of being defined on top of a p-norm, the distance function d,, intrinsically nonconvex w.r.t.
w regardless of the choice of p (the proof is in the appendix)'

Proposition 1. Given a hyperplane H:={x € R" : 2"w = v} and a point a € R", the function
dy(a, H) = M where 1 5+ 17 =1, is a nonconvex function of (w, ) for every p € NU {o0}.

llwll,r

This makes k-HC, substantially harder than classical machine learning problems where a norm is
minimized, and motivates the adoption of SBB techniques for solving it to global optimality.

3 APPROXIMATING k-HC,; USING DIFFERENT NORMS

Given m points {ay, ..., am,} in R™, the most compact nonlinear programming (NLP) formulation
T
for k-HCy reads (k-HCz) ming,, ) {Z:’;l min; e ] {W}} , where (w;,v;) € R,

j € [k], are the hyperplanes parameters. (k-HCz) has a non-smooth objective function due to
Proposition 1} Since ||w;||3 = ij wj, it features ratios of quadratics. While the inner min operator
can be easily dropped by introducing binary assignment variables (see further), such a formulation
is unsuitable for most nonlinear programming solvers as the denominator vanishes when w; = 0.

In the remainder of the paper, we consider k-HC,, ., a generalized version of k-HC which employs
a p norm not necessarily equal to 2 and which is parametric in a constant ¢ > 0. Its NLP formulation,
where % + ﬁ = 1, reads:

(-#c(p,c)) min { min { (al w; =)} ¢ lwslly 2 e € [k]} :

M (= I€lK]
Letting OPT(P) be the optimal solution value of problem P, the validity of (k-HC, ) and the
role that c plays in it are shown by the following lemma (the proof is in the appendix):

Lemma 1. The solutions to (k-HC 3 1)) and (k-HC3) coincide Also, (k-HC,, .)) is quadratically
homogeneous w.r.t. ¢, i.e., OPT(k-HC,, .y) = ¢ OPT(k-HC, 1)).

The property shown by the lemma will be useful to guide our choice of which p to use for introducing
additional norm constraints to the formulation of k-HC, (which, we recall, is the version of the
problem that we aim to solve in this paper) in order to strengthen it.

Rationale. k-HC,, .y with (p, ¢) # (2, 1) is of interest for two reasons. First (this section), it allows
us to show that, for a suitable choice of p and c, the optimal solutions to k-HC, .y are approximate

!"Throughout the paper, we adopt the notation [¢] := 1, ..., & for every & € N.
>Two norms where % + % = 1 are called dual. The 2-norm is self dual and the 1 and co-norms are dual.
3We report mathematical programming formulations in brackets and optimization problems without them.
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solutions (to within an approximation factor) of those to k-HC 2 1). Second (next two sections),
it allows us to prove that, again for a suitable choice of p and ¢, the formulations (k-HC(p,C)) and
(k-HC(3,1)) can be intersected to obtain a strengthened formulation which is valid for k-HCy and
which is also much easier to solve both in theory and practice.

Novelty. While changes of norm are frequent in the ML literature, the dual norm in the denom-
inator of the point-to-hyperplane distance requires, for our results, switching between primal and
dual norms and applying suitable scaling factors to the problem’s constraints in a way that, to our
knowledge, is new. The idea of intersecting formulations derived for different norms, which leads
to extremely large speedups and which, is also, to our knowledge, uncommon in the literature.

3.1 THE GENERAL CASE

‘We show that, whichever version of k-HCmc) one aims to solve (be it the 2-norm one with ¢ = 1 or
another one), the optimal-solution value of k-HC , .y for any choice of ¢ and a suitable ¢’ is within
an approximation factor of the optimal-solution value to k-HCy, .):

Theorem 1. Let p,q € N U {oo} and ¢ > 0. The three positive scalars o(p, q), (p,q),(p,
which, for all x € R", satisfy the congruence inequality o(p,q)||z|l, < B(p,q)l|zlly

v(p, l|z||p for p, ¢ € NU{oo} also satisfy the optimal-value inequality (5’332 OPT(k-HC, )

IN I/\S/

OPT (k—HC(q (ﬁ(pm)) < OPT(k-HC(p,c))-

" y(piq)

Theoreml shows that the optimal solution value of k-HC, ) with ¢ = = 229 Ep ’q; is a lower bound

on the optimal solution value of k-HC(,, . to within an approximation factor of 83 ’232. This is

important, as it shows which value to pick for ¢’ for any g-norm we may choose to obtain a relaxation
of k-HC(, ) and, in particular, one of k-HC 5 1) (which is, ultimately, the problem we aim to solve).

Notice that Theorem |I| can be extended to produce an approximation of k-HCy, ., from above to
within an approximation factor—we omit the details since, here, we solely are interested in approx-
imations from below to build tighter relaxations suitable for an SBB method.

Theorem!has a nice geometrical interpretation in terms of the feasible regions of (k-HC(, ) and
(k-HC( . % Z) ). Indeed, with ¢/ = b g ,qg the feasible region of the g-norm constraints that
corresponds to k-HC, . is a relaxation of (i.e., contains) the region that is feasible for the p-norm
constraints of k-HC, ). An 111ustrat10n is reported in Figure |1} I for p = 2,¢ = 1 and adopting
q = 1, 00, for which we have ¢/ = 1, % T

w2 w2

w1 w1

Figure 1: Feasible regions of {w € R™ : [|w||; > 1} and {w € R™ : ||w||eo > \%}

3.2 THE CASE OF POLYHEDRAL NORMS WITH ¢ = 1, o0
We now focus on polyhedral norms (¢ = 1,00). These are of computational interest due to their

tractability: while the constraints ||w;||; > ¢/, j € [k], with ¢ = 1, 00, are non-convex, they can be
stated as disjunctions over polyhedra, this being mixed integer linear programming representable.
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In light of this, we consider the following two relaxations of k-HC 5 1) (see Figure for an illustra-
tion of the feasible regions of the projection of these two problems onto the w space for &k = 1):

m
(k-HC(o0,1)) min {Z;ﬁg}g} {(@lw; =) pihws > 1,5 € [k] } :
’ i=1

(k-HC(l,;ﬁ))({rulig){ Jneli[;g] {(a?wj —Vj)Z}injHoo > =) € [k]}.
’ i=1

Notice that due to norm duality, (k-HC( 1)) features a 1-norm constraint and (k-HC(L - )) an
oo-norm one. For these two problems, Theorem [1|leads to the following result (the proof is in the
appendix):

Corollary 1. k-HC (. 1) and k—HC(l,%) satisfy:

1

- OPT(k’—HC(z’l)) < OPT(k‘—HC(OO’l)) < OPT(k—HC(Q’l))
1

— - < - 1 < - .
- OPT(k HC(QJ)) < OPT(k HC(L%)) < OPT(k HC(2’1))

With the first chain of inequalities, the corollary shows that solving k-HC , 1), i.€., formulating k-

HC with the constraint ||w;||; > 1 for all j € [k], leads to a relaxation to within a 2 approximation
factor. With the second one, the corollary shows that solving k—HC(l)%), i.e., solving the version

of k-HC with the constraint ||w;]|oc > ﬁ for all j € [k], leads to another relaxation also to within

the same approximation factor L.
n

3.3 MULTI-NORM RELAXATION

Since both ||w;|1 > 1, j € [k], and ||w;|c > ﬁ,j € |k], are relaxations of ||w;||2 > 1, j € [k],
a strengthened relaxation of k-HC(; 1) can be obtained by simultaneously imposing both. Such a

multi-norm relaxation, which we refer to as k-HC qyi,1), reads

. S T 2 Mwilln > 1, 5 € [k]
(k-HC<mulli,1))gﬂl}’l;l) {;JHEI%IE] {(ai wj — 5) }'Ilelloo > ﬁai ek (-

Letting ||w||mu := min{||w]||1, v/n||w||~}, one can see that simultaneously imposing ||w;[; > 1
and ||wjloc > ﬁ,j € [k], coincides with imposing ||w;||mas > 1,5 € [k]. A depiction of the

feasible region is reported in Figure [2]

Figure 2: Feasible region of {w € R™ : ||w||mu > 1}
So far, our analysis has hinged on the possibility of translating a p’-norm constraint into the cor-
responding d,, distance, on which we applied Theorem E} Deriving an approximation factor for
k-HC (mu,1) is not as easy, though. This is because the sub-level sets of the function | ||| muii are not
convex and, thus, there is no p-norm, p € N U {oco}, whose adoption directly leads to k-HC (i, 1)-

In spite of this, in the following we show that we can still derive an approximation factor by con-
structing the norm that is implicitly minimized when min{||w||1, v/7||w]||sc} > 1 is imposed.

We start with the following lemma (the proof is in the appendix), which shows what combination of
point-to-hyperplane distances is minimized in k-HC when imposing min{||w]||1, v/7||w||ec} > 1:
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Lemma 2. Imposing min{||w||, waHoo} > 1 coincides with accounting for each point-to-
hyperplane distance as max{d(a;, H;), le (a;, H;)}, which translates in measuring the dis-

tance between a; and the closest point on Hj, call it y, as max{||a; — y||co, ﬁHai —y|l1}-

We now prove a second lemma (the proof is in the appendix) which shows that the function
max{||z||co, ﬁ [|z||]1} is a norm and which also constructs a congruence inequality for it:

Lemma 3. The function max{ ||z, % lz||1 } is @ norm on R™ and, for all x € R™, it satisfies
the sharp congruence inequality

n Y zlle < max{ lelloo, rlleln <l

Crucially, the following holds:
Corollary 2. Combining Lemma E]with Theorem the multi-norm relaxation k-HC 1) satisfies

1
NG OPT(k-HC(3,1)) < OPT(k-HC(mui1)) < OPT(k-HC(a1)).

4 SOLVING STRENGTHENED FORMULATIONS OF k-HC( ) VIA SBB

We now focus on solving k-HC 3 1) to global optimality via SBB. We analyze the number of SBB
nodes needed to compute a nonzero global lower bound when solving a basic formulation of the
problem, and then prove that intersecting the basic formulation for k-HC; ;) with one of our relax-
ations involving the polyhedral norms allows for computing a nonzero global lower bounds much
earlier.

4.1 SPATIAL BRANCH-AND-BOUND

The basic idea of the spatial branch-and-bound (SBB) method is of building a dual bound by op-
timizing over a convex (typically polyhedral) envelope conv(F') of the feasible region F' of the
problem. F'is then split into two sub-regions F and F5 with tighter bounds on at least a variable.
This allows for constructing tighter convex envelopes of F; and F5 in such a way that the optimal
solution over conv(F’) is cut off due to not belonging to conv(F;) U conv(F3). F; and F; are then
recursively optimized in a classical divide-et-impera (branch-and-bound) fashion with a binary-tree
search.

Let us consider the case of k-HC(; ;). We assume (as done by most of the state-of-the-art solvers
such as Gurobi |Gurobi Optlmlzatlon LLC (2022)), that polyhedral envelopes are employed. Under
such assumption, when considering the nonlinear constraints ||w;|[3 = >, _; w?h > 1, forj €

[k], the SBB method first introduces the auxiliary variable z;;, for each nonlinear term wf-h and a
corresponding defining constraint z;;, = w?h. It then substitutes the original nonlinear constraint

with >°)'_, zj5 > 1. Each defining constraint is then relaxed into a polyhedral envelope. The
point-wise minimal outer envelope of a bilinear product corresponds to the well-known McCormick
envelope [McCormick| (1976).

4.2 BASELINE MATHEMATICAL PROGRAMMING FORMULATION FOR k-HC (2 1)

We start by considering as baseline the following classical Mixed Integer Quadratically Constrained
Quadratic Programming (MI-QCQP) formulation of k-HC 3 1):

"oz =1 Vi € [m]
(k-HC 2,1 ) Z] 1 Li J .
ey Z 2 sl >1 vj € [k]
min 0t d > wj i — v —d” (1—5131'1') Vi € [m],j € [K]
(w,y),2.d di > —wl a; +~; —d” (1 —zi;)Vi € [m], j € [K]

Init, z;; € {0,1} takes value 1 if and only if a; is assigned to the hyperplane of index j € [k];
d; is the distance between a; and the hyperplane of index j € [k]; dV is an upper bound on the
largest distance between any point a; and hyperplane of index j € [k]. The only nonconvexity of
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the formulation is due to the 2-norm constraints. W.Lo.g., we assume a; > 0 for all ¢ € [m] (as this
can be easily obtained in preprocessing by translating the dataset).

The following bounds on the variables can be included. We let dV := ||b ¢||2, where e is the all-
one vector and b is the length of the edge of the smallest hypercube that contains {a1,...,am}.
Since ||w,||2 = 1 holds in any optimal solution and max{||w;||ec : ||w;]l2 = 1} = 1, we impose
lwilleo < 1via—e < w; <e,j € [k]. These bounds imply —nb — d¥ < ~; <nb+dY, j € [k].

Since the point-to-hyperplane distance is symmetric, given any solution to k-HC 3 1), an equivalent
one can be obtained by changing the sign of w; for some j € [k]. To remove such a symmetry
(symmetries are known to be a hindrance when solving mathematical programming problems to
optimality via methods based on (spatial) branch-and-bound), we impose w; to belong to an arbitrary
half-space of R™ for each j € [n] by imposing w;1 > 0, € [k], where wj; is the first component
of w;. In this way, any solution that is obtainable by changing the sign of a component of one of
the vectors w; becomes infeasible (due to being obtained from the previous one by reflection of w;
over the hyperplane defining the halfspace that we selected), thus breaking the symmetry. In all our
formulations, we partially remove the symmetry on z;;, ¢ € [m],j € [k], that is induced by the

assignment constraints by imposing x;; = 0 for all ¢,j € [m] x [k] with ¢ < j. This reduces the

number of 0-1 variables by Z;ﬁ: ““;”E

4.3 SOLVING THE FORMULATION (k-HC(3 1)) VIA SBB

Let us now analyze the behavior of an SBB method when solving the classical formulation
(k-HC(3,1)). Since the projection onto the w space of the feasible region of £-HC s ;) is nonconvex
and its complement is symmetric about the origin, any SBB method based on convex envelopes will
necessarily convexify the infeasible region, thus making the trivial solution w; = 0, j € [k], feasi-
ble. This leads to a bound as weak as possible due to the fact that the objective function is the sum
of squares >, d? > 0 and, with (w;,7;) = 0, j € [k], we obtain ) ;" | d? = 0.

The following assumption holds in most SBB codes—see, e.g., [Belotti et al.| (2009):

Assumption 1. Assume that, when spatially branching on variables with a symmetric domain,
branching takes place on the mid point of the domain.

Notice that, due to the bounds we included, the domain of wjp, j € [k], h € [n], is symmetric.

Crucially, under Assumption (1| the geometry of the feasible region of k-HC 5 1) makes it so that
the number of branching operations that are needed to make the 0 solution infeasible (and, thus,
compute a nonzero global lower bound) is exponentially large (the proof is in the appendix):

Proposition 2. Under Assumption|l| when solving k-HC (3 1) a nonzero lower bound is obtained
only after generating Q(2F("=1) nodes.

This is particularly bad since, until the first nonzero lower bound has been calculated, no pruning
can happen on the tree due to the fact that a lower bound of 0 trivially holds at any node (since the
objective function is a sum of squares).

4.4 STRENGTHENED FORMULATIONS

We now construct valid formulations for k-HCs which are strengthened by featuring not only the
2-norm constraints but also a collection of polyhedral-norm constraints. Building on the relaxations
we constructed before, we introduce the following three strengthened formulations (in each of them,
the norm constraints are imposed for all j € [k])):

(w,y) | = I€l¥]

m
. . wj
(k-HC 2,1, (co,1) it { min { (@] w; =)} : [l
‘ Jit
7

VIV
— =
—

. lwsll2 > 1
k-HC min mln{ a;ruw — v 2} BT,
( <2’”’“*ﬁ))(m,w> {ilje[lc] (@05 = %) £ ¥l foo > NG
m ij'HQ 2 1
k-HC multi. 1) )Min min{ a;rw-— i 2};\|w'\|121 .
( (2,1),( 11,1))(%” ;lee[k] ( i = 5) ij'Hoo > 1
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Before analyzing the number of branching operations needed to achieve a nonzero lower bound
with these formulations, we report the Mixed Integer Linear Programming (MILP) formulations by
which we formulate the polyhedral-norm constraints.

1-norm. We formulate the constraints ||w;|[; > 1, j € [k], via the following absolute-value refor-
mulation:

Wiy = Wiy = Win he [n] (1a)
wh, < sjn h € [n] (1b)
wiy, < (1= s;n) h € [n] (Ic)
> (wh +wy) 2 1 (1d)
h=1

0 <wjy,wy, <1 h € [n] (le)
sjn € {0,1}" h € [n]. (1f)

The binary variable s;;, denotes the sign of the h-th component of w;. Consider a component w;y, of
index h of w;. Due to Constraints —, if wjp, > 0, then w}), > 0 (with w}, = w;, and wj;, =
0)and s, = 1. Otherwise, if w;, < 0, then w}, > 0 (withw, = 0and w}, = —w;p) and s;5 = 0.
Since w;r and w;" are component-wise complementary thanks to Constraints —, we deduce
that w;L +w; = |w;| holds. Thus, Constraint @ guarantees ||w;||; > 1. When these constraints
are imposed, we break symmetry as mentioned before by imposing wj; > 0, j € [k]. This leads to
sj1 = 1 and w;; = 0, thanks to which Constraint @) becomes w;1 + ZZZQ(w;'h +wy,) > 1.

oo-norm. We formulate the constraints |wj||e > \%,j € [k], ie., maxpepn{|winl} > ﬁ,

J € [k], as the disjunction \/} _, (wjh < —vnVuwj, > ﬁ) ,J € [k]. Differently from the pre-
vious cases, in this case we break symmetry by (w.l.0.g.) always selecting w;;, > ﬁ from each
elementary disjunction w;; < —ﬁ Vo wip > ﬁ This translates into considering the restricted

the following MILP formulation:

disjunction \/j_, wjp > ﬁ, Jj € [k]. For each j € [k], we restate the resulting disjunctive set via

1
Wi > ﬁ (1 - 2(1 — Ujh)) h € [n] (2a)
S =1 2b)
h=1
ujn € 0,1} he . 2e)

Due to Constraint , if u;p = 1 holds for some h € [n], then Wip > ﬁ holds (the constraint is

inactive if u;, = 0, and reads w;;, > —ﬁ). Constraint li imposes that exactly a component of
uj = (uj1,...,uj,) beequal to 1.

When imposing multiple norm constraints at once, we only have to pay attention to the way sym-
metry is prevented, as the symmetry-breaking constraint w;; > 0 we introduced for the constraints
lwille > 1, j € [k], and |Jw,[x > 1, j € [k], is not compatible with the one-sided disjunction
we considered for ||w;||co > ﬁ, Jj € [k], and imposing both would not lead to an over-restriction.
Whenever the ||w;||o > ﬁ constraints are imposed, we sort the issue by dropping the symmetry-
breaking constraints w;, > 0, j € [k].

4.5 SOLVING THE STRENGTHENED FORMULATIONS VIA SBB

We extend the analysis in Proposition [2] to the strengthened formulations with the following two
propositions (their proofs of both are contained in the appendix):
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Proposition 3. Assume that the constraint |w;||y > 1, j € [k], is imposed and that branching
takes place on the s;, variables first. Then, a nonzero global lower bound is obtained only after

generating @(Qk("_l)) nodes; after this, no further branching on w takes place.

Proposition 4. Assume that |

Wjlloo > ﬁ, J € [k, is imposed and that branching takes place on

the w;y, variables first. Then, O(nk) nodes suffice to obtain a nonzero lower bound; after this, no
further branching on w takes place.

Propositions and show the crucial advantages of strengthening formulation (k-HC 3 1)) as we
proposed via the two (scaled) polyhedral-norm constraints we considered. Proposition indicates
that, if the ||w;||1 > 1,7 € [k], constraints are imposed and branching takes places on the 0-1
variables of such norm constraints, in a complete SBB tree of depth ©(2%("~1)) the polyhedral-
norm constraint is satisfied in every leaf node. This is in stark contrast to the 2-norm case, where the
same number of branching operations only suffices to obtain the first nonzero global lower bound,
and the number of branchings needed to completely describe the feasible region of the problem in
the w space depends on the solver’s feasibility tolerance (since, for each j € [k], the complement of
the feasible region is a sphere).

Crucially, Proposition {4| shows that, when the ||w;|o > ﬁ, J € [k], constraints are imposed

and branching takes places on their 0-1 variables, the size the SBB tree is extremely small—only
polynomial in k£ and n. The difference between the two results is due to the geometry of the 1- and
oo-norm balls, since the former has 2™ facets while the latter only 2n.

When included in a formulation for k-HCy on top of the ||w;|lo > 1,7 € [k], constraints, the
polyhedral-norm constraints accelerate the computation of a nonzero global lower bound, thus lead-
ing to more pruning and, overall, a faster SBB method. This is better shown in the next section.

5 COMPUTATIONAL RESULTS

We assess the effectiveness of our strengthened formulations with Gurobi 9.5’s SBB using 12 threads
on a 2.6GHz Intel Core 17-9750H equipped with 32 GB RAM, with a total time limit across the 12
cores of 168,000 seconds (46 hours).

We consider two testbeds: Low-dim and High—-dim. Low-dim contains 43 instances with
m = 10,...,30, n = 2,3, and £ = 2,3. These instances are a superset of the 24 instances
tackled with SBB techniques in|Amaldi & Coniglio| (2013). Hi gh—dim contains 43 instances with
m=10,...,17,n =2,3,4,5, and k = 2, 3,4, 5. Both datasets are generated by randomly choos-
ing (w;,v;), j € [k], with a uniform distribution in [—1, 1] and distributing uniformly at random
the m points such that each of them belongs (with O distance) to a hyperplane. Then, an orthog-
onal deviation from the corresponding hyperplane is added to each point by sampling a Gaussian
distribution with 0 mean and a variance that is selected, for each hyperplane, uniformly at random
in [0.7 - 0.003, 0.003]. Details on how to access and run our code as well as on how to access the
dataset we used in the experiment are reported in the appendix.

Tables [T] and [2] report, per formulation, the median and the inter-quartile range (IQR) of the com-
puting times on the subset of instances solved by all methods, the median speed-up relative to
(k-HC(2,1)), a 95% bootstrap confidence interval, and the Holm-corrected (with a family-wise error
rate a = 0.05) p-value of a two-sided Wilcoxon signed-rank test against (k-HC 3, 1)) on paired data.
More detailed results are reported in Tables 3]

Let us focus first on the Low-dim testbed. = With the three strengthened formulations
(k—HC(271)7(17%)), (k-HC(2,1),(00,1))> and (k-HC(2 1), (muri,1))> 10 instances that are not solved in

over 46 hours with the classical formulation (k-HC (5 1)) are solved in under 2 hours. With the
strengthened formulations, the 31 instances that are also solved with the classical formulation are
solved, respectively, 8.1, 8, and 4.5 times faster. Incidentally, our results on the Low-dim testbed
prove that all the heuristic solutions found in|/Amaldi & Coniglio|(2013) on the 24 instances therein
considered (those with m = 10, 14, 18,22, 26, 30) are optimal.

Let us turn now to the High—dim testbed. On it, with the best-performing of the strengthened
formulations we manage to solve 22 more instances then with the classical formulation. With the
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strengthened formulations, the 20 instances that are also solved with the classical formulation are
solved, respectively, 41, 28, and 34 times faster.

Notice that the speedup obtained with (k-HC(2 1), (muii,1)) is smaller than the ones obtained with
(k-HC(2,1),(00,1)) and (k:-HC(Q’l)’(L%)). Such a behavior is well explained by the results of Propo-
sitions 3] and [} As n and k increase, the difference between the exponential lower bound (on the
number of nodes required to obtain a nonzero global lower bound) in the first proposition and the
polynomial one in the second one becomes larger and larger. Thus, any branching operations taking
place on the constraints ||w;|[; > 1 have a much smaller impact on the bound than those taking

place on the ||w;|/c > ﬁ, J € [k], which explains the superior performance of (k-HC 2,1}, (00,1))-

Table 1: LowDim: distribution-aware compari-  Table 2: HighDim: distribution-aware compari-

son on the 33 instances solved by (k—HC(Q,l)). son of the 20 instances solved by (k:—HC(Q,l)).

Algorithm Median (s) IQR (s) Speed-up 95% CI p-valueT Algorithm Median (s) IQR (s) Speed-up 95% CI p-valuei

(k-HC(s,1)) 2070 5422 Ix - - (k-HC(2,1)) 169.9 2206 Ix - -

(k-HC(2,1),(00,1)) 255 478 8.Ix [4.7x, 12.6x] 2.9 x 1077 (k-HC(2,1),(s0,1)) 415 297 41x [5x, 167x] 1.8 x 107°

(F-HC, ) (L) 260 525 80x [4.5x, 11.9x] 9.3 x 10717 (k-HC L 610 283  28x [5x, 126x] 2.4 x 10~°
’ e (2‘1),(1.ﬁ)

(k-HC (i, 1)) 461 2163 45x [1.7x, 7.3x] 23 x 107" (k-HC (i, 1)) 500 183 34x [6x, 145x] 3.1 x 107°

Table 3: Results on the LowDim dataset (sub-  Table 4: Results on the Hi ghDim dataset (sub-

optimal values are in italics). optimal values are in italics).
(k-HC(2,1)) (k-HC(2 1), (c0,1)) ("FHC(Q_I)_(Lﬁ)) (k-HC (muni, 1)) (k-HC(2,1)) (k-HC(2 1), (c0,1)) <"7-HC(2_1)_(L%)) (k-HC (muni, 1))
m n k obj time obj time obj time obj time m n k obj time obj time obj time obj time
02400 8.3 0.0 24 0.0 1.8 0.0 6.8 10 2203 03 03 02 03 02 03 0.2
04200 4.9 0.0 0.8 0.0 6.1 0.0 39 10 2 305 0.7 0.5 1.0 05 0.8 0.5 1.0
12401 219 0.1 9.8 0.1 59 0.1 17.7 14 2 285 1.6 85 0.6 8.5 02 85 0.3
12500 12643 0.0 392.8 0.0 300.2 0.0 2689.7 14 2 308 319 0.8 44 08 34 08 54
1 4200 54 0.0 1.6 0.0 1.6 0.0 2.1 18 2 2 34 139 34 04 34 04 34 0.7
22401 794 0.1 17.0 0.1 8.1 0.1 30.5 18 2 3 07 4889 0.7 39 07 44 07 4.6
22500 425.6 0.0 160.4 0.0 56.8 0.0 282.8 22 2297 1792 9.7 1.7 97 14 97 0.9
24201 17.3 0.1 12 0.1 7.7 0.1 10.1 22 2 324 22133 24 112 24 112 24 9.8
25200 29.3 0.0 14.4 0.0 164 0.0 26.1 25 2282 289 82 0.6 82 04 82 1.4
32401 238.2 0.1 19.4 0.1 14.6 0.1 384 25 2 3 2.7 168000.0 2.7 936.6 2.7 96.1 2.7 221.0
32500 935.1 0.0 127.1 0.0 55.8 0.0 170.7 26 2 2 - 168000.0 5.8 62 58 104 58 2.2
33400 41437 0.0 75676 - 168000.0 - 168000.0 26 2 3 - 168000.0 3.4 392 34 56.6 3.4 28.3
34201 13.0 0.1 6.5 0.1 2.1 0.1 9.3 27 2 2 - 168000.0 5.1 0.7 5.1 26 5.1 0.8
34300 948.7 0.0 567.1 0.0 712.6 0.0 4625.7 27 23 - 168000.0 3.3 16784 3.3 2687.7 3.3 238.6
35201 47.0 0.1 11.1 0.1 19.8 0.1 28.3 28 2 2 - 168000.0 11.7 8.6 11.7 6.3 11.7 1.8
4 2402 683.1 0.2 224 0.2 122 0.2 55.8 28 2 3 - 168000.0 3.6 293.1 3.6 471.3 3.6 153.5
4 2500 65266 0.0 628.6 0.0 211.9 0.0 586.0 29 2 2 - 168000.0 7.1 08 7.1 03 7.1 0.8
4 3 4 -168000.0 0.0 2757.6 0.0 2784.8 0.0 7540.2 29 2 3 - 168000.0 7.1 7694.9 7.1 6029.0 7.1 1476.4
44205 585 0.5 22 0.5 7.0 0.5 9.6 30 2 2 - 168000.0 9.1 104 9.1 385 9.1 1.6
4 4 300 14475 0.0 687.9 0.0 890.5 0.0 6906.7 0 2 3 - 168000.0 3.4 1729 34 191.2 34 44.3
4 5201 120.1 0.1 13.8 0.1 21.5 0.1 36.3 03209 1.1 09 04 09 1.0 09 0.9
52403 13506 03 329 03 234 03 54.4 3300 302 0.0 326 0.0 31.9 0.0 41.9
52500 58542 00 320.5 0.0 92.9 0.0 4453 43207 84 0.7 08 0.7 08 0.7 1.4
5 3 4 -168000.0 0.0 2760.8 0.0 1772.1 - 168000.0 4 3301 2064 0.1 29.7 0.1 255 0.1 49.7
54206 37.5 0.6 5.8 0.6 8.4 0.6 9.2 3207 160.6 0.7 3.7 0.7 78 0.7 4.5
54 300 3803.0 00 515.6 0.0 439.4 0.0 2208.8 3304 22349 04 934 04 91.6 04 157.9
55201 98.1 0.1 13.5 0.1 40.7 0.1 35.0 22 3243 625 43 156 43 113 43 10.8
6 2402 587202 119.6 0.2 28.9 0.2 67.3 22 3 3 1.3 1353629 1.3 1089.5 1.3 6382 1.3 1243.7
6 2 5 - 168000.0 0.0 582.6 0.0 346.6 0.0 781.9 23 3209 64594 09 8.1 09 455 09 10.1
6 3 4 - 168000.0 0.0 4586.5 0.0 24072 - 168000.0 24 3 269 18049.6 6.9 6603 6.9 4747 69 34.5
6 3 5 - 168000.0 - 168000.0 - 168000.0 - 168000.0 24 3 3 1.7 168000.0 1.5 24706 1.5 2716.7 7.9 3817.0
6 4 2 1.1 179.0 1.1 129 1.1 15.0 1.1 12.1 25 3 2 57 228869 5.7 70.7 5.7 28.1 89 14.2
6 4 300 51442 0.0 554.5 0.0 601.1 0.0 2507.3 25 3 3 1.3 168000.0 1.3 19523 13 5060.3 9.9 2885.1
6 5208 4449 0.8 28.5 0.8 432 0.8 60.8 26 3 2 - 168000.0 4.5 63 45 4.7 10.9 4.4
7 2 4 0.2 168000.0 0.2 37.1 0.2 42.1 0.2 69.2 26 3 3 - 168000.0 1.3 59379 1.3 43457 119 2300.2
7 2 5 0.1 168000.0 0.1 14523 0.1 999.4 0.1 1517.1 27 3 2 - 1680000 3.4 215.1 34 1274.8 12.9 58.5
7 3 4 - 168000.0 0.0 4970.5 0.0 25539 - 168000.0 27 33 168000.0 2.9 525489 29 65949.3 13.9 35206.1
735 168000.0 - 168000.0 - 168000.0 - 168000.0 28 3 2 168000.0 3.6 31.1 3.6 1.7 149 10.2
74205 175.7 0.5 .8 0.5 10.6 0.5 9.8 28 33 168000.0 1.4 42349 14 74560.6 15.9 4180.9
7 4 3 - 168000.0 0.0 904.1 0.0 967.5 0.0 3679.0 29 32 168000.0 8.1 1435 8.1 4.0 16.9 12.
7 4 4 - 168000.0 0.0 82182 1.4 97.4 0.0 8104.9 29 33 168000.0 4.9 168000.0 4.9 168000.0 77.9 168000.0
75214 1092.7 1.4 87.0 14 97.4 1.4 101.0 30 3 2 168000.0 2.5 8083.1 2.5 168000.0 18.9 3014.8
7 5 3 - 168000.0 0.0 8116.4 0.0 8082.4 0.0 7910.9 30 33 168000.0 3.2 23488.8 3.2 168000.0 19.9 6541.5
#Sol 31 41 40 37 #Sol 20 42 40 42

6 CONCLUDING REMARKS

We have focused on solving the 2-norm k-Hyperplane Clustering problem with spatial branch-and-
bound (SBB) techniques by strengthening the classical formulation with constraints that arise from
(scaled) p-norm formulations of the problem, with p # 2. Focusing on the 1- and co-norms, we
have theoretically shown that including the constraints stemming from the 1-norm version of the
problem leads to computing nonzero lower bounds in a linear (rather than exponential) number of
SBB nodes. Our experimental results show very large speedups, substantially improving the prob-
lem’s solvability to global optimality. Future works include addressing the problem’s combinatorial
(assignment) aspect, which, as the number of data points increases, may become a limiting factor
when solving k-HCs to global optimality, and extending our techniques to other problems featuring
nonconvex p-norm constraints.
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A APPENDIX

You may include other additional sections here.

B CODE REPOSITORY AND LICENSING

The code developed for this work is available at ht tps: //anonymous.4open.science/r/
norms—5F23|and freely distributed under the Apache 2.0 license

C LIST OF OUR THEORETICAL RESULTS WITH THE CORRESPONDING PROOFS

Proposition 1. Given a hyperplane H:={z € R" : 27w = v} and a point a € R™, the function
dy(a, H) = M where * —|— = =1, is a nonconvex function of (w, ) for every p € NU {oo}.

llwll,r

Wﬂ is a convex function of (w, ) if and only if the following holds for

every (wy,71) and (wa,¥2) € R" 1 and A € [0, 1]:

Proof. By definition, lw

)\M (1- /\)M >
”lep’ Hw2Hp’ -
|(Aw + (1 = Nw2) Ta — (A1 + (1= A)2)]

(3)
[Awy + (1 = Awa|p
Let a = (0,0) and consider two hyperplanes of parameters wy := (1,—%),71 = 1 and wy :=
(—%, 1),72 = 1. Lety :=y1 = 7». Letting A= 1, Inequality (3] reads:
1 1 1
) “4)

ip - ’ ’ ’
Vit ) ¢1+ o e ey
. 2 p/ 2 p/ y 1 p/
(5) +(5> = ”(5)’

Taking both sides to the p/-th power, we have 2 (2)” > 1+ (1)”. After moving 1 to the left-
hand side and multiplying both sides by 5”/, we deduce 2-2°" — 1 > 51’/, which, if valid, implies
2.2 >2.2¢ —1>5". As (3)” > 2holds for every p’ € NU {oo} (as one can see by setting
p’ to its smallest value, i.e., setting p’ := 1), Inequality is proven not to hold for any choice of
p € NU {o0}. O

Lemma 1. The solutions to (k-HC (3 1)) and (k-HC3) coincide Also, (k-HC,, .)) is quadratically
homogeneous w.rt. ¢, i.e., OPT(k-HC, .)) = ¢ OPT(k-HC; 1)).

or, equivalently:

Proof. We start by showing that k-HC,=! and k-HC, are equivalent when ¢ = 1 and p = 2.
Indeed, as n points in general position fix a hyperplane in R™, only n of the n 4+ 1 parameters
in (wj,v;) € R™! are independent. Thus, ||w,;||3 = ||w;]]2 = 1 can be imposed w.l.o.g. for
all j € [k]. Relaxing ||wj|l2 = 1 as ||w;|]2 > 1 is w.l.o.g. as the latter is tight in any optimal
solution—indeed, if not, a strictly better solution is found by scaling (w;, ;) by m, Jj € [k].

Let {(w;,7;)} e[r be an optimal solution to k-HC,=°. As argued, ||w;|,» = c holds. Let now
(), 77) s= £
feasible for k- HC . Its objective function value is —5 times the one of {(w;, )} e[x. Since such
a multiplicative difference is a constant, the scaled solutlon is optimal for k- HCEl. Thus, we have
OPT(k-HC,=°) = ¢> OPT(k-HC,="). O

‘nttps://www.apache.org/licenses/LICENSE-2.0

, ] € [k]. Such a scaled solution satisﬁes [w}]l,r = 1 forall j € [k] and, thus, is
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Theorem 1. Let p,q € NU {0} and ¢ > 0. The three positive scalars a(p, q), B(p, q),v(p,q)
which, for all x € R", satisfy the congruence inequality o(p,q)||z|l, < B, q)llzll; <

v(p, Q)| for p,q € NU{oo} also satisfy the optimal-value inequality = (’(p Q) z OPT(k-HC(; () <

OPT (k—HC 8. q>)) < OPT(k-HC(p,c) ).

(’wpq

Proof. The inequality
. < . ! < 1
J{Iél)r(lf(x) < irél)r(lf (z) < min f"(x) 5)

zeX

holds for any three functions f, f/, f/ : X — R satisfying f(z) < f/(z) < f"(z) forall z €
X C R™. Since vector norms in R™ are congruent, for every p,q € N U {oc} there are three

positive scalars a(p, q), B(p, ), 7(p, g) which satisfy a(p, g)||z[[, < B(p,q)llz[l; < v(p, g)l|z]],
for p,q € NU {oc}. Since, by definition, dy,(a, H) = minyep ||a — y|[,, equation 5] leads to the
following congruence relationship for point-to-hyperplane distances that holds for every hyperplane
H in R" and point a € R™:

a(p,q) dy(a, H) < B(p,q)dy(a, H) < ~(p,q) dp(a, H). (6)

Squaring equation |6{and letting H, ..., Hy be an arbitrary choice of k£ hyperplanes, another appli-
cation of equation |5|leads to

a(p, Q)er_reli[lrcl]{dQ(ainj)p} < B(p.q)*? nel%n]{d (a;, Hy)q} <

20 17
v(p, q)* Jnelb?]{d (a;, Hj)p}- (7

Summing over the data points, we obtain the following surrogate inequality:
q)? er,reli[g]{f(ai» Hj)p} <
i=1

2 : 2
q) ;;gg]{d (ai, Hy)g} <

2 . 2
q) ;;gg]{d (ai, Hj)p}-

Applying again equation @ for the choice of the optimal hyperplane equations, we de-
duce a(p,q)? OPT(k-HC,=') < B(p,q)?OPT(k-HC,=') < ~(p,q)? OPT(k-HC,=").
Multiplying through by 02 and using Lemma we obtain a(p, q)> OPT(k-HC,=¢) <
B(p,q)*> OPT(k-HC,=°) < v(p,q)*> OPT(k-HC,=°). By using Lemmaone more time, we de-
duce S(p, )2 OPT(k-HC,=¢) = OPT(k‘—HCqZCB(“q)), which allows us to write:
a(p,q)* OPT(k-HC,~¢) <
OPT(k-HC,Z?PD) < ~(p, q)? OPT(k-HC,=°).
Dividing through by v(p, ¢) and applying Lemma one last time, the claim is obtained. O

Corollary 1. k-HC (. 1) and k-HC(l,%) satisfy:

1

- OPT(/{:—HC(QJ)) < OPT(k—HC(OOJ)) < OPT(k‘HC(Q’l))
1

— - < - 1 < - .
- OPT(k HC(QJ)) < OPT(k HC(L%)) < OPT(k HC(2’1))

Proof. We rely on the following congruence relationships:

1
—=lzll2 < flzlloo < 2|2

Vn

< ||z

! H ” < ! || H
X X
\/ﬁ 2= \/’ﬁ !

12
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Thanks to Theorem ﬁHxHQ < Jzlle < |lzf2 implies 1OPT(k-HC=') <
OPT(k-HCo=") < OPT(k-HCy='). Thanks to Theorem Jellzlls < Fxllzlh < [l im-
plies L OPT(k-HC,7') < 1 OPT(k-HC;Z') < OPT(k-HC»>') which, due to Lemma 1] is

equal to L OPT(k-HC,2") < OPT(k-HC, > 77) < OPT(k-HC,>). -

Lemma 2. Imposing min{||w||1, vn||w||w} > 1 coincides with accounting for each point-to-
hyperplane distance as max{d..(a;, H;), ﬁdl (a;, Hj)}, which translates in measuring the dis-

tance between a; and the closest point on Hj, call it y, as max{||a; — y||co, ﬁ“ai —ylh}

Proof. In the context of point-to-hyperplane distances, min{||w||1,v/n||w|lec} = 1 implies
T, — la w;—]| . laf wi—| lafwi—ly _
la; wj — | = Tl ooy Ve can rewrite the latter as max{ =, \/EH"LHOO} =

la] wi—y| 1 |af wi—v[y _ 1 : :
max{ Tl 7 Talle } = max{d(a;, H;), ﬁdl(ai,Hj)}. Such a multi orthogonal dis-
tance is clearly induced by the norm max{||z||, ﬁHle} (assuming that such a function is a
norm—we will prove this next). O

Figure 3: Sets of points satisfying ||z||2 = 1 (outer circle) and max{||z|| s, ﬁ llz|l1} = 1 (inner oc-

tagon). Notice that such a geometrical property suffices to establish ||z||2 < max{||z] oo, ﬁ lz|l1}-

Lemma 3. The function max{ |||, ﬁ lz|l1 } is @ norm on R™ and, for all x € R™, it satisfies
the sharp congruence inequality

n Ve < max{ lelloe, elleln <l

Proof. Let us show that max{||z||s, ﬁHle} is a norm.

Positive definiteness.  First, it is clear that maX{HmHOC,ﬁHle} > 0 and that

max{||7|| o, ﬁHJ;Hl} = 0if and only if z = 0.

Absolute homogeneity. Second, it is also clear that |/\\max{|\x||oo,ﬁ||x|\1}
max{)\Ha:HOO,)\ﬁHle}forall)\6R.

IN

Triangle inequality. Third, we must show max{||z + y||007ﬁ||x + ylli}
max{||z||co, ﬁHmHl} + max{||y|| o, ﬁ||y||1} To see this, we first notice that

1z + ylloo < l2lloo + llylloo
1 1

1
—_— <

13
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hold since these functions are norms. Taking the maximum of the left-hand and right-hand sides,
due to the monotonicity of max, we have:

N
1 1
max{||z|lec + [[y]|oc; %Hxlll + ﬁllylh}n

max{|[z + ylloo, —7=[lz + y[l1} <

To show that this implies that the triangle inequality is satisfied, we show that, for any a, b, ¢, d > 0,
we have max{a+c, b+d} < max{a,b}+max{c, d}. Note that a < max{a,b}, b < max{a,b}, c <
max{c, d}, and d < max{c, d}. Adding the inequalities, we have: a 4+ ¢ < max{a, b} + max{c, d}
and b + d < max{a,b} + max{c, d}. Taking the maximum of the left- and right-hand sides, due
again to the monotonicity of max we have proven the property we sought to prove.

Congruence. We are now looking to prove a congruence of type
1
allzflz < fmax{||2||o, ﬁllxlll} <Azl

for some «, 8, > 0. We can split it as follows:

1
ﬁ”ﬂh}
[E o

max{||z|leo, J=llzlli} T

aflzflz < S max{[|z]|,

and
1
Bmax{||z|[oo; ﬁllrlh} <llzll2
B IE3IE

& — <
= 1
v T max{||z|ee, Z |1}
and prove the two inequalities independently. (Notice that this is w.l.o.g. since, for x = 0, the
congruence is trivially satisfied).

Now, max{||z||co, ﬁHle} is a convex function (it is the maximum of two convex functions).
Hence its level curves are convex—see Figure 3]

Let S = {z € R" : ||z||oc <1, |z||1 < +/n}. Lett := |\/n], and let r be the fractional part

of /n,ie., r:=/n—1t € [0,1). We’ll prove that every maximizer of ||z||2 over S has at most

one fractional coordinate in (0, 1) and, in particular, that 2* = (1,...,1, r, 0,...,0) is one such
——

t times
maximizer with objective function value max,cg ||z|2 = V't + 2.

Since S is symmetric under sign flips and coordinate permutations, we can w.l.o.g. restrict ourselves
to vectors x € R" with z; > x5 > --- > x,, > 0 and consider the equivalent problem

maxe? : Z:m <+V/n,z €0,1]™. (P)
i=1 i=1

(i) The €1 budget is tight at optimum. If Zi x; < \/m, we can increase x; until either z; = 1 or
>, @i = /n. Since, doing so, the objective Y. 7 increases, every maximizer satisfies >, z; =

N

(ii) At most one fractional coordinate. Suppose a feasible x with ) ", z; = \/n has two indices i # j
with0 < z; < 1land 0 < yxj < 1. W.lLo.g., assume y; > y;. For some e > O withz; +¢ <1
and x; —e > 0, define Z as &; :=z; +¢,%; = x; —¢, and T = xp forall k ¢ {¢,5}. Then,

>4 Uk = s, and we have:
> D vk
k k

=(Wi+e)’+(y;—e)® = (v +v))
=2e(y; —y;) + 22 > 0,

14
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which shows that any point with two fractional entries is suboptimal.

(iii) Determining the number of ones. Let a maximizer have ¢ ones, one fractional coordinate r €
[0,1) (or none if = 0), and the remaining n — ¢ — 1 zeros. Since ), y; = s is tight, we deduce
t + r = s, which (since ¢ is integer and r < 1), implies ¢t = |s| and r = s — .

(iv) Optimal solution value. The objective value is therefore Y, z7 =t - 1% 4 2.
O
Corollary 2. Combining LemmaE]with Theorem the multi-norm relaxation k-HC 1) satisfies
1
Vn

Proof. A direct consequence of applying Theorem [1| to the congruence relationship derived in
Lemma[3] O

OPT(k-HC(QJ)) < OPT(k-HC(mumJ)) < OPT(k-HC(Qvl)).

Proposition 2. Under Assumption|l| when solving k-HC (3 1) a nonzero lower bound is obtained
only after generating Q(2F("=1) nodes.

Proof. By assumption, each branching operation decides the sign of a component of w; for some
Jj € [k] by splitting (with a half-space constraint) its feasible region with a hyperplane containing the
origin. As long as the cone, call it C, obtained by intersecting such half-spaces is not pointed, the
convex hull of its intersection with the feasible region of the problem contains the origin. Thus, the
solution with (w;, ;) = 0 and x;; = 1, ¢ € [m], which coincides with assigning every data point to
the degenerate hyperplane of index j (thus achieving a d; = 0, ¢ € [m]), is optimal regardless of the
convex envelope that is employed. Only after branching has been carried out on each component
of w; for each j € [k], the cone C is pointed and, thus, the convex hull of its intersection with the
feasible region of the problem renders the trivial solution (w;, ;) = 0, j € [k], infeasible, leading

to a nonzero lower bound. This amounts to generating Q(2°("~1)) nodes. O

Proposition 3. Assume that the constraint ||w;||1 > 1, j € [k], is imposed and that branching

takes place on the s;y variables first. Then, a nonzero global lower bound is obtained only after
generating @(2]“(”_1)) nodes; after this, no further branching on w takes place.

Proof. Let sjj, = 3 forall h € [n], which implies w}, < § and w}, < 3. Letting w}, = w;, = 3,

we have wj*h + w;;, = 1. This feasible solution trivially satisfies the 1-norm constraint equation

with w}, —w3, = w;p, = 0. Thus, (w;,7;) = 0, j € [k], is optimal. By branching on a variable s;5,

we impose either w;;, < 0 (with 55, = 0) or w;;, > 0 (with s;, = 1). In both cases, the solution
where w;fh = wj_h = % and wjj, = 0 becomes infeasible due either wj'h or wj_h being forced to 0,
but the solution with w;, = 0, for any other i’ € [n] \ {h}, remains feasible as long as branching
on it has not taken place. Thus, a nonzero lower bound is obtained only in ©(2*(*~1)) nodes. When
such an exponentially-large tree of depth k(n — 1) is complete, though, ||w,||1 > 1, j € [k], holds
in each leaf node and, thus, no further branching on w is necessary. O

Proposition 4. Assume that ||w;| e > ﬁ, j € [k], is imposed and that branching takes place on

the wjy, variables first. Then, O(nk) nodes suffice to obtain a nonzero lower bound; after this, no
further branching on w takes place.

Proof. After branching on u;j, for any pair j, h, the (left, w.l.o.g.) child node with u;;, = 1 satisfies
wjp, > /n. This guarantees ||w;||c > /7 and, thus, no further branching is needed on w; in the
descendants of the left node. Further branching operations on w; are only necessary on the right
child node where wu;;, = 0 has been imposed. By iteratively applying this reasoning, we obtain
a tree with exactly two nodes per level (except for the root node) where each left node satisfies
the ||wj||oc > +/n constraint for at least a j € [k]. Therefore, when the three has depth nk,
[|w;||lso > +/m is satisfied for all j € [k]. When such an polynomially-sized tree of depth k(n — 1)
is complete, ||w;||o > /1, j € [k], holds in each leaf node and, thus, no further branching on w is
necessary. O
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D PROOF OF THE APPROXIMATION FACTORS AND OF THEIR TIGHTNESS

We will rely on the following Lemma:
Lemma 4. Given two functions f, g : R" — R with g surjective we have:

max £&) :max{max{f<x) g(x) :u}}. )

zeR™ g(x veR | zeRn v
)

If.forall w € ", f(x) = f(|z]) and g() = g(Jz
mx T — o Lo {19 g0 =}, ©)

zeR" g(x) veRy |zeRn | v

), then:

Proof. If g is surjective, then U,cr{z € R™ : g(x) = v} = R™. We can therefore partition R"
into infinitely many subsets of type {z € R™ : g(z) = v}. An optimal solution to max,cgn f(z)

(z
thus corresponds to the best solution over all such subsets. The special case in Equation equati0n|§|
follows by a similar argument. O

Proposition 5. The following relationships are satisfied for every x € R™:
lzllz < llzlls < vl

<lzlloo < llfl2

Lz
— ||
Nk

and the factors \/n and ﬁ are tight.

Proof. We are looking for four positive coefficients a1, 81, aeo, Boo that satisfy the following rela-
tionships for all x € R™:
arflzllz <zl < Bullll2
asellells < [zl < Boollll2-

Assuming x # 0 as, for z = 0, oz, < ||z|l; < Blz||, holds for all o, 8 and for all p,q €

N U {oc}, the tightest values for a1, 81, Ao, S0 must satisfy the following relationships:

llllx 2]l
= ma =
fr=max o0 Poo = max ol
J— (] 7l
1 = Imin Qo — 1NIN
TER™ HIHQ rER™ HxHQ
As max H;H‘q’ = min H;HZ holds for all p,q € N U {oo}, we need to solve the following four
problems:
P P ]
[[2]|2 | ]|2
_ [EIE _ |||
1 = max (o = Max
|21 2]l
Let us consider the case of a1, ao, for which we are solving max Hi”j for ¢ = 1, co. By virtue of

Lemmalfd] we are thus solving:

1
g = max {2 ma (ol s ol = ) |

veERL

As the maximum of a convex function (such as ||z||2) over a closed, convex set is achieved on the
border of the latter and, if we are optimizing over a polytope, over its extreme vertices, we can
w.lo.g. relax ||z||, = v into ||z||, < v.

16
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For a1, the extreme points of {z € R™ : ||z|; < v} are of the form: ve, for all £ € [n], with

ee being the ¢-th canonical vector of R™. For each of them, we have ||veg|ls = V2 = v. Thus,
[E3[P

o1 = max +——= = ¥ =1.
lzlln = v
For aoo, the extreme points of {z € R"™ : ||z||oc < v} are of the form: (£v,...,+v) for all
possible choices of £. For each of them, we have ||(+v,...,+v)|2 = Vv2n = v/n. Thus,
— lzlle _ vvn _
Qoo = Max [ = == = V.

Let us now consider the case of 5; and (.., for which we are solving max Hi“g for ¢ = 1,00. By
virtue of Lemmad] we are thus solving:

By = max {1 ma {[lz], ¢ zll> = u}}.

veER 14 QIGRT_:_
For (31, the problem reads:

51 :max{lmax {eTJ;:me:VQ}}. (10)

v>0 | v zeRT

The KKT conditions for the relaxation of the inner problem of equation [I0] obtained after dropping
the nonnegativity on z read:

Ve(elz = AazTz—1%) =0
ale =12,

with A unrestricted in sign. From the first equation, we deduce © = 5. By substituting it in the
second equation, we obtain ;ZT;Q = 12, thatis, \ = 2—‘/5 Thus, we have x = ﬁy. Since the latter
is nonnegative, it is an optimal solution to both the relaxation of the inner problem of equation
with z € R™ and its unrelaxed version with € R . We thus have ||z||; = ﬁ”eHl === vy/n.

We conclude that 8; = 2 = \/n.

For (3, the problem reads:

Boo = max {1 max {max{wg} 2Ty = 1/2}} .

v>0 (v zeR} | Le[n]

The optimal solutions to the inner problem are of the form ve,, where e is a canonical vector of

R™, for which we have ||ves||oo = v. We conclude that 3o, = 2 = 1. O
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