
Under review as a conference paper at ICLR 2024

TOWARD A MECHANISTIC UNDERSTANDING
OF STEPWISE INFERENCE IN TRANSFORMERS:
A SYNTHETIC GRAPH NAVIGATION MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) demonstrate impressive capabilities partly due to
their use of stepwise inference, such as scratchpad and zero/few-shot chain-of-
thought. However, the exact mechanisms and conditions behind these advantages
remain unclear. To address this gap, we introduce a synthetic task that is simple,
interpretable, and controllable to better understand stepwise inference. Inspired
by computational graphs and execution traces, we conceptually analogize the step-
wise inference to an autoregressive transformer solving a graph navigation prob-
lem on directed acyclic graphs (DAGs). This framework, while simple, allows us
to empirically reproduce and quantitatively characterize phenomena observed in
LLMs. For example, we demonstrate the superiority of stepwise inference over
direct inference and quantitatively characterize a diversity-accuracy tradeoff when
the sampling temperature is varied. Having established this foundation, we lever-
age our synthetic model to reveal new insights into the mechanisms of stepwise
inference, such as how a model stitches together sub-paths from the training set to
generalize, how a particular graph structure underlying the data generating process
affects generalization, and a bias toward shorter paths in inference. Furthermore,
in-context chain-of-thought examples can influence the model’s navigation, guid-
ing it to follow a given inference path rather than its own potentially biased priors.
Overall, this work introduces a grounded synthetic framework for studying step-
wise inference and offers mechanistic hypotheses that lay the foundation for a
deeper understanding of this phenomenon in LLMs.

1 INTRODUCTION

In recent years, Large Language Models (LLMs) (Radford et al., 2018; 2019; Brown et al., 2020)
have shown initial “sparks” (Bubeck et al., 2023) of abilities such as reasoning (Huang & Chang,
2022; Webb et al., 2023), mathematical problem-solving (Wei et al., 2022), and planning (Huang
et al., 2022), despite being trained solely on the objective of next-token prediction using internet-
scale data. The essence of these capabilities is stepwise inference (Nye et al., 2021; Wei et al.,
2022) and in-context learning, first shown by Brown et al. (2020). While numerous compelling
observations highlight the benefits of stepwise inference (Nye et al., 2021; Kojima et al., 2022; Wei
et al., 2022; Srivastava et al., 2022), the underlying mechanisms of this process remain elusive. Our
goal in this work is to answer the following overarching questions about the mechanisms governing
step-wise inference in autoregressive transformer models.

1. When is stepwise inference more effective than direct inference? How do the properties of
the training data matter?

2. How does the model select among multiple possible paths of stepwise solutions? Is there
bias?

3. How does sampling temperature affect the accuracy and diversity of model outputs?

4. How can we use prompted context to best control model output?

1

Under review as a conference paper at ICLR 2024

To address the above questions quantitatively and mechanistically, we formulate a synthetic data
generation process that is simple, interpretable, and controllable, while encapsulating key phenom-
ena observed in stepwise inference in LLMs. This will enable development of precise mechanistic
hypotheses about how these abilities emerge. Our design philosophy follows the principle of being
"as simple as possible, but not simpler." Specifically, our model embodies the following set of prop-
erties: (1) the task can be better solved by considering the intermediate steps of computation; (2)
there can be several possible paths of computational steps to solve the task; and (3) the context of
the task can be controlled by providing exemplars in the prompt.

We argue that graph navigation problems provide a fundamental framework for studying stepwise
inference. Graphs give a universal language for modeling and solving complex problems across
various domains. Whether it is optimizing network traffic, analyzing social networks, sequencing
genetic data, or solving puzzles like the Travelling Salesman Problem, the underlying structure can
often be mapped onto a graph (Cormen et al., 2022; Momennejad et al., 2023; Dziri et al., 2023;
Saparov & He, 2023). Inspired by algorithmic computational graphs and execution traces, we model
stepwise inference as navigating paths in a directed acyclic graph (DAG). Several reasoning prob-
lems can be conceptualized in this manner. A chain of logic comprises several elementary logical
steps put together in a goal-directed manner and thus involves an element of global planning. In Fig.
1a, the addition of two numbers is decomposed into elementary addition with carry-overs. In Fig.
1b, the Tower of Hanoi game is represented as a graph with nodes corresponding to disc placements
on rings, as detailed by (Bubeck et al., 2023). In Fig. 1c, math word problems are represented
as chains of logical modules. (See Appendix Fig. 8 for more examples of graph navigation in
large-scale LLM studies).

Given a start and goal node, the transformer must autoregressively produce a sequence of nodes
that concludes at the goal node. This task requires two levels of computation: locally, each step
taken by the model must be valid, and on a global scale, the sequence of steps must be strategically
planned in advance to reach the goal node. This setup enables us to control (1) the structure of the
underlying graph, (2) the content of the training samples during pre-training, and (3) the information
provided to the model in-context before cue the model with the goal and start nodes. Consequently,

Figure 1: Graph navigation task as a simple, steerable, and interpretable framework for ex-
ploring stepwise inference. (a) Scratchpad (Nye et al., 2021) improves LLMs’ ability to perform
complext multi-step computations, such as arithmetic, when they write intermediate computation
steps to a buffer called a scratchpad. (b) Zero-shot chain-of-thought prompting (Kojima et al., 2022)
improes LLMs’ ability to perform multi-step reasoning, such as Tower of Hanoi by prompting them
to generate detailed reasoning paths. (c) Few-shot chain-of-thought prompting (Wei et al., 2022) im-
proves LLMs’ ability to perform multi-step reasoning, such as solving math word problems (Cobbe
et al., 2021), by first presenting an exemplar in-context in the prompt.

2

Under review as a conference paper at ICLR 2024

we can systematically examine the impact of these properties on the development of reasoning
abilities. While (1) and (2) together allows us to explore scratchpad and zero-shot step-by-step
reasoning, which is relying on the model’s internalized abilities, (3) also delves into few-shot in-
context chain of thought prompting (Wei et al., 2022), where predictions are made with guiding
examples. Specifically, we examine how in-context exemplars affect the path produced by the model
and systematically evaluate the degree of control we have over that path.

In summary, our simplified framework enables experimental study of the phenomenology of step-
wise inference and is simple, steerable, and interpretable. We harness this framework to make the
following contributions:

Contribution 1. Revealing the Origin of the ‘Stepwise Inference Gap’. In the case of navi-
gating a single fixed underlying DAG in Section 4, we find the existence of a “stepwise inference
gap” (Prystawski & Goodman, 2023) in the task of determining the path-connectedness of a pair of
nodes. When the model is allowed to produce the sequence of nodes step-by-step from start to goal
node, it achieves a near-perfect accuracy on determining path-connectedness, as opposed to direct
classification without the path. Further, we find that the Step-by-Step Inference gap depends on two
key factors, firstly the structure of the underlying DAG: the Step-by-Step Inference gap is larger for
graphs that are hierarchical as opposed to random and secondly, the length of the training samples:
the Step-by-Step Inference gap is larger if the model has been trained on a set of shorter paths that
have to be “stitched" together to build the path during evaluation. We also report other findings:
at higher sampling temperatures, the accuracy of the generated path drops exponentially with the
length of the path. This effect is a fundamental limitation of autoregressive sampling and has been
used to criticize of the use of LLMs for multi-step reasoning. However, with higher temperature,
the diversity of paths produced by the model increases a concept we call the “diversity-accuracy
tradeoff ". Further, we find that models have a shorter path bias and we study the probability of
local and global errors over-training.

Contribution 2. Exploring the Steerability of Reasoning: Programming LLMs with In-Context
Exemplars. Controllability is an essential part of reasoning. Approaches to solving the same
problem may have differing biases and limitations (Turpin et al., 2023); controllability allows us
to choose the most appropriate method for a given context. This flexibility enables adaptation to
different scenarios and objectives, ensuring that the solution is both effective and aligned with goals
and/or constraints. To examine controllability, in Section 5 we train the model on a task involving
a set of DAGs that we refer to as “motifs", inspired by computational primitives that are flexibly
recombined and repurposed for different tasks. Here, in-context exemplars chain a subset of these
motifs together in a particular order. We find that without any exemplars, the model takes a direct
path between a pair of motifs. However, exemplars can be used to steer the path to traverse a set
of intermediate motifs. We characterize how the structure and content of these exemplars steer the
model’s path.

The motivation, contributions, and limitations of our model-experimental systems approach.
In this work we have adopted the model-experimental systems approach, an empirical strategy to
precisely characterize and understand smaller, more steerable model systems with the ultimate goal
of potentially transferring this understanding to larger-scale complex systems. It is important to
clarify the trade-offs and limitations inherent in our approach. Drawing an analogy to the study
of biological neural networks, where neural mechanisms identified in small-scale model organisms
such as fruit flies or mice may not be directly applicable to medical applications involving the human
brain, our observations should not be taken as definitive conclusions directly applicable to large-scale
generative models. Instead, our study seeks to establish a minimal synthetic framework, identify
data-centric control variables, and formulate mechanistic hypotheses. This lays the groundwork for
more in-depth theoretical and empirical investigations of larger models.

2 RELATED WORK

There are several puzzling phenomena in the prompts used to elicit chain-of-thought reasoning:
chain-of-thought can be improved by sampling methods such as self-consistency (Wang et al.,
2022b), prompts might not reflect the true reasoning process used by the language model, as identi-
fied by Turpin et al. (2023), the accuracy of the model can be sensitive to the order in which prompts

3

Under review as a conference paper at ICLR 2024

x6
x3

x5

x1

x2

x7
x4

start

goal

2. Select “start” node
and “goal” node

x6
x3

x5

x1

x2

x7
x4

start

goal

3. Sample all paths
and select one at random

4. Represent
the path in task format

1. Generate
Directed Acyclic Graph (DAG)

1). goal:X4 X6X5X7X4 path end

2). goal:X1 X2 no-path end

x3

x5

x6

x1

x2

x7
x4

Random graphHierarchical graph
x9 x11 x4

x1 x3 x8

x6 x10 x5

x7 x2 x12

Layer 1

Layer 2

Layer 3

Layer 4

source

sink

Figure 2: Data Generating Process for a Single Graph: This figure illustrates the step-by-step
process of generating a training dataset using a single graph. 1) A directed acyclic graph (DAG) is
generated, which can be either hierarchically structured or random. 2) A start node and a goal node
are selected. 3) All possible paths connecting the start and goal nodes are sampled, and one path is
randomly selected. 4) The chosen path is then represented in a task-specific format.

are provided (Lu et al., 2021). Recently, a few works have used theoretical approaches to character-
ize and explain chain-of-thought. Li et al. (2023) studies in-context learning of random MLPs and
finds that a transformer that outputs the values of intermediate hidden layers achieves better gen-
eralization, Feng et al. (2023) shows that with stepwise reasoning, transformers can solve dynamic
programming problems, and Prystawski & Goodman (2023) studies reasoning traces in transformers
trained to learn the conditionals of a Bayes network. At large scale, there have been several efforts to
explore the phenomenology of chain of thought. Saparov & He (2023) introduce a synthetic dataset
called PrOntoQA to systematically study the failure modes of chain of thought in the GPT3 family
fine-tuned on the dataset and find that misleading steps of reasoning are the most common cause of
failure in the best-performing models. Chen et al. (2023) find that chain-of-thought fails at compo-
sitional generalization and counterfactual reasoning. Dziri et al. (2023) formally study how LLMs
solve multi-step reasoning tasks and find that these models fail at true compositional reasoning and
reduce most multi-step reasoning tasks to linearized sub-graph matching, essentially learning ‘short-
cut solutions’ (Liu et al., 2022) also called ‘rules of thumb’ (Madirolas et al., 2023). Momennejad
et al. (2023) study in-context graph navigation in LLMs, finding that they fail to do precise planning.
Wang et al. (2022a); Schaeffer et al. (2023) find that the content of the exemplars is less relevant to
accuracy than their syntactic structure. Razeghi et al. (2022) find that the accuracy of reasoning is
correlated with the frequencies of occurrence in the pretraining dataset. For an extended discussion
of related work, see Appendix A.1.

3 DEFINING A SYNTHETIC GRAPH NAVIGATION TASK

We use directed acyclic graphs (DAGs) to study steps of inference. DAGs are a natural mathemati-
cal abstraction to study formal reasoning chains: as described in Dziri et al. (2023), the output of any
deterministic algorithm can be represented as a DAG. For example, in programming languages, a
computational primitive is the smallest ‘unit of processing’ that a program may use. Every program
in this language can be written as a sequence of primitives chained together in series. To be concise,
we repeat the construction of Dziri et al. (2023): let A be any deterministic algorithm and FA be
the set of computational primitives used by A. Given a set of inputs to the algorithm x, GA(x) is its
computational graph, defined as follows. Let V be the set of variables involved in the algorithm A,
each taking values in set s. Let E be the set of edges, i.e., function arguments in an intermediate
computation. Node v’s parents are pa(v). Therefore, for some primitive f ∈ FA, f(v) = f(pa(v)).
Thus, GA(x) = (V,E, s,FA) and the source nodes of GA represent the inputs x to the algorithm
and the sink nodes represent the output of the algorithm A(x) 1.

Yet another motivation comes from linguistics and natural language syntax (Chomsky, 2002). Every
sentence in a language can broken down into its syntactic or parse tree, which is a special case of a
directed acyclic graph. For example, the sentence ‘I drive a car to my college’ can be parsed as the
following graph: (‘I’: Noun phrase, ‘drive a car to my college’: Verb Phrase)→ (‘drive’: Verb, ‘a

1Sink nodes are all nodes X s.t. children(X) = ∅ and source nodes are nodes X s.t. parents(X) = ∅

4

Under review as a conference paper at ICLR 2024

car’: Noun Phrase, ‘to my college’: Prepositional Phrase)→ (‘a’: Determiner, ‘car’: Noun), (‘to’:
Preposition, ‘my college’: Noun Phrase)→ (‘my’: Determiner, ‘college’: Noun).

3.1 PRELIMINARIES

A DAG G = (N,E) is made up of set of nodes N = {Xi}|N |
i=1 and set of directed edges across the

nodes E = {(Xi, Xj)}Xi,Xj∈N . The edges of a DAG are captured by its adjacency matrix A
where Aij = 1 if (Xi, Xj) ∈ E.
A directed simple path is a sequence of distinct nodes of G which are joined by a sequence of
distinct edges. The first node of a path is referred to as the start node and the last node is the goal
node (Fig. 2).
Structure of the DAG To create a feedforward hierarchical DAG we construct a set of L layers
with N nodes each. For every node nl in layer l and nl+1 in layer l + 1, we draw a directed edge
(nl, nl+1) with probability p, which we refer to as edge density. Thus on average, between any two
layers there are pN2 edges and each node in an intermediate layer has an out-degree and in-degree
of pN . The number of paths from a particular node in layer l to layer l′ > l is exponential and given
by (pN)l

′−l - this is quantified in the path length distribution shown in Appendix Fig. 9. Lastly,
the generated graphs contain no disconnected components. The nodes from layer 1 are the source
nodes: nodes {Xi} of DAG G with parents(Xi) = ∅ and the nodes from layer L are sink nodes:
nodes {Xi} of DAG G with children(Xi) = ∅.
To create2 a random DAG of N nodes, we first create a random upper triangular adjacency matrix
AN×N with bernoulli entries with edge density p, such that p(Aij = 1) = p. We also ensure that
the graph is connected. This results in a bell-shaped path length distribution (Appendix Fig. 9). For
a more detailed discussion of construction and sampling from the DAGs, refer Appendix A.3.
When the DAG is hierarchical, between a start and goal node, nodes in the intermediate layers must
be visited (Appendix Fig 9) whereas when the DAG is random, there is a uniform probability that 2
nodes are connected and there is no explicit notion of hierarchy.
In both these scenarios, we can define the notion of path diversity: between any 2 path-connected
nodes, there can be several possible paths. We quantify the path diversity in random and hierarchical
graphs in Fig. SI Fig 9.

3.2 DATA GENERATING PROCESS FOR SINGLE GRAPH SCENARIOS

We focus on two setups in this work, where one allows for context and one does not. This is inten-
tional so that we can explicitly analyze benefits of stepwise inference in the presence of extraneous
context, which may influence a model’s internalized knowledge, and hence its execution.
Single graph scenario. Zero-shot chain-of-thought (Kojima et al., 2022), planning (Huang et al.,
2022) or scratchpad prompting (Nye et al., 2021) are paradigms that describe how simple prompts
such as “let’s think step-by-step” allow an LLM to produce intermediate steps and show improved
accuracy in reasoning tasks. We model these paradigms in our task using a single underlying DAG
and include a special token at the start of the sequence which signifies that the model has to produce
all intermediate steps.
Prompt structure and training data generation In the single graph setting with underlying DAG
G, each prompt is made from a single simple path. Given a start node Xstart and goal node Xgoal,
the model has to classify whether there exists a path from Xstart to Xgoal. We create a pair of tokens
path and no-path. We constructed two datasets: one that contains stepwise inference and another
that does not. Examples of prompts are provided below. For stepwise inference, the path between the
start node X4 to the goal node X6 is represented as:goal : X4 X6 X5 X7 X6 path end . Without
stepwise inference, the example path is represented as:goal : X4 X6 path end .

4 RESULTS ON SINGLE-GRAPH SCENARIOS

Our first result is that a transformer trained on directed edges and a small fraction of node pairs from
a fixed underlying DAG can generalize to all node pairs, including those held out during training,
producing valid simple paths from start to goal nodes (see appendix for details). Thus the model can

2See Appendix A.3 for algorithms for generating graphs as well as their path statistics

5

Under review as a conference paper at ICLR 2024

Figure 3: Advantage of Stepwise Inference in Graph Navigation Tasks: (a) In random graphs,
stepwise inference shows an advantage over direct inference in connectivity prediction tasks. (b)
This advantage is further pronounced in hierarchical graphs, where the distances between nodes can
be significantly larger. (c) We show that the stepwise inference gap arises when the training set
contains paths that are shorter than the paths required to connect nodes in the evaluation set. (d)
This indicates that stepwise inference is beneficial when a model must trim and connect paths it has
learned during training to generalize effectively: The red, green, and blue paths are subsets of paths
seen during pretraining while the combined path is one produced by the model during evaluation.

‘stitch’ or mix-and-match (sub)paths it has observed during training to produce a valid path across
a pair of held-out connected nodes.

0 1 2 3
0

50

100

of

 u
ni

qu
e

tru
e

pa
th

s
True diversity

0 1 2 3
Temperature

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

0

1000

2000

3000

of

 u
ni

qu
e

pa
th

s

Figure 4: A diversity vs. accuracy trade-off
in finite temperature stepwise inference for
transformers: As sampling temperature is in-
creased, the diversity of paths generated by the
model from a single (nstart, ngoal) pair increases,
while the accuracy of the path decreases. This
tradeoff is captured by measuring the number of
unique true paths which is non-monotonic (top),
showing the existence of an optimal tempera-
ture for sampling. The dashed line denotes the
ground truth path diversity of (nstart, ngoal).

A single underlying graph: The stepwise in-
ference gap Findings from large-scale experi-
ments have indicated that the inclusion of inter-
mediate reasoning steps results in increased accu-
racy when solving a stepwise inference task (Ko-
jima et al., 2022). Owing to stepwise nature of
our task, we hypothesize that similar phenomena
will occur: to classify a given start and goal node
pair as path or no-path, the model has two modes
of operation: either produce the whole path from
the start to the goal or directly classify. We hy-
pothesize that a model trained in the former man-
ner will have higher classification accuracy.

Fig. 3 shows the accuracy of path /no-path clas-
sification for (a) a random DAG and (b) a hi-
erarchical DAG. We trained two distinct mod-
els using two types of datasets: one with step-
wise inference paths and one without. We find
that the model trained on the dataset with step-
wise inference (represented by the blue line)
achieves higher classification accuracy than the
model without stepwise inference (the pink line)
in both cases. We refer to the difference in clas-
sification performance with and without stepwise
inference as the ‘stepwise inference gap’. We also
observe that the stepwise inference gap is larger
for hierarchical graph than for random graph. Ap-
pendix Fig. 11 shows that our results hold even when tokens are randomly corrupted to mimic noisy
real world data.
Stitching of paths

Further, we hypothesize that stepwise inference is useful when the training data has the following
structure: (1) the underlying DAG is hierarchical, which means that there is an explicit feed-forward
ordering of nodes and to go from nodes in one layer to next one must pass through all intermediate
layers and (2) the model must ‘stitch’ together subsets of paths seen over pretraining in flexible
ways to generalize. To test this, we trained the model using paths from hierarchical DAGs while
varying the lengths of paths in the training data. Specifically, we created training data that contains
start nodes from layer l and goal nodes from layer l′ and restricted l′ − l < ∆, where ∆ denotes
the length of the path. During evaluation, we choose node pairs such that l′ − l ≥ ∆. Since the

6

Under review as a conference paper at ICLR 2024

edge accuracy
planning accuracy

Figure 5: (a) Model outputs are biased toward shorter paths. We compare the average lengths of
actual and model-generated paths in a random graph, revealing the model’s bias toward generating
shorter paths. (b) The learning dynamics of failure mode probabilities over training: It can
be seen that the model first learns to produce correct edges (effectively bigram statistics) and then
learns the global objective of producing a path that ends at the cued goal node. Accuracy curves are
averaged over 3 trained models with different random seed.

number of simple paths for a hierarchical graph increase exponentially with path length (number
of paths ≈ (pN)l

′−l), SI Fig.9), for smaller values of ∆, the model has observed a much smaller
number of paths. Thus, the model must combine and piece together several different paths seen over
pretraining to effectively solve the task. In Fig. 3(c), we observe that the smaller the value of ∆
used during pretraining, the greater the stepwise inference gap becomes. This is because the shorter
the paths seen during training, the more recombination the model has to do – we hypothesize that
this is where intermediate steps and scratchpads will most improve accuracy

The diversity-accuracy tradeoff with higher sampling temperatures

LLMs rely on sampling for next-token generation. At low temperatures, this process is deterministic
but to get a variety of responses, higher temperatures are necessary. However, at higher tempera-
tures the model is more likely to make mistakes or ‘hallucinate’. Systematically understanding and
calibrating this diversity-accuracy tradeoff (Zhang et al., 2020) is crucial for tailoring the behavior
of generative models to specific tasks and desired outcomes. Fig. 4 illustrates the effect of sampling
temperature on the accuracy and diversity of the generated paths. LLM inference at 0 sampling
temperature is equivalent to taking the most likely token at each time step (the maximum likelihood
estimate). In this setting, the model deterministically generates the same path for any given provided
pair of start and goal nodes: nstart and ngoal. However, in the underlying graph, there are typically
numerous paths from each nstart to ngoal. To capture this diversity, we fixed the start node nstart and
the goal node ngoal, and prompted the model 3,000 times, sweeping through different sampling tem-
peratures in Fig. 4. Here, we observe a trade-off, which we term the diversity-accuracy tradeoff :
At lower sampling temperatures, the model produces fewer paths, all of which are accurate and true
(as shown by the purple line in the bottom panel). Conversely, as the sampling temperature rises, the
paths become more diverse (the blue line) but less accurate (the purple line). Accuracy is defined
as the probability that the path both has true edges (i.e., no missteps) and ends at the provided ngoal
while diversity is the number of unique paths generated (the blue line in the bottom panel). To the
best of our knowledge, this phenomena has not been quantitatively studied before.

A bias towards shorter paths:
Fig. 5a examines the average path lengths in a random graph, comparing true paths to those gen-
erated by our trained model. Notably, the model consistently produces paths that, on average, are
shorter than the actual paths in the random graph. This observation suggests that the model has
a bias towards efficiency, which can lead to oversimplification of complex stepwise inference or
omission of important intermediate steps, similar to ‘shortcut solutions’ (Liu et al., 2022).

Failure modes of step-by-step inference:
Given underlying DAG G, during step-by-step inference, the model produces a sequence of nodes
from the start node nstart which must terminate at the goal node ngoal, given by the sequence n0 =
nstart → n1 → n2 → ... → nk → ... → nT . Here in our setup, there are two broad categories of
failures possible (Saparov & He, 2023):
Misstep: (nk, nk+1) /∈ G. An edge produced by the model does not exist in the DAG.

7

Under review as a conference paper at ICLR 2024

G2 G9

goal:X101 X225X846X712X929X109X605X92X296X790X286X101 end
G3 G9

(d) Prior of a model from training set

goal:X557 X352X76X678X880X234X590X557 end
G3 G4

G4 G2

goal:X644 X285X999X140X8X608X441X644 end

goal:X1018 X35X188X28X779X241X585X426X1018 end

G3 G4 G2 G9

(e) In-context control via exemplar prompts

 Successful tracing of linked sub-graphs

goal:X101 X225X534X1003X76X678X880X234X590X608X441X896X696X74X780X669X980X28X779X241X585X383X815X852X893X101 end

model generated output

model generated output prediction with context:

co
nt

ex
t:

direct prediction:

x23

x12 x45

x37
x51 x43

x32

(a) Generate a set of random Directed Acyclic Graphs (DAGs)

(b) Select a subset of the DAGs and connect them with a “ghost edge”

x23

x12 x45

x37
x51 x43

x32

x25

x1

x52

x7
x34

x15
x18

x26

x35
x48

x28

x5

Context 1 Context 2

goal:X48 X32X45X51X15X26X48 end goal:X51 X1X34X52X45X51 end

(c) Randomly sample a path and represent it in task format

{ {, , , ,,

start
start

goal goal

Figure 6: Data Generating Process for Connected Sub-Graphs (Motifs): This figure illustrates
the step-by-step process of generating a training dataset by combining multiple subgraphs (motifs).
(a) We start by making a set of random directed acyclic graphs (DAGs). (b) Next, we pick a subset
of these DAGs and connect them together using "ghost edges" to create a bigger graph. (c) From
this bigger graph, we randomly sample paths and turn them into a task format. Example output
sequences from the model highlighting the steerability of stepwise inference. (d) Direction
prediction: Given nstart ∈ G3 and ngoal ∈ G9, the model produces a path from G3 → G9, placing a
single ghost edge (X712, X929). (e) With in-context exemplars: primitive sequences from G3 → G4,
G4 → G2 and G2 → G9 in-context make the model steer its navigation through the path stringing
together these motifs in order: G3 → G4 → G2 → G9, placing a ghost edge between every
consecutive motif, for a total 3 ghost edges.

Planning failure: nT ̸= ngoal. The model produces a path that does not terminate at the goal.
Learning dynamics of these failures modes are presented in Fig. 5b and suggest that the capability
of global planning emerges after the model has learned to take correct steps.

5 RESULTS ON MULTI-GRAPH SCENARIOS

The single graph setting let us explore zero-shot planning and stepwise reasoning, where the model
relied purely on knowledge internalized over pretraining for stepwise planning. To study how con-
text can influence model’s path, we introduce the concepts of motifs and in-context exemplar paths.

5.1 DATA GENERATING PROCESS FOR THE MULTI-GRAPH SCENARIO

To model few-exemplar based chain-of-thought prompting, we modify our single graph setup to
include a set of subgraphs that we refer to as motifs, denoted by {Gi}ni=1. A motif is a DAG that
is fixed across pretraining and inference. Before we describe the construction of the in-context
examples, we will define a few terms: (i) Ghost edge: For a pair of connected motifs Gi 7→ Gj , an
edge between a sink node of Gi and a source node of Gj , and (ii) A primitive sequence (Fig. 6) is
sequence of nodes across 2 motifs Gi and Gj with a start node in Gi and goal node in Gj and this
sequence contains exactly 1 ghost edge. Fig. 6. In chain-of-thought prompting (Wei et al., 2022),
one or more examples of reasoning are provided before asking the next question, as illustrated in
Figure 1(c). The LLM then generate a chain-of-thought which matches that of the exemplar. To
model this, we chain a subset of k motifs Gc1 → Gc2 → ...→ Gck together and provide exemplars.
Each exemplar e is a primitive sequence across each pair of consecutive motifs: e ∈ (Gci → Gci+1

)
which contains exactly 1 ghost edge. The construction of a primitive sequence is described in Fig. 6
and examples are shown in Fig. 6(c). Given a start node nstart ∈ Gc1 and a goal node ngoal ∈ GcK ,
the model can be prompted either directly (Fig. 6(d)) or provided with exemplars and then queried
for a path from nstart to ngoal (Fig. 6(e)).

8

Under review as a conference paper at ICLR 2024

(a) (b)

First motif Second motifSu
cc

es
sf

ul
 s

te
er

in
g

pr
ob

ab
ilit

y

Number of intermediate motifs

Fr
ac

tio
n

ch
os

en

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

, ,
n

First motif

Second motif

1 2 3 4 5 6

Figure 7: How do the number of examplers affect the controllability of motifs? (a) As we vary
the number of intermediate motifs in a chain, the path generated by the model follows the path
described by the chain until n = 4, which is the extent of the training data. (b) In the case of 2
conflicting chains in-context, the model has a bias to pick the first chain.

5.2 THE STEERING OF NAVIGATION BY EXEMPLARS

We find that the model can successfully follow the chain defined by the in-context exemplars. An
example output produced by the model is in Fig.6 (right), highlighting the path the model takes
through the chain of motifs G3 → G4 → G2 → G9. We also find that the model generalizes to
arbitrary orders of motifs strung out, including those that did not occur consecutively in the training
data – in other words, in-context control is capable of compositional generalization (Li et al., 2023).

5.3 HOW DO THE EXEMPLARS AFFECT CONTROLLABILITY OF GRAPH NAVIGATION?

Next, we study how the structural content of the exemplars affects the navigation path chosen by the
model. We hope to shed some light on and create hypotheses for the vast and varied findings about
stepwise reasoning in LLMs at scale.
Number of intermediate motifs: In Fig.7(a), we varied the number of exemplars provided to the
model. This is equivalent to stringing together a longer chain of motifs to navigate over. We find
that the model can generalize well to unseen orders of motif up to the maximum number chained
together in the training data. We hypothesize that for chain-of-thought and related methods at scale:
the model will fail to generalize to reasoning chains longer than those present in its training data.
Bias towards the first exemplar in the case of conflict: Multiple examples of context provided in
the prompt can increase the precision of our control over the model, but it can also lead to confusion.
Here, we systematically and quantitatively study the behavior of the model when two contexts are
provided but are in conflict. In Fig. 7(b) To model scenarios with conflicting exemplars, we study
a case where two chains of motifs are provided, starting from the same set of primary motifs and
ending at the terminal motif. We find that the model has a strong bias toward choosing the first
chain over the second. This result is qualitatively similar to what happens at scale with large context
windows (Liu et al. (2023)).

6 CONCLUSION

Our grounded synthetic task gives researchers control of variables that are generally not practical to
control in the real-world. These “knobs” encompass a variety of parameters, such as the structure of
the underlying graph (be it random or hierarchical), the extent of training data paths, and inference
temperature. Furthermore, in the in-context setting, we can manipulate the content, sequence, and
volume of exemplars, among other factors. This framework stands as a unique playground or labo-
ratory, though with its limitations, presenting insights into what stepwise inference is capable of and
where its limitations lie.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 1, context-free grammar. arXiv
preprint arXiv:2305.13673, 2023.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Michal Podstawski, Hubert Niewiadomski, Piotr Nyczyk, et al.
Graph of thoughts: Solving elaborate problems with large language models. arXiv preprint
arXiv:2308.09687, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Angelica Chen, Jason Phang, Alicia Parrish, Vishakh Padmakumar, Chen Zhao, Samuel R Bowman,
and Kyunghyun Cho. Two failures of self-consistency in the multi-step reasoning of llms. arXiv
preprint arXiv:2305.14279, 2023.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022.

Noam Chomsky. Syntactic structures. Mouton de Gruyter, 2002.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2022.

Antonia Creswell and Murray Shanahan. Faithful reasoning using large language models. arXiv
preprint arXiv:2208.14271, 2022.

Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: Exploiting large lan-
guage models for interpretable logical reasoning. arXiv preprint arXiv:2205.09712, 2022.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jian, Bill Yuchen Lin, Peter West,
Chandra Bhagavatula, Ronan Le Bras, Jena D Hwang, et al. Faith and fate: Limits of transformers
on compositionality. arXiv preprint arXiv:2305.18654, 2023.

Guhao Feng, Yuntian Gu, Bohang Zhang, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: a theoretical perspective. arXiv preprint arXiv:2305.15408,
2023.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. arXiv preprint arXiv:2305.14992,
2023.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey.
arXiv preprint arXiv:2212.10403, 2022.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International Conference on
Machine Learning, pp. 9118–9147. PMLR, 2022.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. arXiv preprint arXiv:2205.11916, 2022.

10

Under review as a conference paper at ICLR 2024

Yingcong Li, Kartik Sreenivasan, Angeliki Giannou, Dimitris Papailiopoulos, and Samet Oymak.
Dissecting chain-of-thought: A study on compositional in-context learning of mlps. arXiv
preprint arXiv:2305.18869, 2023.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. arXiv preprint arXiv:2210.10749, 2022.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. arXiv preprint
arXiv:2307.03172, 2023.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786, 2021.

Gabriel Madirolas, Alid Al-Asmar, Lydia Gaouar, Leslie Marie-Louise, Andrea Garza-Enríquez,
Valentina Rodríguez-Rada, Mikail Khona, Martina Dal Bello, Christoph Ratzke, Jeff Gore, et al.
Caenorhabditis elegans foraging patterns follow a simple rule of thumb. Communications Biology,
6(1):841, 2023.

Ida Momennejad, Hosein Hasanbeig, Felipe Vieira Frujeri, Hiteshi Sharma, Robert Osazuwa Ness,
Nebojsa Jojic, Hamid Palangi, and Jonathan Larson. Evaluating cognitive maps in large language
models with cogeval: No emergent planning. Advances in neural information processing systems,
37, 2023.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show
your work: Scratchpads for intermediate computation with language models. arXiv preprint
arXiv:2112.00114, 2021.

Ofir Press and Lior Wolf. Using the output embedding to improve language models. arXiv preprint
arXiv:1608.05859, 2016.

Ben Prystawski and Noah D Goodman. Why think step-by-step? reasoning emerges from the
locality of experience. arXiv preprint arXiv:2304.03843, 2023.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Yasaman Razeghi, Robert L Logan IV, Matt Gardner, and Sameer Singh. Impact of pretraining term
frequencies on few-shot reasoning. arXiv preprint arXiv:2202.07206, 2022.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
of chain-of-thought. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=qFVVBzXxR2V.

Rylan Schaeffer, Kateryna Pistunova, Samar Khanna, Sarthak Consul, and Sanmi Koyejo. Invalid
logic, equivalent gains: The bizarreness of reasoning in language model prompting. arXiv preprint
arXiv:2307.10573, 2023.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel R Bowman. Language models don’t al-
ways say what they think: Unfaithful explanations in chain-of-thought prompting. arXiv preprint
arXiv:2305.04388, 2023.

11

https://openreview.net/forum?id=qFVVBzXxR2V

Under review as a conference paper at ICLR 2024

Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen, You Wu, Luke Zettlemoyer, and Huan Sun.
Towards understanding chain-of-thought prompting: An empirical study of what matters. arXiv
preprint arXiv:2212.10001, 2022a.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022b.

Taylor Webb, Keith J Holyoak, and Hongjing Lu. Emergent analogical reasoning in large language
models. Nature Human Behaviour, pp. 1–16, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023.

Eric Zelikman, Jesse Mu, Noah D Goodman, and Yuhuai Tony Wu. Star: Self-taught reasoner
bootstrapping reasoning with reasoning. 2022.

Hugh Zhang, Daniel Duckworth, Daphne Ippolito, and Arvind Neelakantan. Trading off diversity
and quality in natural language generation. arXiv preprint arXiv:2004.10450, 2020.

12

Under review as a conference paper at ICLR 2024

a

b

c

Figure 8: Examples of stepwise inference as graph navigation in LLM evaluations: [Figures
taken from respective papers] (a) An example graph created for a prompt (left) from the ProntoQ&A
dataset (Saparov & He, 2023) (b) (Dziri et al., 2023) studies how simple algorithms such as mul-
tiplication of digits can be represented as a graph (c) CogEval (Momennejad et al., 2023) studies
many large scale LLMs such as ChatGPT-4 and Claude2 on planning and navigation tasks.

A APPENDIX

A.1 WHY GRAPH NAVIGATION?

In this section we will elaborate on our paradigm of graph navigation to study stepwise.

• Saparov & He (2023) Study simple linear DAGs as models of first order logical reasoning.
They construct ontologies Fig. 8a and prompt LLMs to do analogical reasoning.

• Dziri et al. (2023) study mathematical expression evaluation in large scale LLMs as DAG
navigation Fig. 8b. Any mathematical expression can be decomposed into elementary
computations which are chained together.

• Momennejad et al. (2023) evaluates many large scale LLMs such as ChatGPT-4 and
Claude2 on synthetically designed planning and navigation tasks Fig. 8c.

• Allen-Zhu & Li (2023) studies transformers trained on context-free grammars (CFGs)
which are DAGs.

Large language models (LLMs) have been shown to possess sophisticated and human-like reasoning
and problem-solving abilities (Srivastava et al., 2022). Chain-of-thought or scratchpad reasoning
refers to many similar and related phenomena involving multiple intermediate steps of reasoning
generated internally and autoregressively by the language model. First described by Nye et al.
(2021); Kojima et al. (2022), adding prompts such as ‘think step by step’ allows the LLM
to autonomously generate intermediate steps of reasoning and computation, improving accuracy and
quality of its responses. This is referred to as zero-shot chain-of-thought. A related set of phenom-
ena, few-shot chain-of-thought prompting (Wei et al., 2022) occurs when the language model is
shown exemplars of reasoning before being prompted with a reasoning task. The model follows the
structure of logic in these exemplars, solving the task with higher accuracy.

13

Under review as a conference paper at ICLR 2024

Hierarchical graph

x9 x11 x4

x1 x3 x8

x6 x10 x5

x7 x2 x12

Layer 1

Layer 2

Layer 3

Layer 4

Directed Acyclic Graph (DAG) Structures

x3

x5

x6

x1

x2

x7
x4

Random graph

source

sink

Path Diversity Distribution

Path Length Distribution

Path LengthPath Length

Path Diversity Path Diversity

Co
un

t
Co

un
t

Figure 9: Construction and properties of Hierarchical and Random DAGs:(top) Schematic of
hierarchical and random graphs. Hierarchical graphs are organized into layers with connections
only between nodes of successive layers but random graphs have no such structure. (middle) Path
diversity is defined as the number of paths between any 2 path connected nodes. (bottom) Path
length distributions: Owing to the hierarchical nature, the path length distribution is exponential in
hierarchical graphs where it is more Gaussian-like for randomm graphs.

There have been several prompting strategies developed, all of which rely on sampling intermedi-
ate steps: tree-of-thoughts (Yao et al., 2023), graph-of-thoughts (Besta et al., 2023), program-of-
thoughts (Chen et al., 2022) and methods which use more than 1 LLM: such as STaR (Zelikman
et al., 2022), RAP (Hao et al., 2023), Selection-Inference (SI) (Creswell et al., 2022; Creswell &
Shanahan, 2022).

A.2 SETUP AND CONSTRUCTION OF GRAPH AND MODEL

Here we describe the properties of the DAGs we use, the training setup, model architecture and
hyperparameters.

We use 2 DAG structures, hierarchical and random (Fig. 9). Random DAGs are constructed by
randomly generating an upper-triangular matrix where each entry has probability p of existing. Hi-
erarchical DAGs are generated by predefining L sets of nodes and drawing an edge between a node
nl in layer l and nl+1 in layer l + 1 with probability p. Lastly, we ensure that the graph is con-
nected. These lead to different path diversity and path length distributions, which affect the efficacy
of stepwise inference, as shown in our results.

14

Under review as a conference paper at ICLR 2024

For training, we tokenize every node and we use next-token prediction with a cross entropy loss:

L(xn, target n) = − log
(exp(βxn, target n)∑#tokens

t=0 exp(βxn,t)

)
= − log

(
softmax(βxn)target n︸ ︷︷ ︸

prob(target n)

)
(1)

Hyperparameter Value
learning rate 10−4

Batch size 64
Context length 32
Optimizer Adam
Momentum 0.9, 0.95
Activation function GeLU
Number of blocks 2
Embedding dimension 64

Table 1: Hyperparameters of the transformer

For model architecture, we use a GPT based decode-only transformer with a causal self-attention
mask. Our implementation is based on the popular nanoGPT repository3.

Each transformer block contains a causal attention layer, layer-norms, residual connections and
an MLP (see Fig. 10). The MLP contains two fully-connected layers sandwiched by a GELU
layer (Hendrycks & Gimpel, 2016).

The input tokens are converted to one-hot vectors before being passed through to the Transformer.
The model makes use of no dropout and no biases in the Layer norm layers. We use weight-

3available at https://github.com/karpathy/nanoGPT

Inputs

+

Learnable
Position Encoding

Causal Attention

Layer Norm

MLP + GeLU

N layersLayer Norm

+

+

Embedding

Softmax

Embedding

Figure 10: The architecture of GPT (Radford et al., 2019) style decode-only transformers

15

https://github.com/karpathy/nanoGPT

Under review as a conference paper at ICLR 2024

tying (Press & Wolf, 2016) in the Transformer which uses shared weights for the input and the
output embedding layers. Finally, we make use of mixed-precision (bf16 in torch) to speedup train-
ing.

A.3 TRAINING PROTOCOL FOR EXPERIMENTS

Algorithm 1 Generate Random connected DAG

nodeNames← [‘X’ + str(i) for i in range(numNodes)]
function CREATEUPPERTRIANGULARMASK(n, p)

matrix← random binary matrix with size n× n and probability p for 1s
upperTriangular← extract upper triangular part of matrix
return upperTriangular

end function
repeat

adjMatrix← CREATEUPPERTRIANGULARMASK(numNodes, p)
dag← create directed graph in NetworkX from adjMatrix and nodeNames

until dag is connected

Algorithm 2 Generate Hierarchical Connected Random DAG

p← [probability of connection between layers]
nodesPerLayer← [number of nodes in each layer]
numLayers← [total number of layers]
numNodes← nodesPerLayer× numLayers
function CREATELAYEREDDAG(nodesPerLayer, numLayers, p)

Initialize an empty directed graph G in NetworkX
for currentLayer← 1 to numLayers− 1 do

for each node j in currentLayer do
for each node k in currentLayer+ 1 do

if random number ≤ p then
Add edge from node Xj to node Xk in G

end if
end for

end for
end for
return G

end function
repeat

dag← CREATELAYEREDDAG(nodesPerLayer, numLayers, p)
until dag is connected

For single graph experiments, we randomly generate either a hierarchical graph or a random graph
G with N = 200 nodes. In the random graph setting the probability of an edge p = 0.05 while in the
hierarchical graph, the probability of an edge between a node in layer l and layer l + 1 is p = 0.05,
and we choose 10 layer with 20 nodes each.

Test-train split: To generate training data correspond to path connected node pairs, we first put all
edges (which are paths of length 1) into the training data and further, we generate all simple paths
between every pair of nodes in G and put all paths corresponding to 20% of nodes into the training
data, while the remainder are held out evaluations.
For the non-path connected pairs, we simply take all node pairs apart from the ones which have
simple paths between them and add 5000 of these node pairs into the training data, chosen to roughly
balance the classes.
For each node pair, we use the prompt format described in the main text:
For stepwise inference:goal : X4 X6 X5 X7 X6 path end . For direct prediction:

goal : X4 X6 path end .

16

Under review as a conference paper at ICLR 2024

A.4 ADDITIONAL EXPERIMENTAL RESULTS

0 20 40 60 80 100
Optimization step

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

Stepwise inference
Direct inference

(a)

0 20 40 60 80 100
Optimization step

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

Stepwise inference
Direct inference

(b)

0 20 40 60 80 100
Optimization step

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

Stepwise inference
Direct inference

(c)

Figure 11: Stepwise inference gap with corrupted tokens: In this experiment, (a) 5%, (b) 10%
and (c) 20% of tokens were randomly corrupted to mimic real world language data. The stepwise-
inference gap persists.

In Fig. 11, we mimic real-world language data, abundant in ambiguity and polysemy, by corrupting
(a) 5%, (b) 10% and (c) 20% of tokens in a single graph scenario. To achieve this, we replaced a
randomly chosen 5% and 10% of the tokens in the training data with random tokens. We observe
that the gap between stepwise inference and direct inference persists in both scenarios. This finding
indicates that stepwise inference remains effective in more realistic settings with noise.

In Fig. 12, we swept the density of the graph from 0.08 to 0.12 on a hierarchical graph. We observe a
stepwise inference gap in all cases. The stepwise inference gap becomes smaller for larger densities.

Fig. 13 presents a density plot comparing the average lengths of actual paths with those generated
by the model in a random graph. This observation verifies the model tends to produce shorter paths
between a given pair of start and goal nodes.

17

Under review as a conference paper at ICLR 2024

0 20 40 60 80 100
Optimization step

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

Stepwise inference
Direct inference

(a) p = 0.08

0 20 40 60 80 100
Optimization step

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

Stepwise inference
Direct inference

(b) p = 0.09

0 20 40 60 80 100
Optimization step

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

Stepwise inference
Direct inference

(c) p = 0.11

0 20 40 60 80 100
Optimization step

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

Stepwise inference
Direct inference

(d) p = 0.12

Figure 12: Advantage of Stepwise Inference in Graph Navigation Task. Here we vary p, the
edge density of connectivity in the graph.

Figure 13: Model outputs are biased toward shorter paths.

18

	Introduction
	Related Work
	Defining A Synthetic Graph Navigation Task
	Preliminaries
	Data generating process for single graph scenarios

	Results on single-graph scenarios
	Results on multi-graph scenarios
	Data generating process for the multi-graph scenario
	The steering of navigation by exemplars
	How do the exemplars affect controllability of graph navigation?

	Conclusion
	Appendix
	Why graph navigation?
	Setup and construction of graph and model
	Training protocol for experiments
	Additional experimental results

