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ABSTRACT

Generative flow networks (GFlowNets) are powerful samplers for distributions
supported in spaces of compositional objects (e.g., sequences and graphs), with
applications ranging from the design of biological sequences to causal discovery.
However, there are no principled approaches to deal with GFlowNets in feder-
ated settings, where the target distribution results from a combination of (possibly
sensitive) rewards from different parties. To fill this gap, we propose federated
contrastive GFlowNet (FC-GFlowNet), a divide-and-conquer framework for fed-
erated learning of GFlowNets, requiring a single communication step. First, each
client learns a GFlowNet locally to sample proportionally to their reward. Then,
the server gathers the local policy networks and aggregates them to enforce feder-
ated balance (FB), which provably ensures the correctness of FC-GFlowNet. Ad-
ditionally, our theoretical analysis builds on the idea of contrastive balance, that
imposes necessary and sufficient conditions for the correctness of general (non-
federated) GFlowNets. We empirically attest the performance of FC-GFlowNets
in four settings, including grid-world, sequence, multiset generation, and Bayesian
phylogenetic inference. Experiments also suggest that, in some cases, enforcing
the contrastive balance can accelerate the training of conventional GFlowNets.

1 INTRODUCTION

Generative flow networks (GFlowNets, Bengio et al., 2021; 2023) is a family of reward-driven gen-
erative models for compositional objects (e.g., sequences or graphs). While GFlowNets were origi-
nally designed to increase diversity of candidates in active learning settings, they have found appli-
cations in a variety of domains, such as causal discovery (Deleu et al., 2022; 2023; da Silva et al.,
2023), combinatorial optimization (Zhang et al., 2023b), design of biological sequences (Jain et al.,
2022), drug discovery (Bengio et al., 2021), and multiobjective optimization (Jain et al., 2023).

In essence, GFlowNets cast the problem of sampling from an unnormalized distribution/reward as
a network flow problem (Bazaraa et al., 2004). Starting from an initial state, GFlowNets iteratively
draw actions according to a (forward) policy which, in turn, increments the state — eventually
creating valid samples. This process can be interpreted as spreading the total mass of the distribution
(flow at the source) through trajectories that lead to elements in the target distribution’s support (sink
nodes). In practice, GFlowNets are learned by enforcing balance conditions (Malkin et al., 2022;
Pan et al., 2023a) that ensure the correctness of the sampling distribution.

There are many applications where the target reward decomposes as a product of (local) reward
functions held by different clients/parties. For instance, this appears in distributed Bayesian infer-
ence (Neiswanger et al., 2014; El Mekkaoui et al., 2021), where the reward involves a likelihood
function, which is typically log-additive on data shards — the posterior (i.e., target reward) is pro-
portional to a product of the prior and the local likelihoods defined on each client’s data, each of
which can be seen as a local reward. Another relevant application is multi-objective active learning
(Daulton et al., 2021), where we wish to obtain a collection of diverse designs with high values un-
der a pool of utility functions. For instance, in drug discovery, a key challenge is finding molecules
that satisfy multiple constraints (e.g., affinity, solubility, safety). In a setting where different experts
work independently to obtain property-specific models using GFlowNets, this challenge can be cast
as sampling from the product of these local GFlowNets (Garipov et al., 2023). Furthermore, in both
cases, when the local rewards are of a sensitive nature, clients might be reluctant to share them di-
rectly (e.g., as it may incur sharing data). While this falls into the realm of Federated Learning (FL,
McMahan et al., 2017), so far, there are no works on FL of GFlowNets. Reviewer: wWFS,

Npeg, rsSg
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This paper extends the theory of GFlowNets to develop a simple divide-and-conquer algorithm for
federated learning of GFlowNets, in which clients learn locally GFlowNets to sample from their
individual rewards and, subsequently, send them to the server for aggregation. Importantly, this pro-
cedure requires a single round of communication between the client and server sides. More specifi-
cally, we derive the federated balance condition to ensure the GFlowNet samples from the product
of (the marginal distribution over terminal states induced by) the local GFlowNets. Furthermore,
on our path towards federated balance, we derive a novel balance criterion to train non-federated
GFlowNets, the contrastive balance (CB) condition. Informally, the CB encapsulates the idea i)
that we can ‘estimate’ the normalizing constant of a reward given a terminal trajectory using the
trajectory balance condition (Malkin et al., 2022), and ii) if a GFlowNet is perfectly trained, the
estimate should be independent of the trajectory used. Enforcing the CB induces a loss that, in ex-
pectation, is equivalent to the variance of an estimator of the log-partition, whose minimization was
first proposed by Zhang et al. (2023a). Reviewer: Xj4h

Our experiments on four different federated tasks show that our method, federated contrastive
GFlowNet (FC-GFlowNet), can accurately sample from the combined rewards without direct access
to each client’s reward — only to their locally trained GFlowNets. For conventional (non-federated)
settings, we also show that using the contrastive balance as a training criterion leads to better con-
vergence when the intersection of the GFlowNet’s sets of terminal and intermediate states is void.

In summary, our contributions are:

1. We propose the first algorithm for federated learning of GFlowNets. Our method incurs a divide-
and-conquer framework, in which clients learn GFlowNets based on their private rewards and
send their policies to a server for aggregation. We provide a theory that guarantees its correct-
ness, and also analyze its robustness to errors in the estimation of local GFlowNets;

2. We present the contrastive balance condition, which can be used to train general GFlowNets.
We show it is a sufficient and necessary condition for sampling proportionally to a reward and
analyze its connection to variational inference (VI);

3. We substantiate our methodological contributions with experiments on four different tasks.
Notably, our empirical results i) demonstrate the accuracy of our federated framework for
GFlowNets; ii) show that, in some cases, using the contrastive balance as a training criterion
leads to faster convergence rates compared to using trajectory and detailed balances; iii) illus-
trate the potential of GFlowNets in a novel application: Bayesian phylogenetic inference.

2 PRELIMINARIES

Notation. We represent a directed acyclic graph (DAG) over nodes V and with adjacency matrix
A ∈ {1, 0}|V |×|V | as G = (V,A). A forward policy over V in G is a function p : V × V → R+

such that (i) p(v, ·) is a probability measure over V for every v ∈ V and (ii) p(v, w) > 0 if and
only if Avw = 1; we alternatively write p(v → w) to represent p(v, w). Characteristically, a
transition kernel p induces a conditional probability measure over the space of trajectories in G: if
τ = (v1 → v2 → · · · → vn) is a trajectory of length n in G, then p(τ |v1) =

∏
1≤i≤n−1 p(vi+1|vi).

A backward policy in G is a forward policy on the transpose graph G⊺ = (V,A⊺).

Generative flow networks. GFlowNets are a family of amortized variational algorithms trained to
sample from an unnormalized distribution over discrete and compositional objects. More specifi-
cally, let R : X → R+ be an unnormalized distribution over a finite space X . We call R a reward
due to terminological inheritance from the reinforcement learning literature. Define a finite set S
and a variable so. Then, let G be a weakly connected DAG with nodes V = {so} ∪ {sf} ∪ S ∪ X
such that (i) there are no incoming edges to so, (ii) there are no outgoing edges exiting sf and (iii)
there is an edge from each x ∈ X to sf . We call the elements of V states and refer to X as the set of
terminal states; so is called the initial state and sf is an absorbing state designating the end of a tra-
jectory. We denote by T the space of trajectories in G starting at so and ending at sf . Illustratively,
X could be the space of biological sequences of length 32; S, the space of sequences of lengths up
to 32; and so, an empty sequence. The training objective of a GFlowNet is to learn a forward policy
pF over G such that the marginal distribution pT over X satisfies

pT (x) :=
∑

τ : τ leads to x

pF (τ |so) ∝ R(x). (1)
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We usually parameterize pF as a neural network and select one among the diversely proposed train-
ing criteria to estimate its parameters, which we denote by ϕF . These criteria typically enforce a
balance condition on the Markovian process defined by pF that provably imposes the desired prop-
erty on the marginal distribution in Equation 1. For example, the trajectory balance (TB) criterion
introduces a parameterization of the target distribution’s partition function ZϕZ

and of a backward
policy pB(·, ·;ϕB) with parameters ϕZ and ϕB , respectively, and is defined as

LTB(τ, ϕF , ϕB , ϕZ) =
(
logZϕZ

− logR(x) +
∑

s→s′∈τ
log

pF (s, s
′;ϕF )

pB(s′, s;ϕB)

)2

. (2)

Minimizing Equation 2 enforces the TB condition: pF (τ ;ϕF ) = Z−1
ϕZ
R(x)

∏
pB(s

′, s;ϕB), which
implies Equation 1 if valid for all τ ∈ T . This is the most widely used training scheme for
GFlowNets. In practice, some works set pB as a uniform distribution to avoid learning ϕB , as
suggested by Malkin et al. (2022).

Another popular approach for training GFlowNets uses the notion of detailed balance (DB). Here,
we want to find forward and backward policies and state flows F (with parameters ϕS) that satisfy
the DB condition: F (s;ϕS)pF (s, s′;ϕF ) = F (s′;ϕS)pB(s

′, s;ϕB) if s is an non-terminal state and
F (s;ϕS)pF (sf |s;ϕF ) = R(s) otherwise. Again, satisfying the DB condition for all edges in G
entails Equation 1. Naturally, this condition leads to a transition-decomposable loss

LDB(s, s′, ϕF , ϕB , ϕS) =


(
log pF (s,s′;ϕF )

pB(s′,s;ϕB) + log F (s;ϕS)
F (s′;ϕS)

)2
if s′ ̸= sf ,(

log
F (s;ϕS)pF (sf |s;ϕF )

R(s)

)2
otherwise.

(3)

In recent work, Pan et al. (2023a) proposed a novel residual parameterization of the state flows that
achieved promising results in terms of speeding up the training convergence of GFlowNets. More
specifically, the authors assumed the existence of a function E : S → R such that (i) E(so) = 0
and (ii) E(x) = − logR(x) for each terminal state x ∈ X and reparameterized the state flows as
logF (s, ϕS) = −E(s) + log F̃ (s, ϕS). This new training scheme was named forward looking (FL)
GFlowNets due to the inclusion of partially computed rewards in non-terminal transitions.

To learn GFlowNet parameters, we need to average LDB or LTB over some exploratory policy π
fully supported in T . In practice, π is typically a ϵ-mixture between pF and a uniform forward
policy, (1− ϵ) · pF + ϵ · uF , or a tempered version of pF . We use the former definition for π in this
work. We review alternative training schemes for GFlowNets in the supplementary material.

Problem statement. We are interested in the federated setting where there is a set of clients n =
1, . . . , N , each with reward functionRn, and we want to learn a GFlowNet to sample proportionally
to a global reward function R defined as a product of the local rewards R1, . . . , RN — under the
restriction that clients are not willing to openly disclose their rewards. This might be the case when,
e.g., R is an unnormalized Bayesian posterior or when it encodes a multi-objective criterion. While
we focus on sampling from R(x) :=

∏N
n=1Rn(x) in the main paper, our supplementary material

also provides extensions of our theoretical results to exponentially weighted rewards of the form
R(x) :=

∏N
n=1Rn(x)

wn with w1, . . . , wN > 0. For related works, see Appendix D. Reviewer: wWFS

Overview of the solution. To circumvent the restrictions imposed by the problem statement, we
propose a divide-and-conquer scheme. First, each client trains their own GFlowNet to sample pro-
portionally to their local reward. Next, each client n sends the forward and backward policies
p
(n)
F and p(n)B to a centralizing server. Then, the server estimates the policies (pF , pB) of a novel

GFlowNet that approximately samples from R solely based on the local policies {(p(n)F , p
(n)
B )}Nn=1.

More specifically, the server learns a GFlowNet whose marginal distribution pT over terminal states
is proportional to the product of those from the clients p(1)T , . . . , p

(N)
T .

3 METHOD

This section derives a provably correct framework for federated GFlowNets (Section 3.1). Towards
this end, we introduce the contrastive balance condition, a new balance condition that requires mini-
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mal parameterization. Additionally, Section 3.2 further explores this condition as a general objective
for training conventional GFlowNets, which stems naturally from our theoretical developments.

3.1 FEDERATED GFLOWNETS

Recall that we are interested in sampling proportionally to a product of the rewards from users
n = 1, . . . , N , i.e., we want to sample from R(x) :=

∏N
n=1Rn(x). However, users might be

reluctant to openly disclose Rn due to its possibly sensitive nature. Therefore, we are prevented
from centralizing R1, . . . , RN and directly training a network to sample from their product. To
circumvent this limitation, we propose a simple divide-and-conquer strategy. First, each user n
trains independently a GFlowNet with forward/backward policies p(n)F and p(n)B to sample from Rn.
Then, the users send their policies to a server for a single aggregation step, in which the server
combines the local GFlowNets into a new one, with forward/backward policies pF and pB , that
induces a distribution pT over final states x ∈ X proportional to R. Toward this end, Theorem 1
delineates a necessary and sufficient condition that guarantees the correctness of the aggregation
phase, which we call Federated balance condition. It is worth mentioning that Theorem 1 builds
directly on Lemma 1. However, we postpone discussing the latter to Section 3.2.

Theorem 1 (Federated balance condition). Let
(
p
(1)
F , p

(1)
F

)
, . . . ,

(
p
(N)
F , p

(N)
F

)
: V 2 → R+ be

pairs of forward and backward policies from N GFlowNets sampling respectively proportionally to
R1, . . . , RN : X → R+. Then, another GFlowNet with forward and backward policies pF , pB ∈
V 2 → R+ samples proportionally to R(x) :=

∏N
n=1R(x) if and only if the following condition

holds for all terminal trajectories τ, τ ′ ∈ T :

∏
1≤i≤N

(∏
s→s′∈τ

p
(i)
F (s,s′)

p
(i)
B (s′,s)

)
(∏

s→s′∈τ ′
p
(i)
F (s,s′)

p
(i)
B (s′,s)

) =

(∏
s→s′∈τ

pF (s,s′)
pB(s′,s)

)
(∏

s→s′∈τ ′
pF (s,s′)
pB(s′,s)

) . (4)

Based on Theorem 1, we can naturally derive a loss function that enforces Equation 4 and can be
used to combine the locally trained GFlowNets. To guarantee the minimum of our loss achieves
federated balance, it suffices to integrate Equation 4 against a distribution that attributes non-zero
mass to every element in T 2. It is important to note the federated balance loss is agnostic to which
loss was used to learn the local GFlowNets, as it only requires their transition functions.

Corollary 1 (Federated balance loss). Let p(i)F and p(i)B be forward and backward transition func-
tions such that p(i)T (x) ∝ Ri(x) for arbitrary reward functions Ri over terminal states x ∈ X .
Also, let ν : T 2 → R+ be some full-support probability distribution over pairs of terminal trajecto-
ries. Moreover, assume that pF (·, ·;ϕF ) and pB(·, ·;ϕB) denote the forward/backward policies of a
GFlowNet, parameterized by ϕF and ϕB . The following statements are equivalent:

1. pT (x;ϕF ) ∝
∏
iRi(x) for all x ∈ X ;

2. E(τ,τ ′)∼ν [LFed(τ, τ ′, ϕF , ϕB)] = 0 where for trajectories τ ⇝ x and τ ⇝ x′

LFed(τ, τ ′, ϕF , ϕB)=

log
pF (τ ;ϕF )pB(τ

′|x′;ϕB)
pB(τ |x;ϕB)pF (τ ′;ϕF )

+
∑

1≤i≤N

log
pF (τ ;ϕF )pB(τ

′|x′;ϕB)
pB(τ |x;ϕB)pF (τ ′;ϕF )

2

. (5)

Remark 1 (Imperfect local inference). In practice, the local balance conditions often cannot be
satisfied by the local GFlowNets and the distributions p(1)T , . . . , p

(N)
T over terminal states are not

proportional the the rewards R1, . . . , RN . In this case, federated balance implies the aggregated
model samples proportionally to

Eτ∼pB(·|x)

 ∏
1≤i≤N

p
(i)
F (τ)

p
(i)
B (τ |x)

 . (6)
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Figure 1: FC-GFlowNet samples proportionally to a pool of locally trained GFlowNets. If a
client correctly trains their local model (green) and another client trains theirs incorrectly (red), the
distribution inferred by FC-GFlowNet (mid-right) differs from the target product distribution (right).

Interestingly, the value of Equation 6 equals the expectation of a non-deterministic random variable
only if the local balance conditions are not satisfied. Otherwise, the ratio p(i)F (τ)/p(i)B (τ |x) equalsR(x),
a constant wrt τ conditioned on τ having x as its final state. Furthermore, Equation 6 also allows us
to assess the probability mass function the global GFlowNet is truly drawing samples from.

As mentioned in Remark 1, in practice, the local GFlowNets may not be balanced with respect to
their rewards, incurring errors that propagate to our aggregated model. In this context, Theorem 2
quantifies the extent to which these local errors impact the overall result.

Theorem 2 (Influence of local failures). Let πn := Rn/Zn and p(n)F and p(n)B be the forward and
backward policies of the n-th client. We use τ ⇝ x to indicate that τ ∈ T is finished by x → sf .
Suppose that the local balance conditions are lower- and upper-bounded ∀n = 1, . . . , N as per

1− αn ≤ min
x∈X ,τ⇝x

p
(n)
F (τ)

p
(n)
B (τ |x)πn(x)

≤ max
x∈X ,τ⇝x

p
(n)
F (τ)

p
(n)
B (τ |x)πn(x)

≤ 1 + βn (7)

where αn ∈ (0, 1) and βn > 0. The Jeffrey divergence DJ between the global model π̂(x) that
fulfills the federated balance condition in Equation 4 and π(x) ∝∏N

n=1 πn(x) then satisfies

DJ(π, π̂) ≤
N∑
n=1

log

(
1 + βn
1− αn

)
. (8)

There are two things worth highlighting in Theorem 2. First, if the local models are accurately
learned (i.e., βn = αn = 0∀n), the RHS of Equation 8 equals zero, implying π = π̂. Second, if
either βn →∞ or αn → 1 for some n, the bound in Equation 8 goes to infinity — i.e., it degenerates
if one of the local GFlowNets are poorly trained. This is well-aligned with the catastrophic failure
phenomenon (de Souza et al., 2022), which was originally observed in the literature of parallel
MCMC (Neiswanger et al., 2014; Nemeth and Sherlock, 2018; Mesquita et al., 2019) and refers to
the incorrectness of the global model due to inadequately estimated local parameters and can result
in missing modes or misrepresentation of low-density regions. Figure 1 shows a case where one of
the local GFlowNets is poorly trained (Client 2’s). Note that minimizing the FB objective leads to
a good approximation of the product of marginal distributions over terminal states (encoded by the
local GFlowNets). Nonetheless, the result is far from we have envisioned at first, i.e., R ∝ R1R2.

3.2 CONTRASTIVE BALANCE

Contrastive balance. As a stepping stone towards proving Theorem 1, we developed the contrastive
balance condition, a condition that is both necessary and sufficient to guarantee a GFlowNet’s
marginal over terminal states is proportional to its target reward, as formalized in Lemma 1.
Lemma 1 (Constrastive balance condition). If pF , pB ∈ V 2 → R+ are the forward and backward
policies of a GFlowNet sampling proportionally to some arbitrary reward function R : X → R+

with finite support, then, for any pair of terminal trajectories τ, τ ′ ∈ T with τ ⇝ x and τ ⇝ x′,

R(x′)
∏

s→s′∈τ

pF (s, s
′)

pB(s′, s)
= R(x)

∏
s→s′∈τ ′

pF (s, s
′)

pB(s′, s)
(9)

Conversely, if a GFlowNet with forward and backward policies pF , pB abide by Equation 9, it
induces a marginal distribution over x ∈ X proportional to R.
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Proof. Note that CB is satisfied for all (τ, τ ′) iff the quotient c(τ) = pB(τ |x)R(x)
pF (τ) does not depend

upon τ . This is equivalent to (pF , pB) satisfying TB with logZ = c(τ) and, hence, the result follows
directly from (Malkin et al., 2022, Proposition 1). See Appendix A for a self-contained proof. Reviewer: Xj4h

Enforcing Lemma 1 results in a loss that does not depend on estimates of the intractable partition
function present in the TB condition. The next corollary guarantees that an instantiation of the
GFlowNet parameterized by a global minimizer of LCB (Eq. 8) correctly samples from p(x) ∝
R(x). We call LCB the contrastive balance loss as it measures the contrast between randomly
sampled trajectories. Notably, the expected value of the CB loss is proportional to the variance of
a TB-based estimate of the partition function, which has been used as training objective by Zhang
et al. (2023a). Additionally, in practice, we observed that in some cases the contrastive balance loss
leads to better results than the TB and DB losses, as we will see in Section 4.5. Reviewer: Xj4h

Corollary 2 (Contrastive balance loss). Let pF (·, ·;ϕF ) and pB(·, ·;ϕB) denote forward/backward
policies, and ν : T 2 → R+ be some full-support probability distribution over pairs of terminal
trajectories. Then, pT (x;ϕF ) ∝ R(x) ∀x ∈ X iff E(τ,τ ′)∼ν [LCB(τ, τ ′, ϕF , ϕB)] = 0 where

LCB(τ, τ ′, ϕF , ϕB) =
(
log

pF (τ ;ϕF )

pB(τ ;ϕB)
− log

pF (τ
′;ϕF )

pB(τ ′;ϕB)
+ log

R(x′)

R(x)

)
(10)

To gain further intuition regarding Equation 10, let us define ξ(τ ;ϕF , ϕB) as ξ(τ ;ϕF , ϕB) :=
log pF (τ) − logR(x) − log pB(τ |x). Then, if the GFlowNet is perfectly trained, TB implies
ξ(τ ;ϕF , ϕB) should be exactly the constant logZ = log

∑
x∈X R(x), which does not depend on

τ . Furthermore, note that LCB(τ, τ ′, ϕF , ϕB) equals (ξ(τ ;ϕF , ϕB)− ξ(τ ′;ϕF , ϕB))2. Thus, Equa-
tion 9 can be seen as the distance between two “estimates” of Z, each based on a terminal trajectory.

Computational advantages of LCB . Importantly, note that LCB incurs learning fewer parameters
than TB and DB losses. Besides requiring the forward and backward policies pF and pB , TB
requires parameterizing the partition function ofR. Alternatively, DB implies using a neural network
to approximate the flow through each node. In contrast, CB requires only learning pF and pB .

LCB and VI. Notably, the next proposition ties the CB loss’ gradient to that of a variational objec-
tive, extending the characterization of GFlowNets as VI started by Malkin et al. (2023) for the TB
loss. More specifically, Theorem 3 states that the on-policy gradients of the CB objective coincide
in expectation to the gradient of the KL divergence between the forward and backward policies.
Theorem 3 (VI and CB). Let pF ⊗ pF be the outer product distribution that assings probability
pF (τ)pF (τ

′) to each pair (τ, τ ′) of trajectories. The criterion in Equation 10 satisfies

∇ϕF
DKL[pF ||pB ] =

1

4
E(τ,τ ′)∼pF⊗pF [∇ϕF

LCB(τ, τ ′, ϕF , ϕB)] .

Proof. Let ξTB(τ ;ϕF , Z) = log ZpF (τ)
pB(τ |x)R(x) . Note LCB(τ, τ ′) = (ξTB(τ) − ξTB(τ

′))2 and
ξTB(τ)

2 = LTB(τ) is the TB loss. Thus, Eτ,τ ′ [∇ϕF
LCB(τ, τ ′)] = 2Eτ

[
∇ϕF

ξTB(τ)
2
]
−

4Eτ [ξTB(τ)]Eτ [∇ϕF
ξTB(τ)]. Also, Prop. 1 of Malkin et al. (2023) ensures Eτ [∇ϕF

ξTB(τ)] = 0
and Eτ [∇ϕF

ξTB(τ)
2] = 2DKL[pF ||pB ], implying our statement. See Appendix A for a self-

contained proof. Reviewer: Xj4h

4 EXPERIMENTS

The main purpose of our experiments is to verify the empirical performance of FC-GFlowNets,
i.e., their capacity to accurately sample from the combination of local rewards. To that extent, we
consider four diverse tasks: sampling states from a grid world in Section 4.1, generation of multi-
sets (Bengio et al., 2023; Pan et al., 2023a) in Section 4.2, design of sequences (Jain et al., 2022)
in Section 4.3, and Bayesian phylogenetic inference (Zhang and Matsen IV, 2018) in Section 4.4.
Since FC-GFlowNet is the first of its kind, we propose two baselines to compare it against: a central-
ized GFlowNet, which requires clients to openly disclose their rewards, and a divide-and-conquer
algorithm in which each client approximates its local GFlowNet with a product of categorical dis-
tributions, which is then aggregated via a product in the server. We call the latter approach parallel
categorical VI (PCVI). Additionally, Section 4.5 explores the CB criterion as a loss for conventional
(non-federated) GFlowNets. Notably, in all experiments, clients contribute with distinct rewards. Reviewer: wWFS
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Table 1: Quality of the federated approximation to the combined reward. The table shows i)
the L1 distance between the distribution induced by each method and the ground truth and ii) the
average log reward of the top-800 scoring samples. Our FC-GFlowNet is consistently better than the
PCVI baseline regarding L1 distance, showing approximately the same performance as a centralized
GFlowNet. Furthermore, FC-GFlowNet’s Top-800 score perfectly matches the centralized model,
while PCVI’s differ drastically. Values are the average and standard deviation over three repetitions.

Grid World Multisets Sequences
L1 ↓ Top-800 ↑ L1 ↓ Top-800 ↑ L1 ↓ Top-800 ↑

Centralized 0.027 −6.355 0.100 27.422 0.003 −1.535
(±0.016) (±0.000) (±0.001) (±0.000) (±0.001) (±0.000)

FC-GFlowNet (ours) 0.038 −6.355 0.130 27.422 0.005 −1.535
(±0.016) (±0.000) (±0.004) (±0.000) (±0.002) (±0.000)

PCVI 0.189 −6.355 0.834 26.804 1.872 −16.473
(±0.006) (±0.000) (±0.005) (±0.018) (±0.011) (±0.007)
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Figure 2: Grid world. Each heatmap represents the target distribution (first row), based on the
normalized reward, and ones learned by local GFlowNets (second row). Results FC-GFlowNet are
in the rightmost pannel. As established by Theorem 1, the good fit of the local models results in an
accurate fit to the combined reward.

4.1 GRID WORLD

Task description. Our grid world environment consists of a Markov decision process over an 18×18
square grid in which actions consist of choosing a direction (→, ↑) or stopping. The reward for
each state R is the sigmoid transform of its minimum distance to a reward beacon (bright yellow
in Figure 2). For the federated setting, we consider the problem of combining the rewards from
different clients, each of which has two beacons placed in different positions.

Results. Figure 2 shows that FC-GFlowNet accurately approximates the targeted distribution, even
in cases where combining the client rewards leads to multiple modes. Furthermore, Table 1 shows
that FC-GFlowNet performs approximately on par with the centralized model in terms ofL1 distance
(within one standard deviation), but is three orders of magnitude better than the PCVI baseline. This
is also reflected in the average reward over the top 800 samples — identical to the centralized version
for FC-GFlowNet, but an order of magnitude smaller for PCVI. Again, these results corroborate our
theoretical claims about the correctness of our scheme for combining GFlowNets.

4.2 MULTISET GENERATION

Task description. Here, the the support of our Reward comprises multisets of size S. A multiset S
is built by iteratively including elements from a finite dictionary U to an initially empty set. Each
client n assigns a value rnu to each word u ∈ U and defines the log-reward of a multiset S as the sum
of its elements’ values; i.e., logRn(S) =

∑
u∈S r

(n)
u . In practice, the quantities r(n)u are uniformly

picked from the interval [0, 1] for each client. We use S = 8 and |U | = 10 in our experiments.

Results. Figure 3 provides further evidence that our algorithm is able to approximate well the
combined reward, even if only given the local GFlowNets. This is further supported by the results
in Table 1. Notably, FC-GFlowNet is ≈ 8 times more accurate than the PCVI baseline.
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Figure 3: Multisets: learned× ground truth distributions. Plots compare normalized rewards vs.
distributions learned by GFlowNets. The five plots to the left show local GFlowNets were accurately
trained. Thus, a well-trained FC-GFlowNet (right) approximates well the combined reward.

4.3 DESIGN OF SEQUENCES

Task description. This tasks revolves around building sequences of maximum size S. We start with
an empty sequence S and proceed by iteratively appending an element from a fixed dictionary U .
The process halts when (i) we select a special terminating token or (ii) the sequence length reaches
S. In the federated setting, we assume each client n has a score p(n)s to each of the S positions within
the sequence and a score t(n)u to each of the |U | available tokens, yielding the reward of a sequence
sequence S = (u1, . . . , uM ) as Rn(S) = exp

∑M
i=1 p

(n)
i t

(n)
ui .

Results. Again, Figure 4 follows what we expect given Theorem 1 and shows that FC-GFlowNet ac-
curately samples from the product of individual rewards. Table 1 further reinforces this conclusion,
showing a small gap in L1 distance between FC-GFlowNet and the centralized GFlowNet trained
with access to all rewards. Notably, our method is≈ 8 times more accurate than PCVI. Furthermore,
the Top-800 average reward of FC-GFlowNet perfectly matches the centralized model.
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Figure 4: Sequences: learned × ground truth distributions. . Plots compare normalized rewards
to distributions learned by GFlowNets. The five leftmost plots show local GFlowNets were well
trained. Hence, as implied by Theorem 1, FC-GFlowNet approximates well the combined reward.

4.4 BAYESIAN PHYLOGENETIC INFERENCE

Task description. In this task, we are interested on inferring a phylogeny T = (t, b), which is a
characterization of the evolutionary relationships between biological species and is composed by a
tree topology t and its (2N − 1)-dimensional vector of non-negative branch lengths b. The topology
t is as a leaf-labeled complete binary tree with N leaves, each corresponding to a species. Notably,
T induces a probability distribution P over the space of nucleotide sequences Y1, . . . , YM ∈ ΩN ,
where Ω is a vocabulary of nucleobases and Ym denote the nucleobases observed at the m-th site
for each species. Assume t is a rooted in some node r and that π ∈ ∆|Ω| is the prior probability
distribution over the nucleobases’ frequencies at r. Then, the marginal likelihood of a nucleobase
Ym occurring site m for node n is recursively defined by (Felsenstein, 1981) as

Pn(Ym|T) =
{

One-Hot(Ym,n) if n is a leaf,[(
ebn,nl

QPnl
(Ym|T)⊺

)
⊙
(
ebn,nrQPnr (Ym|T)⊺

)]⊺
otherwise,

in which nl and nr are respectively the left and right children of n; bn,a is the length of the branch
between nodes n and a; and Q ∈ R|Ω|×|Ω| is an instantaneous rate-conversion matrix for the under-
lying substitution rates between nucleotides, which is given beforehand. In this context, the marginal
likelihood of the observed data within the site m is Pr(Ym|T)⊺π and, assuming conditional indepen-
dence of the sites given T , the overall likelihood of the data is P(Y|T) = ∏

1≤i≤M (P(Yi|T)Tπ)
— which is naturally log-additive on the sites. For our experiments, π is a uniform distribution. For
simplicity, we consider constant branch length, fixed throughout the experiments. For the federated
setting, we place a uniform prior over t and split 2500 nucleotide sites across five clients. In parallel
MCMC (Neiswanger et al., 2014) fashion, each client trains a GFlowNet to sample from its local
posterior, proportional to the product of its local likelihood and a scaled version of the prior.
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Results. Figure 5 shows that Federated GFlowNet accurately learns the posterior distribution over
the tree’s topologies: the L1 error between the learned distribution and the targeted product dis-
tribution is 0.088, whereas the average L1 error among the clients is 0.083(±0.041). Noticeably,
this indicates the model’s aptitude to learn a highly sparse posterior distribution in a decentralized
manner. Moreover, our results suggest the potential usefulness of GFlowNets as an alternative to
the notoriously inefficient MCMC-based algorithms (Zhang and Matsen IV, 2018) in the field of
evolutionary biology. Importantly, our method is also the first provably correct algorithm enabling
distributed Bayesian inference over discrete objects, which may be invaluable in real-world prob-
lems with millions of sites. Notably, naive strategies, like the PCVI baseline, consistently lead to
sampling elements that do not belong to the support of our posterior (i.e., are invalid) — which is
why we do not compare against it. In future endeavors, we plan to investigate joint parallel inference
on the tree’s topology and its branch’ lengths using hybrid-space GFlowNets (Deleu et al., 2023).
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Figure 5: Bayesian phylogenetic inference: learned× ground truth distributions. Following the
pattern in Figures 2-4, the goodness-of-fit from local GFlowNets (Clients 1-5) is directly reflected
in the distribution learned by FC-GFlowNet.

4.5 EVALUATING THE CB LOSS
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Figure 6: LCB performs competitively
or better than LTB , LDB and LFL.

Section 3.2 presents the CB loss as a natural development
given the theory of FC-GFlowNets. To evaluate its util-
ity as a criterion to train GFlowNets in the conventional
centralized (non-federated) setting, we report the evolu-
tion during training of the L1 error of the GFlowNet wrt
the normalized reward for models trained using DB, TB,
and our CB. We do so for all tasks in our experiments,
with all GFlowNets using the same architectures for the
forward and backward policies (more details in supple-
ment). While we did not see any noticeable difference for
the tasks in which all states are also terminal (grid world
and design of sequences), CB led to better convergence in
the multiset generation and phylogeny tasks (Figure 6). An explanation is that CB incurs a consid-
erably simpler parameterization than DB and TB — as we do not require estimating the flow nor the
partition function. In practice, it can be challenging to optimize the log partition in TB. Therefore,
our appendix shows more results comparing the CB to TB w/ different learning rates for logZϕZ

in
the multiset experiments (Figure 8). Noticeably, CB outperforms TB for all rates we have tested. A
rigorous understanding, however, of the diversely proposed balance conditions is still lacking in the
literature and is an important course of action for future research. Reviewer: Xj4h

5 CONCLUSIONS

We proposed FC-GFlowNet as a simple and elegant solution for federated learning of GFlowNets,
which we validate on a suite of experiments. Our method enjoys theoretical guarantees and builds
on the concept of contrastive balance (CB). Our theoretical analysis i) guarantees correctness when
local models are perfectly trained and ii) allows us to quantify the impact of errors of local models
on the federated one. Additionally, we observed that using CB loss led to faster convergence for the
local clients when intermediate states are not terminal — while being competitive in other scenarios.

We believe FC-GFlowNets pave the way for a range of applications of federated Bayesian inference
over discrete parameter spaces. We also believe FC-GFlowNets might be useful to scale up Bayesian
inference by amortizing the cost of expensive likelihood computations over different clients. In the
realm of multi-objective optimization, FC-GFlowNets enable sampling from a combination of re-
wards by leveraging pre-trained GFlowNets — even without direct access to the rewards, as recently
explored by Garipov et al. (2023). Reviewer: Xj4h
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REPRODUCIBILITY STATEMENT

The experiments in this work are reproducible. Upon acceptance, we will make our code publicly
available on GitHub.
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A PROOFS

A.1 PROOF OF LEMMA 1

It stems directly from the trajectory balance that, for any trajectory τ⋆ ∈ T :

Z
∏

s→s′∈τ⋆

pF (s→ s′) = R(x)
∏

s→s′∈τ⋆

pB(s
′ → s) (11)

⇐⇒ Z = R(x)
∏

s→s′∈τ⋆

pB(s
′ → s)

pF (s→ s′)
(12)

Therefore, applying this identity to τ and τ ′ and equating the right-hand-sides (RHSs) yields Equa-
tion 9. We are left with the task of proving the converse. Note we can rewrite Equation 9 as:

R(x)
∏

s→s′∈τ

pB(s
′ → s)

pF (s→ s′)
= R(x′)

∏
s→s′∈τ ′

pB(s
′ → s)

pF (s→ s′)
. (13)

If Equation 9 holds for any pair (τ, τ ′), we can vary τ ′ freely for a fixed τ — which implies the RHS
of the above equation must be a constant with respect to τ ′. Say this constant is c, then:

R(x)
∏

s→s′∈τ

pB(s
′ → s)

pF (s→ s′)
= c (14)

⇐⇒ R(x)
∏

s→s′∈τ
pB(s

′ → s) = c
∏

s→s′∈τ
pF (s→ s′), (15)

and summing the above equation over all τ ∈ T yields:∑
τ∈T

R(x)
∏

s→s′∈τ
pB(s

′ → s) = c
∑
τ∈T

∏
s→s′∈τ

pF (s→ s′) (16)

=⇒
∑
τ∈T

R(x)
∏

s→s′∈τ
pB(s

′ → s) = c (17)

Furthermore, note that: ∑
x∈X

R(x)
∑

τ∈T (x)

∏
s→s′∈τ

pB(s
′ → s) = c (18)

=⇒
∑
x∈X

R(x) = c (19)

=⇒ Z = c (20)

Plugging Z = c into Equation 14 yields the trajectory balance condition.

A.2 PROOF OF THEOREM 1

The proof is based on the following reasoning. We first show that, given the satisfiability of the
federated balance condition, the marginal distribution over the terminating states is proportional to

Eτ∼pB(·|x)

 ∏
1≤i≤N

p
(i)
F (τ)

p
(i)
B (τ |x)

 , (21)

as stated in Remark 1. Then, we verify that this distribution is the same as

pT (x) ∝
∏

1≤i≤N

Ri(x) (22)

if the local balance conditions are satisfied. This proves the sufficiency of the federated balance
condition for building a model that samples from the correct product distribution. The necessity
follows from Proposition 16 of Bengio et al. (2023) and from the observation that the local balance
conditions are equivalent to p

(i)
F (τ)/p(i)B (τ |x) = Ri(x) for each i = 1, . . . , N .
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Next, we provide a more detailed discussion about this proof. Similarly to subsection A.1, notice
that the contrastive nature of the federated balance condition implies that, if

∏
1≤i≤N

(∏
s→s′∈τ

p
(i)
F (s,s′)

p
(i)
B (s′,s)

)
(∏

s→s′∈τ ′
p
(i)
F (s,s′)

p
(i)
B (s′,s)

) =

(∏
s→s′∈τ

pF (s,s′)
pB(s′,s)

)
(∏

s→s′∈τ ′
pF (s,s′)
pB(s′,s)

) , (23)

then

pF (τ) = c

 ∏
1≤i≤N

p
(i)
F (τ)

p
(i)
B (τ |x)

 pB(τ |x) (24)

for a constant c > 0 that does not depend either on x or on τ . Hence, the marginal distribution over
a terminating state x ∈ X is

pT (x) :=
∑
τ⇝x

∏
s→s′∈τ

pF (s→ s′) (25)

= c
∑
τ⇝x

 ∏
1≤i≤N

p
(i)
F (τ)

p
(i)
B (τ |x)

 pB(τ |x) (26)

= cEτ∼pB(·|x)

 ∏
1≤i≤N

p
(i)
F (τ)

p
(i)
B (τ |x)

 . (27)

Correspondingly, p(i)F (τ)/p(i)B (τ |x) ∝ Ri(x) for every i = 1, . . . , N and every τ leading to x due to
the satisfiability of the local balance conditions. Thus,

pT (x) ∝ Eτ∼pB(·|x)

 ∏
1≤i≤N

Ri(x)

 =
∏

1≤i≤N

Ri(x), (28)

which attests the sufficiency of the federated balance condition for the distributional correctness of
the global model.

A.3 PROOF OF THEOREM 2

Initially, recall that the Jeffrey divergence, known as the symmetrized KL divergence, is defined as

DJ(p, q) = DKL[p||q] +DKL[q||p] (29)

for any pair p and q of equally supported distributions. Then, let

π̂(x) = Ẑ Eτ∼pB(·|x)

 ∏
1≤i≤N

p
(i)
F (τ)

p
(i)
B (τ |x)

 (30)
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be the marginal distribution over the terminating states of a GFlowNet satisfying the federated bal-
ance condition (see Remark 1 and subsection A.2). On the one hand, notice that

DKL[π||π̂] = Ex∼π
[
log

π(x)

π̂(x)

]
(31)

= Ex∼π

log π(x)− logZEτ∼pB(·|x)

 ∏
1≤i≤N

p
(i)
F (τ)

p
(i)
B (τ |x)

 (32)

= −Ex∼π

logEτ∼pB(·|x)

 ∏
1≤i≤N

p
(i)
F (τ)

p
(i)
B (τ |x)πi(x)

− log Ẑ + logZ (33)

≤ −Ex∼π

log ∏
1≤i≤N

(1− αi)

− log Ẑ + logZ (34)

= log
Z

Ẑ
+

∑
1≤i≤N

log

(
1

1− αi

)
, (35)

in which Z :=
(∑

x∈X
∏

1≤i≤N πi(x)
)−1

is π’s normalization constant. On the other hand,

DKL[π||π̂] = Ex∼π̂
[
log

π̂(x)

π(x)

]
(36)

= Ex∼π̂

logZEτ∼pB(·|x)

 ∏
1≤i≤N

p
(i)
F (τ)

p
(i)
B (τ |x)

− log π(x)

 (37)

= Ex∼π̂

logEτ∼pB(·|x)

 ∏
1≤i≤N

p
(i)
F (τ)

p
(i)
B (τ |x)πi(x)

+ log Ẑ − logZ (38)

≤ Ex∼π̂

log ∏
1≤i≤N

(1 + βi)

+ log Ẑ − logZ (39)

= log
Ẑ

Z
+

∑
1≤i≤N

log (1 + βi) . (40)

Thus, the Jeffrey divergence between the targeted product distribution π and the effectively learned
distribution π̂ is

DJ(π, π̂) = DKL[π||π̂] +DKL[π̂||π] (41)

≤ log
Z

Ẑ
+

∑
1≤i≤N

log

(
1

1− αi

)
+ log

Ẑ

Z
+

∑
1≤i≤N

log (1 + βi) (42)

=
∑

1≤i≤N

log

(
1 + βi
1− αi

)
. (43)

A.4 PROOF OF THEOREM 3

We firstly recall the construction of the unbiased REINFORCE gradient estimator (Williams 1992),
which was originally designed as a method to implement gradient-ascent algorithms to tackle asso-
ciative tasks involving stochastic rewards in reinforcement learning. Let pθ be a probability density
(or mass function) differentiably parametrized by θ and fθ : X → R be a real-value function over X
possibly dependent on θ. Our goal is to estimate the gradient

∇θEx∼pθ [fθ(x)], (44)
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which is not readily computable due to the dependence of pθ on θ. However, since

∇θEx∼pθ [fθ(x)] = ∇θ
∫
x∈X

fθ(x)pθ(x)dx (45)

=

∫
x∈X

((∇θfθ(x))pθ(x)) dx+

∫
x∈X

((∇θpθ(x))fθ(x)) dx (46)

= Ex∼pθ [∇θfθ(x) + fθ(x)∇θ log pθ(x)] , (47)

the gradient of fθ’s expected value under pθ may be unbiasedly estimated by averaging the quantity
∇θfθ(x)+fθ(x)∇θ log pθ(x) over samples of pθ. We use this identity to compute the KL divergence
between the forward and backward policies of a GFlowNet. In this sense, notice that

∇θDKL[pF ||pB ] = ∇θEτ∼pF
[
log

pF (τ)

pB(τ)

]
(48)

= Eτ∼pF
[
∇θ log pF (τ) +

(
log

pF (τ)

pB(τ)

)
∇θ log pF (τ)

]
(49)

= Eτ∼pF
[(

log
pF (τ)

pB(τ)

)
∇θ log pF (τ)

]
, (50)

as Eτ∼pF [∇θ log pF (τ)] = ∇θEτ∼pF [1] = 0. In contrast, the gradient of the contrastive balance
loss with respect to θ is

∇θLCB(τ, τ ′, θ) = ∇θ
(
log

pF (τ)

pB(τ)
− log

pF (τ
′)

pB(τ ′)

)2

(51)

= 2

(
log

pF (τ)

pB(τ)
− log

pF (τ
′)

pB(τ ′)

)
(∇θ log pF (τ)−∇θ log pF (τ ′)) , (52)

whose expectation under the outer product distribution pF ⊗ pF equals the quantity
4∇θDKL[pF ||pB ] in Equation 48. Indeed, as

Eτ∼pF
[(

log
pF (τ

′)

pB(τ ′)

)
∇θ log pF (τ)

]
= 0, (53)

with an equivalent identity obtained by interchanging τ and τ ′,

E
(τ,τ ′)∼pF⊗pF

[∇θLCB(τ, τ ′, θ)] = (54)

E
(τ,τ ′)∼pF⊗pF

[
2

(
log

pF (τ)

pB(τ)
− log

pF (τ
′)

pB(τ ′)

)
(∇θ log pF (τ)−∇θ log pF (τ ′))

]
= (55)

E
(τ,τ ′)∼pF⊗pF

[
2

(
log

pF (τ)

pB(τ)

)
∇θ log pF (τ) + 2

(
log

pF (τ
′)

pB(τ ′)

)
∇θ log pF (τ ′)

]
= (56)

E
τ∼pF

[
4

(
log

pF (τ)

pB(τ)

)
∇θ log pF (τ)

]
= 4∇θDKL[pF ||pB ]. (57)

Thus, the on-policy gradient of the contrastive balance loss equals in expectation the gradient of the
KL divergence between the forward and backward policies of a GFlowNet.

B EXPONENTIALLY WEIGHTED DISTRIBUTIONS

This section extends our theoretical results and shows how to train a FC-GFlowNet to sample from
a logarithmic pool of locally trained GFlowNets. Henceforth, let R1, . . . , RN : X → R+ be non-
negative functions over X and assume that each client n = 1, . . . , N trains a GFlowNet to sample
proportionally toRn. The next propositions show how to train a GFlowNet to sample proportionally
to an exponentially weighted distribution

∏N
n=1Rn(x)

ωn for non-negative weights ω1, . . . , ωN . We
omit the proofs since they are essentially identical to the ones presented in Appendix A.

Firstly, Theorem 1′ below proposes a modified balance condition for the global GFlowNet and shows
that the satisfiability of this condition leads to a generative model that samples proportionally to the
exponentially weighted distribution.
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Algorithm 1 Training of Federated GFlowNets

Require:
(
p
(1)
F , p

(1)
B

)
, . . . ,

(
p
(K)
F , p

(K)
B

)
clients’ policies, R1, . . . , RK clients’ rewards, (pF , pB)

parameterized global policies, E number of epochs for training, uF uniform policy
Ensure: p⊺(x) ∝ R(x) :=∏1≤k≤K Rk(x)

parfor k ∈ {1, . . . ,K} do ▷ Train the clients’ models in parallel
train the policies

(
p
(k)
F , p

(k)
B

)
to sample proportionally to Rk

end parfor
for e ∈ {1, . . . , E} do ▷ Train the global model
B ← {(τ, τ ′) : τ, τ ′ ∼ 1/2 · pF + 1/2 · uF } ▷ Sample a batch of trajectories
L← 1

|B|
∑
τ,τ ′∈B LFB

(
τ, τ ′;

{(
p
(1)
F , p

(1)
B

)
, . . . ,

(
p
(K)
F , p

(K)
B

)})
Update the parameters of pF and pB through gradient descent on L

end for

Theorem 1′ (Federated balance condition). Let
(
p
(1)
F , p

(1)
F

)
, . . . ,

(
p
(N)
F , p

(N)
F

)
: V 2 → R+ be

pairs of forward and backward policies from N GFlowNets sampling respectively proportional to
R1, . . . , RN : X → R+. Then, another GFlowNet with forward and backward policies pF , pB ∈
V 2 → R+ samples proportionally to R(x) :=

∏N
n=1R(x)

ωn if and only if the following condition
holds for any terminal trajectories τ, τ ′ ∈ T :

∏
1≤i≤N

(∏
s→s′∈τ

p
(i)
F (s,s′)

p
(i)
B (s′,s)

)ωi

(∏
s→s′∈τ ′

p
(i)
F (s,s′)

p
(i)
B (s′,s)

)ωi
=

(∏
s→s′∈τ

pF (s,s′)
pB(s′,s)

)
(∏

s→s′∈τ ′
pF (s,s′)
pB(s′,s)

) . (58)

Secondly, Theorem 2′ provides an upper bound on the discrepancy between the targeted and the
learned global distributions under controlled local errors — when the local distributions are hetero-
geneously pooled. Notably, it suggests that the effect of the local failures over the global approxi-
mation may be mitigated by reducing the weights associated with improperly trained local models.

Theorem 2′ (Influence of local failures). Let πn := Rn/Zn and p(n)F and p(n)B be the forward and
backward policies of the nth client. We use τ ⇝ x to indicate that τ ∈ T is finished by x → sf .
Suppose that the local balance conditions are lower- and upper-bounded ∀n = 1, . . . , N as per

1− αn ≤ min
x∈X ,τ⇝x

p
(n)
F (τ)

p
(n)
B (τ |x)πn(x)

≤ max
x∈X ,τ⇝x

p
(n)
F (τ)

p
(n)
B (τ |x)πn(x)

≤ 1 + βn (59)

where αn ∈ (0, 1) and βn > 0. The Jeffrey divergence DJ between the global model π̂(x) that
fulfills the federated balance condition in Equation 4 and π(x) ∝∏N

n=1 πn(x)
ωn then satisfies

DJ(π, π̂) ≤
N∑
n=1

ωn log

(
1 + βn
1− αn

)
. (60)

Interestingly, one could train a conditional GFlowNet (Bengio et al., 2021) to build an amortized
generative model able to sample proportionally to

∏N
n=1Rn(x)

ωn for any non-negative weights
(ω1, . . . , ωN ) within a prescribed set. This is a promising venue for future research.

C ADDITIONAL EXPERIMENTS AND IMPLEMENTATION DETAILS

This section is organized as follows. First, Appendix C.1 describes the experimental setup under-
lying the empirical evaluation of FC-GFlowNets in section 4. Second, Appendix C.2 exhibits the
details of the variational approximations to the combined distributions used as baselines in Table 1.
Third, Appendix C.3 specifies our settings for comparing the training convergence speed of different
optimization objectives. Algorithm 1 illustrates the training procedure of Federated GFlowNets. Reviewer: wWFS
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Figure 7: An illustration of the generative process for phylogenetic trees’ topologies. We itera-
tively select two trees to join their roots. The final state corresponds to a single, connected graph.

C.1 EXPERIMENTAL SETUP

In the following, we applied the same optimization settings for each environment. For the stochas-
tic optimization, we minimized the contrastive balance objective using the AdamW optimizer
(Loshchilov and Hutter, 2019) for both local and global GFlowNets. We trained the models for
5000 epochs (20000 for the grid world) with a learning rate equal to 3 · 10−3 with a batch size de-
pendent upon the environment. Correspondingly, we define the L1 error between the distributions π
and π̂ as two times the total variation distance between them, ∥π− π̂∥1 :=

∑
x∈X |π(x)− π̂(x)|. For

the grid world and design of sequences setups, all intermediate GFlowNet states are also terminal,
since they lie on the path from the initial state to another terminal state. For the remaining setups,
the intersection between terminal and intermediate states is empty. Reviewer: rsSg

Grid world. We considered a two-dimensional grid with length size 12 as the environment for the
results of both Table 1 and Figure 2. To parametrize the forward policy, we used an MLP with two
64-dimensional layers and a LeakyReLU activation function between them (Maas et al., 2013). For
inference, we simulated 106 environments to (i) compute the L1 error between the targeted and the
learned distributions. and (ii) select the 800 most rewarding samples. We utilized a batch size equal
to 1024 during both the training and inference phases.

Design of sequences. We trained the GFlowNets to generate sequences of size up to 6 with elements
selected from a set of size 6. We parametrized the forward policies with a single 64-dimensional
layer bidirectional LSTM network followed by an MLP with two 64-dimensional layers (Graves and
Graves, 2012). For training, we used a batch size of 512. For inference, we increased the batch size
to 1024 and we sampled 106 sequences to estimate the quantities reported in Table 1 and Figure 4.

Multiset generation. We designed the GFlowNet to generate multisets of size 8 by iteratively se-
lecting elements from a set U of size 10. Moreover, we endowed each element within U with a
learnable and randomly initialized 10-dimensional embedding. To estimate the transition proba-
bilities at a given state s, we applied an MLP with two 64-dimensional layers to the sum of the
embeddings of the elements in s. During training, we used a batch size of 512 to parallely gener-
ate multiple multisets and reduce the noiseness of the backpropagated gradients. During inference,
we increased the batch size to 1024 and generated 106 samples to generate the results reported in
Table 1 and Figure 3.

Bayesian phylogenetic inference. We devised a GFlowNet to learn a posterior distribution over the
space of rooted phylogenetic trees with 7 leaves and fixed branch lengths. Each state is represented
as a forest. Initially, each leaf belongs to a different singleton tree. An action consists of picking
two trees and joining their roots to a newly added node. The generative process is finished when all
nodes are connected in a single tree (see Figure 7).To estimate the policies at the (possibly partially Reviewer: Xj4h
built) tree t, we used a graph isomorphism network (GIN; Xu et al., 2019) with two 64-dimensional
layers to generate node-level representations for t and then used an MLP to project the sum of these
representations to a probability distribution over the viable transitions at t. We used a tempered
version of the likelihood to increase the sparsity of the targeted posterior. Importantly, we selected
a batch size of 512 for training and of 1024 for inference. Results for Table 1 and Figure 5 are
estimates based on 105 trees drawn from the learned distributions.

Our implementations were based on PyTorch (Paszke et al., 2019) and on PyTorch
Geometric (Fey and Lenssen, 2019).
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C.2 PARALLEL CATEGORICAL VARIATIONAL INFERENCE

As a simplistic approach to combining the locally learned distributions over compositional objects,
we variationally approximate them as the product of categorical distributions over the objects’ com-
ponents. For this, we select the parameters that minimize the reverse Kullback-Leibler divergence
between the GFlowNet’s distribution pT and the variational family Q,

q̂ = argmin
q∈Q

KL[pT ||q] = argmin
q∈Q

−Ex∼pT [log q(x)], (61)

which, in asymptotic terms, is equivalent to choosing the parameters that maximize the likelihood of
the GFlowNet’s samples under the variational model. Then, we use a logarithmic pool of these local
variational approximations as a proxy for the global model. In the next paragraphs, we present the
specific instantiations of this method for the domains we considered throughout our experiments.
We used the same experimental setup of subsection C.1 to train the local GFlowNets.

Grid world. An object in this domain is composed of its two coordinates in the grid. For a grid of
width W and height H , we consider the variational family

Q = {(ϕ, ψ) ∈ ∆W+1 ×∆H+1 : qϕ,ψ(x, y) = Cat(x|ϕ)Cat(y|ψ)}, (62)

in which ∆d is the d-dimensional simplex and Cat(ϕ) (Cat(ψ)) is a categorical distribution over
{0, . . . ,W} ({0, . . . ,H}) parametrized by ϕ (ψ). Then, given the N variational approxima-
tions

(
qϕ(1),ψ(1)

)
, . . . ,

(
qϕ(N),ψ(N)

)
individually adjusted to the distributions learned by the local

GFlowNets, we estimate the unnormalized parameters ϕ̃ and ψ̃ of the variational approximation to
the global distribution over the positions within the grid as

ϕ̃ =
⊙

1≤i≤N

ϕ(i) and ψ̃ =
⊙

1≤i≤N

ψ(i). (63)

Then, we let ϕ = ϕu/ϕ⊺
u1W+1 and ψ = ψu/ψ⊺

u1H+1, with 1d as the d-dimensional vector of 1s, be the
parameters of the global model.

Design of sequences. We represent sequences of size up to T over a dictionary V as a tuple
(S, (x1, . . . , xS)) denoting its size S and the particular arrangement of its elements (x1, . . . , xS).
This is inherently modeled as a hierarchical model of categorical distributions,

S ∼ Cat(θ), (64)
xi ∼ Cat(ϕi,S |S) for i ∈ {1, . . . , S}, (65)

which is parametrized by θ ∈ ∆T and ϕ·,S ∈ RS×|V | for S ∈ {1, . . . , T}. We define our family
of variational approximations as the collection of all such hierarchical models and estimate the
parameters θ and ϕ accordingly to Equation 61. In this case, let

(
θ(1), ϕ(1)

)
, . . . ,

(
θ(N), ϕ(N)

)
be the parameters associated with the variational approximations to each of the N locally trained
GFlowNets. The unnormalized parameters θ̃ and ϕ̃ of the combined model that approximates the
global distribution over the space of sequences are then

θ̃ =
⊙

1≤i≤N

θ(i) and ϕ̃·,S =
⊙

1≤i≤N

ϕ
(i)
·,S for S ∈ {1, . . . , T}, (66)

whereas the normalized ones are θ = θ̃/θ̃⊺1T and ϕ·,S = diag(ϕ̃·,S1|V |)
−1ϕ̃·,S .

Multiset generation. We model a multiset S of size S as a collection of independently sampled
elements from a warehouseW with replacement. This characterizes the variational family

Q =

{
q(·|ϕ) : q(S|ϕ) =

∏
s∈S

Cat(s|ϕ)
}
, (67)

in which ϕ is the parameter of the categorical distribution overW estimated through Equation 61.
Denote by ϕ(1), . . . , ϕ(N) the estimated parameters that disjointly approximate the distribution of
N locally trained GFlowNets. We then variationally approximate the logarithmically pooled global
distribution as q(·|ϕ) ∈ Q with ϕ = ϕ̃/ϕ̃⊺1|W|, in which

ϕ̃ =
⊙

1≤i≤N

ϕ(i). (68)
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Table 2: Quality of the federated approximation. The global model’s performance does not criti-
cally depend on the clients’ training objective; it relies only on the goodness-of-fit of their models.

Grid World Multisets Sequences
L1 ↓ Top-800 ↑ L1 ↓ Top-800 ↑ L1 ↓ Top-800 ↑

FC-GFlowNet (CB) 0.038 −6.355 0.130 27.422 0.005 −1.535
(±0.016) (±0.000) (±0.004) (±0.000) (±0.002) (±0.000)

FC-GFlowNets (TB) 0.039 −6.355 0.131 27.422 0.006 −1.535
(±0.006) (±0.000) (±0.018) (±0.000) (±0.005) (±0.000)

Notably, the best known methods for carrying out Bayesian inference over the space of phyloge-
netic trees are either based on Bayesian networks (Zhang and Matsen IV, 2018) or MCMC, neither
of which are amenable to data parallelization and decentralized distributional approximations. More
precisely, the product of Bayesian networks may not be efficiently representable as a Bayesian net-
work, and it is usually not possible to build a global Markov chain whose stationary distribution
matches the product of the stationary distributions of local Markov chains. Moreover, any categor-
ical variational approximation factorizable over the trees’ clades would not be correctly supported
on the space of complete binary trees and would lead to frequently sampled invalid graphs.

C.3 COMPARISON OF DIFFERENT TRAINING CRITERIA

Experimental setup. We considered the same environments and used the same neural network
architectures described in subsection C.1 to parametrize the transition policies of the GFlowNets.
Importantly, the implementation of the DB constraint and of the FL-GFlowNet requires the choice
of a parametrization for the state flows (Bengio et al., 2023; Pan et al., 2023a). We model them as an
neural network with an architecture that essentially mirrors that of the transition policies — with the
only difference being the output dimension, which we set to one. Moreover, we followed suggestions
in (Pan et al., 2023a; Malkin et al., 2022) and utilized a learning rate of 3 ·10−3 for all parameters of
the policy networks except for the partition function’s logarithm logZ composing the TB constraint,
for which we used a learning rate of 1 · 10−1. Noticeably, we found that this heterogeneous learning
rate scheme is crucial to enable the training convergence under the TB constraint.

Further remarks regarding Figure 6. In Figure 6, we observed that LCB and LTB per-
form similarly in the grid world and in design of sequences domains. A reasonable explanation
for this is that such criteria are identically parameterized in such domains, as LDB reduces to
R(s′)pB(s|s′)pF (sf |s) = R(s)pF (s

′|s)pF (sf |s′) in environments where every state is terminal
Deleu et al. (2022). Thus, F vanishes and hence the difficult estimation of this function is avoided.

C.4 ADDITIONAL EXPERIMENTS
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Figure 8: CB outperforms TB
for different lr’s for logZ.

Comparison between TB and CB with different learning rates.
Figure 8 shows that increasing the learning rate for logZϕZ

signifi-
cantly accelerates the training convergence for the TB objective. In
this experiment, the learning rate for the other parameters was fixed
at 10−3 — following the setup of Malkin et al. (2022, Appendix
B). However, CB leads to faster convergence relatively to TB for all
lr’s. In practice, though, note that finding an adequate learning rate
for logZϕZ

may be a very difficult and computationally exhaustive
endeavor that is completely avoided by implementing the CB loss.

Implementing different training objectives for the clients. Table 2 suggests that the accuracy
of FC-GFlowNet’s distributional approximation is mostly independent of whether the clients im-
plemented CB or TB as training objectives. Notably, the combination phase of our algorithm is
designedly agnostic to how the local models were trained — as long as they provide us with well-
trained backward and forward policies. This is not constraining, however, since any practically use-
ful training scheme for GFlowNets is explicitly based upon the estimation of such policies Malkin
et al. (2022); Pan et al. (2023a); Bengio et al. (2023); Zhang et al. (2023a). Reviewer: Xj4h
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D RELATED WORK

GFlowNets were originally proposed as a reinforcement learning algorithm tailored to the search
of diverse and highly valuable states within a given discrete environment (Bengio et al., 2021). Re-
cently, these algorithms were successfully applied to the discovery of biological sequences (Jain
et al., 2022), robust scheduling of operations in computation graphs (Zhang et al., 2023a), Bayesian
structure learning and causal discovery (Deleu et al., 2022; 2023; da Silva et al., 2023; Atanackovic
et al., 2023), combinatorial optimization (Zhang et al., 2023b), active learning (Hernandez-Garcia
et al., 2023), multi-objective optimization (Jain et al., 2023), and discrete probabilistic modeling
(Zhang et al., 2022a; Hu et al., 2023; Zhang et al., 2022b). Bengio et al. (2023) formulated the
theoretical foundations of GFlowNets. Correlatively, (Lahlou et al., 2023) laid out the theory of
GFlowNets defined on environments with a non-countable state space. Pan et al. (2023c) and Zhang
et al. (2023c) extended GFlowNets to environments with stochastic transitions and rewards. Con-
comitantly to these advances, there is a growing literature that aims to better understand and improve
this class of algorithms (Deleu and Bengio, 2023; Shen et al., 2023; Malkin et al., 2023), with an
emphasis on the development of effective objectives and parametrizations to accelerate training con-
vergence (Pan et al., 2023b;a; Malkin et al., 2022; Deleu et al., 2022). Notably, both Malkin et al.
(2023) and (Zhang et al., 2023a) proposed using the variance of the a TB-based estimate of the log
partition function as a training objective based on the variance reduction method of Richter et al.
(2020). It is important to note one may use stochastic rewards (see Bengio et al., 2023; Zhang et al.,
2023c) carry out federated inference, in the same fashion of, e.g., distributed stochastic-gradient
MCMC (El Mekkaoui et al., 2021; Vono et al., 2022). Notably, stochastic rewards have also been
used in the context of causal structure learning by (Deleu et al., 2022) and (Deleu et al., 2023). How-
ever, it would require many communication steps between clients and server to achieve convergence
— which is precisely the bottleneck FC-GFlowNets aim to avoid. Reviewer: Xj4h

Distributed Bayesian inference mainly concerns the task of approximating or sampling from a
posterior distribution given that data shards are spread across different machines. This comprises
both federated scenarios (El Mekkaoui et al., 2021; Vono et al., 2022) or the ones in which we
arbitrarily split data to speed up inference (Scott et al., 2016). Within this realm, there is a notable
family of algorithms under the label of embarrassingly parallel MCMC (Neiswanger et al., 2014),
which employ a divide-and-conquer strategy to assess the posterior. These methods sample from
subposteriors (defined on each user’s data) in parallel, subsequently sending results to the server
for aggregation. The usual approach is to use local samples to approximate the subposteriors with
some tractable form and then aggregate the approximations in a product. In this line, works vary
mostly in the approximations employed. For instance, Mesquita et al. (2019) apply normalizing
flows, (Nemeth and Sherlock, 2018) model the subposteriors using Gaussian processes, and (Wang
et al., 2015) use hyper-histograms. It is important to note, however, that these works are mostly
geared towards posteriors over continuous random variables.

Federated learning was originally motivated by the need to train machine learning models on
privacy-sensitive data scattered across multiple mobile devices — linked by an unreliable commu-
nication network (McMahan et al., 2017). While we are the first tackling FL of GFlowNets, there
are works on learning other generative models in federated/distributed settings, such as for gener-
ative adversarial networks (Hong et al., 2021; Chang et al., 2020; Qu et al., 2020) and variational
autoencoders (Polato, 2021).
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