

000 SOLVING THE 2-NORM K-HYPERPLANE CLUSTERING 001 PROBLEM VIA MULTI-NORM FORMULATIONS 002

003 **Anonymous authors**
004
005 Paper under double-blind review
006

007 ABSTRACT 008

009 We propose a method to solve $k\text{-HC}_2$ —the k -Hyperplane Clustering problem
010 which asks for finding k hyperplanes that minimize the sum of squared 2-norm
011 (Euclidean) distances between each point and its closest hyperplane—to global
012 optimality via spatial branch-and-bound (SBB) techniques. Our method strengthens
013 a mixed integer quadratically-constrained quadratic programming formulation
014 for $k\text{-HC}_2$ with constraints that arise when formulating the problem in p -norms
015 with $p \neq 2$. In particular, we show that, for every (suitably scaled) $p \in \mathbb{N} \cup \{\infty\}$,
016 one obtains a variant of $k\text{-HC}_2$ whose optimal solutions yield lower bounds within
017 a multiplicative approximation factor. We focus on the case of polyhedral norms
018 where $p = 1, \infty$ (which are disjunctive-programming representable), and prove
019 that strengthening the original formulation by including, on top of its 2-norm con-
020 straints, the constraints of one of the polyhedral norms leads to an SBB method
021 where nonzero lower bounds are obtained in a linear (rather than exponential)
022 number of SBB nodes. Experimentally, our method leads to very large speedups,
023 drastically improving the problem’s solvability to global optimality.
024

025 1 INTRODUCTION 026

027 Given m points $\{a_1, \dots, a_m\}$ in \mathbb{R}^n , the k -Hyperplane Clustering problem, or $k\text{-HC}_2$, asks for iden-
028 tifying k hyperplanes which minimize the sum of the squares of the distances between each point
029 and the hyperplane closest to it in Euclidean (2-norm) distance. $k\text{-HC}_2$ arises when relationships of
030 *co-linearity* (in \mathbb{R}^2) or *co-(hyper)planarity* (in \mathbb{R}^n) are sought. One of the problem’s most natural
031 applications is line/surface detection in digitally-sampled images and in 3d environments Amaldi
032 & Mattavelli (2002). More applications are found in diverse areas such medical prognosis Bradely
033 & Mangasarian (2000), linear facility location Megiddo & Tamir (1982), discrete-time piecewise
034 affine hybrid system identification Ferrari-Trecate et al. (2003), principal/sparse component analy-
035 sis Washizawa & Cichocki (2006); He & Cichocki (2007); Tsakiris & Vidal (2017), nonlinear re-
036 gression He & Qin (2010), dictionary learning Zhang et al. (2013), LiDAR data classification Kong
037 et al. (2013), and sparse matrix representation Georgiev et al. (2007).
038

039 $k\text{-HC}_2$ was first introduced by Bradely & Mangasarian (2000), where it is shown that, with $k = 1$,
040 the problem is solved by computing an eigenvalue-eigenvector pair of a suitably defined matrix built
041 as a function of the data points. $k\text{-HC}_2$ is \mathcal{NP} -hard in any norm since fitting m points in \mathbb{R}^n with
042 k hyperplanes with 0 error is \mathcal{NP} -complete even for $n = 2$ (Megiddo & Tamir, 1982). To tackle
043 $k\text{-HC}_2$ (without optimality guarantees) when $k \geq 2$, Bradely & Mangasarian (2000) proposed an
044 adaptation of the popular k -means heuristic by MacQueen et al. (1967). An exact Mixed Integer
045 Quadratically Constrained Quadratic Programming (MI-QCQP) formulation for $k\text{-HC}_2$ which is
046 solvable with a spatial branch-and-bound method (SBB) is proposed by Amaldi & Coniglio (2013),
047 together with a heuristic for larger-scale instances. Works addressing variants of $k\text{-HC}_2$ asking for
048 the smallest number of hyperplanes with a distance no larger than a given $\epsilon > 0$ are found in Dhyani
049 & Liberti (2008); Amaldi et al. (2013).

050 **Contributions.** We propose a method to solve $k\text{-HC}_2$ to global optimality via a spatial branch-
051 and-bound (SBB) techniques. We strengthen a classical mixed-integer quadratically-constrained
052 quadratic programming (MI-QCQP) formulation for $k\text{-HC}_2$ by including constraints (and variables)
053 that arise when formulating the problem in another p -norm ($p \neq 2$). We show that, under mild
assumptions, the inclusion of constraints stemming from a version of $k\text{-HC}_2$ formulated in one of

054 the two polyhedral norms (where $p = 1, \infty$) leads to an SBB method where a nonzero global lower
 055 bound is obtained in a linear number of SBB nodes, as opposed to the exponential number that is
 056 necessary when the classical formulation is used. Our experiments reveal that our method leads to
 057 very large speedups, substantially improving the problem's solvability to global optimality.
 058

059 2 PRELIMINARIES

061 Given a point $a \in \mathbb{R}^n$, its p -norm with $p \in \mathbb{N} \cup \{\infty\}$ is $\|a\|_p := \lim_{q \rightarrow p} (\sum_{h=1}^n |a_h|^q)^{1/q}$. In
 062 particular, for $p = 1, 2$, and ∞ we have $\|a\|_1 = \sum_{h=1}^n |a_h|^q$, $\|a\|_2 := (\sum_{h=1}^n |a_h|^2)^{1/2}$, and
 063 $\|a\|_\infty = \max_{h \in [n]} \{|a_h|\}$.¹ The p -norm point-to-hyperplane distance $d_p(a, H)$ between a point
 064 $a \in \mathbb{R}^n$ and a hyperplane $H := \{x \in \mathbb{R}^n : x^\top w = \gamma\}$ of parameters $(w, \gamma) \in \mathbb{R}^{n+1}$ is defined
 065 as the p -norm distance between a and the point $y \in H$ that is closest to it. Namely, $d_p(a, H) :=$
 066 $\min_{y \in H} \|a - y\|_p$. Different arguments, including Lagrangian duality—see Mangasarian (1999),
 067 can be used to show that $d_p(a, H) = \frac{|w^\top a - \gamma|}{\|w\|_{p'}}$, where p and p' satisfy $\frac{1}{p} + \frac{1}{p'} = 1$.² For $p = 2$,
 068 $d_p(a, H)$ is called *Euclidean point-to-hyperplane* (or *orthogonal*) *distance*. In many applications,
 069 such a distance is preferred as it leads to solutions that are invariant to rotations of the data points.
 070

071 In spite of being defined on top of a p -norm, the distance function d_p is intrinsically nonconvex w.r.t.
 072 w regardless of the choice of p (the proof is in the appendix):
 073

074 **Proposition 1.** *Given a hyperplane $H := \{x \in \mathbb{R}^n : x^\top w = \gamma\}$ and a point $a \in \mathbb{R}^n$, the function*
 075 $d_p(a, H) = \frac{|w^\top a - \gamma|}{\|w\|_{p'}}$, *where $\frac{1}{p} + \frac{1}{p'} = 1$, is a nonconvex function of (w, γ) for every $p \in \mathbb{N} \cup \{\infty\}$.*
 076

077 This makes k -HC₂ substantially harder than classical machine learning problems where a norm is
 078 minimized, and motivates the adoption of SBB techniques for solving it to global optimality.
 079

080 3 APPROXIMATING k -HC₂ USING DIFFERENT NORMS

082 Given m points $\{a_1, \dots, a_m\}$ in \mathbb{R}^n , the most compact nonlinear programming (NLP) formulation
 083 for k -HC₂ reads:³ $(k\text{-HC}_2) \min_{(w, \gamma)} \left\{ \sum_{i=1}^m \min_{j \in [k]} \left\{ \frac{(a_i^\top w_j - \gamma_j)^2}{\|w_j\|_2^2} \right\} \right\}$, where $(w_j, \gamma_j) \in \mathbb{R}^{n+1}$,
 084 $j \in [k]$, are the hyperplanes parameters. $(k\text{-HC}_2)$ has a non-smooth objective function due to
 085 Proposition 1. Since $\|w_j\|_2^2 = w_j^\top w_j$, it features ratios of quadratics. While the inner min operator
 086 can be easily dropped by introducing binary assignment variables (see further), such a formulation
 087 is unsuitable for most nonlinear programming solvers as the denominator vanishes when $w_j = 0$.
 088

089 In the remainder of the paper, we consider k -HC_(p,c), a generalized version of k -HC₂ which employs
 090 a p norm not necessarily equal to 2 and which is parametric in a constant $c \geq 0$. Its NLP formulation,
 091 where $\frac{1}{p} + \frac{1}{p'} = 1$, reads:

$$(k\text{-HC}_{(p,c)}) \min_{(w, \gamma)} \left\{ \sum_{i=1}^m \min_{j \in [k]} \left\{ (a_i^\top w_j - \gamma_j)^2 \right\} : \|w_j\|_{p'} \geq c, j \in [k] \right\},$$

095 Letting OPT(P) be the optimal solution value of problem P , the validity of $(k\text{-HC}_{(p,c)})$ and the
 096 role that c plays in it are shown by the following lemma (the proof is in the appendix):
 097

098 **Lemma 1.** *The solutions to $(k\text{-HC}_{(2,1)})$ and $(k\text{-HC}_2)$ coincide. Also, $(k\text{-HC}_{(p,c)})$ is quadratically*
 099 *homogeneous w.r.t. c , i.e., $\text{OPT}(k\text{-HC}_{(p,c)}) = c^2 \text{OPT}(k\text{-HC}_{(p,1)})$.*

100 The property shown by the lemma will be useful to guide our choice of which p to use for introducing
 101 additional norm constraints to the formulation of k -HC₂ (which, we recall, is the version of the
 102 problem that we aim to solve in this paper) in order to strengthen it.

103 **Rationale.** k -HC_(p,c) with $(p, c) \neq (2, 1)$ is of interest for two reasons. First (this section), it allows
 104 us to show that, for a suitable choice of p and c , the optimal solutions to k -HC_(p,c) are approximate
 105

106 ¹Throughout the paper, we adopt the notation $[\xi] := 1, \dots, \xi$ for every $\xi \in \mathbb{N}$.
 107 ²Two norms where $\frac{1}{p} + \frac{1}{p'} = 1$ are called *dual*. The 2-norm is self dual and the 1 and ∞ -norms are dual.
 108 ³We report mathematical programming formulations in brackets and optimization problems without them.

108 solutions (to within an approximation factor) of those to $k\text{-HC}_{(2,1)}$. Second (next two sections),
 109 it allows us to prove that, again for a suitable choice of p and c , the formulations $(k\text{-HC}_{(p,c)})$ and
 110 $(k\text{-HC}_{(2,1)})$ can be intersected to obtain a *strengthened formulation* which is valid for $k\text{-HC}_2$ and
 111 which is also much easier to solve both in theory and practice.

112 **Novelty.** While changes of norm are frequent in the ML literature, the dual norm in the denominator
 113 of the point-to-hyperplane distance requires, for our results, switching between primal and
 114 dual norms and applying suitable scaling factors to the problem’s constraints in a way that, to our
 115 knowledge, is new. The idea of *intersecting* formulations derived for different norms, which leads
 116 to extremely large speedups and which, is also, to our knowledge, uncommon in the literature.
 117

118 3.1 THE GENERAL CASE

120 We show that, whichever version of $k\text{-HC}_{(p,c)}$ one aims to solve (be it the 2-norm one with $c = 1$ or
 121 another one), the optimal-solution value of $k\text{-HC}_{(q,c')}$ for *any* choice of q and a suitable c' is within
 122 an approximation factor of the optimal-solution value to $k\text{-HC}_{(p,c)}$:

124 **Theorem 1.** *Let $p, q \in \mathbb{N} \cup \{\infty\}$ and $c > 0$. The three positive scalars $\alpha(p, q), \beta(p, q), \gamma(p, q)$
 125 which, for all $x \in \mathbb{R}^n$, satisfy the congruence inequality $\alpha(p, q)\|x\|_p \leq \beta(p, q)\|x\|_q \leq$
 126 $\gamma(p, q)\|x\|_p$ for $p, q \in \mathbb{N} \cup \{\infty\}$ also satisfy the optimal-value inequality $\frac{\alpha(p, q)^2}{\gamma(p, q)^2} \text{OPT}(k\text{-HC}_{(p,c)}) \leq$
 127 $\text{OPT}\left(k\text{-HC}_{(q,c)}\right) \leq \text{OPT}(k\text{-HC}_{(p,c)})$.*

130 Theorem 1 shows that the optimal solution value of $k\text{-HC}_{(q,c')}$ with $c' = c \frac{\beta(p, q)}{\gamma(p, q)}$ is a lower bound
 131 on the optimal solution value of $k\text{-HC}_{(p,c)}$ to within an approximation factor of $\frac{\alpha(p, q)^2}{\gamma(p, q)^2}$. This is
 132 important, as it shows which value to pick for c' for *any* q -norm we may choose to obtain a relaxation
 133 of $k\text{-HC}_{(p,c)}$ and, in particular, one of $k\text{-HC}_{(2,1)}$ (which is, ultimately, the problem we aim to solve).

135 Notice that Theorem 1 can be extended to produce an approximation of $k\text{-HC}_{(p,c)}$ from above to
 136 within an approximation factor—we omit the details since, here, we solely are interested in approx-
 137 imations from below to build tighter relaxations suitable for an SBB method.

139 Theorem 1 has a nice geometrical interpretation in terms of the feasible regions of $(k\text{-HC}_{(p,c)})$ and
 140 $(k\text{-HC}_{(q,c)}\frac{\beta(p, q)}{\gamma(p, q)})$. Indeed, with $c' = c \frac{\beta(p, q)}{\gamma(p, q)}$, the feasible region of the q -norm constraints that
 141 corresponds to $k\text{-HC}_{(q,c')}$ is a relaxation of (i.e., contains) the region that is feasible for the p -norm
 142 constraints of $k\text{-HC}_{(p,c)}$. An illustration is reported in Figure 1 for $p = 2, c = 1$ and adopting
 143 $q = 1, \infty$, for which we have $c' = 1, \frac{1}{\sqrt{n}}$.

153
 154 Figure 1: Complements of the feasible regions of $\{w \in \mathbb{R}^2 : \|w\|_1 \geq 1\}$ and $\{w \in \mathbb{R}^2 : \|w\|_\infty \geq$
 155 $\frac{1}{\sqrt{2}}\}$.

158 3.2 THE CASE OF POLYHEDRAL NORMS WITH $q = 1, \infty$

160 We now focus on *polyhedral* norms ($q = 1, \infty$). These are of computational interest due to their
 161 tractability: while the constraints $\|w_j\|_q \geq c', j \in [k]$, with $q = 1, \infty$, are non-convex, they can be
 162 stated as disjunctions over polyhedra, this being mixed integer linear programming representable.

In light of this, we consider the following two relaxations of $k\text{-HC}_{(2,1)}$ (see Figure 1 for an illustration of the feasible regions of the projection of these two problems onto the w space for $k = 1$):

$$(k\text{-HC}_{(\infty,1)})_{(w,\gamma)} \min_{(w,\gamma)} \left\{ \sum_{i=1}^m \min_{j \in [k]} \{(a_i^\top w_j - \gamma_j)^2\} : \|w_j\|_1 \geq 1, j \in [k] \right\},$$

$$(k\text{-HC}_{(1,\frac{1}{\sqrt{n}})})_{(w,\gamma)} \min_{(w,\gamma)} \left\{ \sum_{i=1}^m \min_{j \in [k]} \{(a_i^\top w_j - \gamma_j)^2\} : \|w_j\|_\infty \geq \frac{1}{\sqrt{n}}, j \in [k] \right\}.$$

Notice that due to norm duality, $(k\text{-HC}_{(\infty,1)})$ features a 1-norm constraint and $(k\text{-HC}_{(1,\frac{1}{\sqrt{n}})})$ an ∞ -norm one. For these two problems, Theorem 1 leads to the following result (the proof is in the appendix):

Corollary 1. $k\text{-HC}_{(\infty,1)}$ and $k\text{-HC}_{(1,\frac{1}{\sqrt{n}})}$ satisfy:

$$\frac{1}{n} \text{OPT}(k\text{-HC}_{(2,1)}) \leq \text{OPT}(k\text{-HC}_{(\infty,1)}) \leq \text{OPT}(k\text{-HC}_{(2,1)})$$

$$\frac{1}{n} \text{OPT}(k\text{-HC}_{(2,1)}) \leq \text{OPT}(k\text{-HC}_{(1,\frac{1}{\sqrt{n}})}) \leq \text{OPT}(k\text{-HC}_{(2,1)}).$$

With the first chain of inequalities, the corollary shows that solving $k\text{-HC}_{(\infty,1)}$, i.e., formulating $k\text{-HC}$ with the constraint $\|w_j\|_1 \geq 1$ for all $j \in [k]$, leads to a relaxation to within a $\frac{1}{n}$ approximation factor. With the second one, the corollary shows that solving $k\text{-HC}_{(1,\frac{1}{\sqrt{n}})}$, i.e., solving the version of $k\text{-HC}$ with the constraint $\|w_j\|_\infty \geq \frac{1}{\sqrt{n}}$ for all $j \in [k]$, leads to another relaxation also to within the same approximation factor $\frac{1}{n}$.

3.3 MULTI-NORM RELAXATION

Since both $\|w_j\|_1 \geq 1, j \in [k]$, and $\|w_j\|_\infty \geq \frac{1}{\sqrt{n}}, j \in [k]$, are relaxations of $\|w_j\|_2 \geq 1, j \in [k]$, a strengthened relaxation of $k\text{-HC}_{(2,1)}$ can be obtained by simultaneously imposing both. Such a *multi-norm* relaxation, which we refer to as $k\text{-HC}_{(\text{multi},1)}$, reads

$$(k\text{-HC}_{(\text{multi},1)})_{(w,\gamma)} \min_{(w,\gamma)} \left\{ \sum_{i=1}^m \min_{j \in [k]} \{(a_i^\top w_j - \gamma_j)^2\} : \|w_j\|_1 \geq 1, \|w_j\|_\infty \geq \frac{1}{\sqrt{n}}, j \in [k] \right\}.$$

Letting $\|w\|_{\text{multi}} := \min\{\|w\|_1, \sqrt{n}\|w\|_\infty\}$, one can see that simultaneously imposing $\|w_j\|_1 \geq 1$ and $\|w_j\|_\infty \geq \frac{1}{\sqrt{n}}, j \in [k]$, coincides with imposing $\|w_j\|_{\text{multi}} \geq 1, j \in [k]$. A depiction of the feasible region is reported in Figure 2.

Figure 2: Complement of the feasible region of $\{w \in \mathbb{R}^2 : \|w\|_{\text{multi}} \geq 1\}$.

So far, our analysis has hinged on the possibility of translating a p' -norm constraint into the corresponding d_p distance, on which we applied Theorem 1. Deriving an approximation factor for $k\text{-HC}_{(\text{multi},1)}$ is not as easy, though. This is because the sub-level sets of the function $\|w\|_{\text{multi}}$ are not convex and, thus, there is no p -norm, $p \in \mathbb{N} \cup \{\infty\}$, whose adoption directly leads to $k\text{-HC}_{(\text{multi},1)}$.

In spite of this, in the following we show that we can still derive an approximation factor by constructing the norm that is implicitly minimized when $\min\{\|w\|_1, \sqrt{n}\|w\|_\infty\} \geq 1$ is imposed.

We start with the following lemma (the proof is in the appendix), which shows what combination of point-to-hyperplane distances is minimized in $k\text{-HC}$ when imposing $\min\{\|w\|_1, \sqrt{n}\|w\|_\infty\} \geq 1$:

216 **Lemma 2.** *Solving k -HC subject to $\min\{\|w\|_1, \sqrt{n}\|w\|_\infty\} \geq 1$ coincides with solving an unconstrained version of k -HC where the point-to-hyperplane distance between a_i and H_j is defined as*
 217 *$\max\{d_\infty(a_i, H_j), \frac{1}{\sqrt{n}}d_1(a_i, H_j)\}$.*
 218
 219

220 We now prove a second lemma (the proof is in the appendix) which shows that the function
 221 $\max\{\|x\|_\infty, \frac{1}{\sqrt{n}}\|x\|_1\}$ is a norm and which also constructs a congruence inequality for it:
 222

223 **Lemma 3.** *The function $\max\{\|x\|_\infty, \frac{1}{\sqrt{n}}\|x\|_1\}$ is a norm on \mathbb{R}^n and, for all $x \in \mathbb{R}^n$, it satisfies*
 224 *the sharp congruence inequality*

$$225 \quad n^{-1/4} \|x\|_2 \leq \max\left\{\|x\|_\infty, \frac{1}{\sqrt{n}}\|x\|_1\right\} \leq \|x\|_2.$$

227 Crucially, the following holds:

228 **Corollary 2.** *Combining Lemma 3 with Theorem 1, the multi-norm relaxation k -HC_(multi,1) satisfies*

$$231 \quad \frac{1}{\sqrt{n}} \text{OPT}(k\text{-HC}_{(2,1)}) \leq \text{OPT}(k\text{-HC}_{(\text{multi},1)}) \leq \text{OPT}(k\text{-HC}_{(2,1)}).$$

233 4 SOLVING STRENGTHENED FORMULATIONS OF k -HC_(2,1) VIA SBB

236 We now focus on solving k -HC_(2,1) to global optimality via SBB. We analyze the number of SBB
 237 nodes needed to compute a nonzero global lower bound when solving a basic formulation of the
 238 problem, and then prove that intersecting the basic formulation for k -HC_(2,1) with one of our relax-
 239 ations involving the polyhedral norms allows for computing a nonzero global lower bounds much
 240 earlier.

241 4.1 SPATIAL BRANCH-AND-BOUND

243 The basic idea of the spatial branch-and-bound (SBB) method is of building a dual bound by op-
 244 timizing over a convex (typically polyhedral) envelope $\text{conv}(F)$ of the feasible region F of the
 245 problem. F is then split into two sub-regions F_1 and F_2 with tighter bounds on at least a variable.
 246 This allows for constructing tighter convex envelopes of F_1 and F_2 in such a way that the optimal
 247 solution over $\text{conv}(F)$ is cut off due to not belonging to $\text{conv}(F_1) \cup \text{conv}(F_2)$. F_1 and F_2 are then
 248 recursively optimized in a classical *divide-et-impera* (branch-and-bound) fashion with a binary-tree
 249 search.

250 Let us consider the case of k -HC_(2,1). We assume (as done by most of the state-of-the-art solvers
 251 such as Gurobi Gurobi Optimization, LLC (2022)), that polyhedral envelopes are employed. Under
 252 such assumption, when considering the nonlinear constraints $\|w_j\|_2^2 = \sum_{h=1}^n w_{jh}^2 \geq 1$, for $j \in$
 253 $[k]$, the SBB method first introduces the auxiliary variable z_{jh} for each nonlinear term w_{jh}^2 and a
 254 corresponding defining constraint $z_{jh} = w_{jh}^2$. It then substitutes the original nonlinear constraint
 255 with $\sum_{h=1}^n z_{jh} \geq 1$. Each defining constraint is then relaxed into a polyhedral envelope. The
 256 point-wise minimal outer envelope of a bilinear product corresponds to the well-known McCormick
 257 envelope McCormick (1976).

259 4.2 BASELINE MATHEMATICAL PROGRAMMING FORMULATION FOR k -HC_(2,1)

261 We start by considering as baseline the following classical Mixed Integer Quadratically Constrained
 262 Quadratic Programming (MI-QCQP) formulation of k -HC_(2,1):

$$263 \quad (k\text{-HC}_{(2,1)}) \quad \min_{(w, \gamma), x, d} \quad \left\{ \begin{array}{l} \sum_{j=1}^n x_{ij} = 1 \quad \forall i \in [m] \\ \sum_{i=1}^m d_i^2 \cdot \|w_j\|_2 \geq 1 \quad \forall j \in [k] \\ d_i \geq w_j^T a_i - \gamma_j - d^U (1 - x_{ij}) \quad \forall i \in [m], j \in [k] \\ d_i \geq -w_j^T a_i + \gamma_j - d^U (1 - x_{ij}) \quad \forall i \in [m], j \in [k] \end{array} \right\}.$$

268 In it, $x_{ij} \in \{0, 1\}$ takes value 1 if and only if a_i is assigned to the hyperplane of index $j \in [k]$;
 269 d_i is the distance between a_i and the hyperplane of index $j \in [k]$; d^U is an upper bound on the
 largest distance between any point a_i and hyperplane of index $j \in [k]$. The only nonconvexity of

270 the formulation is due to the 2-norm constraints. W.l.o.g., we assume $a_i \geq 0$ for all $i \in [m]$ (as this
 271 can be easily obtained in preprocessing by translating the dataset).

272 The following bounds on the variables can be included. We let $d^U := \|b \ e\|_2$, where e is the all-
 273 one vector and b is the length of the edge of the smallest hypercube that contains $\{a_1, \dots, a_m\}$.
 274 Since $\|w_j\|_2 = 1$ holds in any optimal solution and $\max\{\|w_j\|_\infty : \|w_j\|_2 = 1\} = 1$, we impose
 275 $\|w_j\|_\infty \leq 1$ via $-e \leq w_j \leq e$, $j \in [k]$. These bounds imply $-nb - d^U \leq \gamma_j \leq nb + d^U$, $j \in [k]$.
 276

277 Since the point-to-hyperplane distance is symmetric, given any solution to $k\text{-HC}_{(2,1)}$, an equivalent
 278 one can be obtained by changing the sign of w_j for some $j \in [k]$. To remove such a symmetry
 279 (symmetries are known to be a hindrance when solving mathematical programming problems to
 280 optimality via methods based on (spatial) branch-and-bound), we impose w_j to belong to an arbitrary
 281 half-space of \mathbb{R}^n for each $j \in [n]$ by imposing $w_{j1} \geq 0$, $j \in [k]$, where w_{j1} is the first component
 282 of w_j . In this way, any solution that is obtainable by changing the sign of a component of one of
 283 the vectors w_j becomes infeasible (due to being obtained from the previous one by reflection of w_j
 284 over the hyperplane defining the halfspace that we selected), thus breaking the symmetry. In all our
 285 formulations, we partially remove the symmetry on x_{ij} , $i \in [m], j \in [k]$, that is induced by the
 286 assignment constraints by imposing $x_{ij} = 0$ for all $i, j \in [m] \times [k]$ with $i < j$. This reduces the
 287 number of 0-1 variables by $\sum_{h=1}^{k-1} \frac{(k-1)k}{2}$.
 288

289 4.3 SOLVING THE FORMULATION ($k\text{-HC}_{(2,1)}$) VIA SBB

290 Let us now analyze the behavior of an SBB method when solving the classical formulation
 291 ($k\text{-HC}_{(2,1)}$). Since the projection onto the w space of the feasible region of $k\text{-HC}_{(2,1)}$ is nonconvex
 292 and its complement is symmetric about the origin, any SBB method based on convex envelopes will
 293 necessarily convexify the infeasible region, thus making the trivial solution $w_j = 0$, $j \in [k]$, feasible.
 294 This leads to a bound as weak as possible due to the fact that the objective function is the sum
 295 of squares $\sum_{i=1}^m d_i^2 \geq 0$ and, with $(w_j, \gamma_j) = 0$, $j \in [k]$, we obtain $\sum_{i=1}^m d_i^2 = 0$.

296 The following assumption holds in most SBB codes—see, e.g., Belotti et al. (2009):

297 **Assumption 1.** *Assume that, when spatially branching on variables with a symmetric domain,
 298 branching takes place on the mid point of the domain.*

300 Notice that, due to the bounds we included, the domain of w_{jh} , $j \in [k], h \in [n]$, is symmetric.

301 Crucially, under Assumption 1 the geometry of the feasible region of $k\text{-HC}_{(2,1)}$ makes it so that
 302 the number of branching operations that are needed to make the 0 solution infeasible (and, thus,
 303 compute a nonzero global lower bound) is exponentially large (the proof is in the appendix):

304 **Proposition 2.** *Under Assumption 1, when solving $k\text{-HC}_{(2,1)}$ a nonzero lower bound is obtained
 305 only after generating $\Omega(2^{k(n-1)})$ nodes.*

307 This is particularly bad since, until the first nonzero lower bound has been calculated, no pruning
 308 can happen on the tree due to the fact that a lower bound of 0 trivially holds at any node (since the
 309 objective function is a sum of squares).

311 4.4 STRENGTHENED FORMULATIONS

312 We now construct valid formulations for $k\text{-HC}_2$ which are strengthened by featuring not only the
 313 2-norm constraints but also a collection of polyhedral-norm constraints. Building on the relaxations
 314 we constructed before, we introduce the following three strengthened formulations (in each of them,
 315 the norm constraints are imposed for all $j \in [k]$):

$$\begin{aligned}
 & (k\text{-HC}_{(2,1),(\infty,1)})_{(w,\gamma)} \min \left\{ \sum_{i=1}^m \min_{j \in [k]} \left\{ (a_i^\top w_j - \gamma_j)^2 \right\} : \begin{array}{l} \|w_j\|_2 \geq 1 \\ \|w_j\|_1 \geq 1 \end{array} \right\} \\
 & (k\text{-HC}_{(2,1),(1,\frac{1}{\sqrt{n}})})_{(w,\gamma)} \min \left\{ \sum_{i=1}^m \min_{j \in [k]} \left\{ (a_i^\top w_j - \gamma_j)^2 \right\} : \begin{array}{l} \|w_j\|_2 \geq 1 \\ \|w_j\|_\infty \geq \frac{1}{\sqrt{n}} \end{array} \right\} \\
 & (k\text{-HC}_{(2,1),(\text{multi},1)})_{(w,\gamma)} \min \left\{ \sum_{i=1}^m \min_{j \in [k]} \left\{ (a_i^\top w_j - \gamma_j)^2 \right\} : \begin{array}{l} \|w_j\|_2 \geq 1 \\ \|w_j\|_1 \geq 1 \\ \|w_j\|_\infty \geq \frac{1}{\sqrt{n}} \end{array} \right\}.
 \end{aligned}$$

324 Before analyzing the number of branching operations needed to achieve a nonzero lower bound
 325 with these formulations, we report the Mixed Integer Linear Programming (MILP) formulations by
 326 which we formulate the polyhedral-norm constraints.

327 **1-norm.** We formulate the constraints $\|w_j\|_1 \geq 1$, $j \in [k]$, via the following absolute-value reformulation:

$$330 \quad w_{jh}^+ - w_{jh}^- = w_{jh} \quad h \in [n] \quad (1a)$$

$$331 \quad w_{jh}^+ \leq s_{jh} \quad h \in [n] \quad (1b)$$

$$332 \quad w_{jh}^- \leq (1 - s_{jh}) \quad h \in [n] \quad (1c)$$

$$333 \quad \sum_{h=1}^n (w_{jh}^+ + w_{jh}^-) \geq 1 \quad (1d)$$

$$334 \quad 0 \leq w_{jh}^+, w_{jh}^- \leq 1 \quad h \in [n] \quad (1e)$$

$$335 \quad s_{jh} \in \{0, 1\}^n \quad h \in [n]. \quad (1f)$$

340 The binary variable s_{jh} denotes the sign of the h -th component of w_j . Consider a component w_{jh} of
 341 index h of w_j . Due to Constraints (1a)–(1c), if $w_{jh} > 0$, then $w_{jh}^+ > 0$ (with $w_{jh}^+ = w_{jh}$ and $w_{jh}^- =$
 342 0) and $s_{jh} = 1$. Otherwise, if $w_{jh} < 0$, then $w_{jh}^- > 0$ (with $w_{jh}^+ = 0$ and $w_{jh}^- = -w_{jh}$) and $s_{jh} = 0$.
 343 Since w_j^+ and w_j^- are component-wise complementary thanks to Constraints (1b)–(1c), we deduce
 344 that $w_j^+ + w_j^- = |w_j|$ holds. Thus, Constraint (1d) guarantees $\|w_j\|_1 \geq 1$. When these constraints
 345 are imposed, we break symmetry as mentioned before by imposing $w_{j1} \geq 0$, $j \in [k]$. This leads to
 346 $s_{j1} = 1$ and $w_{j1}^- = 0$, thanks to which Constraint (1d) becomes $w_{j1} + \sum_{h=2}^n (w_{jh}^+ + w_{jh}^-) \geq 1$.

347 **∞ -norm.** We formulate the constraints $\|w_j\|_\infty \geq \frac{1}{\sqrt{n}}$, $j \in [k]$, i.e., $\max_{h \in [n]} \{|w_{jh}|\} \geq \frac{1}{\sqrt{n}}$,
 348 $j \in [k]$, as the disjunction $\bigvee_{h=1}^n \left(w_{jh} \leq -\frac{1}{\sqrt{n}} \vee w_{jh} \geq \frac{1}{\sqrt{n}} \right)$, $j \in [k]$. Differently from the pre-
 349 vious cases, in this case we break symmetry by (w.l.o.g.) always selecting $w_{jh} \geq \frac{1}{\sqrt{n}}$ from each
 350 elementary disjunction $w_{jh} \leq -\frac{1}{\sqrt{n}} \vee w_{jh} \geq \frac{1}{\sqrt{n}}$. This translates into considering the restricted
 351 disjunction $\bigvee_{h=1}^n w_{jh} \geq \frac{1}{\sqrt{n}}$, $j \in [k]$. For each $j \in [k]$, we restate the resulting disjunctive set via
 352 the following MILP formulation:

$$357 \quad w_{jh} \geq \frac{1}{\sqrt{n}} (1 - 2(1 - u_{jh})) \quad h \in [n] \quad (2a)$$

$$358 \quad \sum_{h=1}^n u_{jh} = 1 \quad (2b)$$

$$359 \quad u_{jh} \in \{0, 1\} \quad h \in [n]. \quad (2c)$$

360 Due to Constraint (2a), if $u_{jh} = 1$ holds for some $h \in [n]$, then $w_{jh} \geq \frac{1}{\sqrt{n}}$ holds (the constraint is
 361 inactive if $u_{jh} = 0$, and reads $w_{jh} \geq -\frac{1}{\sqrt{n}}$). Constraint (2b) imposes that exactly a component of
 362 $u_j = (u_{j1}, \dots, u_{jn})$ be equal to 1.

363 When imposing multiple norm constraints at once, we only have to pay attention to the way sym-
 364 metry is prevented, as the symmetry-breaking constraint $w_{j1} \geq 0$ we introduced for the constraints
 365 $\|w_j\|_2 \geq 1$, $j \in [k]$, and $\|w_j\|_1 \geq 1$, $j \in [k]$, is not compatible with the one-sided disjunction
 366 we considered for $\|w_j\|_\infty \geq \frac{1}{\sqrt{n}}$, $j \in [k]$, and imposing both would not lead to an over-restriction.
 367 Whenever the $\|w_j\|_\infty \geq \frac{1}{\sqrt{n}}$ constraints are imposed, we sort the issue by dropping the symmetry-
 368 breaking constraints $w_{jh} \geq 0$, $j \in [k]$.

374 4.5 SOLVING THE STRENGTHENED FORMULATIONS VIA SBB

375 We extend the analysis in Proposition 2 to the strengthened formulations with the following two
 376 propositions (their proofs of both are contained in the appendix):

378 **Proposition 3.** Assume that the constraint $\|w_j\|_1 \geq 1$, $j \in [k]$, is imposed and that branching
 379 takes place on the s_{jh} variables first. Then, a nonzero global lower bound is obtained only after
 380 generating $\Theta(2^{k(n-1)})$ nodes; after this, no further branching on w takes place.
 381

382 **Proposition 4.** Assume that $\|w_j\|_\infty \geq \frac{1}{\sqrt{n}}$, $j \in [k]$, is imposed and that branching takes place on
 383 the u_{jh} variables first. Then, $O(nk)$ nodes suffice to obtain a nonzero lower bound; after this, no
 384 further branching on w takes place.
 385

386 Propositions 3 and 4 show the crucial advantages of strengthening formulation $(k\text{-HC}_{(2,1)})$ as we
 387 proposed via the two (scaled) polyhedral-norm constraints we considered. Proposition 3 indicates
 388 that, if the $\|w_j\|_1 \geq 1$, $j \in [k]$, constraints are imposed and branching takes places on the 0-1
 389 variables of such norm constraints, in a complete SBB tree of depth $\Theta(2^{k(n-1)})$ the polyhedral-
 390 norm constraint is satisfied in *every* leaf node. This is in stark contrast to the 2-norm case, where the
 391 same number of branching operations only suffices to obtain the first nonzero global lower bound,
 392 and the number of branchings needed to completely describe the feasible region of the problem in
 393 the w space depends on the solver’s feasibility tolerance (since, for each $j \in [k]$, the complement of
 394 the feasible region is a sphere).
 395

396 Crucially, Proposition 4 shows that, when the $\|w_j\|_\infty \geq \frac{1}{\sqrt{n}}$, $j \in [k]$, constraints are imposed
 397 and branching takes places on their 0-1 variables, the size the SBB tree is extremely small—only
 398 polynomial in k and n . The difference between the two results is due to the geometry of the 1- and
 399 ∞ -norm balls, since the former has 2^n facets while the latter only $2n$.
 400

401 When included in a formulation for $k\text{-HC}_2$ on top of the $\|w_j\|_2 \geq 1$, $j \in [k]$, constraints, the
 402 polyhedral-norm constraints accelerate the computation of a nonzero global lower bound, thus lead-
 403 ing to more pruning and, overall, a faster SBB method. This is better shown in the next section.
 404

405 5 COMPUTATIONAL RESULTS

406 We assess the effectiveness of our strengthened formulations with Gurobi 9.5’s SBB using 12 threads
 407 on a 2.6GHz Intel Core i7-9750H equipped with 32 GB RAM, with a total time limit across the 12
 408 cores of 168,000 seconds (46 hours).
 409

410 We consider two testbeds: `Low-dim` and `High-dim`. `Low-dim` contains 43 instances with
 411 $m = 10, \dots, 30$, $n = 2, 3$, and $k = 2, 3$. These instances are a superset of the 24 instances
 412 tackled with SBB techniques in Amaldi & Coniglio (2013). `High-dim` contains 43 instances with
 413 $m = 10, \dots, 17$, $n = 2, 3, 4, 5$, and $k = 2, 3, 4, 5$. Both datasets are generated by randomly choos-
 414 ing (w_j, γ_j) , $j \in [k]$, with a uniform distribution in $[-1, 1]$ and distributing uniformly at random
 415 the m points such that each of them belongs (with 0 distance) to a hyperplane. Then, an orthog-
 416 onal deviation from the corresponding hyperplane is added to each point by sampling a Gaussian
 417 distribution with 0 mean and a variance that is selected, for each hyperplane, uniformly at random
 418 in $[0.7 \cdot 0.003, 0.003]$. Details on how to access and run our code as well as on how to access the
 419 dataset we used in the experiment are reported in the appendix.
 420

421 Tables 1 and 2 report, per formulation, the median and the inter-quartile range (IQR) of the com-
 422 puting times on the subset of instances solved by all methods, the median speed-up relative to
 423 $(k\text{-HC}_{(2,1)})$, a 95% bootstrap confidence interval, and the Holm-corrected (with a family-wise error
 424 rate $\alpha = 0.05$) p -value of a two-sided Wilcoxon signed-rank test against $(k\text{-HC}_{(2,1)})$ on paired data.
 425 More detailed results are reported in Tables 3–4.
 426

427 Let us focus first on the `Low-dim` testbed. With the three strengthened formulations
 428 $(k\text{-HC}_{(2,1)}, (1, \frac{1}{\sqrt{n}}))$, $(k\text{-HC}_{(2,1)}, (\infty, 1))$, and $(k\text{-HC}_{(2,1)}, (\text{multi}, 1))$, 10 instances that are not solved in
 429 over 46 hours with the classical formulation $(k\text{-HC}_{(2,1)})$ are solved in under 2 hours. With the
 430 strengthened formulations, the 31 instances that are also solved with the classical formulation are
 431 solved, respectively, 8.1, 8, and 4.5 times faster. Incidentally, our results on the `Low-dim` testbed
 432 prove that all the heuristic solutions found in Amaldi & Coniglio (2013) on the 24 instances therein
 433 considered (those with $m = 10, 14, 18, 22, 26, 30$) are optimal.
 434

435 Let us turn now to the `High-dim` testbed. On it, with the best-performing of the strengthened
 436 formulations we manage to solve 22 more instances then with the classical formulation. With the
 437

strengthened formulations, the 20 instances that are also solved with the classical formulation are solved, respectively, 41, 28, and 34 times faster.

Notice that the speedup obtained with $(k\text{-HC}_{(2,1),(\text{multi},1)})$ is smaller than the ones obtained with $(k\text{-HC}_{(2,1),(\infty,1)})$ and $(k\text{-HC}_{(2,1),(1,\frac{1}{\sqrt{n}})})$. Such a behavior is well explained by the results of Propositions 3 and 4: As n and k increase, the difference between the exponential lower bound (on the number of nodes required to obtain a nonzero global lower bound) in the first proposition and the polynomial one in the second one becomes larger and larger. Thus, any branching operations taking place on the constraints $\|w_j\|_1 \geq 1$ have a much smaller impact on the bound than those taking place on the $\|w_j\|_\infty \geq \frac{1}{\sqrt{n}}$, $j \in [k]$, which explains the superior performance of $(k\text{-HC}_{(2,1),(\infty,1)})$.

Table 1: LowDim: distribution-aware comparison on the 33 instances solved by $(k\text{-HC}_{(2,1)})$.

Algorithm	Median (s)	IQR (s)	Speed-up	95% CI	$p\text{-value}^\dagger$
$(k\text{-HC}_{(2,1)})$	207.0	5422	1 \times	—	—
$(k\text{-HC}_{(2,1),(\infty,1)})$	25.5	478	8.1 \times [4.7 \times , 12.6 \times]	2.9×10^{-7}	—
$(k\text{-HC}_{(2,1),(1,\frac{1}{\sqrt{n}})})$	26.0	525	8.0 \times [4.5 \times , 11.9 \times]	9.3×10^{-10}	—
$(k\text{-HC}_{(\text{multi},1)})$	46.1	2163	4.5 \times [1.7 \times , 7.3 \times]	2.3×10^{-4}	—

Table 2: HighDim: distribution-aware comparison on the 20 instances solved by $(k\text{-HC}_{(2,1)})$.

Algorithm	Median (s)	IQR (s)	Speed-up	95% CI	$p\text{-value}^\dagger$
$(k\text{-HC}_{(2,1)})$	169.9	2206	1 \times —	—	—
$(k\text{-HC}_{(2,1),(\infty,1)})$	4.15	29.7	41 \times [5 \times , 167 \times]	1.8×10^{-5}	—
$(k\text{-HC}_{(2,1),(1,\frac{1}{\sqrt{n}})})$	6.10	28.3	28 \times [5 \times , 126 \times]	2.4×10^{-5}	—
$(k\text{-HC}_{(\text{multi},1)})$	5.00	18.3	34 \times [6 \times , 145 \times]	3.1×10^{-5}	—

Table 3: Results on the LowDim dataset (sub-optimal values are in italics).

	$(k\text{-HC}_{(2,1)})$	$(k\text{-HC}_{(2,1),(\infty,1)})$	$(k\text{-HC}_{(2,1),(1,\frac{1}{\sqrt{n}})})$	$(k\text{-HC}_{(\text{multi},1)})$						
m	n	k	obj	time	obj	time	obj	time	obj	time
10	2	4	0.0	8.3	0.0	2.4	0.0	1.8	0.0	6.8
10	2	0.0	4.9	0.0	—	0.8	0.0	6.1	0.0	3.9
11	2	4	0.1	21.9	0.1	9.8	0.1	5.9	0.1	17.7
11	2	5	0.0	1264.3	0.0	392.8	0.0	300.2	0.0	2689.7
11	4	2	0.0	174.4	0.1	17.4	0.1	1.6	0.0	105.5
12	2	4	0.1	179.4	0.1	17.9	0.1	8.1	0.1	30.5
12	2	5	0.0	425.0	0.0	160.4	0.0	56.8	0.0	282.8
12	4	2	0.0	173.1	0.1	1.2	0.1	7.7	0.1	10.1
12	5	2	0.0	29.3	0.0	14.4	0.0	16.4	0.0	26.1
13	2	4	0.0	238.2	0.1	19.4	0.1	14.6	0.1	38.4
13	3	5	0.0	935.1	0.0	127.1	0.0	55.8	0.0	170.7
13	3	4	0.0	4143.0	0.0	7567.6	—	168000.0	—	168000.0
13	4	2	0.0	15.0	0.1	6.5	0.1	—	0.1	—
13	4	3	0.0	948.7	0.0	567.0	0.0	712.6	0.0	4625.7
13	5	2	0.0	47.0	0.1	11.1	0.1	19.8	0.1	28.3
14	2	4	0.2	683.1	0.2	22.4	0.2	12.2	0.2	55.8
14	2	5	0.2	168000.0	0.0	2757.6	0.0	2784.8	0.0	7540.2
14	4	2	0.5	585.5	0.5	2.2	0.5	7.0	0.5	9.6
14	4	2	0.0	144.5	0.0	687.0	0.0	890.5	0.0	6907.0
14	5	2	0.1	120.0	0.1	13.8	0.1	21.9	0.1	36.3
15	2	4	0.3	1350.6	0.3	32.9	0.3	23.4	0.3	54.4
15	2	5	0.0	5854.2	0.0	320.5	0.0	92.9	0.0	445.3
15	3	4	—	168000.0	0.0	2760.8	0.0	1772.1	—	168000.0
15	4	2	0.6	37.5	0.6	5.8	0.6	8.4	0.6	9.2
15	4	3	0.0	3803.0	0.0	515.6	0.0	439.4	0.0	2208.8
15	4	4	0.1	98.7	0.1	13.3	0.1	46.7	0.1	35.0
16	2	4	0.2	5854.2	0.2	119.6	0.2	22.0	0.2	67.0
16	2	5	0.3	168000.0	0.0	582.6	0.0	346.6	0.0	781.9
16	3	4	—	168000.0	0.0	4586.5	0.0	2407.2	—	168000.0
16	3	5	—	168000.0	0.0	168000.0	—	168000.0	—	168000.0
16	4	2	1.1	179.0	1.1	12.9	1.1	15.0	1.1	12.1
16	4	3	0.0	5144.2	0.0	554.5	0.0	601.1	0.0	2507.3
16	4	4	0.8	444.5	0.8	28.5	0.8	43.2	0.8	60.8
17	2	4	0.2	168000.0	0.2	57.2	0.2	42.4	0.2	69.0
17	2	5	0.1	168000.0	0.1	1452.3	0.1	999.4	0.1	1517.1
17	3	4	—	168000.0	0.0	4970.5	0.0	2533.9	—	168000.0
17	3	5	—	168000.0	0.0	168000.0	—	168000.0	—	168000.0
17	4	2	0.5	175.7	0.5	9.8	0.5	10.6	0.5	9.8
17	4	3	—	168000.0	0.0	904.1	0.0	967.5	0.0	3679.0
17	4	4	—	168000.0	0.0	8218.2	1.4	974.0	0.0	8104.9
17	5	2	1.4	1092.7	1.4	87.0	1.4	97.4	1.4	101.0
17	5	3	—	168000.0	0.0	8116.4	0.0	8082.4	0.0	7910.9

Sol 31 41 40 37

Table 4: Results on the HighDim dataset (sub-optimal values are in italics).

	$(k\text{-HC}_{(2,1)})$	$(k\text{-HC}_{(2,1),(\infty,1)})$	$(k\text{-HC}_{(2,1),(1,\frac{1}{\sqrt{n}})})$	$(k\text{-HC}_{(\text{multi},1)})$						
m	n	k	obj	time	obj	time	obj	time	obj	time
10	2	2	0.3	0.3	0.3	0.2	0.3	0.2	0.3	0.2
10	2	3	0.5	0.5	0.5	1.0	0.5	0.8	0.5	1.0
14	2	2	8.5	1.6	8.5	0.6	8.5	0.2	8.5	0.3
14	2	3	8.0	31.9	0.8	4.4	0.8	3.4	0.8	5.4
18	2	3	3.4	13.1	3.4	0.4	3.4	0.4	3.4	0.7
18	2	4	8.0	488.9	3.4	3.9	2.7	4.4	3.4	4.6
22	2	2	9.7	179.2	9.7	1.7	9.7	1.4	9.7	0.9
22	2	3	2.4	2213.3	2.4	11.2	2.4	11.2	2.4	9.8
25	2	2	8.2	28.9	8.2	0.6	8.2	0.4	8.2	1.4
25	2	3	2.7	168000.0	2.7	936.6	2.7	961.1	2.7	221.0
26	2	2	—	168000.0	—	62.2	5.8	10.4	5.8	2.2
26	2	3	—	168000.0	—	39.0	3.4	56.6	3.4	28.3
27	2	2	—	168000.0	—	0.7	1.1	2.0	5.1	0.8
27	2	3	—	168000.0	—	1678.4	3.3	2687.7	3.3	238.6
28	2	2	—	168000.0	—	8.6	11.7	—	6.3	11.7
28	2	3	—	168000.0	—	293.1	3.6	471.3	3.6	153.5
29	2	2	—	168000.0	—	0.8	7.1	—	0.3	7.1
29	2	3	—	168000.0	—	7694.9	7.1	6029.0	7.1	1476.4
30	2	2	—	168000.0	—	10.4	9.1	38.5	9.1	1.6
30	2	3	—	168000.0	—	30.7	3.4	172.0	3.4	44.2
30	3	2	0.9	1.1	0.9	0.4	0.9	19.1	3.4	44.2
30	3	3	0.0	30.2	0.0	32.6	0.0	31.9	0.0	41.9
30	3	4	0.7	8.4	0.7	0.8	0.7	0.8	0.7	1.4
14	3	3	0.1	206.4	0.1	29.7	0.1	25.5	0.1	49.7
18	3	2	0.7	160.6	0.7	3.7	0.7	7.8	0.7	4.5
18	3	3	0.4	2234.9	0.4	93.4	0.4	91.6	0.4	157.9
22	3	2	4.3	625.4	4.3	15.6	4.3	11.3	4.3	10.8
22	3	3	3.3	1362.9	3.3	1089.3	3.3	638.3	3.3	123.7
23	3	2	0.9	6459.4	0.9	8.1	0.9	45.5	0.9	10.1
23	3	3	2.9	18049.6	2.9	66.3	2.9	474.7	2.9	34.5
24	3	3	1.7	168000.0	1.5	2470.6	1.5	2716.7	1.5	3817.0
25	3	2	5.7	22886.9	5.7	70.7	5.7	28.1	8.9	14.2
25	3	3	1.3	168000.0	1.3	1952.3	1.3	5060.3	9.9	2885.1
26	3	2	4.5	62.9	4.5	6.2	4.5	434.7	10.9	230.2
26	3	3	1.4	168000.0	1.4	597.9	1.4	1274.8	12.9	58.5
27	3	2	—	168000.0	—	215.1	1.4	—	—	—
27	3	3	2.9	168000.0	2.9	52548.9	2.9	65949.3	13.9	35206.1
28	3	2	—	168000.0	—	31.1	3.6	—	1.7	14.9
28	3	3	1.4	168000.0	1.4	4234.9	1.4	74560.6	15.9	4180.9
29	3	2	—	168000.0	—	143.5	8.1	34.0	16.9	12.5
29	3	3	2.9	168000.0	2.9	168000.0	2.9	168000.0	17.9	168000.0
30	3	2	—	168000.0	—	30383.1	2.5	168000.0	18.9	3014.8
30	3	3	2.2	168000.0	2.2	23488.8	3.2	168000.0	19.9	6341.5

486 within a $(1 + \varepsilon)$ factor. Integrating such coresets constructions with our exact SBB-based solver could
487 yield a hybrid approach (approximate in data, but exact in optimization), combining scalability with
488 provable global optimality guarantees.
489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REFERENCES
541

542 E. Amaldi and M. Mattavelli. The MIN PFS problem and piecewise linear model estimation. *Discrete
543 Applied Mathematics*, 118(1-2):115–143, 2002.

544 Edoardo Amaldi and Stefano Coniglio. A distance-based point-reassignment heuristic for the k-
545 hyperplane clustering problem. *European Journal of Operational Research*, 227(1):22–29, 2013.

546 Edoardo Amaldi, Kanika Dhyani, and Alberto Ceselli. Column generation for the minimum hyper-
547 planes clustering problem. *INFORMS Journal on Computing*, 25(3):446–460, 2013.

548 P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. Branching and bound tightening techniques
549 for non-convex MINLP. *Optimization methods and software*, 24:597–634, 2009.

550 P. Bradley and O. Mangasarian. k -plane clustering. *Journal of Global Optimization*, 16:23–32,
551 2000.

552 K. Dhyani and L. Liberti. Mathematical programming formulations for the bottleneck hyperplane
553 clustering problem. In *Proceedings of Modelling, Computation and Optimization in Information
554 Systems and Management Sciences*, volume 14, pp. 87–96, 2008.

555 Eduard Eiben, Fedor V Fomin, Petr A Golovach, William Lochet, Fahad Panolan, and Kirill Si-
556 monov. Eptas for k -means clustering of affine subspaces. In *Proceedings of the 2021 ACM-SIAM
557 Symposium on Discrete Algorithms (SODA)*, pp. 2649–2659. SIAM, 2021.

558 G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari. A clustering technique for the identifi-
559 cation of piecewise affine systems. *Automatica*, 39:205–217, 2003.

560 P. Georgiev, P. Pardalos, and F. Theis. A bilinear algorithm for sparse representations. *Computa-
561 tionals Optimization and Applications*, 38(2):249–259, 2007.

562 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022. URL <https://www.gurobi.com>.

563 Hongmei He and Zengchang Qin. A k -hyperplane-based neural network for non-linear regression.
564 In *9th IEEE International Conference on Cognitive Informatics (ICCI'10)*, pp. 783–787. IEEE,
565 2010.

566 Zhaoshui He and Andrzej Cichocki. An efficient k -hyperplane clustering algorithm and its ap-
567 plication to sparse component analysis. In *International Symposium on Neural Networks*, pp.
568 1032–1041. Springer, 2007.

569 Deming Kong, Lijun Xu, Xiaolu Li, and Shuyang Li. K -plane-based classification of airborne
570 lidar data for accurate building roof measurement. *IEEE Transactions on Instrumentation and
571 Measurement*, 63(5):1200–1214, 2013.

572 James MacQueen et al. Some methods for classification and analysis of multivariate observations. In
573 *Proceedings of the fifth Berkeley symposium on mathematical statistics and probability*, volume
574 1 (14), pp. 281–297. Oakland, CA, USA, 1967.

575 Olvi L Mangasarian. Arbitrary-norm separating plane. *Operations Research Letters*, 24(1-2):15–23,
576 1999.

577 G. McCormick. Computability of global solutions to factorable nonconvex programs: Part i - convex
578 underestimating problems. *Math. Progmn.*, 10:146–175, 1976.

579 Nimrod Megiddo and Arie Tamir. On the complexity of locating linear facilities in the plane. *Oper-
580 ations research letters*, 1(5):194–197, 1982.

581 Luis Rademacher, Santosh Vempala, and Grant Wang. Matrix approximation and projective cluster-
582 ing via iterative sampling. 2005.

583 Christian Sohler and David P Woodruff. Strong coresets for k -median and subspace approximation:
584 Goodbye dimension. In *2018 IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS)*, pp. 802–813. IEEE, 2018.

594 Manolis C Tsakiris and René Vidal. Hyperplane clustering via dual principal component pursuit. In
 595 *International conference on machine learning*, pp. 3472–3481. PMLR, 2017.
 596

597 Yoshikazu Washizawa and Andrzej Cichocki. On-line k-plane clustering learning algorithm for
 598 sparse component analysis. In *2006 IEEE International Conference on Acoustics Speech and*
 599 *Signal Processing Proceedings*, volume 5, pp. V–V. IEEE, 2006.

600 Ye Zhang, Haolong Wang, Wenwu Wang, and Saeid Sanei. K-plane clustering algorithm for anal-
 601 ysis dictionary learning. In *2013 IEEE International Workshop on Machine Learning for Signal*
 602 *Processing (MLSP)*, pp. 1–4. IEEE, 2013.

604 A APPENDIX

607 You may include other additional sections here.

609 B CODE REPOSITORY AND LICENSING

611 The code developed for this work is available at <https://anonymous.4open.science/r/norms-5F23> and freely distributed under the Apache 2.0 license.⁴
 612

615 C LIST OF OUR THEORETICAL RESULTS WITH THE CORRESPONDING PROOFS

617 **Proposition 1.** *Given a hyperplane $H := \{x \in \mathbb{R}^n : x^\top w = \gamma\}$ and a point $a \in \mathbb{R}^n$, the function*
 618 $d_p(a, H) = \frac{|w^\top a - \gamma|}{\|w\|_{p'}}$, *where $\frac{1}{p} + \frac{1}{p'} = 1$, is a nonconvex function of (w, γ) for every $p \in \mathbb{N} \cup \{\infty\}$.*
 619

620 *Proof.* By definition, $\frac{|w^\top a - \gamma|}{\|w\|_{p'}}$ is a convex function of (w, γ) if and only if the following holds for
 621 every (w_1, γ_1) and $(w_2, \gamma_2) \in \mathbb{R}^{n+1}$ and $\lambda \in [0, 1]$:

$$\begin{aligned} & \lambda \frac{|w_1^\top a - \gamma_1|}{\|w_1\|_{p'}} + (1 - \lambda) \frac{|w_2^\top a - \gamma_2|}{\|w_2\|_{p'}} \geq \\ & \frac{|(\lambda w_1 + (1 - \lambda) w_2)^\top a - (\lambda \gamma_1 + (1 - \lambda) \gamma_2)|}{\|\lambda w_1 + (1 - \lambda) w_2\|_{p'}}. \end{aligned} \quad (3)$$

629 Let $a = (0, 0)$ and consider two hyperplanes of parameters $w_1 := (1, -\frac{1}{5})$, $\gamma_1 = 1$ and $w_2 :=$
 630 $(-\frac{1}{5}, 1)$, $\gamma_2 = 1$. Let $\gamma := \gamma_1 = \gamma_2$. Letting $\lambda = \frac{1}{2}$, Inequality (3) reads:

$$\frac{1}{2} \frac{1}{\sqrt[p']{1 + (\frac{1}{5})^{p'}}} + \frac{1}{2} \frac{1}{\sqrt[p']{1 + (\frac{1}{5})^{p'}}} \geq \frac{1}{\sqrt[p']{(\frac{2}{5})^{p'} + (\frac{2}{5})^{p'}}}, \quad (4)$$

635 or, equivalently:

$$\sqrt[p']{(\frac{2}{5})^{p'} + (\frac{2}{5})^{p'}} \geq \sqrt[p']{1 + (\frac{1}{5})^{p'}}.$$

639 Taking both sides to the p' -th power, we have $2(\frac{2}{5})^{p'} \geq 1 + (\frac{1}{5})^{p'}$. After moving 1 to the left-
 640 hand side and multiplying both sides by $5^{p'}$, we deduce $2 \cdot 2^{p'} - 1 \geq 5^{p'}$, which, if valid, implies
 641 $2 \cdot 2^{p'} > 2 \cdot 2^{p'} - 1 \geq 5^{p'}$. As $(\frac{5}{2})^{p'} > 2$ holds for every $p' \in \mathbb{N} \cup \{\infty\}$ (as one can see by setting
 642 p' to its smallest value, i.e., setting $p' := 1$), Inequality (4) is proven not to hold for any choice of
 643 $p \in \mathbb{N} \cup \{\infty\}$. \square

645 **Lemma 1.** *The solutions to $(k\text{-HC}_{(2,1)})$ and $(k\text{-HC}_2)$ coincide. Also, $(k\text{-HC}_{(p,c)})$ is quadratically*
 646 *homogeneous w.r.t. c , i.e., $\text{OPT}(k\text{-HC}_{(p,c)}) = c^2 \text{OPT}(k\text{-HC}_{(p,1)})$.*

4<https://www.apache.org/licenses/LICENSE-2.0>

648 *Proof.* We start by showing that $k\text{-HC}_2^{\geq 1}$ and $k\text{-HC}_2$ are equivalent when $c = 1$ and $p = 2$.
649 Indeed, as n points in general position fix a hyperplane in \mathbb{R}^n , only n of the $n + 1$ parameters
650 in $(w_j, \gamma_j) \in \mathbb{R}^{n+1}$ are independent. Thus, $\|w_j\|_2^2 = \|w_j\|_2 = 1$ can be imposed w.l.o.g. for
651 all $j \in [k]$. Relaxing $\|w_j\|_2 = 1$ as $\|w_j\|_2 \geq 1$ is w.l.o.g. as the latter is tight in any optimal
652 solution—indeed, if not, a strictly better solution is found by scaling (w_j, γ_j) by $\frac{1}{\|w_j\|_{p'}}$, $j \in [k]$.
653 Let $\{(w_j, \gamma_j)\}_{j \in [k]}$ be an optimal solution to $k\text{-HC}_p^{\geq c}$. As argued, $\|w_j\|_{p'} = c$ holds. Let now
654 $(w'_j, \gamma'_j) := \frac{(w_j, \gamma_j)}{c}$, $j \in [k]$. Such a scaled solution satisfies $\|w'_j\|_{p'} = 1$ for all $j \in [k]$ and, thus, is
655 feasible for $k\text{-HC}_p^{\geq 1}$. Its objective function value is $\frac{1}{c^2}$ times the one of $\{(w_j, \gamma_j)\}_{j \in [k]}$. Since such
656 a multiplicative difference is a constant, the scaled solution is optimal for $k\text{-HC}_p^{\geq 1}$. Thus, we have
657 $\text{OPT}(k\text{-HC}_p^{\geq c}) = c^2 \text{OPT}(k\text{-HC}_p^{\geq 1})$. \square
658

659 **Theorem 1.** Let $p, q \in \mathbb{N} \cup \{\infty\}$ and $c > 0$. The three positive scalars $\alpha(p, q), \beta(p, q), \gamma(p, q)$
660 which, for all $x \in \mathbb{R}^n$, satisfy the congruence inequality $\alpha(p, q)\|x\|_p \leq \beta(p, q)\|x\|_q \leq$
661 $\gamma(p, q)\|x\|_p$ for $p, q \in \mathbb{N} \cup \{\infty\}$ also satisfy the optimal-value inequality $\frac{\alpha(p, q)^2}{\gamma(p, q)^2} \text{OPT}(k\text{-HC}_{(p, c)}) \leq$
662 $\text{OPT}\left(k\text{-HC}_{(q, c\frac{\beta(p, q)}{\gamma(p, q)})}\right) \leq \text{OPT}(k\text{-HC}_{(p, c)})$.
663

664 *Proof.* The inequality

$$\min_{x \in X} f(x) \leq \min_{x \in X} f'(x) \leq \min_{x \in X} f''(x) \quad (5)$$

665 holds for any three functions $f, f', f'' : X \rightarrow \mathbb{R}$ satisfying $f(x) \leq f'(x) \leq f''(x)$ for all $x \in$
666 $X \subseteq \mathbb{R}^n$. Since vector norms in \mathbb{R}^n are congruent, for every $p, q \in \mathbb{N} \cup \{\infty\}$ there are three
667 positive scalars $\alpha(p, q), \beta(p, q), \gamma(p, q)$ which satisfy $\alpha(p, q)\|x\|_p \leq \beta(p, q)\|x\|_q \leq \gamma(p, q)\|x\|_p$
668 for $p, q \in \mathbb{N} \cup \{\infty\}$. Since, by definition, $d_p(a, H) = \min_{y \in H} \|a - y\|_p$, equation 5 leads to the
669 following congruence relationship for point-to-hyperplane distances that holds for every hyperplane
670 H in \mathbb{R}^n and point $a \in \mathbb{R}^n$:

$$\alpha(p, q) d_p(a, H) \leq \beta(p, q) d_q(a, H) \leq \gamma(p, q) d_p(a, H). \quad (6)$$

671 Squaring equation 6 and letting H_1, \dots, H_k be an arbitrary choice of k hyperplanes, another application
672 of equation 5 leads to

$$\begin{aligned} \alpha(p, q)^2 \min_{j \in [k]} \{d^2(a_i, H_j)_p\} &\leq \beta(p, q)^2 \min_{j \in [k]} \{d^2(a_i, H_j)_q\} \leq \\ &\leq \gamma(p, q)^2 \min_{j \in [k]} \{d^2(a_i, H_j)_p\}. \end{aligned} \quad (7)$$

673 Summing over the data points, we obtain the following surrogate inequality:

$$\begin{aligned} \alpha(p, q)^2 \sum_{i=1}^m \min_{j \in [k]} \{d^2(a_i, H_j)_p\} &\leq \\ \beta(p, q)^2 \sum_{i=1}^m \min_{j \in [k]} \{d^2(a_i, H_j)_q\} &\leq \\ \gamma(p, q)^2 \sum_{i=1}^m \min_{j \in [k]} \{d^2(a_i, H_j)_p\}. \end{aligned}$$

674 Applying again equation 5 for the choice of the optimal hyperplane equations, we deduce
675 $\alpha(p, q)^2 \text{OPT}(k\text{-HC}_p^{\geq 1}) \leq \beta(p, q)^2 \text{OPT}(k\text{-HC}_q^{\geq 1}) \leq \gamma(p, q)^2 \text{OPT}(k\text{-HC}_p^{\geq 1})$.
676 Multiplying through by c^2 and using Lemma 1, we obtain $\alpha(p, q)^2 \text{OPT}(k\text{-HC}_p^{\geq c}) \leq$
677 $\beta(p, q)^2 \text{OPT}(k\text{-HC}_q^{\geq c}) \leq \gamma(p, q)^2 \text{OPT}(k\text{-HC}_p^{\geq c})$. By using Lemma 1 one more time, we deduce
678 $\beta(p, q)^2 \text{OPT}(k\text{-HC}_q^{\geq c}) = \text{OPT}(k\text{-HC}_q^{\geq c\beta(p, q)})$, which allows us to write:

$$\begin{aligned} \alpha(p, q)^2 \text{OPT}(k\text{-HC}_p^{\geq c}) &\leq \\ \text{OPT}(k\text{-HC}_q^{\geq c\beta(p, q)}) &\leq \gamma(p, q)^2 \text{OPT}(k\text{-HC}_p^{\geq c}). \end{aligned}$$

679 Dividing through by $\gamma(p, q)$ and applying Lemma 1 one last time, the claim is obtained. \square
680

702 **Corollary 1.** $k\text{-HC}_{(\infty,1)}$ and $k\text{-HC}_{(1,\frac{1}{\sqrt{n}})}$ satisfy:

$$\begin{aligned} 704 \quad \frac{1}{n} \text{OPT}(k\text{-HC}_{(2,1)}) &\leq \text{OPT}(k\text{-HC}_{(\infty,1)}) \leq \text{OPT}(k\text{-HC}_{(2,1)}) \\ 705 \quad \frac{1}{n} \text{OPT}(k\text{-HC}_{(2,1)}) &\leq \text{OPT}(k\text{-HC}_{(1,\frac{1}{\sqrt{n}})}) \leq \text{OPT}(k\text{-HC}_{(2,1)}). \\ 706 \end{aligned}$$

707 *Proof.* We rely on the following congruence relationships:

$$\frac{1}{\sqrt{n}}\|x\|_2 \leq \|x\|_\infty \leq \|x\|_2 \quad \frac{1}{\sqrt{n}}\|x\|_2 \leq \frac{1}{\sqrt{n}}\|x\|_1 \leq \|x\|_2.$$

708 Thanks to Theorem 1, $\frac{1}{\sqrt{n}}\|x\|_2 \leq \|x\|_\infty \leq \|x\|_2$ implies $\frac{1}{n} \text{OPT}(k\text{-HC}_2^{\geq 1}) \leq \text{OPT}(k\text{-HC}_\infty^{\geq 1}) \leq \text{OPT}(k\text{-HC}_2^{\geq 1})$. Thanks to Theorem 1, $\frac{1}{\sqrt{n}}\|x\|_2 \leq \frac{1}{\sqrt{n}}\|x\|_1 \leq \|x\|_2$ implies $\frac{1}{n} \text{OPT}(k\text{-HC}_2^{\geq 1}) \leq \frac{1}{n} \text{OPT}(k\text{-HC}_1^{\geq 1}) \leq \text{OPT}(k\text{-HC}_2^{\geq 1})$ which, due to Lemma 1, is equal to $\frac{1}{n} \text{OPT}(k\text{-HC}_2^{\geq 1}) \leq \text{OPT}(k\text{-HC}_1^{\geq \frac{1}{\sqrt{n}}}) \leq \text{OPT}(k\text{-HC}_2^{\geq 1})$. \square

709 **Lemma 2.** Solving $k\text{-HC}$ subject to $\min\{\|w\|_1, \sqrt{n}\|w\|_\infty\} \geq 1$ coincides with solving an unconstrained version of $k\text{-HC}$ where the point-to-hyperplane distance between a_i and H_j is defined as $\max\{d_\infty(a_i, H_j), \frac{1}{\sqrt{n}}d_1(a_i, H_j)\}$.

710 *Proof.* In the context of point-to-hyperplane distances, $\min\{\|w\|_1, \sqrt{n}\|w\|_\infty\} = 1$ implies $|a_i^\top w_j - \gamma| = \frac{|a_i^\top w_j - \gamma|}{\min\{\|w\|_1, \sqrt{n}\|w\|_\infty\}}$. We can rewrite the latter as $\max\{\frac{|a_i^\top w_j - \gamma|}{\|w\|_1}, \frac{|a_i^\top w_j - \gamma|}{\sqrt{n}\|w\|_\infty}\} = \max\{\frac{|a_i^\top w_j - \gamma|}{\|w\|_1}, \frac{1}{\sqrt{n}}\frac{|a_i^\top w_j - \gamma|}{\|w\|_\infty}\} = \max\{d_\infty(a_i, H_j), \frac{1}{\sqrt{n}}d_1(a_i, H_j)\}$. Such a multi orthogonal distance is clearly induced by the norm $\max\{\|x\|_\infty, \frac{1}{\sqrt{n}}\|x\|_1\}$ (assuming that such a function is a norm—we will prove this next). \square

731 Figure 3: Sets of points satisfying $\|x\|_2 = 1$ (outer circle) and $\max\{\|x\|_\infty, \frac{1}{\sqrt{n}}\|x\|_1\} = 1$ (inner octagon). Notice that such a geometrical property suffices to establish $\|x\|_2 \leq \max\{\|x\|_\infty, \frac{1}{\sqrt{n}}\|x\|_1\}$.

732 **Lemma 3.** The function $\max\{\|x\|_\infty, \frac{1}{\sqrt{n}}\|x\|_1\}$ is a norm on \mathbb{R}^n and, for all $x \in \mathbb{R}^n$, it satisfies the sharp congruence inequality

$$733 \quad n^{-1/4} \|x\|_2 \leq \max\{\|x\|_\infty, \frac{1}{\sqrt{n}}\|x\|_1\} \leq \|x\|_2.$$

734 *Proof.* Let us show that $\max\{\|x\|_\infty, \frac{1}{\sqrt{n}}\|x\|_1\}$ is a norm.

735 **Positive definiteness.** First, it is clear that $\max\{\|x\|_\infty, \frac{1}{\sqrt{n}}\|x\|_1\} \geq 0$ and that $\max\{\|x\|_\infty, \frac{1}{\sqrt{n}}\|x\|_1\} = 0$ if and only if $x = 0$.

756 **Absolute homogeneity.** Second, it is also clear that $|\lambda| \max\{||x||_\infty, \frac{1}{\sqrt{n}}||x||_1\} =$
 757 $\max\{\lambda||x||_\infty, \lambda \frac{1}{\sqrt{n}}||x||_1\}$ for all $\lambda \in \mathbb{R}$.
 758

759 **Triangle inequality.** Third, we must show $\max\{||x + y||_\infty, \frac{1}{\sqrt{n}}||x + y||_1\} \leq$
 760 $\max\{||x||_\infty, \frac{1}{\sqrt{n}}||x||_1\} + \max\{||y||_\infty, \frac{1}{\sqrt{n}}||y||_1\}$. To see this, we first notice that
 761

$$\begin{aligned} ||x + y||_\infty &\leq ||x||_\infty + ||y||_\infty \\ \frac{1}{\sqrt{n}}||x + y||_1 &\leq \frac{1}{\sqrt{n}}||x||_1 + \frac{1}{\sqrt{n}}||y||_1 \end{aligned}$$

762 hold since these functions are norms. Taking the maximum of the left-hand and right-hand sides,
 763 due to the monotonicity of max, we have:
 764

$$\begin{aligned} \max\{||x + y||_\infty, \frac{1}{\sqrt{n}}||x + y||_1\} &\leq \\ \max\{||x||_\infty + ||y||_\infty, \frac{1}{\sqrt{n}}||x||_1 + \frac{1}{\sqrt{n}}||y||_1\}. & \end{aligned}$$

765 To show that this implies that the triangle inequality is satisfied, we show that, for any $a, b, c, d \geq 0$,
 766 we have $\max\{a+c, b+d\} \leq \max\{a, b\} + \max\{c, d\}$. Note that $a \leq \max\{a, b\}$, $b \leq \max\{a, b\}$, $c \leq$
 767 $\max\{c, d\}$, and $d \leq \max\{c, d\}$. Adding the inequalities, we have: $a + c \leq \max\{a, b\} + \max\{c, d\}$
 768 and $b + d \leq \max\{a, b\} + \max\{c, d\}$. Taking the maximum of the left- and right-hand sides, due
 769 again to the monotonicity of max we have proven the property we sought to prove.

770 **Congruence.** We are now looking to prove a congruence of type
 771

$$\alpha||x||_2 \leq \beta \max\{||x||_\infty, \frac{1}{\sqrt{n}}||x||_1\} \leq \gamma||x||_2$$

772 for some $\alpha, \beta, \gamma \geq 0$. We can split it as follows:
 773

$$\begin{aligned} \alpha||x||_2 &\leq \beta \max\{||x||_\infty, \frac{1}{\sqrt{n}}||x||_1\} \\ &\Leftrightarrow \frac{||x||_2}{\max\{||x||_\infty, \frac{1}{\sqrt{n}}||x||_1\}} \leq \frac{\beta}{\alpha} \end{aligned}$$

774 and
 775

$$\begin{aligned} \beta \max\{||x||_\infty, \frac{1}{\sqrt{n}}||x||_1\} &\leq \gamma||x||_2 \\ &\Leftrightarrow \frac{\beta}{\gamma} \leq \frac{||x||_2}{\max\{||x||_\infty, \frac{1}{\sqrt{n}}||x||_1\}} \end{aligned}$$

776 and prove the two inequalities independently. (Notice that this is w.l.o.g. since, for $x = 0$, the
 777 congruence is trivially satisfied).
 778

779 Now, $\max\{||x||_\infty, \frac{1}{\sqrt{n}}||x||_1\}$ is a convex function (it is the maximum of two convex functions).
 780 Hence its level curves are convex—see Figure 3.

781 Let $S = \{x \in \mathbb{R}^n : ||x||_\infty \leq 1, ||x||_1 \leq \sqrt{n}\}$. Let $t := \lfloor \sqrt{n} \rfloor$, and let r be the fractional part
 782 of \sqrt{n} , i.e., $r := \sqrt{n} - t \in [0, 1)$. We'll prove that every maximizer of $\|x\|_2$ over S has at most
 783 one fractional coordinate in $(0, 1)$ and, in particular, that $x^* = (\underbrace{1, \dots, 1}_{t \text{ times}}, r, 0, \dots, 0)$ is one such
 784 maximizer with objective function value $\max_{x \in S} \|x\|_2 = \sqrt{t + r^2}$.
 785

786 Since S is symmetric under sign flips and coordinate permutations, we can w.l.o.g. restrict ourselves
 787 to vectors $x \in \mathbb{R}^n$ with $x_1 \geq x_2 \geq \dots \geq x_n \geq 0$ and consider the equivalent problem

$$\max \sum_{i=1}^n x_i^2 : \sum_{i=1}^n x_i \leq \sqrt{n}, x \in [0, 1]^n. \quad (\text{P})$$

(i) *The ℓ_1 budget is tight at optimum.* If $\sum_i x_i < \sqrt{n}$, we can increase x_1 until either $x_1 = 1$ or $\sum_i x_i = \sqrt{n}$. Since, doing so, the objective $\sum_i x_i^2$ increases, every maximizer satisfies $\sum_i x_i = \sqrt{n}$.

(ii) *At most one fractional coordinate.* Suppose a feasible x with $\sum_i x_i = \sqrt{n}$ has two indices $i \neq j$ with $0 < x_i < 1$ and $0 < yx_j < 1$. W.l.o.g., assume $y_i \geq y_j$. For some $\varepsilon > 0$ with $x_i + \varepsilon \leq 1$ and $x_j - \varepsilon \geq 0$, define \tilde{x} as $\tilde{x}_i := x_i + \varepsilon$, $\tilde{x}_j = x_j - \varepsilon$, and $\tilde{x}_k = x_k$ for all $k \notin \{i, j\}$. Then, $\sum_k \tilde{y}_k = s$, and we have:

$$\begin{aligned} & \sum_k \tilde{y}_k^2 - \sum_k y_k^2 \\ &= (y_i + \varepsilon)^2 + (y_j - \varepsilon)^2 - (y_i^2 + y_j^2) \\ &= 2\varepsilon(y_i - y_j) + 2\varepsilon^2 > 0, \end{aligned}$$

which shows that any point with two fractional entries is suboptimal.

(iii) *Determining the number of ones.* Let a maximizer have t ones, one fractional coordinate $r \in [0, 1)$ (or none if $r = 0$), and the remaining $n - t - 1$ zeros. Since $\sum_i y_i = s$ is tight, we deduce $t + r = s$, which (since t is integer and $r < 1$), implies $t = \lfloor s \rfloor$ and $r = s - t$.

(iv) *Optimal solution value.* The objective value is therefore $\sum_i x_i^2 = t \cdot 1^2 + r^2$.

□

Corollary 2. *Combining Lemma 3 with Theorem 1, the multi-norm relaxation $k\text{-HC}_{(\text{multi}, 1)}$ satisfies*

$$\frac{1}{\sqrt{n}} \text{OPT}(k\text{-HC}_{(2, 1)}) \leq \text{OPT}(k\text{-HC}_{(\text{multi}, 1)}) \leq \text{OPT}(k\text{-HC}_{(2, 1)}).$$

Proof. A direct consequence of applying Theorem 1 to the congruence relationship derived in Lemma 3. □

Proposition 2. *Under Assumption 1, when solving $k\text{-HC}_{(2, 1)}$ a nonzero lower bound is obtained only after generating $\Omega(2^{k(n-1)})$ nodes.*

Proof. By assumption, each branching operation decides the sign of a component of w_j for some $j \in [k]$ by splitting (with a half-space constraint) its feasible region with a hyperplane containing the origin. As long as the cone, call it C , obtained by intersecting such half-spaces is not pointed, the convex hull of its intersection with the feasible region of the problem contains the origin. Thus, the solution with $(w_j, \gamma_j) = 0$ and $x_{ij} = 1$, $i \in [m]$, which coincides with assigning every data point to the degenerate hyperplane of index j (thus achieving a $d_i = 0$, $i \in [m]$), is optimal regardless of the convex envelope that is employed. Only after branching has been carried out on each component of w_j for each $j \in [k]$, the cone C is pointed and, thus, the convex hull of its intersection with the feasible region of the problem renders the trivial solution $(w_j, \gamma_j) = 0$, $j \in [k]$, infeasible, leading to a nonzero lower bound. This amounts to generating $\Omega(2^{k(n-1)})$ nodes. □

Proposition 3. *Assume that the constraint $\|w_j\|_1 \geq 1$, $j \in [k]$, is imposed and that branching takes place on the s_{jh} variables first. Then, a nonzero global lower bound is obtained only after generating $\Theta(2^{k(n-1)})$ nodes; after this, no further branching on w takes place.*

Proof. Let $s_{jh} = \frac{1}{2}$ for all $h \in [n]$, which implies $w_{jh}^+ \leq \frac{1}{2}$ and $w_{jh}^- \leq \frac{1}{2}$. Letting $w_{jh}^+ = w_{jh}^- = \frac{1}{2}$, we have $w_{jh}^+ + w_{jh}^- = 1$. This feasible solution trivially satisfies the 1-norm constraint equation 1d with $w_{jh}^+ - w_{jh}^- = w_{jh} = 0$. Thus, $(w_j, \gamma_j) = 0$, $j \in [k]$, is optimal. By branching on a variable s_{jh} , we impose either $w_{jh} \leq 0$ (with $s_{jh} = 0$) or $w_{jh} \geq 0$ (with $s_{jh} = 1$). In both cases, the solution where $w_{jh}^+ = w_{jh} = \frac{1}{2}$ and $w_{jh}^- = 0$ becomes infeasible due either w_{jh}^+ or w_{jh}^- being forced to 0, but the solution with $w_{jh'} = 0$, for any other $h' \in [n] \setminus \{h\}$, remains feasible as long as branching on it has not taken place. Thus, a nonzero lower bound is obtained only in $\Omega(2^{k(n-1)})$ nodes. When such an exponentially-large tree of depth $k(n-1)$ is complete, though, $\|w_j\|_1 \geq 1$, $j \in [k]$, holds in each leaf node and, thus, no further branching on w is necessary. □

864 **Proposition 4.** Assume that $\|w_j\|_\infty \geq \frac{1}{\sqrt{n}}$, $j \in [k]$, is imposed and that branching takes place on
 865 the u_{jh} variables first. Then, $O(nk)$ nodes suffice to obtain a nonzero lower bound; after this, no
 866 further branching on w takes place.
 867

868 *Proof.* After branching on u_{jh} for any pair j, h , the (left, w.l.o.g.) child node with $u_{jh} = 1$ satisfies
 869 $w_{jh} \geq \sqrt{n}$. This guarantees $\|w_j\|_\infty \geq \sqrt{n}$ and, thus, no further branching is needed on w_j in the
 870 descendants of the left node. Further branching operations on w_j are only necessary on the right
 871 child node where $u_{jh} = 0$ has been imposed. By iteratively applying this reasoning, we obtain
 872 a tree with exactly two nodes per level (except for the root node) where each left node satisfies
 873 the $\|w_j\|_\infty \geq \sqrt{n}$ constraint for at least a $j \in [k]$. Therefore, when the tree has depth nk ,
 874 $\|w_j\|_\infty \geq \sqrt{n}$ is satisfied for all $j \in [k]$. When such an polynomially-sized tree of depth $k(n-1)$
 875 is complete, $\|w_j\|_\infty \geq \sqrt{n}$, $j \in [k]$, holds in each leaf node and, thus, no further branching on w is
 876 necessary. \square
 877

878 D PROOF OF THE APPROXIMATION FACTORS AND OF THEIR TIGHTNESS

880 We will rely on the following Lemma:

881 **Lemma 4.** Given two functions $f, g : \mathbb{R}^n \rightarrow \mathbb{R}$ with g surjective we have:

$$882 \max_{x \in \mathbb{R}^n} \frac{f(x)}{g(x)} = \max_{\nu \in \mathbb{R}} \left\{ \max_{x \in \mathbb{R}^n} \left\{ \frac{f(x)}{\nu} : g(x) = \nu \right\} \right\}. \quad (8)$$

883 If, for all $x \in \mathbb{R}^n$, $f(x) = f(|x|)$ and $g(x) = g(|x|)$, then:

$$884 \max_{x \in \mathbb{R}^n} \frac{f(x)}{g(x)} = \max_{\nu \in \mathbb{R}_+} \left\{ \max_{x \in \mathbb{R}_+^n} \left\{ \frac{f(x)}{\nu} : g(x) = \nu \right\} \right\}. \quad (9)$$

885 *Proof.* If g is surjective, then $\cup_{\nu \in \mathbb{R}} \{x \in \mathbb{R}^n : g(x) = \nu\} = \mathbb{R}^n$. We can therefore partition \mathbb{R}^n
 886 into infinitely many subsets of type $\{x \in \mathbb{R}^n : g(x) = \nu\}$. An optimal solution to $\max_{x \in \mathbb{R}^n} \frac{f(x)}{g(x)}$
 887 thus corresponds to the best solution over all such subsets. The special case in Equation equation 9
 888 follows by a similar argument. \square
 889

890 **Proposition 5.** The following relationships are satisfied for every $x \in \mathbb{R}^n$:

$$891 \|x\|_2 \leq \|x\|_1 \leq \sqrt{n} \|x\|_2$$

$$892 \frac{1}{\sqrt{n}} \|x\|_2 \leq \|x\|_\infty \leq \|x\|_2$$

903 and the factors \sqrt{n} and $\frac{1}{\sqrt{n}}$ are tight.

904
 905 *Proof.* We are looking for four positive coefficients $\alpha_1, \beta_1, \alpha_\infty, \beta_\infty$ that satisfy the following rela-
 906 tionships for all $x \in \mathbb{R}^n$:

$$907 \alpha_1 \|x\|_2 \leq \|x\|_1 \leq \beta_1 \|x\|_2$$

$$908 \alpha_\infty \|x\|_2 \leq \|x\|_\infty \leq \beta_\infty \|x\|_2.$$

909 Assuming $x \neq 0$ as, for $x = 0$, $\alpha \|x\|_p \leq \|x\|_q \leq \beta \|x\|_p$ holds for all α, β and for all $p, q \in$
 910 $\mathbb{N} \cup \{\infty\}$, the tightest values for $\alpha_1, \beta_1, \alpha_\infty, \beta_\infty$ must satisfy the following relationships:

$$911 \beta_1 = \max_{x \in \mathbb{R}^n} \frac{\|x\|_1}{\|x\|_2}$$

$$912 \beta_\infty = \max_{x \in \mathbb{R}^n} \frac{\|x\|_\infty}{\|x\|_2}$$

$$913 \alpha_1 = \min_{x \in \mathbb{R}^n} \frac{\|x\|_1}{\|x\|_2}$$

$$914 \alpha_\infty = \min_{x \in \mathbb{R}^n} \frac{\|x\|_\infty}{\|x\|_2}.$$

918 As $\max \frac{\|x\|_p}{\|x\|_q} = \min \frac{\|x\|_q}{\|x\|_p}$ holds for all $p, q \in \mathbb{N} \cup \{\infty\}$, we need to solve the following four
 919 problems:
 920

$$\begin{aligned} \beta_1 &= \max \frac{\|x\|_1}{\|x\|_2} & \beta_\infty &= \max \frac{\|x\|_\infty}{\|x\|_2} \\ \alpha_1 &= \max \frac{\|x\|_2}{\|x\|_1} & \alpha_\infty &= \max \frac{\|x\|_2}{\|x\|_\infty}. \end{aligned}$$

921 Let us consider the case of α_1, α_∞ , for which we are solving $\max \frac{\|x\|_2}{\|x\|_q}$ for $q = 1, \infty$. By virtue of
 922 Lemma 4, we are thus solving:
 923

$$\alpha_q = \max_{\nu \in \mathbb{R}_+} \left\{ \frac{1}{\nu} \max_{x \in \mathbb{R}_+^n} \{ \|x\|_2 : \|x\|_q = \nu \} \right\}.$$

924 As the maximum of a convex function (such as $\|x\|_2$) over a closed, convex set is achieved on the
 925 border of the latter and, if we are optimizing over a polytope, over its extreme vertices, we can
 926 w.l.o.g. relax $\|x\|_q = \nu$ into $\|x\|_q \leq \nu$.
 927

928 For α_1 , the extreme points of $\{x \in \mathbb{R}^n : \|x\|_1 \leq \nu\}$ are of the form: νe_ℓ for all $\ell \in [n]$, with
 929 e_ℓ being the ℓ -th canonical vector of \mathbb{R}^n . For each of them, we have $\|\nu e_\ell\|_2 = \sqrt{\nu^2} = \nu$. Thus,
 930 $\alpha_1 = \max \frac{\|x\|_2}{\|x\|_1} = \frac{\nu}{\nu} = 1$.
 931

932 For α_∞ , the extreme points of $\{x \in \mathbb{R}^n : \|x\|_\infty \leq \nu\}$ are of the form: $(\pm \nu, \dots, \pm \nu)$ for all
 933 possible choices of \pm . For each of them, we have $\|(\pm \nu, \dots, \pm \nu)\|_2 = \sqrt{\nu^2 n} = \nu \sqrt{n}$. Thus,
 934 $\alpha_\infty = \max \frac{\|x\|_2}{\|x\|_\infty} = \frac{\nu \sqrt{n}}{\nu} = \sqrt{n}$.
 935

936 Let us now consider the case of β_1 and β_∞ , for which we are solving $\max \frac{\|x\|_q}{\|x\|_2}$ for $q = 1, \infty$. By
 937 virtue of Lemma 4, we are thus solving:
 938

$$\beta_q = \max_{\nu \in \mathbb{R}_+} \left\{ \frac{1}{\nu} \max_{x \in \mathbb{R}_+^n} \{ \|x\|_q : \|x\|_2 = \nu \} \right\}.$$

939 For β_1 , the problem reads:
 940

$$\beta_1 = \max_{\nu \geq 0} \left\{ \frac{1}{\nu} \max_{x \in \mathbb{R}_+^n} \{ e^T x : x^T x = \nu^2 \} \right\}. \quad (10)$$

941 The KKT conditions for the relaxation of the inner problem of equation 10 obtained after dropping
 942 the nonnegativity on x read:
 943

$$\begin{aligned} \nabla_x (e^T x - \lambda(x^T x - \nu^2)) &= 0 \\ x^T x &= \nu^2, \end{aligned}$$

944 with λ unrestricted in sign. From the first equation, we deduce $x = \frac{e}{2\lambda}$. By substituting it in the
 945 second equation, we obtain $\frac{e^T e}{2\lambda^2} = \nu^2$, that is, $\lambda = \frac{\sqrt{n}}{2\nu}$. Thus, we have $x = \frac{e}{\sqrt{n}}\nu$. Since the latter
 946 is nonnegative, it is an optimal solution to both the relaxation of the inner problem of equation 10
 947 with $x \in \mathbb{R}^n$ and its unrelaxed version with $x \in \mathbb{R}_+^n$. We thus have $\|x\|_1 = \frac{\nu}{\sqrt{n}}\|e\|_1 = \frac{\nu n}{\sqrt{n}} = \nu\sqrt{n}$.
 948

949 We conclude that $\beta_1 = \frac{\nu\sqrt{n}}{\nu} = \sqrt{n}$.
 950

951 For β_∞ , the problem reads:
 952

$$\beta_\infty = \max_{\nu \geq 0} \left\{ \frac{1}{\nu} \max_{x \in \mathbb{R}_+^n} \left\{ \max_{\ell \in [n]} \{ x_\ell \} : x^T x = \nu^2 \right\} \right\}.$$

953 The optimal solutions to the inner problem are of the form νe_ℓ , where e_ℓ is a canonical vector of
 954 \mathbb{R}^n , for which we have $\|\nu e_\ell\|_\infty = \nu$. We conclude that $\beta_\infty = \frac{\nu}{\nu} = 1$. \square
 955

972 ETHICS STATEMENT
973974 The authors read and adhered to the ICLR Code of Ethics. This work does not involve human
975 subjects, personally identifiable information, or sensitive attributes, and does not use proprietary or
976 restricted datasets. Our experiments rely on synthetically generated data, whose generation proce-
977 dures are described in the paper and appendix. We released an anonymous code repository (which
978 also include our testbed) under a permissive license to facilitate verification and reuse.979 While we recognize that applying any clustering method to human-related data can raise fairness,
980 privacy, or surveillance concerns, we must stress that our work is theoretical/algorithmic in nature
981 and do not foresee any direct ethics risks associated with it.
982983 REPRODUCIBILITY STATEMENT
984985 The authors have taken concrete steps to ensure reproducibility. The full mathematical formula-
986 tions we proposed and used, including all auxiliary variables and constraints, are given in the main
987 text. The few aspects which are not directly mentioned are straightforward and any reader with
988 a basic knowledge of mathematical programming can fill in the gaps without ambiguity. All our
989 proofs appear in the appendix and are clearly explained. The data generation procedure used for
990 our testbeds (parameter ranges, noise model, and randomization) is specified in the paper. Exact
991 solver settings, hardware details, stopping criteria, and statistical testing procedures are reported in
992 the results section.993 Anonymized source code and scripts to generate datasets and results are provided in the supple-
994 mentary materials (anonymous repository link). After publication, we will release the non-anonymized
995 repository under the same license. Random seeds and configuration files used to produce the re-
996 ported numbers are included in the repository’s code to enable bitwise repeatability.
997998 LLM USAGE STATEMENT
9991000 We used a large language models as a general-purpose assistive tool for (a) improving clarity and
1001 grammar of the manuscript prose, (b) formatting and refactoring L^TE_X (e.g., equation environments,
1002 theorem/corollary wording), (c) double-checking the correctness of our proofs (d) drafting boiler-
1003 plate sections (such as the Ethics and Reproducibility statements, which we then edited manually).
1004 All technical content—including problem formulations, theorems, proofs, algorithms, experimental
1005 design, implementation, and reported results—was conceived, derived, implemented, and verified
1006 by the authors. We manually reviewed and validated every output produced by an LLM. The final
1007 statements and proofs reflect the authors’ own reasoning. No human-subject data, personally iden-
1008 tifiable information, or proprietary datasets were processed by the LLM. The code used to produce
1009 the results runs independently of any LLM.
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025