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ABSTRACT

We propose a method to solve k-HC2—the k-Hyperplane Clustering problem
which asks for finding k hyperplanes that minimize the sum of squared 2-norm
(Euclidean) distances between each point and its closest hyperplane—to global
optimality via spatial branch-and-bound (SBB) techniques. Our method strength-
ens a mixed integer quadratically-constrained quadratic programming formulation
for k-HC2 with constraints that arise when formulating the problem in p-norms
with p ̸= 2. In particular, we show that, for every (suitably scaled) p ∈ N ∪ {∞},
one obtains a variant of k-HC2 whose optimal solutions yield lower bounds within
a multiplicative approximation factor. We focus on the case of polyhedral norms
where p = 1,∞ (which are disjunctive-programming representable), and prove
that strengthening the original formulation by including, on top of its 2-norm con-
straints, the constraints of one of the polyhedral norms leads to an SBB method
where nonzero lower bounds are obtained in a linear (rather than exponential)
number of SBB nodes. Experimentally, our method leads to very large speedups,
drastically improving the problem’s solvability to global optimality.

1 INTRODUCTION

Given m points {a1, . . . , am} in Rn, the k-Hyperplane Clustering problem, or k-HC2, asks for iden-
tifying k hyperplanes which minimize the sum of the squares of the distances between each point
and the hyperplane closest to it in Euclidean (2-norm) distance. k-HC2 arises when relationships of
co-linearity (in R2) or co-(hyper)planarity (in Rn) are sought. One of the problem’s most natural
applications is line/surface detection in digitally-sampled images and in 3d environments Amaldi
& Mattavelli (2002). More applications are found in diverse areas such medical prognosis Bradely
& Mangasarian (2000), linear facility location Megiddo & Tamir (1982), discrete-time piecewise
affine hybrid system identification Ferrari-Trecate et al. (2003), principal/sparse component analy-
sis Washizawa & Cichocki (2006); He & Cichocki (2007); Tsakiris & Vidal (2017), nonlinear re-
gression He & Qin (2010), dictionary learning Zhang et al. (2013), LiDAR data classification Kong
et al. (2013), and sparse matrix representation Georgiev et al. (2007).

k-HC2 was first introduced by Bradely & Mangasarian (2000), where it is shown that, with k = 1,
the problem is solved by computing an eigenvalue-eigenvector pair of a suitably defined matrix built
as a function of the data points. k-HC2 is NP-hard in any norm since fitting m points in Rn with
k hyperplanes with 0 error is NP-complete even for n = 2 (Megiddo & Tamir, 1982). To tackle
k-HC2 (without optimality guarantees) when k ≥ 2, Bradely & Mangasarian (2000) proposed an
adaptation of the popular k-means heuristic by MacQueen et al. (1967). An exact Mixed Integer
Quadratically Constrained Quadratic Programming (MI-QCQP) formulation for k-HC2 which is
solvable with a spatial branch-and-bound method (SBB) is proposed by Amaldi & Coniglio (2013),
together with a heuristic for larger-scale instances. Works addressing variants of k-HC2 asking for
the smallest number of hyperplanes with a distance no larger than a given ϵ > 0 are found in Dhyani
& Liberti (2008); Amaldi et al. (2013).

Contributions. We propose a method to solve k-HC2 to global optimality via a spatial branch-
and-bound (SBB) techniques. We strengthen a classical mixed-integer quadratically-constrained
quadratic programming (MI-QCQP) formulation for k-HC2 by including constraints (and variables)
that arise when formulating the problem in another p-norm (p ̸= 2). We show that, under mild
assumptions, the inclusion of constraints stemming from a version of k-HC2 formulated in one of
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the two polyhedral norms (where p = 1,∞) leads to an SBB method where a nonzero global lower
bound is obtained in a linear number of SBB nodes, as opposed to the exponential number that is
necessary when the classical formulation is used. Our experiments reveal that our method leads to
very large speedups, substantially improving the problem’s solvability to global optimality.

2 PRELIMINARIES

Given a point a ∈ Rn, its p-norm with p ∈ N ∪ {∞} is ∥a∥p := limq→p (
∑n

h=1 |ah|q)
1/q . In

particular, for p = 1, 2, and ∞ we have ∥a∥1 =
∑n

h=1 |ah|q , ∥a∥2 :=
(∑n

h=1 |ah|2
)1/2

, and
∥a∥∞ = maxh∈[n]

{
|ah|

}
.1 The p-norm point-to-hyperplane distance dp(a,H) between a point

a ∈ Rn and a hyperplane H := {x ∈ Rn : x⊤w = γ} of parameters (w, γ) ∈ Rn+1 is defined
as the p-norm distance between a and the point y ∈ H that is closest to it. Namely, dp(a,H) :=
miny∈H ∥a − y∥p. Different arguments, including Lagrangian duality—see Mangasarian (1999),

can be used to show that dp(a,H) = |w⊤a−γ|
∥w∥p′

, where p and p′ satisfy 1
p + 1

p′ = 1.2 For p = 2,
dp(a,H) is called Euclidean point-to-hyperplane (or orthogonal) distance. In many applications,
such a distance is preferred as it leads to solutions that are invariant to rotations of the data points.

In spite of being defined on top of a p-norm, the distance function dp is intrinsically nonconvex w.r.t.
w regardless of the choice of p (the proof is in the appendix):
Proposition 1. Given a hyperplane H := {x ∈ Rn : x⊤w = γ} and a point a ∈ Rn, the function
dp(a,H) = |w⊤a−γ|

∥w∥p′
, where 1

p + 1
p′ = 1, is a nonconvex function of (w, γ) for every p ∈ N ∪ {∞}.

This makes k-HC2 substantially harder than classical machine learning problems where a norm is
minimized, and motivates the adoption of SBB techniques for solving it to global optimality.

3 APPROXIMATING k-HC2 USING DIFFERENT NORMS

Given m points {a1, . . . , am} in Rn, the most compact nonlinear programming (NLP) formulation

for k-HC2 reads:3 (k-HC2)min(w,γ)

{∑m
i=1 minj∈[k]

{
(a⊤

i wj−γj)
2

∥wj∥2
2

}}
, where (wj , γj) ∈ Rn+1,

j ∈ [k], are the hyperplanes parameters. (k-HC2) has a non-smooth objective function due to
Proposition 1. Since ∥wj∥22 = w⊤

j wj , it features ratios of quadratics. While the inner min operator
can be easily dropped by introducing binary assignment variables (see further), such a formulation
is unsuitable for most nonlinear programming solvers as the denominator vanishes when wj = 0.

In the remainder of the paper, we consider k-HC(p,c), a generalized version of k-HC2 which employs
a p norm not necessarily equal to 2 and which is parametric in a constant c ≥ 0. Its NLP formulation,
where 1

p + 1
p′ = 1, reads:

(k-HC(p,c)) min
(w,γ)

{
m∑
i=1

min
j∈[k]

{
(a⊤

i wj − γj)
2
}
: ∥wj∥p′ ≥ c, j ∈ [k]

}
,

Letting OPT(P ) be the optimal solution value of problem P , the validity of (k-HC(p,c)) and the
role that c plays in it are shown by the following lemma (the proof is in the appendix):
Lemma 1. The solutions to (k-HC(2,1)) and (k-HC2) coincide. Also, (k-HC(p,c)) is quadratically
homogeneous w.r.t. c, i.e., OPT(k-HC(p,c)) = c2 OPT(k-HC(p,1)).

The property shown by the lemma will be useful to guide our choice of which p to use for introducing
additional norm constraints to the formulation of k-HC2 (which, we recall, is the version of the
problem that we aim to solve in this paper) in order to strengthen it.

Rationale. k-HC(p,c) with (p, c) ̸= (2, 1) is of interest for two reasons. First (this section), it allows
us to show that, for a suitable choice of p and c, the optimal solutions to k-HC(p,c) are approximate

1Throughout the paper, we adopt the notation [ξ] := 1, . . . , ξ for every ξ ∈ N.
2Two norms where 1

p
+ 1

p′ = 1 are called dual. The 2-norm is self dual and the 1 and ∞-norms are dual.
3We report mathematical programming formulations in brackets and optimization problems without them.
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solutions (to within an approximation factor) of those to k-HC(2,1). Second (next two sections),
it allows us to prove that, again for a suitable choice of p and c, the formulations (k-HC(p,c)) and
(k-HC(2,1)) can be intersected to obtain a strengthened formulation which is valid for k-HC2 and
which is also much easier to solve both in theory and practice.

Novelty. While changes of norm are frequent in the ML literature, the dual norm in the denom-
inator of the point-to-hyperplane distance requires, for our results, switching between primal and
dual norms and applying suitable scaling factors to the problem’s constraints in a way that, to our
knowledge, is new. The idea of intersecting formulations derived for different norms, which leads
to extremely large speedups and which, is also, to our knowledge, uncommon in the literature.

3.1 THE GENERAL CASE

We show that, whichever version of k-HC(p,c) one aims to solve (be it the 2-norm one with c = 1 or
another one), the optimal-solution value of k-HC(q,c′) for any choice of q and a suitable c′ is within
an approximation factor of the optimal-solution value to k-HC(p,c):

Theorem 1. Let p, q ∈ N ∪ {∞} and c > 0. The three positive scalars α(p, q), β(p, q), γ(p, q)
which, for all x ∈ Rn, satisfy the congruence inequality α(p, q)||x||p ≤ β(p, q)||x||q ≤
γ(p, q)||x||p for p, q ∈ N∪{∞} also satisfy the optimal-value inequality α(p,q)2

γ(p,q)2 OPT(k-HC(p,c)) ≤

OPT

(
k-HC

(q,c
β(p,q)
γ(p,q)

)

)
≤ OPT(k-HC(p,c)).

Theorem 1 shows that the optimal solution value of k-HC(q,c′) with c′ = cβ(p,q)γ(p,q) is a lower bound

on the optimal solution value of k-HC(p,c) to within an approximation factor of α(p,q)2

γ(p,q)2 . This is
important, as it shows which value to pick for c′ for any q-norm we may choose to obtain a relaxation
of k-HC(p,c) and, in particular, one of k-HC(2,1) (which is, ultimately, the problem we aim to solve).

Notice that Theorem 1 can be extended to produce an approximation of k-HC(p,c) from above to
within an approximation factor—we omit the details since, here, we solely are interested in approx-
imations from below to build tighter relaxations suitable for an SBB method.

Theorem 1 has a nice geometrical interpretation in terms of the feasible regions of (k-HC(p,c)) and
(k-HC

(q,c
β(p,q)
γ(p,q)

)
). Indeed, with c′ = cβ(p,q)γ(p,q) , the feasible region of the q-norm constraints that

corresponds to k-HC(q,c′) is a relaxation of (i.e., contains) the region that is feasible for the p-norm
constraints of k-HC(p,c). An illustration is reported in Figure 1 for p = 2, c = 1 and adopting
q = 1,∞, for which we have c′ = 1, 1√

n
.

w1

w2

w1

w2

Figure 1: Complements of the feasible regions of {w ∈ R2 : ||w||1 ≥ 1} and {w ∈ R2 : ||w||∞ ≥
1√
2
}.

3.2 THE CASE OF POLYHEDRAL NORMS WITH q = 1,∞

We now focus on polyhedral norms (q = 1,∞). These are of computational interest due to their
tractability: while the constraints ∥wj∥q ≥ c′, j ∈ [k], with q = 1,∞, are non-convex, they can be
stated as disjunctions over polyhedra, this being mixed integer linear programming representable.
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In light of this, we consider the following two relaxations of k-HC(2,1) (see Figure 1 for an illustra-
tion of the feasible regions of the projection of these two problems onto the w space for k = 1):

(k-HC(∞,1))min
(w,γ)

{
m∑
i=1

min
j∈[k]

{
(a⊤

i wj − γj)
2
}
:∥wj∥1 ≥ 1, j ∈ [k]

}
,

(k-HC(1, 1√
n
))min

(w,γ)

{
m∑
i=1

min
j∈[k]

{
(a⊤

i wj − γj)
2
}
:∥wj∥∞ ≥ 1√

n
, j ∈ [k]

}
.

Notice that due to norm duality, (k-HC(∞,1)) features a 1-norm constraint and (k-HC(1, 1√
n
)) an

∞-norm one. For these two problems, Theorem 1 leads to the following result (the proof is in the
appendix):
Corollary 1. k-HC(∞,1) and k-HC(1, 1√

n
) satisfy:

1

n
OPT(k-HC(2,1)) ≤ OPT(k-HC(∞,1)) ≤ OPT(k-HC(2,1))

1

n
OPT(k-HC(2,1)) ≤ OPT(k-HC(1, 1√

n
)) ≤ OPT(k-HC(2,1)).

With the first chain of inequalities, the corollary shows that solving k-HC(∞,1), i.e., formulating k-
HC with the constraint ||wj ||1 ≥ 1 for all j ∈ [k], leads to a relaxation to within a 1

n approximation
factor. With the second one, the corollary shows that solving k-HC(1, 1√

n
), i.e., solving the version

of k-HC with the constraint ||wj ||∞ ≥ 1√
n

for all j ∈ [k], leads to another relaxation also to within
the same approximation factor 1

n .

3.3 MULTI-NORM RELAXATION

Since both ∥wj∥1 ≥ 1, j ∈ [k], and ∥wj∥∞ ≥ 1√
n

, j ∈ [k], are relaxations of ∥wj∥2 ≥ 1, j ∈ [k],
a strengthened relaxation of k-HC(2,1) can be obtained by simultaneously imposing both. Such a
multi-norm relaxation, which we refer to as k-HC(multi,1), reads

(k-HC(multi,1))min
(w,γ)

{
m∑
i=1

min
j∈[k]

{
(a⊤

i wj − γj)
2
}
:
∥wj∥1 ≥ 1, j ∈ [k]
∥wj∥∞ ≥ 1√

n
, j ∈ [k]

}
.

Letting ||w||multi := min{||w||1,
√
n||w||∞}, one can see that simultaneously imposing ∥wj∥1 ≥ 1

and ∥wj∥∞ ≥ 1√
n

, j ∈ [k], coincides with imposing ||wj ||multi ≥ 1, j ∈ [k]. A depiction of the
feasible region is reported in Figure 2.

w1

w2

Figure 2: Complement of the feasible region of {w ∈ R2 : ||w||multi ≥ 1}.

So far, our analysis has hinged on the possibility of translating a p′-norm constraint into the cor-
responding dp distance, on which we applied Theorem 1. Deriving an approximation factor for
k-HC(multi,1) is not as easy, though. This is because the sub-level sets of the function ||w||multi are not
convex and, thus, there is no p-norm, p ∈ N ∪ {∞}, whose adoption directly leads to k-HC(multi,1).

In spite of this, in the following we show that we can still derive an approximation factor by con-
structing the norm that is implicitly minimized when min{||w||1,

√
n||w||∞} ≥ 1 is imposed.

We start with the following lemma (the proof is in the appendix), which shows what combination of
point-to-hyperplane distances is minimized in k-HC when imposing min{||w||1,

√
n||w||∞} ≥ 1:

4
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Lemma 2. Solving k-HC subject to min{||w||1,
√
n||w||∞} ≥ 1 coincides with solving an uncon-

strained version of k-HC where the point-to-hyperplane distance between ai and Hj is defined as
max{d∞(ai, Hj),

1√
n
d1(ai, Hj)}.

We now prove a second lemma (the proof is in the appendix) which shows that the function
max{||x||∞, 1√

n
||x||1} is a norm and which also constructs a congruence inequality for it:

Lemma 3. The function max{ ∥x∥∞, 1√
n
∥x∥1 } is a norm on Rn and, for all x ∈ Rn, it satisfies

the sharp congruence inequality

n−1/4 ∥x∥2 ≤ max
{
∥x∥∞, 1√

n
∥x∥1

}
≤ ∥x∥2.

Crucially, the following holds:
Corollary 2. Combining Lemma 3 with Theorem 1, the multi-norm relaxation k-HC(multi,1) satisfies

1√
n

OPT
(
k-HC(2,1)

)
≤ OPT

(
k-HC(multi,1)

)
≤ OPT

(
k-HC(2,1)

)
.

4 SOLVING STRENGTHENED FORMULATIONS OF k-HC(2,1) VIA SBB

We now focus on solving k-HC(2,1) to global optimality via SBB. We analyze the number of SBB
nodes needed to compute a nonzero global lower bound when solving a basic formulation of the
problem, and then prove that intersecting the basic formulation for k-HC(2,1) with one of our relax-
ations involving the polyhedral norms allows for computing a nonzero global lower bounds much
earlier.

4.1 SPATIAL BRANCH-AND-BOUND

The basic idea of the spatial branch-and-bound (SBB) method is of building a dual bound by op-
timizing over a convex (typically polyhedral) envelope conv(F ) of the feasible region F of the
problem. F is then split into two sub-regions F1 and F2 with tighter bounds on at least a variable.
This allows for constructing tighter convex envelopes of F1 and F2 in such a way that the optimal
solution over conv(F ) is cut off due to not belonging to conv(F1) ∪ conv(F2). F1 and F2 are then
recursively optimized in a classical divide-et-impera (branch-and-bound) fashion with a binary-tree
search.

Let us consider the case of k-HC(2,1). We assume (as done by most of the state-of-the-art solvers
such as Gurobi Gurobi Optimization, LLC (2022)), that polyhedral envelopes are employed. Under
such assumption, when considering the nonlinear constraints ||wj ||22 =

∑n
h=1 w

2
jh ≥ 1, for j ∈

[k], the SBB method first introduces the auxiliary variable zjh for each nonlinear term w2
jh and a

corresponding defining constraint zjh = w2
jh. It then substitutes the original nonlinear constraint

with
∑n

h=1 zjh ≥ 1. Each defining constraint is then relaxed into a polyhedral envelope. The
point-wise minimal outer envelope of a bilinear product corresponds to the well-known McCormick
envelope McCormick (1976).

4.2 BASELINE MATHEMATICAL PROGRAMMING FORMULATION FOR k-HC(2,1)

We start by considering as baseline the following classical Mixed Integer Quadratically Constrained
Quadratic Programming (MI-QCQP) formulation of k-HC(2,1):

(k-HC(2,1))

min
(w,γ),x,d


m∑
i=1

d2i :

∑n
j=1 xij = 1 ∀i ∈ [m]

∥wj∥2 ≥ 1 ∀j ∈ [k]

di ≥ wT
j ai − γj − dU (1− xij) ∀i ∈ [m], j ∈ [k]

di ≥ −wT
j ai + γj − dU (1− xij)∀i ∈ [m], j ∈ [k]

 .

In it, xij ∈ {0, 1} takes value 1 if and only if ai is assigned to the hyperplane of index j ∈ [k];
di is the distance between ai and the hyperplane of index j ∈ [k]; dU is an upper bound on the
largest distance between any point ai and hyperplane of index j ∈ [k]. The only nonconvexity of

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

the formulation is due to the 2-norm constraints. W.l.o.g., we assume ai ≥ 0 for all i ∈ [m] (as this
can be easily obtained in preprocessing by translating the dataset).

The following bounds on the variables can be included. We let dU := ∥b e∥2, where e is the all-
one vector and b is the length of the edge of the smallest hypercube that contains {a1, . . . , am}.
Since ∥wj∥2 = 1 holds in any optimal solution and max{∥wj∥∞ : ∥wj∥2 = 1} = 1, we impose
∥wj∥∞ ≤ 1 via −e ≤ wj ≤ e, j ∈ [k]. These bounds imply −nb− dU ≤ γj ≤ nb+ dU , j ∈ [k].

Since the point-to-hyperplane distance is symmetric, given any solution to k-HC(2,1), an equivalent
one can be obtained by changing the sign of wj for some j ∈ [k]. To remove such a symmetry
(symmetries are known to be a hindrance when solving mathematical programming problems to
optimality via methods based on (spatial) branch-and-bound), we impose wj to belong to an arbitrary
half-space of Rn for each j ∈ [n] by imposing wj1 ≥ 0, j ∈ [k], where wj1 is the first component
of wj . In this way, any solution that is obtainable by changing the sign of a component of one of
the vectors wj becomes infeasible (due to being obtained from the previous one by reflection of wj

over the hyperplane defining the halfspace that we selected), thus breaking the symmetry. In all our
formulations, we partially remove the symmetry on xij , i ∈ [m], j ∈ [k], that is induced by the
assignment constraints by imposing xij = 0 for all i, j ∈ [m] × [k] with i < j. This reduces the
number of 0-1 variables by

∑k−1
h=1

(k−1)k
2 .

4.3 SOLVING THE FORMULATION (k-HC(2,1)) VIA SBB

Let us now analyze the behavior of an SBB method when solving the classical formulation
(k-HC(2,1)). Since the projection onto the w space of the feasible region of k-HC(2,1) is nonconvex
and its complement is symmetric about the origin, any SBB method based on convex envelopes will
necessarily convexify the infeasible region, thus making the trivial solution wj = 0, j ∈ [k], feasi-
ble. This leads to a bound as weak as possible due to the fact that the objective function is the sum
of squares

∑m
i=1 d

2
i ≥ 0 and, with (wj , γj) = 0, j ∈ [k], we obtain

∑m
i=1 d

2
i = 0.

The following assumption holds in most SBB codes—see, e.g., Belotti et al. (2009):
Assumption 1. Assume that, when spatially branching on variables with a symmetric domain,
branching takes place on the mid point of the domain.

Notice that, due to the bounds we included, the domain of wjh, j ∈ [k], h ∈ [n], is symmetric.

Crucially, under Assumption 1 the geometry of the feasible region of k-HC(2,1) makes it so that
the number of branching operations that are needed to make the 0 solution infeasible (and, thus,
compute a nonzero global lower bound) is exponentially large (the proof is in the appendix):
Proposition 2. Under Assumption 1, when solving k-HC(2,1) a nonzero lower bound is obtained
only after generating Ω(2k(n−1)) nodes.

This is particularly bad since, until the first nonzero lower bound has been calculated, no pruning
can happen on the tree due to the fact that a lower bound of 0 trivially holds at any node (since the
objective function is a sum of squares).

4.4 STRENGTHENED FORMULATIONS

We now construct valid formulations for k-HC2 which are strengthened by featuring not only the
2-norm constraints but also a collection of polyhedral-norm constraints. Building on the relaxations
we constructed before, we introduce the following three strengthened formulations (in each of them,
the norm constraints are imposed for all j ∈ [k])):

(k-HC(2,1),(∞,1))min
(w,γ)

{
m∑
i=1

min
j∈[k]

{
(a⊤

i wj − γj)
2
}
:
∥wj∥2 ≥ 1
∥wj∥1 ≥ 1

}

(k-HC(2,1),(1, 1√
n
))min
(w,γ)

{
m∑
i=1

min
j∈[k]

{
(a⊤

i wj − γj)
2
}
:
∥wj∥2 ≥ 1
∥wj∥∞ ≥ 1√

n

}

(k-HC(2,1),(multi,1))min
(w,γ)


m∑
i=1

min
j∈[k]

{
(a⊤

i wj − γj)
2
}
:

∥wj∥2 ≥ 1
∥wj∥1 ≥ 1
∥wj∥∞ ≥ 1√

n

 .
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Before analyzing the number of branching operations needed to achieve a nonzero lower bound
with these formulations, we report the Mixed Integer Linear Programming (MILP) formulations by
which we formulate the polyhedral-norm constraints.

1-norm. We formulate the constraints ∥wj∥1 ≥ 1, j ∈ [k], via the following absolute-value refor-
mulation:

w+
jh − w−

jh = wjh h ∈ [n] (1a)

w+
jh ≤ sjh h ∈ [n] (1b)

w−
jh ≤ (1− sjh) h ∈ [n] (1c)
n∑

h=1

(w+
jh + w−

jh) ≥ 1 (1d)

0 ≤ w+
jh, w

−
jh ≤ 1 h ∈ [n] (1e)

sjh ∈ {0, 1}n h ∈ [n]. (1f)

The binary variable sjh denotes the sign of the h-th component of wj . Consider a component wjh of
index h of wj . Due to Constraints (1a)–(1c), if wjh > 0, then w+

jh > 0 (with w+
jh = wjh and w−

jh =

0) and sjh = 1. Otherwise, if wjh < 0, then w−
jh > 0 (with w+

jh = 0 and w−
jh = −wjh) and sjh = 0.

Since w+
j and w−

j are component-wise complementary thanks to Constraints (1b)–(1c), we deduce
that w+

j + w−
j = |wj | holds. Thus, Constraint (1d) guarantees ∥wj∥1 ≥ 1. When these constraints

are imposed, we break symmetry as mentioned before by imposing wj1 ≥ 0, j ∈ [k]. This leads to
sj1 = 1 and w−

j1 = 0, thanks to which Constraint (1d) becomes wj1 +
∑n

h=2(w
+
jh + w−

jh) ≥ 1.

∞-norm. We formulate the constraints ∥wj∥∞ ≥ 1√
n

, j ∈ [k], i.e., maxh∈[n]{|wjh|} ≥ 1√
n

,

j ∈ [k], as the disjunction
∨n

h=1

(
wjh ≤ −

√
n ∨ wjh ≥ 1√

n

)
, j ∈ [k]. Differently from the pre-

vious cases, in this case we break symmetry by (w.l.o.g.) always selecting wjh ≥ 1√
n

from each
elementary disjunction wjh ≤ − 1√

n
∨ wjh ≥ 1√

n
. This translates into considering the restricted

disjunction
∨n

h=1 wjh ≥ 1√
n

, j ∈ [k]. For each j ∈ [k], we restate the resulting disjunctive set via
the following MILP formulation:

wjh ≥ 1√
n
(1− 2(1− ujh)) h ∈ [n] (2a)

n∑
h=1

ujh = 1 (2b)

ujh ∈ {0, 1} h ∈ [n]. (2c)

Due to Constraint (2a), if ujh = 1 holds for some h ∈ [n], then wjh ≥ 1√
n

holds (the constraint is
inactive if ujh = 0, and reads wjh ≥ − 1√

n
). Constraint (2b) imposes that exactly a component of

uj = (uj1, . . . , ujn) be equal to 1.

When imposing multiple norm constraints at once, we only have to pay attention to the way sym-
metry is prevented, as the symmetry-breaking constraint wj1 ≥ 0 we introduced for the constraints
∥wj∥2 ≥ 1, j ∈ [k], and ∥wj∥1 ≥ 1, j ∈ [k], is not compatible with the one-sided disjunction
we considered for ∥wj∥∞ ≥ 1√

n
, j ∈ [k], and imposing both would not lead to an over-restriction.

Whenever the ∥wj∥∞ ≥ 1√
n

constraints are imposed, we sort the issue by dropping the symmetry-
breaking constraints wjh ≥ 0, j ∈ [k].

4.5 SOLVING THE STRENGTHENED FORMULATIONS VIA SBB

We extend the analysis in Proposition 2 to the strengthened formulations with the following two
propositions (their proofs of both are contained in the appendix):
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Proposition 3. Assume that the constraint ∥wj∥1 ≥ 1, j ∈ [k], is imposed and that branching
takes place on the sjh variables first. Then, a nonzero global lower bound is obtained only after
generating Θ(2k(n−1)) nodes; after this, no further branching on w takes place.

Proposition 4. Assume that ∥wj∥∞ ≥ 1√
n

, j ∈ [k], is imposed and that branching takes place on
the ujh variables first. Then, O(nk) nodes suffice to obtain a nonzero lower bound; after this, no
further branching on w takes place.

Propositions 3 and 4 show the crucial advantages of strengthening formulation (k-HC(2,1)) as we
proposed via the two (scaled) polyhedral-norm constraints we considered. Proposition 3 indicates
that, if the ||wj ||1 ≥ 1, j ∈ [k], constraints are imposed and branching takes places on the 0-1
variables of such norm constraints, in a complete SBB tree of depth Θ(2k(n−1)) the polyhedral-
norm constraint is satisfied in every leaf node. This is in stark contrast to the 2-norm case, where the
same number of branching operations only suffices to obtain the first nonzero global lower bound,
and the number of branchings needed to completely describe the feasible region of the problem in
the w space depends on the solver’s feasibility tolerance (since, for each j ∈ [k], the complement of
the feasible region is a sphere).

Crucially, Proposition 4 shows that, when the ∥wj∥∞ ≥ 1√
n

, j ∈ [k], constraints are imposed
and branching takes places on their 0-1 variables, the size the SBB tree is extremely small—only
polynomial in k and n. The difference between the two results is due to the geometry of the 1- and
∞-norm balls, since the former has 2n facets while the latter only 2n.

When included in a formulation for k-HC2 on top of the ||wj ||2 ≥ 1, j ∈ [k], constraints, the
polyhedral-norm constraints accelerate the computation of a nonzero global lower bound, thus lead-
ing to more pruning and, overall, a faster SBB method. This is better shown in the next section.

5 COMPUTATIONAL RESULTS

We assess the effectiveness of our strengthened formulations with Gurobi 9.5’s SBB using 12 threads
on a 2.6GHz Intel Core i7-9750H equipped with 32 GB RAM, with a total time limit across the 12
cores of 168,000 seconds (46 hours).

We consider two testbeds: Low-dim and High-dim. Low-dim contains 43 instances with
m = 10, . . . , 30, n = 2, 3, and k = 2, 3. These instances are a superset of the 24 instances
tackled with SBB techniques in Amaldi & Coniglio (2013). High-dim contains 43 instances with
m = 10, . . . , 17, n = 2, 3, 4, 5, and k = 2, 3, 4, 5. Both datasets are generated by randomly choos-
ing (wj , γj), j ∈ [k], with a uniform distribution in [−1, 1] and distributing uniformly at random
the m points such that each of them belongs (with 0 distance) to a hyperplane. Then, an orthog-
onal deviation from the corresponding hyperplane is added to each point by sampling a Gaussian
distribution with 0 mean and a variance that is selected, for each hyperplane, uniformly at random
in [0.7 · 0.003, 0.003]. Details on how to access and run our code as well as on how to access the
dataset we used in the experiment are reported in the appendix.

Tables 1 and 2 report, per formulation, the median and the inter-quartile range (IQR) of the com-
puting times on the subset of instances solved by all methods, the median speed-up relative to
(k-HC(2,1)), a 95% bootstrap confidence interval, and the Holm-corrected (with a family-wise error
rate α = 0.05) p-value of a two-sided Wilcoxon signed-rank test against (k-HC(2,1)) on paired data.
More detailed results are reported in Tables 3 4.

Let us focus first on the Low-dim testbed. With the three strengthened formulations
(k-HC(2,1),(1, 1√

n
)), (k-HC(2,1),(∞,1)), and (k-HC(2,1),(multi,1)), 10 instances that are not solved in

over 46 hours with the classical formulation (k-HC(2,1)) are solved in under 2 hours. With the
strengthened formulations, the 31 instances that are also solved with the classical formulation are
solved, respectively, 8.1, 8, and 4.5 times faster. Incidentally, our results on the Low-dim testbed
prove that all the heuristic solutions found in Amaldi & Coniglio (2013) on the 24 instances therein
considered (those with m = 10, 14, 18, 22, 26, 30) are optimal.

Let us turn now to the High-dim testbed. On it, with the best-performing of the strengthened
formulations we manage to solve 22 more instances then with the classical formulation. With the
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strengthened formulations, the 20 instances that are also solved with the classical formulation are
solved, respectively, 41, 28, and 34 times faster.

Notice that the speedup obtained with (k-HC(2,1),(multi,1)) is smaller than the ones obtained with
(k-HC(2,1),(∞,1)) and (k-HC(2,1),(1, 1√

n
)). Such a behavior is well explained by the results of Propo-

sitions 3 and 4: As n and k increase, the difference between the exponential lower bound (on the
number of nodes required to obtain a nonzero global lower bound) in the first proposition and the
polynomial one in the second one becomes larger and larger. Thus, any branching operations taking
place on the constraints ∥wj∥1 ≥ 1 have a much smaller impact on the bound than those taking
place on the ∥wj∥∞ ≥ 1√

n
, j ∈ [k], which explains the superior performance of (k-HC(2,1),(∞,1)).

Table 1: LowDim: distribution-aware compari-
son on the 33 instances solved by (k-HC(2,1)).

Algorithm Median (s) IQR (s) Speed-up 95% CI p-value†

(k-HC(2,1)) 207.0 5 422 1× – –
(k-HC(2,1),(∞,1)) 25.5 478 8.1× [4.7×, 12.6×] 2.9 × 10−7

(k-HC
(2,1),(1,

1√
n

)
) 26.0 525 8.0× [4.5×, 11.9×] 9.3 × 10−10

(k-HC(multi,1)) 46.1 2 163 4.5× [1.7×, 7.3×] 2.3 × 10−4

Table 2: HighDim: distribution-aware compari-
son of the 20 instances solved by (k-HC(2,1)).

Algorithm Median (s) IQR (s) Speed-up 95% CI p-value†

(k-HC(2,1)) 169.9 2 206 1× – –
(k-HC(2,1),(∞,1)) 4.15 29.7 41× [5×, 167×] 1.8 × 10−5

(k-HC
(2,1),(1,

1√
n

)
) 6.10 28.3 28× [5×, 126×] 2.4 × 10−5

(k-HC(multi,1)) 5.00 18.3 34× [6×, 145×] 3.1 × 10−5

Table 3: Results on the LowDim dataset (sub-
optimal values are in italics).

(k-HC(2,1)) (k-HC(2,1),(∞,1)) (k-HC
(2,1),(1, 1√

n
)
) (k-HC(multi,1))

m n k obj time obj time obj time obj time

10 2 4 0.0 8.3 0.0 2.4 0.0 1.8 0.0 6.8
10 4 2 0.0 4.9 0.0 0.8 0.0 6.1 0.0 3.9
11 2 4 0.1 21.9 0.1 9.8 0.1 5.9 0.1 17.7
11 2 5 0.0 1264.3 0.0 392.8 0.0 300.2 0.0 2689.7
11 4 2 0.0 5.4 0.0 1.6 0.0 1.6 0.0 2.1
12 2 4 0.1 79.4 0.1 17.0 0.1 8.1 0.1 30.5
12 2 5 0.0 425.6 0.0 160.4 0.0 56.8 0.0 282.8
12 4 2 0.1 17.3 0.1 1.2 0.1 7.7 0.1 10.1
12 5 2 0.0 29.3 0.0 14.4 0.0 16.4 0.0 26.1
13 2 4 0.1 238.2 0.1 19.4 0.1 14.6 0.1 38.4
13 2 5 0.0 935.1 0.0 127.1 0.0 55.8 0.0 170.7
13 3 4 0.0 4143.7 0.0 7567.6 - 168000.0 - 168000.0
13 4 2 0.1 13.0 0.1 6.5 0.1 2.1 0.1 9.3
13 4 3 0.0 948.7 0.0 567.1 0.0 712.6 0.0 4625.7
13 5 2 0.1 47.0 0.1 11.1 0.1 19.8 0.1 28.3
14 2 4 0.2 683.1 0.2 22.4 0.2 12.2 0.2 55.8
14 2 5 0.0 6526.6 0.0 628.6 0.0 211.9 0.0 586.0
14 3 4 - 168000.0 0.0 2757.6 0.0 2784.8 0.0 7540.2
14 4 2 0.5 58.5 0.5 2.2 0.5 7.0 0.5 9.6
14 4 3 0.0 1447.5 0.0 687.9 0.0 890.5 0.0 6906.7
14 5 2 0.1 120.1 0.1 13.8 0.1 21.5 0.1 36.3
15 2 4 0.3 1350.6 0.3 32.9 0.3 23.4 0.3 54.4
15 2 5 0.0 5854.2 0.0 320.5 0.0 92.9 0.0 445.3
15 3 4 - 168000.0 0.0 2760.8 0.0 1772.1 - 168000.0
15 4 2 0.6 37.5 0.6 5.8 0.6 8.4 0.6 9.2
15 4 3 0.0 3803.0 0.0 515.6 0.0 439.4 0.0 2208.8
15 5 2 0.1 98.1 0.1 13.5 0.1 40.7 0.1 35.0
16 2 4 0.2 5827.2 0.2 119.6 0.2 28.9 0.2 67.3
16 2 5 - 168000.0 0.0 582.6 0.0 346.6 0.0 781.9
16 3 4 - 168000.0 0.0 4586.5 0.0 2407.2 - 168000.0
16 3 5 - 168000.0 - 168000.0 - 168000.0 - 168000.0
16 4 2 1.1 179.0 1.1 12.9 1.1 15.0 1.1 12.1
16 4 3 0.0 5144.2 0.0 554.5 0.0 601.1 0.0 2507.3
16 5 2 0.8 444.9 0.8 28.5 0.8 43.2 0.8 60.8
17 2 4 0.2 168000.0 0.2 37.1 0.2 42.1 0.2 69.2
17 2 5 0.1 168000.0 0.1 1452.3 0.1 999.4 0.1 1517.1
17 3 4 - 168000.0 0.0 4970.5 0.0 2553.9 - 168000.0
17 3 5 - 168000.0 - 168000.0 - 168000.0 - 168000.0
17 4 2 0.5 175.7 0.5 9.8 0.5 10.6 0.5 9.8
17 4 3 - 168000.0 0.0 904.1 0.0 967.5 0.0 3679.0
17 4 4 - 168000.0 0.0 8218.2 1.4 97.4 0.0 8104.9
17 5 2 1.4 1092.7 1.4 87.0 1.4 97.4 1.4 101.0
17 5 3 - 168000.0 0.0 8116.4 0.0 8082.4 0.0 7910.9

# Sol 31 41 40 37

Table 4: Results on the HighDim dataset (sub-
optimal values are in italics).

(k-HC(2,1)) (k-HC(2,1),(∞,1)) (k-HC
(2,1),(1, 1√

n
)
) (k-HC(multi,1))

m n k obj time obj time obj time obj time

10 2 2 0.3 0.3 0.3 0.2 0.3 0.2 0.3 0.2
10 2 3 0.5 0.7 0.5 1.0 0.5 0.8 0.5 1.0
14 2 2 8.5 1.6 8.5 0.6 8.5 0.2 8.5 0.3
14 2 3 0.8 31.9 0.8 4.4 0.8 3.4 0.8 5.4
18 2 2 3.4 13.9 3.4 0.4 3.4 0.4 3.4 0.7
18 2 3 0.7 488.9 0.7 3.9 0.7 4.4 0.7 4.6
22 2 2 9.7 179.2 9.7 1.7 9.7 1.4 9.7 0.9
22 2 3 2.4 2213.3 2.4 11.2 2.4 11.2 2.4 9.8
25 2 2 8.2 28.9 8.2 0.6 8.2 0.4 8.2 1.4
25 2 3 2.7 168000.0 2.7 936.6 2.7 96.1 2.7 221.0
26 2 2 - 168000.0 5.8 6.2 5.8 10.4 5.8 2.2
26 2 3 - 168000.0 3.4 39.2 3.4 56.6 3.4 28.3
27 2 2 - 168000.0 5.1 0.7 5.1 2.6 5.1 0.8
27 2 3 - 168000.0 3.3 1678.4 3.3 2687.7 3.3 238.6
28 2 2 - 168000.0 11.7 8.6 11.7 6.3 11.7 1.8
28 2 3 - 168000.0 3.6 293.1 3.6 471.3 3.6 153.5
29 2 2 - 168000.0 7.1 0.8 7.1 0.3 7.1 0.8
29 2 3 - 168000.0 7.1 7694.9 7.1 6029.0 7.1 1476.4
30 2 2 - 168000.0 9.1 10.4 9.1 38.5 9.1 1.6
30 2 3 - 168000.0 3.4 172.9 3.4 191.2 3.4 44.3
10 3 2 0.9 1.1 0.9 0.4 0.9 1.0 0.9 0.9
10 3 3 0.0 30.2 0.0 32.6 0.0 31.9 0.0 41.9
14 3 2 0.7 8.4 0.7 0.8 0.7 0.8 0.7 1.4
14 3 3 0.1 206.4 0.1 29.7 0.1 25.5 0.1 49.7
18 3 2 0.7 160.6 0.7 3.7 0.7 7.8 0.7 4.5
18 3 3 0.4 2234.9 0.4 93.4 0.4 91.6 0.4 157.9
22 3 2 4.3 625.0 4.3 15.6 4.3 11.3 4.3 10.8
22 3 3 1.3 135362.9 1.3 1089.5 1.3 638.2 1.3 1243.7
23 3 2 0.9 6459.4 0.9 8.1 0.9 45.5 0.9 10.1
24 3 2 6.9 18049.6 6.9 66.3 6.9 474.7 6.9 34.5
24 3 3 1.7 168000.0 1.5 2470.6 1.5 2716.7 7.9 3817.0
25 3 2 5.7 22886.9 5.7 70.7 5.7 28.1 8.9 14.2
25 3 3 1.3 168000.0 1.3 1952.3 1.3 5060.3 9.9 2885.1
26 3 2 - 168000.0 4.5 6.3 4.5 4.7 10.9 4.4
26 3 3 - 168000.0 1.3 5937.9 1.3 4345.7 11.9 2300.2
27 3 2 - 168000.0 3.4 215.1 3.4 1274.8 12.9 58.5
27 3 3 - 168000.0 2.9 52548.9 2.9 65949.3 13.9 35206.1
28 3 2 - 168000.0 3.6 31.1 3.6 1.7 14.9 10.2
28 3 3 - 168000.0 1.4 4234.9 1.4 74560.6 15.9 4180.9
29 3 2 - 168000.0 8.1 143.5 8.1 34.0 16.9 12.5
29 3 3 - 168000.0 4.9 168000.0 4.9 168000.0 17.9 168000.0
30 3 2 - 168000.0 2.5 8083.1 2.5 168000.0 18.9 3014.8
30 3 3 - 168000.0 3.2 23488.8 3.2 168000.0 19.9 6541.5

# Sol 20 42 40 42

6 CONCLUDING REMARKS

We have focused on solving the 2-norm k-Hyperplane Clustering problem with spatial branch-and-
bound (SBB) techniques by strengthening the classical formulation with constraints that arise from
(scaled) p-norm formulations of the problem, with p ̸= 2. Focusing on the 1- and ∞-norms, we
have theoretically shown that including the constraints stemming from the 1-norm version of the
problem leads to computing nonzero lower bounds in a linear (rather than exponential) number
of SBB nodes. Our experimental results show very large speedups, substantially improving the
problem’s solvability to global optimality.

An interesting research direction for future work is exploring the connection between k-HC and sub-
space clustering, in particular related to the recent literature on coresets for projective clustering and
subspace approximation Rademacher et al. (2005); Sohler & Woodruff (2018); Eiben et al. (2021).
These techniques allow constructing small, weighted subsets of data that preserve the clustering cost
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within a (1+ε) factor. Integrating such coreset constructions with our exact SBB-based solver could
yield a hybrid approach (approximate in data, but exact in optimization), combining scalability with
provable global optimality guarantees.
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for non-convex MINLP. Optimization methods and software, 24:597–634, 2009.

P. Bradely and O. Mangasarian. k-plane clustering. Journal of Global Optimization, 16:23–32,
2000.

K. Dhyani and L. Liberti. Mathematical programming formulations for the bottleneck hyperplane
clustering problem. In Proceedings of Modelling, Computation and Optimization in Information
Systems and Management Sciences, volume 14, pp. 87–96, 2008.

Eduard Eiben, Fedor V Fomin, Petr A Golovach, William Lochet, Fahad Panolan, and Kirill Si-
monov. Eptas for k-means clustering of affine subspaces. In Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 2649–2659. SIAM, 2021.

G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari. A clustering technique for the identifi-
cation of piecewise affine systems. Automatica, 39:205–217, 2003.

P. Georgiev, P. Pardalos, and F. Theis. A bilinear algorithm for sparse representations. Computa-
tionals Optimization and Applications, 38(2):249–259, 2007.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022. URL https://www.
gurobi.com.

Hongmei He and Zengchang Qin. A k-hyperplane-based neural network for non-linear regression.
In 9th IEEE International Conference on Cognitive Informatics (ICCI’10), pp. 783–787. IEEE,
2010.

Zhaoshui He and Andrzej Cichocki. An efficient k-hyperplane clustering algorithm and its ap-
plication to sparse component analysis. In International Symposium on Neural Networks, pp.
1032–1041. Springer, 2007.

Deming Kong, Lijun Xu, Xiaolu Li, and Shuyang Li. K-plane-based classification of airborne
lidar data for accurate building roof measurement. IEEE Transactions on Instrumentation and
Measurement, 63(5):1200–1214, 2013.

James MacQueen et al. Some methods for classification and analysis of multivariate observations. In
Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume
1 (14), pp. 281–297. Oakland, CA, USA, 1967.

Olvi L Mangasarian. Arbitrary-norm separating plane. Operations Research Letters, 24(1-2):15–23,
1999.

G. McCormick. Computability of global solutions to factorable nonconvex programs: Part i - convex
underestimating problems. Math. Progm., 10:146–175, 1976.

Nimrod Megiddo and Arie Tamir. On the complexity of locating linear facilities in the plane. Oper-
ations research letters, 1(5):194–197, 1982.

Luis Rademacher, Santosh Vempala, and Grant Wang. Matrix approximation and projective cluster-
ing via iterative sampling. 2005.

Christian Sohler and David P Woodruff. Strong coresets for k-median and subspace approximation:
Goodbye dimension. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 802–813. IEEE, 2018.

11

https://www.gurobi.com
https://www.gurobi.com


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026
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A APPENDIX

You may include other additional sections here.

B CODE REPOSITORY AND LICENSING

The code developed for this work is available at https://anonymous.4open.science/r/
norms-5F23 and freely distributed under the Apache 2.0 license.4

C LIST OF OUR THEORETICAL RESULTS WITH THE CORRESPONDING PROOFS

Proposition 1. Given a hyperplane H := {x ∈ Rn : x⊤w = γ} and a point a ∈ Rn, the function
dp(a,H) = |w⊤a−γ|

∥w∥p′
, where 1

p + 1
p′ = 1, is a nonconvex function of (w, γ) for every p ∈ N ∪ {∞}.

Proof. By definition, |w⊤a−γ|
∥w∥p′

is a convex function of (w, γ) if and only if the following holds for

every (w1, γ1) and (w2, γ2) ∈ Rn+1 and λ ∈ [0, 1]:

λ
|w⊤

1 a− γ1|
∥w1∥p′

+ (1− λ)
|w⊤

2 a− γ2|
∥w2∥p′

≥

|(λw1 + (1− λ)w2)
⊤a− (λγ1 + (1− λ)γ2)|

∥λw1 + (1− λ)w2∥p′
. (3)

Let a = (0, 0) and consider two hyperplanes of parameters w1 := (1,− 1
5 ), γ1 = 1 and w2 :=

(− 1
5 , 1), γ2 = 1. Let γ := γ1 = γ2. Letting λ = 1

2 , Inequality (3) reads:

1

2

1

p′
√
1 +

(
1
5

)p′
+

1

2

1

p′
√
1 +

(
1
5

)p′
≥ 1

p′
√(

2
5

)p′
+
(
2
5

)p′
, (4)

or, equivalently:

p′

√(
2

5

)p′

+

(
2

5

)p′

≥ p′

√
1 +

(
1

5

)p′

.

Taking both sides to the p′-th power, we have 2
(
2
5

)p′

≥ 1 +
(
1
5

)p′

. After moving 1 to the left-
hand side and multiplying both sides by 5p

′
, we deduce 2 · 2p′ − 1 ≥ 5p

′
, which, if valid, implies

2 · 2p′
> 2 · 2p′ − 1 ≥ 5p

′
. As

(
5
2

)p′

> 2 holds for every p′ ∈ N ∪ {∞} (as one can see by setting
p′ to its smallest value, i.e., setting p′ := 1), Inequality (4) is proven not to hold for any choice of
p ∈ N ∪ {∞}.

Lemma 1. The solutions to (k-HC(2,1)) and (k-HC2) coincide. Also, (k-HC(p,c)) is quadratically
homogeneous w.r.t. c, i.e., OPT(k-HC(p,c)) = c2 OPT(k-HC(p,1)).

4https://www.apache.org/licenses/LICENSE-2.0
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Proof. We start by showing that k-HC2
≥1 and k-HC2 are equivalent when c = 1 and p = 2.

Indeed, as n points in general position fix a hyperplane in Rn, only n of the n + 1 parameters
in (wj , γj) ∈ Rn+1 are independent. Thus, ||wj ||22 = ||wj ||2 = 1 can be imposed w.l.o.g. for
all j ∈ [k]. Relaxing ||wj ||2 = 1 as ||wj ||2 ≥ 1 is w.l.o.g. as the latter is tight in any optimal
solution—indeed, if not, a strictly better solution is found by scaling (wj , γj) by 1

||wj ||p′
, j ∈ [k].

Let {(wj , γj)}j∈[k] be an optimal solution to k-HCp
≥c. As argued, ∥wj∥p′ = c holds. Let now

(w′
j , γ

′
j) :=

(wj ,γ)
c , j ∈ [k]. Such a scaled solution satisfies ∥w′

j∥p′ = 1 for all j ∈ [k] and, thus, is
feasible for k-HCp

≥1. Its objective function value is 1
c2 times the one of {(wj , γ)}j∈[k]. Since such

a multiplicative difference is a constant, the scaled solution is optimal for k-HC≥1
p . Thus, we have

OPT(k-HCp
≥c) = c2 OPT(k-HCp

≥1).

Theorem 1. Let p, q ∈ N ∪ {∞} and c > 0. The three positive scalars α(p, q), β(p, q), γ(p, q)
which, for all x ∈ Rn, satisfy the congruence inequality α(p, q)||x||p ≤ β(p, q)||x||q ≤
γ(p, q)||x||p for p, q ∈ N∪{∞} also satisfy the optimal-value inequality α(p,q)2

γ(p,q)2 OPT(k-HC(p,c)) ≤

OPT

(
k-HC

(q,c
β(p,q)
γ(p,q)

)

)
≤ OPT(k-HC(p,c)).

Proof. The inequality
min
x∈X

f(x) ≤ min
x∈X

f ′(x) ≤ min
x∈X

f ′′(x) (5)

holds for any three functions f, f ′, f ′′ : X → R satisfying f(x) ≤ f ′(x) ≤ f ′′(x) for all x ∈
X ⊆ Rn. Since vector norms in Rn are congruent, for every p, q ∈ N ∪ {∞} there are three
positive scalars α(p, q), β(p, q), γ(p, q) which satisfy α(p, q)||x||p ≤ β(p, q)||x||q ≤ γ(p, q)||x||p
for p, q ∈ N ∪ {∞}. Since, by definition, dp(a,H) = miny∈H ||a − y||p, equation 5 leads to the
following congruence relationship for point-to-hyperplane distances that holds for every hyperplane
H in Rn and point a ∈ Rn:

α(p, q) dp(a,H) ≤ β(p, q)dq(a,H) ≤ γ(p, q) dp(a,H). (6)

Squaring equation 6 and letting H1, . . . ,Hk be an arbitrary choice of k hyperplanes, another appli-
cation of equation 5 leads to

α(p, q)2 min
j∈[k]

{d2(ai, Hj)p} ≤ β(p, q)2 min
j∈[k]

{d2(ai, Hj)q} ≤

γ(p, q)2 min
j∈[k]

{d2(ai, Hj)p}. (7)

Summing over the data points, we obtain the following surrogate inequality:

α(p, q)2
m∑
i=1

min
j∈[k]

{d2(ai, Hj)p} ≤

β(p, q)2
m∑
i=1

min
j∈[k]

{d2(ai, Hj)q} ≤

γ(p, q)2
m∑
i=1

min
j∈[k]

{d2(ai, Hj)p}.

Applying again equation 5 for the choice of the optimal hyperplane equations, we de-
duce α(p, q)2 OPT(k-HCp

≥1) ≤ β(p, q)2 OPT(k-HCq
≥1) ≤ γ(p, q)2 OPT(k-HCp

≥1).
Multiplying through by c2 and using Lemma 1, we obtain α(p, q)2 OPT(k-HCp

≥c) ≤
β(p, q)2 OPT(k-HCq

≥c) ≤ γ(p, q)2 OPT(k-HCp
≥c). By using Lemma 1 one more time, we de-

duce β(p, q)2 OPT(k-HCq
≥c) = OPT(k-HCq

≥cβ(p,q)), which allows us to write:

α(p, q)2 OPT(k-HCp
≥c) ≤

OPT(k-HCq
≥cβ(p,q)) ≤ γ(p, q)2 OPT(k-HCp

≥c).

Dividing through by γ(p, q) and applying Lemma 1 one last time, the claim is obtained.
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Corollary 1. k-HC(∞,1) and k-HC(1, 1√
n
) satisfy:

1

n
OPT(k-HC(2,1)) ≤ OPT(k-HC(∞,1)) ≤ OPT(k-HC(2,1))

1

n
OPT(k-HC(2,1)) ≤ OPT(k-HC(1, 1√

n
)) ≤ OPT(k-HC(2,1)).

Proof. We rely on the following congruence relationships:

1√
n
∥x∥2 ≤ ∥x∥∞ ≤ ∥x∥2

1√
n
∥x∥2 ≤ 1√

n
∥x∥1 ≤ ∥x∥2.

Thanks to Theorem 1, 1√
n
∥x∥2 ≤ ∥x∥∞ ≤ ∥x∥2 implies 1

n OPT(k-HC2
≥1) ≤

OPT(k-HC∞
≥1) ≤ OPT(k-HC2

≥1). Thanks to Theorem 1, 1√
n
∥x∥2 ≤ 1√

n
∥x∥1 ≤ ∥x∥2 im-

plies 1
n OPT(k-HC2

≥1) ≤ 1
n OPT(k-HC1

≥1) ≤ OPT(k-HC2
≥1) which, due to Lemma 1, is

equal to 1
n OPT(k-HC2

≥1) ≤ OPT(k-HC1
≥ 1√

n ) ≤ OPT(k-HC2
≥1).

Lemma 2. Solving k-HC subject to min{||w||1,
√
n||w||∞} ≥ 1 coincides with solving an uncon-

strained version of k-HC where the point-to-hyperplane distance between ai and Hj is defined as
max{d∞(ai, Hj),

1√
n
d1(ai, Hj)}.

Proof. In the context of point-to-hyperplane distances, min{||w||1,
√
n||w||∞} = 1 implies

|a⊤i wj − γ| =
|a⊤

i wj−γ|
min{||w||1,

√
n||w||∞} . We can rewrite the latter as max{ |a⊤

i wj−γ|
||w||1 ,

|a⊤
i wj−γ|√
n||w||∞

} =

max{ |a⊤
i wj−γ|
||w||1 , 1√

n

|a⊤
i wj−γ|
||w||∞ } = max{d∞(ai, Hj),

1√
n
d1(ai, Hj)}. Such a multi orthogonal dis-

tance is clearly induced by the norm max{||x||∞, 1√
n
||x||1} (assuming that such a function is a

norm—we will prove this next).

x

y

Figure 3: Sets of points satisfying ∥x∥2 = 1 (outer circle) and max{∥x∥∞, 1√
n
∥x∥1} = 1 (inner oc-

tagon). Notice that such a geometrical property suffices to establish ∥x∥2 ≤ max{∥x∥∞, 1√
n
∥x∥1}.

Lemma 3. The function max{ ∥x∥∞, 1√
n
∥x∥1 } is a norm on Rn and, for all x ∈ Rn, it satisfies

the sharp congruence inequality

n−1/4 ∥x∥2 ≤ max
{
∥x∥∞, 1√

n
∥x∥1

}
≤ ∥x∥2.

Proof. Let us show that max{||x||∞, 1√
n
||x||1} is a norm.

Positive definiteness. First, it is clear that max{||x||∞, 1√
n
||x||1} ≥ 0 and that

max{||x||∞, 1√
n
||x||1} = 0 if and only if x = 0.

14
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Absolute homogeneity. Second, it is also clear that |λ|max{||x||∞, 1√
n
||x||1} =

max{λ||x||∞, λ 1√
n
||x||1} for all λ ∈ R.

Triangle inequality. Third, we must show max{||x + y||∞, 1√
n
||x + y||1} ≤

max{||x||∞, 1√
n
||x||1}+max{||y||∞, 1√

n
||y||1}. To see this, we first notice that

||x+ y||∞ ≤ ||x||∞ + ||y||∞
1√
n
||x+ y||1 ≤ 1√

n
||x||1 +

1√
n
||y||1

hold since these functions are norms. Taking the maximum of the left-hand and right-hand sides,
due to the monotonicity of max, we have:

max{||x+ y||∞,
1√
n
||x+ y||1} ≤

max{||x||∞ + ||y||∞,
1√
n
||x||1 +

1√
n
||y||1}.

To show that this implies that the triangle inequality is satisfied, we show that, for any a, b, c, d ≥ 0,
we have max{a+c, b+d} ≤ max{a, b}+max{c, d}. Note that a ≤ max{a, b}, b ≤ max{a, b}, c ≤
max{c, d}, and d ≤ max{c, d}. Adding the inequalities, we have: a+ c ≤ max{a, b}+max{c, d}
and b + d ≤ max{a, b} + max{c, d}. Taking the maximum of the left- and right-hand sides, due
again to the monotonicity of max we have proven the property we sought to prove.

Congruence. We are now looking to prove a congruence of type

α||x||2 ≤ βmax{||x||∞,
1√
n
||x||1} ≤ γ||x||2

for some α, β, γ ≥ 0. We can split it as follows:

α||x||2 ≤ βmax{||x||∞,
1√
n
||x||1}

⇔ ||x||2
max{||x||∞, 1√

n
||x||1}

≤ β

α

and

βmax{||x||∞,
1√
n
||x||1} ≤ γ||x||2

⇔ β

γ
≤ ||x||2

max{||x||∞, 1√
n
||x||1}

and prove the two inequalities independently. (Notice that this is w.l.o.g. since, for x = 0, the
congruence is trivially satisfied).

Now, max{||x||∞, 1√
n
||x||1} is a convex function (it is the maximum of two convex functions).

Hence its level curves are convex—see Figure 3.

Let S = {x ∈ Rn : ∥x∥∞ ≤ 1, ∥x∥1 ≤
√
n}. Let t := ⌊

√
n⌋, and let r be the fractional part

of
√
n, i.e., r :=

√
n − t ∈ [0, 1). We’ll prove that every maximizer of ∥x∥2 over S has at most

one fractional coordinate in (0, 1) and, in particular, that x⋆ = (1, . . . , 1︸ ︷︷ ︸
t times

, r, 0, . . . , 0) is one such

maximizer with objective function value maxx∈S ∥x∥2 =
√
t+ r2.

Since S is symmetric under sign flips and coordinate permutations, we can w.l.o.g. restrict ourselves
to vectors x ∈ Rn with x1 ≥ x2 ≥ · · · ≥ xn ≥ 0 and consider the equivalent problem

max

n∑
i=1

x2
i :

n∑
i=1

xi ≤
√
n, x ∈ [0, 1]n. (P)
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(i) The ℓ1 budget is tight at optimum. If
∑

i xi <
√
n, we can increase x1 until either x1 = 1 or∑

i xi =
√
n. Since, doing so, the objective

∑
i x

2
i increases, every maximizer satisfies

∑
i xi =√

n.

(ii) At most one fractional coordinate. Suppose a feasible x with
∑

i xi =
√
n has two indices i ̸= j

with 0 < xi < 1 and 0 < yxj < 1. W.l.o.g., assume yi ≥ yj . For some ε > 0 with xi + ε ≤ 1
and xj − ε ≥ 0, define x̃ as x̃i := xi + ε, x̃j = xj − ε, and x̃k = xk for all k /∈ {i, j}. Then,∑

k ỹk = s, and we have: ∑
k

ỹ2k −
∑
k

y2k

= (yi + ε)2 + (yj − ε)2 − (y2i + y2j )

= 2ε(yi − yj) + 2ε2 > 0,

which shows that any point with two fractional entries is suboptimal.

(iii) Determining the number of ones. Let a maximizer have t ones, one fractional coordinate r ∈
[0, 1) (or none if r = 0), and the remaining n − t − 1 zeros. Since

∑
i yi = s is tight, we deduce

t+ r = s, which (since t is integer and r < 1), implies t = ⌊s⌋ and r = s− t.

(iv) Optimal solution value. The objective value is therefore
∑

i x
2
i = t · 12 + r2.

Corollary 2. Combining Lemma 3 with Theorem 1, the multi-norm relaxation k-HC(multi,1) satisfies

1√
n

OPT
(
k-HC(2,1)

)
≤ OPT

(
k-HC(multi,1)

)
≤ OPT

(
k-HC(2,1)

)
.

Proof. A direct consequence of applying Theorem 1 to the congruence relationship derived in
Lemma 3.

Proposition 2. Under Assumption 1, when solving k-HC(2,1) a nonzero lower bound is obtained
only after generating Ω(2k(n−1)) nodes.

Proof. By assumption, each branching operation decides the sign of a component of wj for some
j ∈ [k] by splitting (with a half-space constraint) its feasible region with a hyperplane containing the
origin. As long as the cone, call it C, obtained by intersecting such half-spaces is not pointed, the
convex hull of its intersection with the feasible region of the problem contains the origin. Thus, the
solution with (wj , γj) = 0 and xij = 1, i ∈ [m], which coincides with assigning every data point to
the degenerate hyperplane of index j (thus achieving a di = 0, i ∈ [m]), is optimal regardless of the
convex envelope that is employed. Only after branching has been carried out on each component
of wj for each j ∈ [k], the cone C is pointed and, thus, the convex hull of its intersection with the
feasible region of the problem renders the trivial solution (wj , γj) = 0, j ∈ [k], infeasible, leading
to a nonzero lower bound. This amounts to generating Ω(2k(n−1)) nodes.

Proposition 3. Assume that the constraint ∥wj∥1 ≥ 1, j ∈ [k], is imposed and that branching
takes place on the sjh variables first. Then, a nonzero global lower bound is obtained only after
generating Θ(2k(n−1)) nodes; after this, no further branching on w takes place.

Proof. Let sjh = 1
2 for all h ∈ [n], which implies w+

jh ≤ 1
2 and w−

jh ≤ 1
2 . Letting w+

jh = w−
jh = 1

2 ,
we have w+

jh + w−
jh = 1. This feasible solution trivially satisfies the 1-norm constraint equation 1d

with w+
jh−w−

jh = wjh = 0. Thus, (wj , γj) = 0, j ∈ [k], is optimal. By branching on a variable sjh,
we impose either wjh ≤ 0 (with sjh = 0) or wjh ≥ 0 (with sjh = 1). In both cases, the solution
where w+

jh = w−
jh = 1

2 and wjh = 0 becomes infeasible due either w+
jh or w−

jh being forced to 0,
but the solution with wjh′ = 0, for any other h′ ∈ [n] \ {h}, remains feasible as long as branching
on it has not taken place. Thus, a nonzero lower bound is obtained only in Ω(2k(n−1)) nodes. When
such an exponentially-large tree of depth k(n − 1) is complete, though, ∥wj∥1 ≥ 1, j ∈ [k], holds
in each leaf node and, thus, no further branching on w is necessary.
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Proposition 4. Assume that ∥wj∥∞ ≥ 1√
n

, j ∈ [k], is imposed and that branching takes place on
the ujh variables first. Then, O(nk) nodes suffice to obtain a nonzero lower bound; after this, no
further branching on w takes place.

Proof. After branching on ujh for any pair j, h, the (left, w.l.o.g.) child node with ujh = 1 satisfies
wjh ≥

√
n. This guarantees ||wj ||∞ ≥

√
n and, thus, no further branching is needed on wj in the

descendants of the left node. Further branching operations on wj are only necessary on the right
child node where ujh = 0 has been imposed. By iteratively applying this reasoning, we obtain
a tree with exactly two nodes per level (except for the root node) where each left node satisfies
the ||wj ||∞ ≥

√
n constraint for at least a j ∈ [k]. Therefore, when the three has depth nk,

||wj ||∞ ≥
√
n is satisfied for all j ∈ [k]. When such an polynomially-sized tree of depth k(n− 1)

is complete, ∥wj∥∞ ≥
√
n, j ∈ [k], holds in each leaf node and, thus, no further branching on w is

necessary.

D PROOF OF THE APPROXIMATION FACTORS AND OF THEIR TIGHTNESS

We will rely on the following Lemma:

Lemma 4. Given two functions f, g : Rn → R with g surjective we have:

max
x∈Rn

f(x)

g(x)
= max

ν∈R

{
max
x∈Rn

{
f(x)

ν
: g(x) = ν

}}
. (8)

If, for all x ∈ Rn, f(x) = f(|x|) and g(x) = g(|x|), then:

max
x∈Rn

f(x)

g(x)
= max

ν∈R+

{
max
x∈Rn

+

{
f(x)

ν
: g(x) = ν

}}
. (9)

Proof. If g is surjective, then ∪ν∈R{x ∈ Rn : g(x) = ν} = Rn. We can therefore partition Rn

into infinitely many subsets of type {x ∈ Rn : g(x) = ν}. An optimal solution to maxx∈Rn
f(x)
g(x)

thus corresponds to the best solution over all such subsets. The special case in Equation equation 9
follows by a similar argument.

Proposition 5. The following relationships are satisfied for every x ∈ Rn:

∥x∥2 ≤ ∥x∥1 ≤
√
n∥x∥2

1√
n
∥x∥2 ≤ ∥x∥∞ ≤ ∥x∥2

and the factors
√
n and 1√

n
are tight.

Proof. We are looking for four positive coefficients α1, β1, α∞, β∞ that satisfy the following rela-
tionships for all x ∈ Rn:

α1∥x∥2 ≤ ∥x∥1 ≤ β1∥x∥2
α∞∥x∥2 ≤ ∥x∥∞ ≤ β∞∥x∥2.

Assuming x ̸= 0 as, for x = 0, α∥x∥p ≤ ∥x∥q ≤ β∥x∥p holds for all α, β and for all p, q ∈
N ∪ {∞}, the tightest values for α1, β1, α∞, β∞ must satisfy the following relationships:

β1 = max
x∈Rn

∥x∥1
∥x∥2

β∞ = max
x∈Rn

∥x∥∞
∥x∥2

α1 = min
x∈Rn

∥x∥1
∥x∥2

α∞ = min
x∈Rn

∥x∥∞
∥x∥2

.
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As max
∥x∥p

∥x∥q
= min

∥x∥q

∥x∥p
holds for all p, q ∈ N ∪ {∞}, we need to solve the following four

problems:

β1 = max
∥x∥1
∥x∥2

β∞ = max
∥x∥∞
∥x∥2

α1 = max
∥x∥2
∥x∥1

α∞ = max
∥x∥2
∥x∥∞

.

Let us consider the case of α1, α∞, for which we are solving max ∥x∥2

∥x∥q
for q = 1,∞. By virtue of

Lemma 4, we are thus solving:

αq = max
ν∈R+

{
1

ν
max
x∈Rn

+

{∥x∥2 : ∥x∥q = ν}
}
.

As the maximum of a convex function (such as ∥x∥2) over a closed, convex set is achieved on the
border of the latter and, if we are optimizing over a polytope, over its extreme vertices, we can
w.l.o.g. relax ∥x∥q = ν into ∥x∥q ≤ ν.

For α1, the extreme points of {x ∈ Rn : ∥x∥1 ≤ ν} are of the form: νeℓ for all ℓ ∈ [n], with
eℓ being the ℓ-th canonical vector of Rn. For each of them, we have ∥νeℓ∥2 =

√
ν2 = ν. Thus,

α1 = max ∥x∥2

∥x∥1
= ν

ν = 1.

For α∞, the extreme points of {x ∈ Rn : ∥x∥∞ ≤ ν} are of the form: (±ν, . . . ,±ν) for all
possible choices of ±. For each of them, we have ∥(±ν, . . . ,±ν)∥2 =

√
ν2 n = ν

√
n. Thus,

α∞ = max ∥x∥2

∥x∥∞
= ν

√
n

ν =
√
n.

Let us now consider the case of β1 and β∞, for which we are solving max
∥x∥q

∥x∥2
for q = 1,∞. By

virtue of Lemma 4, we are thus solving:

βq = max
ν∈R+

{
1

ν
max
x∈Rn

+

{∥x∥q : ∥x∥2 = ν}
}
.

For β1, the problem reads:

β1 = max
ν≥0

{
1

ν
max
x∈Rn

+

{
eTx : xTx = ν2

}}
. (10)

The KKT conditions for the relaxation of the inner problem of equation 10 obtained after dropping
the nonnegativity on x read:

∇x(e
Tx− λ(xTx− ν2)) = 0

xTx = ν2,

with λ unrestricted in sign. From the first equation, we deduce x = e
2λ . By substituting it in the

second equation, we obtain eT e
22λ2 = ν2, that is, λ =

√
n

2ν . Thus, we have x = e√
n
ν. Since the latter

is nonnegative, it is an optimal solution to both the relaxation of the inner problem of equation 10
with x ∈ Rn and its unrelaxed version with x ∈ Rn

+. We thus have ∥x∥1 = ν√
n
∥e∥1 = νn√

n
= ν

√
n.

We conclude that β1 = ν
√
n

ν =
√
n.

For β∞, the problem reads:

β∞ = max
ν≥0

{
1

ν
max
x∈Rn

+

{
max
ℓ∈[n]

{xℓ} : xTx = ν2
}}

.

The optimal solutions to the inner problem are of the form νeℓ, where eℓ is a canonical vector of
Rn, for which we have ∥νeℓ∥∞ = ν. We conclude that β∞ = ν

ν = 1.
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