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Figure 1: We propose CogPhys, a dataset consisting of multimodal recordings of seated participants
while performing tasks of varying cognitive loads. RGB Stereo, NIR, and two thermal videos are
captured in conjunction with radar recordings to first estimate biosignals, such as plethysmographs
(PPG), respiratory waveforms, and blink waveforms. The associated vital signs - heart rate (HR),
heart rate variability (HRV), respiratory rate (RR), and physiological signals such as blink rate (BR),
blink rate variability (BRV) - can be estimated from the previously extracted biosignals. Cognitive
load, a higher-order physiological signal, is then estimated from the vital and physiological signs
extracted in the previous stage, thus creating a pipeline for remote cognitive load estimation.

Abstract

Remote physiological sensing is an evolving area of research. As systems ap-
proach clinical precision, there is increasing focus on complex applications such as
cognitive state estimation. Hence, there is a need for large datasets that facilitate
research into complex downstream tasks such as remote cognitive load estimation.
A first-of-its-kind, our paper introduces an open-source multimodal multi-vital
sign dataset consisting of concurrent recordings from RGB, NIR (near-infrared),
thermal, and RF (radio-frequency) sensors alongside contact-based physiological
signals, such as pulse oximeter and chest bands, providing a benchmark for cogni-
tive state assessment. By adopting a multimodal approach to remote health sensing,
our dataset and its associated hardware system excel at modeling the complexities
of cognitive load. Here, cognitive load is defined as the mental effort exerted during
tasks such as reading, memorizing, and solving math problems. By using the
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NASA-TLX survey, we set personalized thresholds for defining high/low cognitive
levels, enabling a more reliable benchmark. Our benchmarking scheme bridges
the gap between existing remote sensing strategies and cognitive load estimation
techniques by using vital signs (such as photoplethysmography (PPG) and respira-
tory waveforms) and physiological signals (blink waveforms) as an intermediary.
Through this paper, we focus on replacing the need for intrusive contact-based
physiological measurements with more user-friendly remote sensors. Our bench-
marking demonstrates that multimodal fusion significantly improves remote vital
sign estimation, with our fusion model achieving < 3 BPM (beats per minute)
error for vital sign estimation. For cognitive load classification, the combination
of remote PPG, remote respiratory signals, and blink markers achieves 86.49%
accuracy, approaching the performance of contact-based sensing (87.5%) and val-
idating the feasibility of non-intrusive cognitive monitoring. Github Codebase:
https://github.com/AnirudhBHarish/CogPhys

1 Introduction

Non-contact physiological monitoring is rapidly advancing, with applications extending beyond
traditional healthcare into diverse domains [31, 40, 36]. Various remote sensors, including video,
radars, and thermal cameras, are increasingly employed, often in multimodal setups, to estimate vital
signs like heart rate (HR), respiratory rate (RR), and heart rate variability (HRV) [49, 39, 38]. While
many datasets facilitate research in remote cardiovascular and respiratory assessment [5, 31, 38]
(see Table 1), resources for higher-level physiological states, such as cognitive load, especially using
diverse remote modalities, remain scarce [22]. This highlights a critical need for datasets enabling
advanced remote sensing applications like non-intrusive cognitive load estimation, which is crucial in
scenarios where contact-based sensors are impractical.

Cognitive load, defined as the mental effort required to perform a task, has been extensively studied
in the context of human-computer interaction, workload assessment, and physiological monitoring.
While self-reported metrics such as the NASA-TLX survey [15] allow for systematic assessments of
cognitive load, they are inherently intrusive to the task being performed and lack the potential for
real-time automation. To address this limitation, we explore using physiological markers as implicit
indicators of cognitive workload. High cognitive load activates the sympathetic nervous system,
which elevates HR and reduces HRV [3, 34]. Conversely, low cognitive load is associated with
increased parasympathetic activity, which helps the body relax after periods of stress. Cognitively
demanding tasks also accelerate respiration due to increased brain oxygen demands [14]. Additionally,
behavioral markers like eye blink rate (BR) and blink rate variability (BRV) correlate with cognitive
load [27]. These established physiological relationships enable the use of HR, RR, and blink patterns
to distinguish cognitive load levels.

Thus, the accurate, robust measurement of physiological and vital signs could potentially pave the
way for estimating abstract, higher-order physiological signals such as cognitive load. Contact-based
sensing is not always feasible due to user burden. By combining the advances in remote sensing
with the correlation between various vital signs and cognitive load, we can take remote physiological
sensing a step further. Integrating remote monitoring systems can potentially enhance the applicability
of systems for domains such as at-home rehabilitation, telemedicine, driver monitoring, etc.

To this end, we adopt a multimodal approach to remote sensing and cognitive load estimation. Signals
are recorded from a sensor suite consisting of RGB, near-infrared (NIR), and Thermal cameras, and a
radar, as participants perform tasks involving varying cognitive loads. Uniquely, our dataset introduces
a total of five remote modalities, more than twice those present in existing datasets. This medley
of data sources enables research into sophisticated and intelligent fusion strategies that improve
robustness and mitigate bias [38], for estimating both conventional (e.g., photoplethysmography
(PPG) waveform) as well as abstract (e.g., cognitive load) physiological signals. We split this task
into 2 stages - the first being remote vital sign estimation, and the second, cognitive load prediction
from the estimated vital signs. To summarize, our contributions are as follows:

1. We present a first-of-its-kind multi-modal dataset, called CogPhys, that records participants
performing tasks with varying levels of cognitive load through cameras (RGB/NIR/Thermal),
radar, pulse oximeter, and a wearable chest band.
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2. We benchmark contemporary remote vitals sign estimation algorithms - both unimodal
methods and multimodal sensors fusion algorithms - on our dataset. We accomplish this by
estimating the biosignals and extracting vital signs, such as HR, HRV, and RR.

3. We then proceed to estimate and classify cognitive load by utilizing the various physiological
features extracted from the biosignals and their corresponding biosignals. Further, we
benchmark the performance of various machine learning (ML) and deep learning (DL)
models on a combination of the vital sign modalities

2 Related Work

2.1 Remote Vital Sensing

Remote sensing of HR, HRV, and RR using cameras and radars has gained popularity [40, 33, 7].
Large-scale datasets for remote photoplethysmography (rPPG) and remote respiration (resp) have
emerged across various settings: lab environments [5], NIR imaging [30], driving scenarios [31], and
synthetic data [28, 40]. These datasets fostered model-based approaches including spatial Signal-to-
Noise Ratio (SNR) maps [21, 7], sparse spectral methods [31, 30], light transport techniques [9, 39],
and motion-based methods [4]. DL has advanced rPPG estimation through transformers [47, 46],
mamba architectures [26, 51], and contrastive networks [35, 36]. Parallel research has explored
respiratory signal estimation using thermal cameras and radio-frequency sensors [8], with novel
data augmentation techniques for ultra-wideband (UWB) and frequency modulated continuous wave
(FMCW) radars [49, 38].

Relying on a single modality for remote vital sensing often yields systems vulnerable to lighting
changes and inaccuracies, potentially causing inequitable estimation errors. Several works have
explored multimodal approaches, with datasets enabling advances in remote multimodal vital sens-
ing [48, 38, 19, 30, 31]. This has led to various advanced algorithms benchmarked on both unimodal
as well as multimodal data streams [36, 42]. rPPG-based methods are sensitive to face motions,
and [24] attempted to reduce motion corruption by adaptively filtering the ballistocardiography (BCG)
signal and rPPG signals. Similarly, [2] has extended the system’s capabilities to include the fusion of
remote ballistocardiography (rBCG) signals in addition to rPPG and contact-based BCG.

2.2 Cognitive State Estimation

ML has been increasingly leveraged to estimate cognitive workload from physiological signals.
Contact-based approaches often use Electroencephalography (EEG) for direct brain activity mea-
surement [43] or wearable sensors for extracting electrocardiography (ECG) and PPG signals to
infer cognitive states via features such as HRV [13, 17]. Non-contact methods primarily involve
cameras for eye-tracking (gaze, pupil dynamics) [20] or assessing behavioral indicators like facial
expressions [17]. While remote sensing with modalities such as radar shows promise for vital signs,
its direct use for cognitive state estimation is less explored.

3 Dataset Design

3.1 Captured Biosignals and Physiological Signals - Remote and Contact-based

PPG is a non-invasive optical method for measuring blood volume changes, providing vital signs
like HR and HRV. It is typically recorded using pulse oximeters. Replacing these with RGB or NIR
cameras enables rPPG by detecting skin color changes from blood flow. HR is measured in BPM
and HRV in milliseconds (ms). A chest band sensor was also used for ECG recordings, but due to
the need for skin contact, usable ECG data was only collected from a subset of participants.

Similarly, thermal cameras offer an optical method for sensing breathing signals and RR - measured
in respirations per minute (RPM ) - by detecting temperature changes near the nostrils during
inhalation and exhalation. The radar’s high-phase sensitivity can capture breathing-induced vibrations
when placed in front of or behind the user. Capacitive sensors in chest bands provide baseline RR
readings by tracking impedance changes caused by the expansion of the chest during breathing cycles.
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Table 1: List of the most popular datasets for remote vital sensing. Each checkmark represents
the use of one sensor, i.e., a double checkmark represents the use of 2 cameras.

Recorded Signals Ground Truth

Dataset RGB NIR RF Therm HR Resp Cog Load
UBFC [5] ✓ ✓

MMPD [37] ✓ ✓
VIPL [29] ✓ ✓
iBVP [19] ✓ ✓ ✓

MMSE [48] ✓ ✓ ✓ ✓
UCLA-rPPG [40] ✓ ✓

SCAMPS [28] ✓ ✓
OOD-rPPG [6] ✓ ✓
MR-NIRP [31] ✓ ✓ ✓
EquiPleth [38] ✓ ✓ ✓

Ours (CogPhys) ✓✓ ✓ ✓ ✓✓ ✓ ✓ ✓

Sensor Description

RGB Zed2i Stereo
NIR GS3U3-41C6NIRC
NIR 940nm LED ThorLabs
LED Collimator ThorLabs
940nm Filter Edmund Optics
Thermal Rad Boson 640
Thermal Non-Rad Boson 640
Radar AWR6843ISK
FPGA DCA100EVM
Pulse Oximeter CMS60C
Chest Band BioHarness 3.0

Figure 2: CogPhys Multi-modal capture setup. We record signals from seated participants using
various non-contact sensors (RGB Stereo camera, NIR camera, two thermal cameras, mm-wave
radar) and contact wearables (chest band for ECG and respiratory signals, and finger pulse oximeter).
The participants perform several tasks, such as sitting still, reading, performing arithmetic operations,
etc., while the signals are recorded.

Alongside extracting rPPG waveforms, an RGB camera can also track eye landmarks to measure the
vertical opening of the eye, referred to as the "eye openness" (EO) signal [32]. From this 1D signal,
blink-related metrics such as BR and BRV can be derived by tracking the signal minima. Blinking, a
semi-autonomic response, is governed by the central nervous system and has been previously linked
to cognitive load [16, 1].

3.2 Experimental Setup used to Capture Data

Our sensing setup prioritizes non-contact vital sign monitoring using an array of remote sensors,
including radar, RGB, NIR, and two thermal cameras. As shown in Figure 2, the RGB stereo camera,
NIR camera, and their illuminators are mounted on the cockpit directly in front of the participant
to best capture facial color changes. The NIR system is operated at 940 nm using a bandpass filter
following the findings of [30] on the reduced sensitivity of 940 nm to sunlight, making it well-suited
for outdoor use. The two thermal cameras are mounted above and below the cockpit to accurately
capture temperature changes throughout the face and nostrils, respectively. In contrast, the radar is
placed behind the seat within a plastic enclosure.

We collect baseline readings from a wearable chest band and a fingertip pulse oximeter. These serve
two purposes: training/validating remote vital sign algorithms, and providing a reference signal for
advanced tasks such as cognitive load prediction from physiological signals, thereby establishing
upper bounds.
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Figure 3: (A) Participants perform the illustrated tasks sequentially, with each task duration being
2mins. The incoming raw data from all remote sensing modalities is preprocessed as shown in (B)
before estimations of the PPG and Respiratory waveforms are made.

3.3 Data Acquisition Protocol

With our multimodal data collection setup firmly in place, we look to investigate the efficacy of
remote vital sensing for cognitive load prediction. We define cognitive load as the mental effort that
an individual exerts when performing a given task. To emulate diverse cognitive states, we curate a
set of tasks to induce varying levels of cognitive load, which are summarized as:

1. Still: The participant sits still throughout the recording.

2. Read: The participant reads a set of independent, randomly generated paragraphs.

3. Pattern: Participants memorize a 4× 4 binary grid, answer multiplication questions during
the recording, then reproduce the grid upon completion of the recording.

4. Number: It is similar to “pattern”, except participants are asked to memorize an 8-digit
number and recite it at the end of the recording.

Each task is performed for 2 mins, with two resting periods — one between “read” and “pattern”,
and another between “pattern” and “number” — resulting in six 2 mins recordings. The “rest”
recordings allow participants to recover between trials and reduce the cumulative effects of the trials.
The two “rest” trials are solely used for remote vitals sensing and not for cognitive load prediction.
Participants also provided self-reported NASA-TLX ratings on mental demand, effort, and frustration
after each of the 4 cognitive tasks, enabling a dual-perspective evaluation of cognitive workload.

We collect a large-scale dataset with 37 participants recruited for our study. This dataset, dubbed the
CogPhys dataset, was collected in compliance with an Institutional Review Board (IRB) (approved
by the Rice University Institutional Review Board, study number: IRB-FY2025-59). In addition to
the sensor data, we also collect demographic details such as the use of glasses/contacts, cosmetics,
age, gender, self-reported Fitzpatrick skin tone values, and height. Across our study, we capture
≈ 440 mins video and radar recordings. For all our experiments, we partition the dataset into train,
validation, and test sets with a split corresponding to 25/2/10 with no participant overlap. Dataset
details such as demographic distribution, pre-processing algorithms (cropping, downsampling),
storage size, and dimensionality are all elaborated in the Supplement.1

3.4 Label Curation for Cognitive Load

Cognitive load ground truth labels (“Low Load”/“High Load”) for each participant-task instance were
derived from self-reported NASA-TLX scores by applying participant-specific median thresholds.
This approach was chosen to leverage subjective assessments while ensuring robustness against
inter-participant reporting biases and preserving individual variance in workload perception.

The label generation process was as follows: First, for each participant, a composite workload
score (0-80 range) was calculated for each of the four designated cognitive tasks. This composite

1To access this dataset, researchers can contact the authors and must execute a Data Use Agreement (DUA)
due to the nature of the collected data.
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score approach follows standard practices in cognitive workload research, where the NASA-TLX is
designed as a multidimensional assessment tool [41, 44]. This score aggregated their ratings from four
demand-relevant NASA-TLX subscales: Mental Demand, Temporal Demand, Effort, and Frustration.
Second, the median of these composite scores, determined across a participant’s set of cognitive
tasks, established their personalized workload threshold. Finally, this individual threshold was used
to binarize the cognitive state for each task instance. While cognitive load exists on a continuous
spectrum, we adopt a binary classification approach for this first investigation of remote cognitive
load sensing to establish feasibility before extending to multi-class or regression formulations in
future work. The data-driven labeling resulted in labels that aligned with intended experimental task
difficulties, visualized in Figure 4.
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Figure 4: NASA-TLX questionnaire responses across different tasks. Participant average ratings with
standard error bars for each of the six NASA-TLX dimensions across the four experimental tasks.
Samples from {still,read}/{pattern,number} were labeled low/high cognitive load, respectively.

4 Estimating Remote Physiological Signals from a Sensor Stack

We now describe the deep-learning algorithms used to extract the vital and physiological signals from
Section 3.1, focusing on methods with superior performance [23] and multimodal fusion approaches.
Additional algorithmic baselines and implementation details are provided in the Supplement.

4.1 Remote Cardiac Monitoring

We employ the rPPG-Toolbox [23]2 and Contrast-Phys+ [36] code repositories3 to benchmark the
most significant rPPG baselines. Crucially, we include the SNR Loss from [38] and filter the estimated
and ground truth waveforms prior to the Pearson loss. Further details on the baselines can be found
in the supplement. Apart from the unimodal approaches, we train a fusion network.

Fusion Network: We employ a Siamese network with the Contrast-Phys+ backbone. That is, we
share the weights of the first 2 convolutional blocks across the RGB and NIR videos, after which the
deep features are added and passed through the remaining layers. Our pretraining strategy leverages
the higher SNR of RGB signals: we first train a Contrast-Phys+ model on RGB frames, then use its
weights to initialize and fine-tune a NIR model. Finally, we initialize the fusion network with the
trained NIR model weights to prevent RGB dominance during multimodal training.

4.2 Respiratory Signal and Rate

The rPPG-Toolbox was adapted for RR estimation from thermal camera data. That is, we modify
cutoff frequencies for frequency-based loss functions. We also downsample input videos and ground
truth signals to 15 Hz to enable processing longer video segments at lower computational costs.

2https://github.com/ubicomplab/rPPG-Toolbox
3We port the code from the original repository to the rPPG-toolbox and add the SNR and Person loss function.
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Figure 5: Left: Example of vital signs waveforms recorded by contact sensors. Right:Task-induced
changes in HR (BPM ) compared to the baseline condition. The bars represent mean differences.
Standard error bars with asterisks "***" denote statistical significance p<0.001 in one-sample t-tests.

DL (Radar): We take inspiration from [38, 49] to implement a standard 1-D Convolutional neural
network (CNN) architecture for respiratory estimation from the beamformed samples captured by the
radar. While the authors of the original work employed the CNN for HR estimation, we place our
focus on calculating RR. Prior to processing the radar data, we beamform the radar signal, and take
the Fourier transform along the fast-time axis, similar to [38, 49]

Fusion Network: We perform fusion in two steps. First, we train a Siamese Contrast-Phys+
model from scratch (without pretraining) to fuse the two thermal cameras. The output waveform of
the resulting camera-fusion model is concatenated with the output of the RF-Net and the resulting
2-channel resp waveform , i.e., the 2-channel time-series data is processed by a 1D-CNN to yield
the final resp waveform. All respiration models (thermal, radar, and waveform fusion) are trained
from scratch with modality-specific frequency losses; camera-fusion uses mid-level fusion, while
camera+radar employs late waveform fusion.

4.3 EO Signal, BR and BRV

From the preprocessed RGB (left stereo) video frames, we extract the EO signal with the help of
Google’s mediapipe [25] library. Mediapipe is used to extract the eyelid landmarks per frame. To
normalize the EO signal, we divide the vertical opening of each eye by its horizontal spread by
detecting four landmarks per eye. Lastly, we average the EO signal across both eyes, and invert this
normalized EO signal and extract BR and BRV in the same way as the extraction of HR and HRV
from PPG waveforms is done.

5 Estimating Cognitive Load

5.1 PPG and Respiratory Feature Extraction

A comprehensive suite of physiological features is extracted from contact-based PPG and respiratory
signals to model cardiovascular and respiratory dynamics associated with cognitive load. PPG
signals undergo Butterworth bandpass filtering (0.8 − 3.0 Hz) and subsequent peak detection to
yield inter-beat intervals (IBIs). From these IBIs, diverse HRV metrics are computed. These include
time-domain indices quantifying beat-to-beat fluctuations (e.g., RMSSD, SDNN), frequency-domain
metrics reflecting autonomic nervous system balance (e.g., LF/HF ratio), geometric HRV assessments
from Poincaré plots, and descriptors of pulse wave morphology. For respiratory signals, after similar
bandpass filtering (0.05−1.0Hz), extracted features include the dominant frequency, the distribution
of signal power across the respiratory frequency band, and spectral entropy to quantify breathing
pattern regularity. Linear interpolation is employed for occasional missing data.
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5.2 ML Framework for Cognitive Load Classification

For cognitive load classification, we benchmarked both traditional ML models and DL architectures.
The ML suite, including Random Forest (RF) and Gradient Boosting (GB), Support Vector Machine
(SVM), Logistic Regression (LR), Linear Discriminant Analysis (LDA), K-nearest neighbor (KNN),
Decision Trees (DT), and multilayer perceptrons (MLP), operated on the standardized engineered
physiological features previously described. The DL approaches, including CNN, LSTM, and ResNet,
processed and scaled raw physiological signal segments directly. These evaluations serve as initial
benchmarks for the CogPhys dataset, providing baseline performance metrics across various models
and feature types. This is intended to facilitate standardized comparison and guide future algorithmic
development by users of this new multimodal resource. We systematically assessed performance
across seven distinct physiological signal combinations, ranging from unimodal inputs (Contact
PPG Only, rPPG Only, Blink Markers Only) through contact-remote mixtures to a full multimodal
remote setup (rPPG + Remote Respiratory + Blink Markers). This experimental design allowed for a
comparison of contact versus remote sensing.

6 Results

6.1 Training and Evaluation Configuration

All recordings are 2 mins long. Data modalities required for cardiac waveform estimation are
resampled to 30 Hz, while all respiratory-related recordings are resampled to 15 Hz. Further, all
camera frames are downsized to 128× 128. Single-channel inputs are replicated to thrice. For the
radar, we consider the first 10 range bins. We use hierarchical windows to balance detail & robustness:

1. Training: Waveform regression models are trained on 300-sample length clips. This corre-
sponds to 10 secs for PPG at 30 Hz, and 20 secs for respiratory at 15 Hz.

2. Vital sign estimation: HR computed on 30 sec windows, RR on 40 sec windows. This is
carried out by concatenating the waveforms from the regression models.

3. Cognitive load classification: For each recording, all the estimated waveforms from the
regression models are concatenated to form the entire 2 min window. The features are then
extracted from the entire 2 min waveform.

Ground Truth Calculation: Contact sensors (pulse oximeter, chest band) provide 2−min waveforms.
We apply frequency peak detection on non-overlapping windows, yielding 4 HR and 3 RR values per
recording. Each 2 min recording receives a single cognitive load label from NASA-TLX surveys

6.2 Remote Vitals Estimation

HR and HRV Estimation: Table 2 presents the quantitative performance of the various rPPG
algorithms. Due to the SNR difference between the visible and NIR wavelengths, RGB methods
outperform the NIR across all methods. However, this gap in performance can be bridged by
pretraining the NIR model using the RGB model weights, with Contrast-Phys+ demonstrating
improvements ∼ 0.8 BPM . We surmise that low SNR of the NIR signals necessitates a “head start”
via pretraining. However, this mainly improves frequency preservation, with HRV observing marginal
gains. Following this logic, we pre-trained the fusion network using the NIR models’ weights. The
resulting fusion algorithm outperformed all unimodal techniques, achieving average errors < 3BPM
on HR estimation, and also HRV estimation, with an error of < 32ms. An analysis of the standard
errors indicates that the performance of the algorithms is within a 10% spread of the MAE and IBI for
most models, especially the top performing models. An in-depth analysis with cross-fold validation,
significance testing and skin-tone bias quantification is included in the supplement. The supplement
also include metrics for clinical significance [11] and waveform characterization.

RR Estimation: The typical range of RR when seated varies between 10–30 RPM , resulting in
smaller performance absolute gains compared to rPPG. From Table 3, the thermal camera placed
below (TB) (directly viewing nostrils), the cockpit performs better than the thermal camera placed
above (TA) across a majority of models (measuring diffused temperature changes near nostrils). The
radar achieves a lower MAE compared to both unimodal camera-based approaches and camera-
fusion. The waveform fusion, however, emerges as the best configuration over the unimodal and
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Table 2: Performance of rPPG algorithms on the CogPhys dataset. We report the mean absolute
error (MAE), root mean squared error (RMSE), mean absolute percentage error (MAPE), and the
Pearson correlation (r) for HR estimation. We also report the performance of HRV estimation. The
standard error spread for each metric has also been tabulated. Clinical and waveform metrics have
been tabulated in the supplement. Post-processing steps were used to clean the waveforms before
error calculation. The best and second-best numbers are shown in bold and underline respectively.

HR Metrics (BPM ) HRV Metric

Method MAE ↓ RMSE ↓ MAPE ↓ r ↑ IBI (ms) ↓

N
IR

PhysNet [45] 12.61 ± 0.61 15.68 ± 4.57 15.44 ± 0.68 0.05 ± 0.07 332.93 ± 11.74
RythmFormer [50] 7.47 ± 0.48 10.53 ± 3.48 9.08 ± 0.57 0.54 ± 0.05 71.50 ± 3.89
PhysFormer [47] 10.82 ± 0.56 13.81 ± 4.27 13.49 ± 0.67 0.06 ± 0.07 104.10 ± 5.13
FactorizePhys [18] 10.41 ± 0.82 16.37 ± 5.57 12.22 ± 0.92 0.35 ± 0.06 80.33 ± 4.68
PhysMamba [26] 5.47 ± 0.52 9.64 ± 3.93 6.69 ± 0.64 0.63 ± 0.05 65.00 ± 3.98
Contrast-Phys+ [36] 5.55 ± 0.49 9.32 ± 3.55 6.79 ± 0.58 0.65 ± 0.05 59.87 ± 3.86
Pretrained Contrast-Phys+ 4.77 ± 0.45 8.44 ± 3.49 5.84 ± 0.54 0.72 ± 0.05 56.51 ± 3.54

R
G

B

PhysNet [45] 12.37 ± 0.60 15.45 ± 4.53 15.38 ± 0.72 0.12 ± 0.06 363.35 ± 12.75
RythmFormer [50] 7.54 ± 0.47 10.49 ± 3.44 9.31 ± 0.56 0.51 ± 0.06 72.00 ± 3.72
PhysFormer [47] 6.36 ± 0.43 9.15 ± 3.18 7.91 ± 0.52 0.63 ± 0.05 56.77 ± 3.37
FactorizePhys [18] 5.87 ± 0.70 12.24 ± 5.56 6.71 ± 0.73 0.52 ± 0.06 47.00 ± 3.41
PhysMamba [26] 4.08 ± 0.43 7.79 ± 3.57 4.82 ± 0.46 0.77 ± 0.04 35.18 ± 2.27
Contrast-Phys+ [36] 3.75 ± 0.38 6.94 ± 3.23 4.41 ± 0.41 0.83 ± 0.04 37.90 ± 2.93

Fusion 2.94 ± 0.27 5.03 ± 2.34 3.60 ± 0.30 0.9 ± 0.03 31.93 ± 2.10

Table 3: Performance of resp. rate (RR) estimation algorithms on the CogPhys dataset. We report
the MAE, MAPE, RMSE, and the Pearson correlation. The standard error spread for each metric has
also been tabulated. Waveform metrics have been tabulated in the supplement. Post-processing
steps were used to clean the waveforms before error calculation. The best and second-best performing
numbers are shown in bold and underline, respectively.

RR Metrics (RPM )

Method MAE ↓ RMSE ↓ MAPE ↓ r ↑

A
bo

ve

PhysNet [45] 3.26 ± 0.20 4.22 ± 1.44 19.94 ± 1.41 −0.04 ± 0.08
RythmFormer [50] 2.46 ± 0.16 3.21 ± 1.10 15.33 ± 1.11 0.08 ± 0.08
PhysFormer [47] 3.67 ± 0.22 4.65 ± 1.56 20.66 ± 1.12 −0.11 ± 0.08
FactorizePhys [] 3.27 ± 0.23 4.50 ± 1.56 20.35 ± 1.69 −0.07 ± 0.08
PhysMamba [26] 2.85 ± 0.21 4.00 ± 1.51 17.23 ± 1.45 −0.01 ± 0.08
Contrast-Phys+ [36] 2.46 ± 0.18 3.42 ± 1.23 14.74 ± 1.14 0.15 ± 0.08

B
el

ow

PhysNet [45] 2.49 ± 0.20 3.63 ± 1.32 15.01 ± 1.31 0.13 ± 0.08
RythmFormer [50] 2.58 ± 0.20 3.67 ± 1.32 14.91 ± 1.19 0.09 ± 0.08
PhysFormer [47] 3.44 ± 0.23 4.59 ± 1.50 19.39 ± 1.25 −0.04 ± 0.08
FactorizePhys [18] 2.83 ± 0.24 4.22 ± 1.65 17.32 ± 1.56 0.10 ± 0.08
PhysMamba [26] 2.40 ± 0.20 3.54 ± 1.30 14.16 ± 1.20 0.08 ± 0.08
Contrast-Phys+ [36] 2.27 ± 0.21 3.58 ± 1.57 13.58 ± 1.34 0.31 ± 0.07

R
F RF-Net 2.32 ± 0.17 3.19 ± 1.14 14.12 ± 1.16 0.16 ± 0.08

Cameras Fusion 2.41 ± 0.19 3.51 ± 1.25 14.07 ± 1.17 0.07 ± 0.08
Waveform Fusion 2.25 ± 0.17 3.15 ± 1.15 13.36 ± 1.02 0.23 ± 0.07

camera-fusion models, albeit only marginally. Here, we note that RR calculation can inherently be
erroneous. Respiratory waveforms deviate from their periodicity when in the presence of motion
or speech, and the GT also lacks a dominant frequency peak. An in-depth analysis with cross-fold
validation and significance testing is included in the supplement along with waveform metrics.

6.3 Cognitive Load Classification

Evaluation of ML for cognitive load classification revealed that multimodal signal integration is highly
effective. As detailed in Table 4, ML models using engineered physiological features consistently
outperformed DL approaches. The GB classifier achieved the highest overall accuracy of 86.49%
(F1: 0.878) with a full multimodal set comprising rPPG, Remote Respiratory, and Blink Markers.
This significantly surpassed unimodal results (e.g., rPPG alone at an accuracy of 69.23% with RF).
The inclusion of blink markers notably enhanced performance, underscoring the value of ocular
dynamics.
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Table 4: Performance comparison of ML and DL models across various unimodal and multi-
modal physiological signal combinations for cognitive load classification. In each cell we report
the Accuracy(F1 Score). Bold values indicate the highest accuracy for each ML model; underlined
values indicate second-highest. The overall best model is marked in red and the second best in blue.

Model Contact Remote Blink Contact PPG + Contact PPG + rPPG + rPPG + rPPG +
PPG PPG Markers Contact Resp Contact Resp + Contact Resp Remote Resp Remote Resp +

Blink Markers Blink Markers

ML Models

RF 0.70(0.73) 0.56(0.59) 0.65(0.70) 0.65(0.68) 0.73(0.76) 0.56(0.59) 0.65(0.68) 0.78(0.80)
GB 0.58(0.56) 0.69(0.73) 0.63(0.67) 0.60(0.64) 0.78(0.80) 0.69(0.73) 0.57(0.58) 0.86(0.88)
SVM 0.60(0.62) 0.51(0.56) 0.58(0.65) 0.65(0.70) 0.80(0.83) 0.51(0.56) 0.57(0.56) 0.76(0.80)
LR 0.63(0.63) 0.64(0.70) 0.58(0.65) 0.58(0.56) 0.80(0.83) 0.64(0.70) 0.54(0.51) 0.81(0.84)
LDA 0.50(0.44) 0.62(0.65) 0.50(0.57) 0.48(0.49) 0.80(0.83) 0.62(0.65) 0.57(0.56) 0.70(0.73)
KNN 0.45(0.50) 0.59(0.58) 0.55(0.53) 0.50(0.60) 0.68(0.75) 0.59(0.58) 0.51(0.57) 0.70(0.78)
DT 0.53(0.54) 0.51(0.54) 0.48(0.57) 0.63(0.68) 0.58(0.60) 0.51(0.54) 0.62(0.61) 0.76(0.77)
MLP 0.55(0.55) 0.62(0.59) 0.60(0.67) 0.60(0.60) 0.88(0.88) 0.62(0.59) 0.54(0.48) 0.76(0.80)

DL Models

1D CNN 0.65(0.67) 0.49(0.00) 0.68(0.70) 0.50(0.67) 0.50(0.67) 0.56(0.26) 0.49(0.10) 0.54(0.70)
LSTM 0.50(0.50) 0.59(0.64) 0.58(0.62) 0.50(0.67) 0.50(0.67) 0.54(0.50) 0.51(0.55) 0.62(0.74)
ResNet1D 0.63(0.59) 0.59(0.56) 0.68(0.71) 0.50(0.67) 0.50(0.67) 0.54(0.50) 0.49(0.63) 0.62(0.68)

To validate the effectiveness of remote sensing, we evaluated the Contact PPG + Contact Resp +
Blink Markers combination as a practical upper bound. This combination achieved 87.5% accuracy
(F1: 0.884) with MLP and 80.0% accuracy (F1: 0.826) with SVM. The similar test set performance
between this contact-based multimodal approach (87.5%) and our best remote-based multimodal
approach (86.49%) demonstrates that integrated remote sensing can achieve near-equivalent results to
traditional contact methods, supporting the feasibility of non-intrusive cognitive monitoring systems.

On the other hand, DL architectures like 1D CNNs performed best with only Blink Markers (68.00%
accuracy) and were less effective with multimodal inputs compared to traditional ML. This suggests
a current limitation in DL models for integrating heterogeneous physiological signals on this dataset.

A significant finding was that the combination of multiple remote sensing modalities ultimately deliv-
ered the best performance, even surpassing individual contact-based sensor setups. This highlights
the potential of integrated remote sensing. Ensemble ML methods, particularly GB, proved most
robust. Our participant-based test split ensures these findings are generalizable, validating real-world
deployment potential without individual calibration.

7 Conclusion and Limitations

We introduced CogPhys, an open-source, multimodal dataset featuring diverse remote (RGB, NIR,
thermal, radar) and contact sensors for advancing remote cognitive load assessment. Our benchmarks
demonstrate successful remote physiological signal estimation and establish strong baselines for
cognitive load classification, achieving up to 86.49% accuracy with multimodal remote signals and
highlighting the utility of blink-related features. CogPhys provides a valuable public resource to
develop and evaluate new algorithms for less intrusive cognitive state monitoring.

Key limitations include data collection in a controlled laboratory setting, which may not fully
reflect real-world complexities. While our experimental design focused on inducing cognitive load
through tasks validated in prior work [10, 12], potential confounding with stress responses remains
an important consideration for future investigation. The absence of direct brain activity sensors
(EEG/fNIRS) represents another limitation, though our validation against self-reported NASA-TLX
scores provides a practical ground truth. Furthermore, cognitive load was defined via specific
tasks and binarized using personalized NASA-TLX thresholds, offering opportunities for future
work on broader task types and more granular load measures. The current dataset’s participant
demographics and sensor specifics also define a scope for future studies on broader generalizability.
These limitations point towards clear directions for extending this research.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper proposes a new dataset consisting of multi-modal recordings of
seated participants doing tasks of varying cognitive loads. Remote vital signs and other
physiological signals are estimated from such recordings, which are then further used for
cognitive load estimation. This aligns with the claims made in the abstract and introduction.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes] .

Justification: We discuss this in a separate section in the supplement.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper’s contributions do not involve any theoretical results, which require
proof and assumptions.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide links to the dataset and code used in our experiments. Dedicated
README files have been included in both to further explain the order and commands to
run the code. Further, we will be releasing our trained models, from which the results can
be reproduced.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in the supplemental
material?

Answer: [Yes]

Justification: As per the discussion from the rebuttal phase, the dataset will be gated via a
Data User Agreement (DUA) due to privacy-related reasons. Upon signing the document,
researchers will be provided with a link to our dataset. This is in line with the suggestion
from the Reviewers. We will be the codebase for vital signs estimation and cognitive load
estimation in GitHub: https://github.com/AnirudhBHarish/CogPhys.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We include these details in both the supplement and the accompanying code.
We also include a pickle file with the data split we have used. README files also include
instructions for running the code bases.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

15



Answer: [Yes]

Justification: Our supplement includes statistical significance testing results (ANOVA and
Tukey HSD tests) for heart rate (HR), respiratory rate (RR), and cognitive load classification.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide these details in the supplemental material.

9. Code of ethics
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NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
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was collected under IRB approval, with consent obtained from all participants.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the applications of our work both in the main paper and the
supplement. The paper highlights positive societal impacts, such as the development of
more user-friendly and less intrusive physiological measurement techniques by replacing
contact-based sensors.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for the responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We have collected data under IRB approval, and with signed consent from all
participants. Per discussion with the reviewers, we will be gating the dataset with a DUA
for privacy-related reasons.
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the paper, properly credited, and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited and acknowledged the creators or original owners of the used
assets.

13. New assets
Question: Are new assets introduced in the paper well documented, and is the documentation
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Answer: [Yes]

Justification: We explain all technical and logistical details relating to the dataset in the main
paper and Supplement. Higher-level details, such as sensor choice and acquisition protocols,
are discussed in the main paper, while the lower-level technical details, such as pre- and
post-processing algorithms, along with data specification, have been elaborated on in the
Supplement. The dataset and codebase links accompanying the paper will also contain this
information.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We provide these details in Section 3.3 in the main paper and the supplemental
material.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: We provide these details in Section 3.3 and the supplemental material.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigor, or originality of the research, a declaration is not required.
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