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ABSTRACT

Model editing techniques are essential for efficiently updating knowledge in large
language models (LLMs). However, the effectiveness of existing approaches de-
grades in massive editing scenarios, particularly when evaluated with practical
metrics. Their robustness is also limited in context-rich settings or when editing
multiple facts of the same subject simultaneously. We attribute these failures to
the embedding misalignment among knowledge items, which undermines editing
reliability at scale. To address this, we propose EAMET (Embedding Alignment
Model Editing in Transformers), which addresses this issue by aligning the space
of key and residual embeddings. Extensive experiments across six LLMs and
three datasets demonstrate that EAMET consistently outperforms existing meth-
ods, achieving about 90% editing efficacy when editing 10k facts.

1 INTRODUCTION

Large language models (LLMs) are increasingly employed as search engines and chatbots, as they
excel at retrieving knowledge to answer user queries (Brown et al., 2020; Touvron et al., 2023b;
Yang et al., 2024a; Bi et al., 2024). However, they are prone to spreading misinformation about
frequently updated topics due to outdated training data (Vykopal et al., 2023; Huang et al., 2025; Xu
et al., 2024). To address this issue, retraining or fine-tuning models for partial knowledge updates is
proposed (Achiam et al., 2023; Team et al., 2025), albeit with prohibitively expensive overhead. In
contrast, recent advances in locate-then-edit model editing (ME) techniques (Meng et al., 2023; Fang
et al., 2024) enable massive editing of thousands of factual associations concurrently at minimal data
and computational cost, thereby rendering real-time knowledge updates feasible.
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Figure 1: Illustration of current methods and our proposed EAMET in evaluating massive editing.
Here, “[PREFIX] Sentence” and “{Sentence | si = Jeep Commander}” denote the scenarios where
the edited knowledge is preceded by prefixes and where multiple facts share the same subject, re-
spectively.

Despite the success of existing massive ME techniques, we observe that their effectiveness is often
overestimated due to overly loose evaluation metrics. In particular, most prior works assess editing
quality by checking whether the model is more likely to generate the following tokens as the target
object than the original one, whereas neglecting to evaluate whether the model’s output is consistent
with the target object (Meng et al., 2023; Fang et al., 2024). Therefore, we advocate a “practical
metric”, which measures the proportion of cases in which the edited model retrieves the target object
and explicitly generates related output. This metric provides a more accurate reflection of real-world
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usage, as will be shown in our evaluation setting (see Section 6). Under such evaluation criteria,
existing methods fail to maintain their performance.

Moreover, existing methods exhibit limited robustness in realistic settings. We highlight two repre-
sentative scenarios: (i) their performance substantially degrades when edited knowledge is preceded
by prefixes (Li et al., 2024), a common phenomenon in practical question-answering tasks (Praman-
ick et al., 2024; Romero et al., 2024); and (ii) they fail to preserve accuracy when editing multiple
facts associated with the same subject, where performance drops markedly. Such lack of robustness
in massive editing scenarios undermines their applicability to real-world use cases.

To analyze the limitations of existing methods, we first identify “embedding misalignment”, which
reflects the structural inconsistency between key and residual embedding spaces, as a primary factor
underlying the decline in both effectiveness and robustness during massive editing. Such misalign-
ment leads to information loss for individual knowledge updates. In particular, when parameters
are updated jointly from a batch of edited knowledge items, they fail to accurately reconstruct an
individual factual association. This information loss becomes more severe as the number of edited
items increases.

To achieve effective and robust massive editing under practical settings, we thus propose EAMET
(Embedding Alignment Model Editing in Transformers), which outperforms existing approaches
under stricter evaluation criteria and exhibits strong robustness in two described scenarios. EAMET
addresses embedding misalignment by progressively preserving optimized residual embeddings and
aligning them with the key embedding space, ensuring consistency throughout the editing process.

In this paper, we conduct extensive experiments on six LLMs, showing that EAMET consistently
surpasses existing methods under rigorous settings across the CounterFact, ZsRE, and Wiki-recent
datasets. EAMET maintains about 90% editing efficacy across all evaluated models and outperforms
baselines by an average of 14% and 8%, with gains of up to 37% and 15% on CounterFact and ZsRE
when editing 10k facts. Moreover, EAMET sustains high accuracy even when edited items are
preceded by prefixes of up to 200 tokens or involve multiple facts associated with the same subject.
This demonstrates EAMET’s robustness in realistic and context-rich settings, including chatbots and
long-context QA tasks.

2 RELATED WORK

Model Editing. Existing ME techniques can be classified into auxiliary-based (Hartvigsen et al.,
2023; Mitchell et al., 2022b; Zheng et al., 2023; Yu et al., 2024; Mitchell et al., 2022a) and location-
based methods (Meng et al., 2022; 2023; Li et al., 2025). Auxiliary-based ME techniques preserve
the original parameters, and introduce additional information to edit knowledge. SERAC (Mitchell
et al., 2022b) requires extra memory to store new edits and learn to reason over them to manipulate
the model’s output. Location-based methods directly modify model parameters to edit knowledge
without requiring any additional information. These methods assume that factual associations are
stored in the feed-forward networks (FFNs) of the LLMs (Geva et al., 2021; 2022; Dai et al., 2022).
Building on these, ROME (Meng et al., 2022) first gains insights on the specific location of the
knowledge through causal analysis. It proceeds to directly modify critical MLP layers to update
factual associations. MEMIT (Meng et al., 2023) builds upon ROME to enable massive editing
of thousands of facts concurrently. AlphaEdit (Fang et al., 2024) focuses on sequential editing,
aiming to preserve both previously edited knowledge and the general capabilities of the LLM during
successive edits.

Massive Editing. In practical applications, ME techniques may aim to update a model with hun-
dreds or even thousands of facts simultaneously in order to keep up with the constantly evolving
knowledge (Ju et al., 2024; Gu et al., 2024). However, auxiliary-based methods are usually limited
in scalability, typically supporting only a few edits at a time (Mitchell et al., 2022b). In contrast,
location-based methods are more scalable for massive editing. MEMIT (Meng et al., 2023) scales to
edit 10,000 facts concurrently, and PMET (Li et al., 2025) further improves performance by incor-
porating attention layers when updating the parameters of the FFNs. Despite their effectiveness and
scalability, these methods have been shown to be fragile when handling prefixes or multiple facts
with the same subject during evaluation, which is a common scenario in real-world applications (Li
et al., 2024; Yang et al., 2024b; Ma et al., 2024). Moreover, we observe that their performance in
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massive editing is overestimated due to the loose metric. In this work, we propose EAMET, which
achieves superior performance in massive editing under practical evaluation metrics, while also ex-
hibiting greater robustness against long prefixes and multiple facts with the same subject.

3 PRELIMINARY: EDITING MEMORY IN LLMS

Previous works have shown that a pre-trained LLM has memorized many factual associa-
tions (Petroni et al., 2019; Jiang et al., 2020; Roberts et al., 2020; Shin et al., 2020). These stored
facts could be edited by modifying the MLP layers within FFN modules, based on the assumption
that knowledge is stored in them in the form of key-value pairs (Geva et al., 2021; 2022).
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Figure 2: Illustration of the model editing problem.

In Figure 2, the MLP layer W l
out

within FFN associates keys klt(x) =

σ(W l
inγ(h

l−1
t (x))) with memories ml

t(x)
for the fact x. Given the critical mediating
role of MLP layers in storing facts, Meng
et al. (Meng et al., 2022) shows that it
is sufficient to update W l

out to edit stored
facts. We then optimize W l

out (abbreviated
as W1) as follows:

W1 ≜ argmin
Ŵ

(

Nt∑
i=1

||Ŵkti −mt
i||2 +

Np∑
j=1

||Ŵkpj −mp
j ||

2) (1)

Here, kti and kpj denote the encoded subject representations for individual target and preserved fact
i and j, respectively, while mt

i and mp
j represent their corresponding memory vectors. We stack

the keys and memories of totally Nt target knowledge into matrices as Kt = [kt1 | kt2 | . . . | ktNt
]

and Mt = [mt
1 | mt

2 | . . . | mt
Np

]. Similarly, we construct Kp and Mp for Np preserved facts. The
objective in Equation (1) can then be optimized by solving the normal equations (Meng et al., 2023):

(W0 +∆) [Kp Kt] = [Mp Mt] (2)
W0Kp = Mp (3)

where we expand W1 into W0 + ∆. W0 denotes the original (unedited) parameters that associate
preserved keys with their memory representations. The final update to W l

out can be computed by
multiplying both sides of Equation (2) by [Kp Kt]

T , and subtracting Equation (3) from Equa-
tion (2)(Meng et al., 2023):

∆(Cp +KtK
T
t ) = RKT

t (4)

where R = Mt −W0Kt denotes new relations’ residual with respect to the original weights, which
can also be written as [rt1 | rt2 | . . . | rtNt

]. Since the pretraining data of the original model is not
accessible, we approximate Cp using a set of randomly sampled inputs from public datasets:

Cp = λEkp [kpi (k
p
i )

T ] (5)

The scalar λ balances the influence between newly edited facts and preserved knowledge.

4 MOTIVATION

In this section, we investigate the root causes of the challenges associated with effective and robust
massive editing, as illustrated in Figure 1. In particular, we analyze the decline in editing perfor-
mance as the number of edited facts increases. Our theoretical and empirical results indicate that
these issues arise from misalignment between key and residual embeddings. We further examine
robustness in two representative scenarios: (i) edits preceded by long prefixes, and (ii) edits applied
to multiple facts sharing the same subject.
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4.1 EMBEDDING MISALIGNMENT IN EFFECTIVE MASSIVE EDITING

Theoretical Analysis. We observe that by expanding Kt and R in Equation (4), the update equation
can be reformulated as:

∆

(
Cp +

Nt∑
i=1

kik
T
i

)
=

Nt∑
i=1

rik
T
i (6)

where the update ∆ is determined by the aggregated residual and key embeddings across all edited
facts. As the number of edits increases, solving Equation (6) is more likely to cause reconstruction
loss for individual knowledge items due to the embedding misalignment between the residual and
key embeddings. This eventually leads to degraded editing performance.

To formalize the concept of embedding misalignment, we define two key requirements for the de-
sired update ∆: (1) The update should preserve the existing knowledge, expressed as ∆Cp = 0. (2)
The update should ensure lossless reconstruction for each individual fact, formulated as ∆ki = ri,
where ∆ is computed while considering all target facts. Incorporating (1), an ideal ∆ that meets (2)
implies:

∆

(
Cp +

Nt∑
i=1

kik
T
i

)
=

Nt∑
i=1

rik
T
i → ∆ki = ri for i = 1, 2, . . . , Nt (7)

However, the validity of Equation (7) is intuitively affected by the degree of misalignment between
the residual and key embedding of different facts. We then define embedding misalignment:

Definition 1 (Embedding Misalignment). Given N knowledge items, let each item i be associated
with a residual embedding ri and a key embedding ki. We define the embedding misalignment of
item i as the structural similarity between the pairwise relations of its residual embedding and those
of its key embedding. Formally, consider the distributions

P (i)
r = { cos(ri, rj) | j ̸= i }, P

(i)
k = { cos(ki, kj) | j ̸= i }, (8)

where cos(·, ·) is the cosine similarity. The ith misalignment score is quantified by the KL diver-
gence:

A(i) = KL
(
P (i)
r ∥ P (i)

k

)
. (9)

We now formalize the connection between embedding misalignment and the editing performance of
a specific knowledge item i under massive editing. Specifically, we quantify the degree to which
Equation (7) is established by analyzing the reconstruction loss ei = ∆ki − ri for each knowledge
item. This relationship is formalized in the following theorem:

Theorem 1. Let ∆ be the closed-form solution satisfying ∆
∑

i kik
⊤
i =

∑
i rik

⊤
i , and define the

reconstruction residual of item i as ei = ∆ki − ri. Then we can expand

ei =

N∑
j=1

βijrj − ri, βij := k⊤j

( N∑
ℓ=1

kℓk
⊤
ℓ

)−1

ki (10)

and its norm is bounded by the misalignment between the neighborhood structures of ri and ki:

∥ei∥ ≤ Ci

√
1
2 A(i) + |βii| ∥ri∥ + ∥εi∥, (11)

This result demonstrates how embedding misalignment impacts the editing performance of individ-
ual knowledge items under massive editing. Specifically, stronger misalignment among knowledge
items leads to increased individual reconstruction loss, ultimately reducing the overall effectiveness
of massive editing. The complete proof is provided in Appendix B.

Empirical Study. Motivated by the above analysis, we hypothesize that the failure of massive
editing stems from misalignment between the embeddings of different knowledge items. To test this
hypothesis, we edit 200, 500, and 1,000 facts from the CounterFact dataset (Meng et al., 2022) using
MEMIT (Meng et al., 2023) on LLaMA2-7B (Touvron et al., 2023a) and Deepseek-7B (Bi et al.,
2024). We then evaluate the editing accuracy of these items when no prefix is added to the edited
query. Embedding misalignment is quantified using the misalignment score defined in Equation (9).

4
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Table 1: Editing performance with varying numbers of
edited facts on LLaMA2-7B and Deepseek-7B.

Model LLaMA2-7B Deepseek-7B
No. of Edited Facts 200 500 1000 200 500 1000

Editing Efficiency(%) 98.5 90.0 86.8 99.5 98.6 97.8∑
iA(i) 79 243 554 68 223 562

As shown in Table 1, the overall
editing accuracy of both models de-
creases as more facts are edited, ac-
companied by a clear increase in em-
bedding misalignment. For example,
on LLaMA2-7B, the accuracy drops
from 98.5% to 86.8% as the num-
ber of edited facts grows from 200 to
1,000, while the misalignment score rises from 79 to 554. These results provide further evidence for
our theorem that embedding misalignment leads to degraded editing performance.

4.2 IMPACT OF EMBEDDING MISALIGNMENT ON EDITING ROBUSTNESS

We investigate how embedding misalignment affects robustness in massive editing along two dimen-
sions: (i) long-prefix perturbations and (ii) simultaneous edits of samples sharing the same subject.
Based on our theoretical and empirical analysis, we derive two corollaries to characterize these
effects and validate them with controlled experiments.

Corollary 1. Long prefixes exacerbate embedding misalignment issues under massive editing, lead-
ing to degraded editing performance when edited facts are evaluated with descriptive prefixes.

Table 2: Impact of varying prefix lengths on editing performance.

Model LLaMA2-7B Deepseek-7B
Prefix Lens 0 5 10 50 0 5 10 50
Editing Acc. 98.50% 84.15% 80.35% 77.40% 99.50% 90.35% 84.25% 85.10%

low A(i) Acc. - 94.00% 91.00% 90.00% - 94.00% 92.00% 91.00%
top A(i) Acc. - 46.00% 46.00% 45.00% - 55.00% 54.00% 47.00%

Empirical Verification of Corollary 1. We edit 200 CounterFact facts on LLaMA2-7B and
Deepseek-7B using MEMIT, and evaluate average editing accuracy with prefix lengths ranging from
5 to 50 tokens. To assess the impact of embedding misalignment, we also compare the 10 items with
the highest and lowest misalignment scores under long-prefix conditions.

Table 2 shows that editing performance degrades when edited facts are evaluated with prefixes. For
LLaMA2-7B, accuracy falls from 98.5% to 84.15% with a 5-token prefix, and further to 77.40%
with a 50-token prefix. A similar trend is observed for Deepseek-7B, where editing accuracy drops
by around 15% under 50-token prefixes. The robustness to prefix perturbations varies markedly be-
tween items prone to embedding misalignment and those that are not. Consistent with Corollary 1,
items with lower misalignment scores maintain above-average accuracy, whereas highly misaligned
items suffer a sharp decline, with accuracy dropping to an average of 48%.

Corollary 2. Massive editing suffers from degraded performance when multiple samples with the
same subject are edited simultaneously. In this case, the reconstruction weight on the target βii

decreases while cross-weights βij increase, eventually leading to reconstruction failure of ri.

Figure 3: Impact of editing same-subject samples. Shaded region indicates shared items.

ii i(i + 2) i(i + 4) i(i + 6) i(i + 8)
Index

0.0

0.2

0.4

0.6

(a) Subject "Fimpen"
2000 edits
5000 edits
10000 edits

ii i(i + 2) i(i + 4) i(i + 6)
Index

0.0

0.2

0.4

0.6

(b) Subject "USS Leedstown (APA-56)"
2000 edits
5000 edits
10000 edits

Empirical Verification of Corollary 2. Figure 3 shows the reconstruction coefficients for two ex-
ample subjects under different numbers of edits. Although βii remains the dominant coefficient,
its value decreases steadily as the number of co-edited samples increases, while off-diagonal coef-
ficients βij grow accordingly. As a result, ∆ki is no longer primarily aligned with ri but is instead
reconstructed as a mixture of other rj , making the recovery of the correct target representation in-
creasingly difficult.
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This behavior is consistent with the misalignment measureA(i), as only βij from the same subject as
i take relatively large values, while cross-subject weights remain negligible. Therefore, reconstruc-
tion is dominated by the same-subject neighborhood. WhenA(i) is small, same-subject embeddings
are well aligned across both k-space and r-space. Thus, using other rj from the same subject to ap-
proximate ri introduces only limited error. However, when A(i) is large, misalignment within this
neighborhood amplifies the effect of weight redistribution, causing the residual ∥ei∥ to grow and
ultimately leading to degraded editing performance. We provide details in Appendix C.

These findings underscore the strong connection between embedding misalignment and the effec-
tiveness as well as robustness of massive editing. Motivated by this observation, the following
section introduces our approach for aligning key and residual embeddings to enhance the overall
performance of massive editing.

5 EMBEDDING ALIGNMENT MEMORY OPTIMIZATION

(a) Key Embedding Preparation (b) Aligning Memory Embeddings with Key Embeddings
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(c) Optimizing the Target Memory
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Figure 4: Method Overview of EAMET.

Motivated by these results, we propose EAMET, which optimizes memory embeddings to promote
alignment with key embeddings across facts. This design enhances the model’s ability to edit mul-
tiple facts concurrently under practical metrics, while also improving robustness against prefix per-
turbations and simultaneous edits of same-subject samples. We elaborate on the details below.

Key Embedding Preparation (Figure 4 (a)). Before optimization, we extract the key embeddings
corresponding to each knowledge item that is scheduled for editing. For a given knowledge item i,
we calculate the cosine similarity between its key embedding ki and the key embeddings of all other
items. We then collect these similarity values into the set P (i)

k = {P (i,j)
k = cos(ki, kj) | j ̸= i}.

Aligning Memory Embeddings with Key Embeddings (Figure 4 (b)). For N knowledge items,
we separately optimize the target memory embeddings to update factual associations. During the
iterative optimization process, we save every optimized residual embedding. When optimizing the
target memory for the i-th knowledge item, we compute the cosine similarity between ri and all
residual embeddings saved so far, and collect them as P

(i)
r = {P (i,j)

r | j < i}. To promote
alignment between key and residual embeddings, we compute the KL divergence Chen et al. (2020);
He et al. (2020); Sun & Saenko (2016) between P

(i)
r and P̄

(i)
k , where P̄

(i)
k = {P (i,j)

k | j < i}
denotes the subset of P (i)

k corresponding to earlier items:

LKL(i) = KL
(
P (i)
r ∥ P̄

(i)
k

)
. (12)

Since KL divergence emphasizes distributional differences, we further strengthen the alignment by
selecting the top M cosine similarities {P (i,j)

k } from P
(i)
k , and computing the mean squared error

(MSE) loss between the corresponding residual similarities {P (i,j)
r }:

LMSE(i) =
1

M

M∑
j=1

∥∥P (i,j)
r − P

(i,j)
k

∥∥2. (13)

Optimizing the Target Memory (Figure 4 (c)). Our goal in this step is to compute the residual
update vector ri for each factual association (si, reli, oi) such that the model reliably predicts the
target object oi while preserving the alignment between the memory embeddings and the key embed-
dings. To make the optimization procedure explicit, we describe each component of the objective in

6
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Equation (14). For each fact i, let hL
i denote the hidden state at layer L produced by the templated

prompt tp(si, reli). Following prior work (Meng et al., 2022; 2023), we augment this prompt with a
set of NFP randomly sampled prefixes {fj}NFP

j=1 , forming inputs fj⊕ tp(si, reli). These prefixes en-
courage the model to learn more generalizable memory representations. We write the forward pass
of the model with the edited hidden state as G(hL

i +=ri), indicating that the hidden representation at
layer L is perturbed by the update vector ri.

Given these definitions, we optimize ri by minimizing the following loss:

ri = argmin
ri

(
1

NFP

NFP∑
j=1

− logPG(hL
i +=ri)[oi | fj ⊕ tp(si, reli)]+λKLLKL(i)+λMSELMSE(i)

)
.

(14)

Here, the first term encourages the model to predict the correct target object oi under all sampled pre-
fixes. The losses LKL(i) and LMSE(i) ensure that the alignment between the memory embeddings
and the key embeddings is preserved, with λKL and λMSE controlling their relative importance.

The full optimization procedure is detailed in Appendix E. We justify our design of combining KL
loss and MSE loss in Appendix F.5. As the optimization process is iterative, the editing order of
knowledge items may influence the performance of EAMET. We further investigate the robustness
of EAMET against different editing orders in Table 6.

6 EXPERIMENTS

In this section, we empirically focus on evaluating the following research questions (RQs). We first
demonstrate the effectiveness of EAMET in massive by considering:

• RQ1. Can EAMET generate more aligned embeddings for different knowledge items?
• RQ2. How does EAMET perform on massive editing tasks compared with baselines for various

LLMs? Can it excel under the practical metric?

We then examine the robustness of EAMET in two representative scenarios:

• RQ3. How does EAMET perform when evaluating edited facts with prefixes?
• RQ4. How does EAMET perform when editing multiple facts of the same subject?

6.1 EXPERIMENTS SETUP

Models, Datasets, and Baselines. We conduct extensive experiments on various LLMs, includ-
ing LLaMA2-7B (Touvron et al., 2023a), LLaMA2-13B (Touvron et al., 2023a), Falcon-7B (Al-
mazrouei et al., 2023), Qwen-2.5-7B (Yang et al., 2024a), Deepseek-base-7B (Bi et al., 2024),
and LLaMA3-8B (Touvron et al., 2023b). We provide additional evaluations on more LLMs
in Appendix F.3. We consider a range of ME techniques as baselines: FT (Zhu et al., 2020),
MEND (Mitchell et al., 2022a), ROME (Meng et al., 2022), MEMIT (Meng et al., 2023), PMET (Li
et al., 2025), and ALPHAEDIT (Fang et al., 2024). We demonstrate their performance on Counter-
Fact (Meng et al., 2022), ZsRE (Levy et al., 2017), and Wiki-recent (Zhang et al., 2024). We provide
a full description in Appendix D.1.

Evaluation Metrics. Following previous work, we evaluate the performance of ME techniques in
terms of efficacy (Eff.), generalization (Gen.), specificity (Spe.), and fluency (Flu.) for CounterFact
and ZsRE datasets. For Wiki-recent, we additionally evaluate the portability (Zhang et al., 2024)
(Por.) of edited models, which represents the ability to address downstream tasks with edited knowl-
edge. We propose to evaluate the editing performance of ME techniques by requiring the edited
models to strictly examine whether explicit target objects are retrieved, as demonstrated in Figure 1.
The editing efficacy is then defined as:

Eff. = Ei[oi = argmax
o

Pfθ (o | (si, reli))]. (15)

When evaluating efficacy on the CounterFact and Wiki-recent datasets, and generalization on Coun-
terFact, we prepend each prompt with 10 distinct 5-token prefixes. Full details of metrics are pro-
vided in Appendix D.2. We also provide the implementation details of EAMET in Appendix D.3.
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6.2 ALIGNMENT OF RETRIEVED EMBEDDINGS (RQ1)

Table 3: Misalignment score comparison between dif-
ferent methods. Here, “CF” and “ZS” denote the Coun-
terFact and ZsRE datasets, respectively.

Model
EAMET MEMIT PMET
CF ZS CF ZS CF ZS

LLaMA2-7B 377 165 11506 22245 11475 11477
Qwen-7B 374 180 18498 23699 18471 18463

Deepseek-7B 520 161 12135 23241 12155 12046
Falcon-7B 385 181 8564 17589 8602 8590

Finding 1. EAMET Promotes More
Aligned Embeddings. We compute the
summation of the misalignment score be-
tween the residual and key embeddings
for 10,000 facts edited by MEMIT, PMET,
and EAMET under various LLMs. As
shown in Table 3, the residual embeddings
generated by EAMET are more aligned
with the key embeddings, while those pro-
duced by MEMIT and PMET are more
likely to cause inconsistency in the key
and residual embeddings space. This observation supports our hypothesis that EAMET encourages
more aligned target memory embeddings.

6.3 PERFORMANCE OF MASSIVE EDITING (RQ2)
Table 4: Performance comparison of different editing methods on six LLMs over the Counterfact,
Wiki-recent, and ZsRE benchmarks. We report the average value calculated over five evaluations.

Model Method Counterfact Wiki-recent ZsRE
Eff.↑ Gen.↑ Spe.↑ Flu.↑ Eff.↑ Por.↑ Loc.↑ Flu.↑ Eff.↑ Gen.↑ Spe.↑

L
L

aM
A

2-
7B

FT 0.29 0.23 77.43 490.34 7.23 41.61 36.52 491.83 5.30 4.31 14.69
MEND 0.23 0.31 78.55 307.26 0.00 34.67 37.46 269.52 0.00 0.00 0.50
ROME 0.00 0.00 50.73 467.76 76.73 49.31 51.51 497.53 37.29 6.86 10.27
MEMIT 24.95 22.68 63.84 506.69 34.75 44.93 46.72 504.18 76.63 64.06 15.57
PMET 74.22 46.45 72.47 507.10 81.84 51.11 53.16 497.49 77.29 71.40 16.54

ALPHAEDIT 0.51 0.53 51.14 501.63 0.07 35.34 37.48 527.83 44.26 35.83 12.65
EAMET 89.09 61.21 72.19 519.89 93.23 53.13 54.61 503.52 89.47 81.34 15.70

Q
w

en
2.

5-
7B

FT 16.18 14.15 56.07 527.56 21.17 51.40 51.50 515.87 14.30 13.00 39.28
MEND 0.01 0.06 70.73 282.92 0.00 42.55 44.37 272.90 0.00 0.00 0.09
ROME 0.00 0.00 49.83 523.45 16.28 46.52 46.61 502.37 4.10 3.43 1.30
MEMIT 90.06 63.86 70.53 529.27 94.88 56.97 61.23 510.43 54.12 42.96 31.57
PMET 65.71 52.84 63.14 518.92 82.39 58.38 57.59 511.62 53.58 46.59 36.50

ALPHAEDIT 83.15 55.70 67.16 514.07 94.16 57.17 59.45 510.32 44.52 34.98 25.52
EAMET 90.49 64.37 72.18 536.67 95.61 57.46 60.28 509.06 91.03 84.80 41.20

L
L

aM
A

2-
13

B FT 1.23 0.07 68.57 484.56 13.90 36.89 40.09 497.21 5.95 5.10 15.16
ROME 4.05 1.52 50.44 525.12 11.06 38.14 39.09 447.42 5.52 5.06 2.25
MEMIT 47.98 34.75 71.61 517.63 94.76 51.38 50.40 507.84 69.15 51.58 15.53
PMET 78.60 38.76 81.15 526.82 88.66 49.69 47.58 501.61 53.27 35.73 15.76

ALPHAEDIT 3.03 1.9 54.97 421.97 93.68 51.65 52.33 508.82 80.27 63.66 15.32
EAMET 92.85 60.08 77.51 530.78 95.88 52.08 53.43 504.06 87.09 74.58 15.90

Fa
lc

on
-7

B

FT 14.70 13.54 56.34 167.18 23.94 50.46 49.69 351.18 13.64 12.68 32.28
ROME 12.85 12.56 51.48 353.38 74.57 52.10 53.64 510.92 8.39 7.3 10.29
MEMIT 89.21 60.85 77.56 519.92 96.04 55.23 56.91 497.35 82.93 68.93 33.64
PMET 77.61 57.03 70.48 517.09 58.03 54.40 54.49 500.87 69.73 60.69 35.34

ALPHAEDIT 87.62 58.32 72.43 500.35 96.22 55.47 58.02 493.56 53.78 40.83 22.60
EAMET 92.37 63.91 78.94 528.98 96.94 57.08 58.58 507.56 92.38 81.15 36.71

D
ee

ps
ee

k-
7B

FT 2.61 2.49 81.43 519.35 18.85 48.90 52.78 500.86 15.00 12.28 39.14
ROME 0.26 0.30 49.82 514.72 0.55 43.17 46.02 406.64 0.81 0.78 0.75
MEMIT 62.11 42.01 78.04 512.16 33.65 52.28 49.05 499.49 57.10 42.58 39.12
PMET 74.52 43.49 79.01 514.58 86.75 57.85 59.93 500.50 76.97 69.22 38.47

ALPHAEDIT 22.51 14.00 59.92 479.52 18.53 48.33 48.74 483.38 73.41 57.09 34.87
EAMET 89.74 59.98 77.73 513.93 97.15 56.43 60.45 501.09 87.27 70.02 39.87

L
L

aM
A

3-
8B

FT 2.68 1.30 58.16 434.67 16.05 47.51 48.84 490.71 11.75 10.48 40.53
ROME 51.01 33.32 64.37 491.98 82.19 54.94 57.74 518.89 7.40 6.82 27.79
MEMIT 93.76 61.98 77.69 526.47 92.63 55.60 58.75 527.29 78.40 71.76 39.21
PMET 77.71 49.41 71.43 510.82 75.81 56.89 58.26 513.84 68.52 62.72 39.35

ALPHAEDIT 58.97 33.02 85.16 537.91 65.36 51.44 53.55 516.53 64.01 57.01 40.82
EAMET 93.87 63.74 79.07 533.30 94.36 57.88 59.48 528.23 85.68 81.34 42.39

We demonstrate the effectiveness of EAMET in massive editing tasks by comparing it with baseline
methods across six popular LLMs. Specifically, we simultaneously edit 10,000 factual associations
sampled from the CounterFact and ZsRE datasets. For the Wiki-recent dataset, we modify all 1,266
knowledge items. As shown in Table 4, our key findings are as follows:

Finding 2. EAMET Consistently Achieves Superior Editing Performance Across All Datasets
and Model Architectures. Across all evaluated datasets, EAMET demonstrates the highest lev-
els of editing efficacy and generalization. On the CounterFact dataset, it consistently outperforms
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other methods, particularly on base models such as LLaMA2-7B, LLaMA2-13B, and Deepseek-7B.
For example, EAMET achieves 89.09% efficacy and 61.21% generalization on LLaMA2-7B, outper-
forming the second-best method (PMET) by 15% on both metrics. The gap widens further compared
to MEMIT, with improvements of 65% in efficacy and 39% in generalization. Even on more ad-
vanced models such as Qwen2.5-7B, Falcon-7B, and LLaMA3-8B, EAMET consistently surpasses
all baselines. Furthermore, its advantage becomes more pronounced at larger editing scales. As
shown in Table 5, when editing 15,000 knowledge items on Qwen2.5-7B, EAMET achieves 83.66%
efficacy, demonstrating a 10% improvement over MEMIT. We additionally report the superior per-
formance of EAMET across diverse semantic scenarios in Appendix F.1.

Table 5: Performance comparison of dif-
ferent editing methods on Qwen2.5-7B,
Falcon-7B, and LLaMA3-8B with 15,000
edits from the CounterFact benchmark.

Model Method Counterfact (15000)
Eff.↑ Gen.↑ Spe.↑ Flu.↑

Qwen2.5-7B MEMIT 77.46 54.34 66.23 514.81
EAMET 83.66 55.31 69.49 528.28

Falcon-7B MEMIT 84.60 56.13 75.51 513.82
EAMET 89.55 61.00 68.44 516.91

LLaMA3-8B MEMIT 87.58 54.76 72.65 514.07
EAMET 91.22 62.24 73.43 531.76

Finding 3. EAMET Preserves the General Abilities
of the Edited models. In addition to achieving state-of-
the-art editing performance, EAMET does not impair
the base model’s fluency or reasoning abilities. Across
all datasets, EAMET consistently attains among the
highest specificity and fluency scores. Notably, on the
Wiki-recent dataset, EAMET achieves the best portabil-
ity performance on most base models, indicating that
the edited models retain their ability to reason about
downstream knowledge related to the edited facts. We
also evaluate the general abilities of edited models on
GLUE (Wang et al., 2018) and find that EAMET yields
minimal deviation from pre-edit performance (Appendix F.2).

Table 6: Impact of editing sequence on EAMET’s performance on Counterfact and ZsRE datasets.

Method Counterfact ZsRE

Eff.↑ Gen.↑ Spe.↑ Flu.↑ Eff.↑ Gen.↑ Spe.↑
EAMET (original sequence) 89.09 61.21 72.19 519.06 89.47 81.34 15.70
– random shuffle (seed=0) 88.21 60.79 71.84 519.21 87.63 77.42 15.56
– random shuffle (seed=1) 89.11 60.78 72.03 518.84 86.99 76.08 15.58
– random shuffle (seed=2) 88.91 59.38 72.34 518.23 87.56 77.47 15.59

As EAMET preserves previously optimized residual embeddings when updating new knowledge
items, the editing sequence could potentially affect its performance. To assess this, we examine
EAMET’s robustness under different editing orders on the Counterfact and ZsRE datasets. In Coun-
terfact, all knowledge items have distinct subjects, whereas in ZsRE some items share the same
subject and are adjacent in the original order. We therefore randomly shuffle the order of 10,000
items three times and report the average performance, alongside the original sequence as a refer-
ence.

Finding 4. EAMET is Robust to Editing Sequence. As shown in Table 6, EAMET’s performance
remains stable across editing orders. On Counterfact, random shuffles produce only negligible vari-
ations in efficacy, generalization, and specificity. On ZsRE, editing efficacy shows a slight decline
of about 2%, likely due to the neighborhood structure of items sharing the same subject in the orig-
inal sequence. Overall, these results suggest that EAMET is largely insensitive to editing order,
demonstrating strong robustness to sequence variations.

6.4 ROBUSTNESS AGAINST LONG PREFIXES (RQ3)
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Figure 5: Editing performance of different methods across varying prefix lengths.
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We evaluate the robustness of editing methods when edited facts are preceded by varying numbers of
tokens. Specifically, we modify 200 facts from the CounterFact dataset in LLaMA2-7B, Deepseek-
7B, and Qwen2.5-7B. During evaluation, we prepend prefixes of 5, 50, 100, and 200 tokens to them.

Finding 5. EAMET Remains Effective When Edits Are Preceded by Long Prefixes. In Figure 5,
EAMET achieves the highest editing efficacy across all models, with at most a 7% drop at 200-token
prefixes. In contrast, MEMIT suffers a much larger decline, from 84.75% to 66.50% on LLaMA2-
7B and from 94.2% to 82.25% on DeepSeek-7B. Notably, all methods demonstrate strong robustness
on Qwen2.5-7B, consistent with our earlier observation that Qwen2.5-7B is more suitable for robust
batch editing. Nevertheless, EAMET exhibits the smallest efficacy drop (only 1.9%) when the prefix
increases to 200 tokens, which is half that of the second-best method (MEMIT).

6.5 ROBUSTNESS UNDER MULTIPLE EDITS OF THE SAME SUBJECT (RQ4)
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Figure 6: Editing performance of different methods across varying numbers of facts per subject.

We evaluate the robustness of editing methods when multiple facts concerning the same subject are
edited simultaneously. Specifically, we simultaneously edit 10,000 facts from ZsRE dataset, and
only evaluate samples whose subject is associated with multiple facts. We group subjects according
to the number of associated samples and examine how rewrite accuracy varies with this number.
Experiments are conducted on LLaMA2-7B, DeepSeek-7B, and Qwen2.5-7B.

Finding 6. EAMET Remains Effective When Multiple Facts of the Same Subject Are Edited
Simultaneously. Figure 6 shows that EAMET consistently achieves the highest editing efficacy
across nearly all settings. Its performance remains stable when editing multiple samples associated
with the same subject. In contrast, other methods exhibit a clear decline in efficacy as the number of
facts per subject increases, which ultimately results in degraded performance on the overall massive
editing task.

7 CONCLUSION

In this paper, we propose EAMET, a novel model editing method that enables stronger and more
robust massive editing across various models and datasets. We first identify that the failures of
existing methods in both effectiveness and robustness of massive editing stem from misalignment
between the space of key and residual embeddings. EAMET addresses this issue by progressively
aligning the key and residual embedding space when optimizing target memory for each fact. The
aligned embeddings increase both the capacity and robustness of massive editing. Extensive exper-
iments on multiple base LLMs, including LLaMA2, LLaMA3, Deepseek, and Qwen, demonstrate
that EAMET significantly outperforms existing methods in editing performance and robustness.
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A LLM USAGE STATEMENT

We used LLMs solely to assist in drafting and polishing the writing of this paper, without any other
purposes.

B PROOF OF THEOREM 1

Notation Setup. Let K = [k1, . . . , kN ] ∈ Rd×N and R = [r1, . . . , rN ] ∈ Rd×N , and define

M :=

N∑
i=1

kik
⊤
i = KK⊤, N :=

N∑
i=1

rik
⊤
i = RK⊤. (16)

Assume that M is (pseudo-)invertible and define the closed-form solution ∆ = NM+ =
RK⊤(KK⊤)+, so that ∆

∑
i kik

⊤
i =

∑
i rik

⊤
i .

Derivation of the Column Expansion ∆ki =
∑

j βijrj . By definition,

∆ =

N∑
j=1

rjk
⊤
j M

+ = RK⊤M+. (17)

Applying ∆ to a column ki gives

∆ki =

N∑
j=1

rjk
⊤
j M

+ki. (18)

Setting βij := k⊤j M
+ki, we immediately obtain

∆ki =

N∑
j=1

βijrj . (19)

This formula provides an explicit linear combination of residual embeddings rj that reconstructs
∆ki, with coefficients βij determined by the key embeddings and the pseudo-inverse of M .

Reconstruction Residual and Neighborhood Decomposition. For each knowledge item i, define
the reconstruction residual ei := ∆ki−ri. Suppose that ri can be approximately reconstructed from
its neighbors with nonnegative weights qij for j ̸= i, i.e.,

ri =
∑
j ̸=i

qij rj + εi, qij ≥ 0,
∑
j ̸=i

qij = 1, (20)

where εi denotes the residual error. Substituting this decomposition into ei gives

ei =
∑
j ̸=i

(βij − qij) rj + βiiri − εi. (21)

Bounding the Reconstruction Residual. Taking norms and applying the triangle inequality yields

∥ei∥ ≤
∑
j ̸=i

|βij − qij | ∥rj∥+ |βii| ∥ri∥+ ∥εi∥. (22)

To relate the first term to embedding alignment, we construct a probability vector pi from the positive
parts of the coefficients βij (for j ̸= i):

sij := max{βij , 0}, Si :=
∑
j ̸=i

sij , pij :=
sij
Si

. (23)

Defining Ci :=
∑

j ̸=i ∥rj∥, one can show that∑
j ̸=i

|βij − qij | ∥rj∥ ≤ Ci TV(pi, qi), (24)
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up to negligible contributions from negative βij that can be absorbed into Ci. Here, TV(pi, qi) is
the total variation (TV) distance between two discrete distributions pi and qi:

TV(p, q) := 1
2

∑
j

|pj − qj |. (25)

Finally, applying Pinsker’s inequality TV(pi, qi) ≤
√

1
2 KL(qi∥pi) (Cover & Thomas, 1999) gives

∥ei∥ ≤ Ci

√
1

2
KL(qi∥pi) + |βii| ∥ri∥+ ∥εi∥. (26)

Identifying qi = P
(i)
r and pi = P

(i)
k with the kernel-normalized neighborhood distributions from

Definition 1 yields the embedding-alignment bound stated in the main text:

∥ei∥ ≤ Ci

√
1

2
A(i) + |βii| ∥ri∥+ ∥εi∥. (27)

If M is singular, replace M+ with the Moore–Penrose pseudoinverse. The contributions from nega-
tive βij or scaling factors can usually be absorbed into Ci. In the ideal case of perfect neighborhood
alignment A(i) = 0, negligible self-weight βii = 0, and vanishing residual εi = 0, we recover
ei = 0.

C DETAILED ANALYSIS OF COROLLARY 2

We provide a detailed theoretical analysis that develops Corollary 2.

Residual Decomposition. Recall that the reconstruction residual can be written as

ei = ∆ki − ri =

N∑
j=1

βijrj − ri, βij := k⊤j

( N∑
ℓ=1

kℓk
⊤
ℓ

)−1

ki. (28)

Partition the index set into the subject cluster S (samples sharing the subject with i) and the remain-
der T . Then

∆ki = βiiri +
∑

j∈S,j ̸=i

βijrj +
∑
j∈T

βijrj . (29)

Empirically and theoretically, only coefficients βij for j ∈ S become significant, while cross-subject
coefficients remain negligible since embeddings from different subjects are nearly orthogonal in key
space and thus contribute little to the reconstruction. Hence reconstruction is dominated by the
same-subject neighborhood.

Effect of Adding Same-Subject Samples. Let K =
∑

ℓ kℓk
⊤
ℓ denote the Gram matrix. Suppose

we add one additional key kj (with j ∈ S, j ̸= i). By the Woodbury identity(Horn & Johnson,
1985),

(K + kjk
⊤
j )

−1 = K−1 −
K−1kjk

⊤
j K

−1

1 + k⊤j K
−1kj

. (30)

Consequently, the updated self-weight becomes

βnew
ii = k⊤i (K + kjk

⊤
j )

−1ki = βii −
(k⊤i K

−1kj)
2

1 + k⊤j K
−1kj

. (31)

Thus βii monotonically decreases as more same-subject vectors are included. The lost weight is
redistributed into off-diagonal terms βij , consistent with our empirical observation in Figure 3.

Connection to Alignment. Using the decomposition in equation 29, the residual can be expressed
as

ei =
∑
j∈S

βij(rj − ri) +
∑
j∈T

βijrj . (32)
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Applying the triangle inequality yields

∥ei∥ ≤
∑
j∈S
|βij | ∥rj − ri∥+

∑
j∈T
|βij | ∥rj∥. (33)

The first term depends on the dispersion of responses within the same subject. This dispersion is
controlled by the alignment measure A(i): when A(i) is small, the responses {rj : j ∈ S} are
tightly clustered around ri, so even a redistribution of weight from βii to other βij produces only
minor error. Conversely, when A(i) is large, intra-subject responses differ substantially, and the
redistributed weights amplify reconstruction error.

Combining equation 31 and equation 33, we conclude that co-editing additional same-subject sam-
ples (i) monotonically decreases βii, (ii) redistributes weight into off-diagonal βij , and (iii) yields
residuals bounded by the intra-subject alignment A(i). Therefore, massive editing performance
crucially depends on the degree of alignment within the subject cluster.

D DETAILED EXPERIMENT SETUP

In the following, we provide detailed experimental configurations, including the description of the
datasets, introduction of baselines, explanation of evaluation metrics, and implementation details.

D.1 DATASETS AND BASELINES

We evaluate the performance of model editing techniques using the following datasets:

• CounterFact (Meng et al., 2022) is a benchmark for evaluating factual knowledge localization
and editing in LLMs. It contains 21,917 entries that describe the named entities along with their
counterfactual variations. Model editing techniques could be evaluated in terms of editing efficacy,
generalization, and locality. The benchmark also contains generation prompts to test the model’s
generation ability after editing.

• ZsRE (Levy et al., 2017) is a question-answering (QA) benchmark designed to evaluate zero-shot
relation extraction capabilities of language models. Entries in the benchmark consist of a subject
entity along with an answer as the editing target. The benchmark also includes paraphrased ques-
tions for testing generalization ability and irrelevant questions for evaluating the locality of editing
techniques.

• Wiki-recent (Zhang et al., 2024) contains 1,266 entries of triplets that have been added into
WIKIDATA after July 2022. The benchmark enables insertion for models that were trained prior
to the introduction of these facts. This simulates the cases of editing outdated models with newly
introduced facts. Model editing techniques are evaluated in terms of editing efficacy, portabil-
ity, and locality. Here, portability emphasizes whether the edited model could reason about the
downstream effects of facts when they are inserted into the model.

We proceed to introduce baseline methods evaluated in the paper. For all baseline methods, we use
the official implementation provided by the authors.

• MEND (Mitchell et al., 2022a) requires extra parameters for efficiently editing pretrained LLMs.
It introduces a set of small auxiliary networks that transform standard fine-tuning gradients into
low-rank updates, enabling fast and localized edits without retraining the entire model. This
approach offers a scalable solution for post-hoc model editing, avoiding the overfitting issue of
traditional fine-tuning methods.

• ROME (Meng et al., 2022) performs factual knowledge editing by directly modifying the feed-
forward weights in specific layers of LLMs. It first identifies that factual knowledge is primarily
stored in mid-layer feed-forward modules, thereby demonstrating the feasibility of editing model
parameters to update internal knowledge. The method then updates these weights to encode spe-
cific factual associations. ROME achieves precise insertion of new facts with minimal interference
to unrelated knowledge. When evaluating using ROME, we edit all facts sequentially with batch
size 1, as it does not support batch editing.
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• MEMIT (Meng et al., 2023) is designed to efficiently update LLMs with thousands of factual as-
sociations simultaneously. Building upon ROME, MEMIT employs a least-squares optimization
over multiple key-value memory components, ensuring high specificity and minimal interference
with unrelated knowledge. It further distributes the updates across multiple layers, which helps
reduce the impact on the model’s general capabilities.

• PMET (Li et al., 2025) is a method designed to enhance the precision of knowledge updates in
large language models. Unlike prior approaches that treat transformer layer (TL) hidden states as
direct inputs of the feed-forward network (FFN), PMET recognizes that these hidden states also
encompass information from multi-head self-attention (MHSA) and residual connections. PMET
proceeds to simultaneously optimize MHSA and FFN hidden states and use the optimized TC
hidden states of FFN to precisely update FFN weights. This approach enables more accurate
and efficient model editing, preserving the integrity of the model’s existing knowledge while
incorporating new information.

• ALPHAEDIT (Fang et al., 2024) preserves knowledge in LLMs during sequential updates by
projecting updates onto the null space of the preserved knowledge. This could ensure that new
modifications do not interfere with previously stored information. This approach maintains the
integrity of the model’s existing knowledge while enabling precise edits.

D.2 METRICS

We now introduce the metrics used for CounterFact, Wiki-recent and ZsRE respectively.

D.2.1 COUNTERFACT METRICS

Given an LLM fθ, a knowledge fact tuple (subject si, relation ri), a target output oi and the original
output oci , we define the following metrics:

• Editing Efficacy: Unlike previous works that evaluate the portion of cases where oi is more
probable than oci , we directly compute the average top-1 accuracy of edited samples.

Ei[oi = argmax
o

Pfθ (o | (si, ri))] (34)

• Generalization: Average top-1 accuracy of the edited model on rephrased statements N((si, ri))
of the original knowledge fact. Rephrased statements share the same semantic meaning with the
original statements.

Ei[oi = argmax
o

Pfθ (o | N((si, ri)))] (35)

• Specificity: The portion of cases where oci is more probable than oi with neighboring statements
O((si, ri)). Neighboring statements are constructed using prompts which share distinct but se-
mantically related subjects with the original knowledge fact.

Ei[Pfθ (o
c
i | O((si, ri))) > Pfθ (oi | O((si, ri)))] (36)

• Fluency: Fluency score measures the quality of the generated text. It scores low if the generated
text contains excessive repetition.

−2

3

∑
k

g2(k) log2 g2(k) +
4

3

∑
k

g3(k) log2 g3(k) (37)

where g2(k) and g3(k) are the probabilities of bigram and trigram k respectively.

D.2.2 WIKI-RECENT METRICS

Given a LLM fθ, a knowledge fact tuple (si, ri), a target output oi and the original output oci , we
define the following metrics:

• Editing Efficacy: Average top-1 accuracy of edited samples.

Ei[oi = argmax
o

Pfθ (o | (si, ri))] (38)
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• Portability: Average top-1 accuracy of the edited model on portability prompts P ((si, ri)) of
the original knowledge fact. Portability prompts contain three parts: alias prompts, composi-
tionality and reasoning prompts, and logical generation prompts. Specifically, alias prompts are
constructed by replacing the subject si with an alias or synonym. Compositionality and reasoning
prompts require the post-edit model to conduct reasoning about the changed fact. Logical genera-
tion prompts are changes that are semantically related to the modified fact and expected to change
by the edit.

Ei[oi = argmax
o

Pfθ (o | P ((si, ri)))] (39)

• Locality: Average top-1 accuracy of the edited model on neighboring prompts O((si, ri)) of the
original knowledge fact.

Ei[oi = argmax
o

Pfθ (o | O((si, ri)))] (40)

• Fluency: Fluency score measures the quality of the generated text. It scores low if the generated
text contains excessive repetition.

−2

3

∑
k

g2(k) log2 g2(k) +
4

3

∑
k

g3(k) log2 g3(k) (41)

where g2(k) and g3(k) are the probabilities of bigram and trigram k respectively.

D.2.3 ZSRE METRICS

Given a LLM fθ, a knowledge fact tuple (si, ri), a target output oi and the original output oci , we
define the following metrics:

• Editing Efficacy: Average top-1 accuracy of edited samples.
Ei[oi = argmax

o
Pfθ (o | (si, ri))] (42)

• Generalization: Average top-1 accuracy of the edited model on generalization prompts
N((si, ri)) of the original knowledge fact.

Ei[oi = argmax
o

Pfθ (o | N((si, ri)))] (43)

• Locality: Average top-1 accuracy of the edited model on neighboring prompts O((si, ri)) of the
original knowledge fact.

Ei[oi = argmax
o

Pfθ (o | O((si, ri)))] (44)

D.2.4 EXAMPLES OF EVALUATION PROMPTS WITH PREFIXES

We provide examples of evaluation prompts with prefixes in the following. For the evaluated prompt
"The mother tongue of Danielle Darrieux is French", corresponding evaluated prompts with ten
distinct 5-token prefixes are:

Example Prompts with Prefixes

• The doctor’s office was too. The mother tongue of Danielle Darrieux is French.
• Therefore, the average speed of. The mother tongue of Danielle Darrieux is French.
• You can find many examples of. The mother tongue of Danielle Darrieux is French.
• However, the government’s new. The mother tongue of Danielle Darrieux is French.
• And so, as the night. The mother tongue of Danielle Darrieux is French.
• While the world of sports and. The mother tongue of Danielle Darrieux is French.
• To make a cake, you. The mother tongue of Danielle Darrieux is French.
• Nevertheless, the overall sentiment of. The mother tongue of Danielle Darrieux is French.
• Never tried it before. The mother tongue of Danielle Darrieux is French.
• He realized that the people of. The mother tongue of Danielle Darrieux is French.
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For model evaluation, we generate prefixes by prompting the unedited model with the follow-
ing initial words: "The", "Therefore", "You", "However", "And", "While", "To", "Nevertheless",
"Never", and "He". These initial words are used to generate diverse 5-token prefixes, which are then
prepended to each edited fact during the evaluation process. This approach ensures a comprehensive
assessment of the model’s performance across different linguistic contexts.

D.3 IMPLEMENTATION DETAILS

We implement all experiments on a single NVIDIA H800 GPU with 80GB memory. During opti-
mization, we iterate for 25 steps with 0.5 learning rate. We set M = 50 for balancing the fine-grained
alignment and optimization efficiency. The details of our implementation across different models
are outlined as follows:

• LLAMA2-7B: We modify layers [3, 4] for editing factual knowledge. The hyperparameters λs
are set to [4000, 4000] respectively for two layers. We set λKL = 2 and λMSE = 8.

• Qwen-2.5-7B: We modify layers [3, 4] for editing factual knowledge. The hyperparameters λs
are set to [500, 500] respectively for two layers. We set λKL = 1.5 and λMSE = 8.

• LLaMA2-13B: We modify layers [3, 4] for editing factual knowledge. The hyperparameters λs
are set to [4000, 4000] respectively for two layers. We set λKL = 1.5 and λMSE = 8.

• Falcon-7B: We modify layers [3, 4] for editing factual knowledge. The hyperparameters λs are
set to [1000, 1000] respectively for two layers. We set λKL = 2 and λMSE = 8.

• Deepseek-base-7B: We modify layers [3, 4] for editing factual knowledge. The hyperparameters
λs are set to [4000, 4000] respectively for two layers. We set λKL = 4.5 and λMSE = 8.

• LLaMA3-8B: We modify layers [3, 4] for editing factual knowledge. The hyperparameters λs
are set to [1000, 1000] respectively for two layers. We set λKL = 2 and λMSE = 8.

We justify our choice of editing layers by comparing against the common settings used in prior work
(Meng et al., 2023; Li et al., 2025; Meng et al., 2022). On LLaMA2-7B, we evaluate EAMET with
different layer combinations when editing 10,000 facts from CounterFact and ZsRE. As shown in
Table 7, EAMET achieves higher efficacy and generalization with layers [3, 4] compared to [4, 5, 6,
7, 8].

Table 7: Performance comparison of EAMET on LLAMA2-7B with different layer selections.

Layers Counterfact ZsRE
Eff.↑ Gen.↑ Spe.↑ Flu.↑ Eff.↑ Gen.↑ Spe.↑

3, 4 89.09 61.21 72.19 519.23 89.47 81.34 15.70
4, 5, 6, 7, 8 77.58 36.83 73.43 516.63 87.14 76.91 15.92

This effect arises because, as the edited layer becomes deeper, the similarity between key embed-
dings of different knowledge items increases. As shown in Figure 7, the average similarity across
layers of LLaMA2-7B grows with layer depth. When the last edited layer is 8, the average similarity
is nearly twice that of layer 4. This growth makes it more difficult to align the memory embedding
space with the key embedding space, since KL divergence primarily captures distributional differ-
ences and we only apply MSE loss to the top-M cosine similarities. Applying MSE to all cosine
similarities may lead to vanishing gradients. As the number of similarities grows, the strongest
ones become diluted, which slows convergence and hinders optimization. Such misaligned memory
embeddings can substantially degrade both the effectiveness and robustness of massive editing.

E ALGORITHMIC DESCRIPTION OF EAMET

In this section, we present a detailed description of the EAMET algorithm in Algorithm 1. The
procedure consists of three main stages: (1) key embedding preparation, (2) aligning memory em-
beddings with key embeddings, and (3) distributing MLP updates across candidate layers.
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Figure 7: Average of key similarities across different layers of LLaMA2-7B when editing 500 knowl-
edge items.

Algorithm 1: The EAMET Algorithm

1 Data: Requested edits E = {(si, reli, oi)}, generator G, layers to edit S , covariances Cl

2 Result: Modified generator containing edits from E
3

4 K ← []
5 L← final layer of candidate layersR
6 for si, reli, oi ∈ E do
7 kLi ← kLi = 1

NFP

∑NFP

j=1 k(fj ⊕ si)

8 K ← K ∪ {kli}

9 Pk ← {P (i,j)
k = cos(ki, kj) | j ̸= i, ki, kj ∈ K}

10 R← []
11 for si, reli, oi ∈ E do
12 ri ← hL

i // Initialize ri as the original hidden state

13 P
(i)
r ← {P (i,j)

r | j < i, rj ∈ R}
14 P̄

(i)
k ← {P (i,j)

k | j < i, kj ∈ K}
15 LKL(i) = KL

(
P

(i)
r ∥ P̄ (i)

k

)
16 IK ← indices of the top M largest elements in P̄

(i)
k

17 LMSE(i) =
1
M

∑
j∈IK

∥∥P (i,j)
r − P

(i,j)
k

∥∥2
18 ri ← argminri

1
NFP

∑NFP

j=1 − logPG
(hL

i
+=ri)

[oi |
fj ⊕ tp(si, ri)] + λKLLKL(i) + λMSELMSE(i)

19 zi ← hL
i + ri

20 R← R ∪ {ri}
21 for l ∈ R do
22 hl

i ← hl−1
i + ali +ml

i
23 for si, reli, oi ∈ E do
24 kli ← kli =

1
NFP

∑NFP

j=1 k(fj ⊕ si)

25 rli ←
zi−hL

i

L−l+1 // Distribute over remaining layers

26 Kl ← [kl1, . . . , k
l
Nt

]

27 Rl ← [rl1, . . . , r
l
Nt

]

28 ∆← RlKlT (Cl +KlKlT )−1

29 W l ←W l +∆ // Update layer l MLP weights in model
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Key Embedding Preparation. Following prior work (Meng et al., 2022; 2023; Li et al., 2025), we
evenly distribute MLP updates across the critical target layersR. We denote by L the final candidate
layer where new memories are fully represented (Line 5). Before optimizing residual embeddings,
we first compute the key embeddings for each target edit (Line 7). To improve generalization, each
subject is augmented with NFP−1 random prefixes of fixed length fi. All resulting key embeddings
are aggregated into a matrix K (Line 8). We then compute pairwise cosine similarities among key
embeddings to obtain Pk (Line 9).

Aligning Memory Embeddings with Key Embeddings. For each target edit, we initialize the
residual embedding with the original hidden state (Line 12), since it naturally corresponds to the
associated key embedding and thus provides a good starting point. We compute cosine similarities
among residual embeddings to form P

(i)
r (Line 13), and extract the corresponding key embedding

structure P̄ (i)
k (Line 14). Alignment is achieved by minimizing the KL divergence between P

(i)
r and

P̄
(i)
k (Line 15). To further refine alignment, we select the indices IK corresponding to the top M

similarities in P
(i)
k (Line 16) and minimize the MSE loss between P

(i)
r and P

(i)
k restricted to these

indices (Line 17). The optimized residual embedding ri is obtained by minimizing this combined
objective (Line 18) and stored in the set R (Line 19).

Distributing MLP Updates Across Candidate Layers. We update MLP modules sequentially
across layers l ∈ R, as earlier edits affect subsequent representations. For each candidate layer, we
compute key embeddings kli for all edits (Line 24) and residual embeddings rli, distributing them
proportionally across layers (Line 25). These embeddings are then aggregated into Kl and Rl (Lines
26-27) to update the MLP weights with ∆ (Lines 28-29).

F ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present additional experiments and findings to further validate the effectiveness
of EAMET. We begin by evaluating editing performance across different semantic categories. Next,
we assess its impact on the model’s general capabilities using the GLUE benchmarks. We then
report results on two additional LLMs, Gemma-7B (Team et al., 2024) and Phi-1.5 (Li et al., 2023).
We also examine how the order of edits affects EAMET’s performance. Furthermore, we explore its
integration with sequential editing, showing that embedding alignment enables larger batch sizes per
step and thus reduces the number of steps needed to edit the same set of knowledge items. Finally,
we provide an ablation study on combining KL loss and MSE loss, along with a comprehensive
analysis of the hyperparameters λKL, λMSE , and M .

F.1 EDITING PERFORMANCE INVOLVING DIFFERENT SEMANTICS

Additional Finding 1. EAMET Achieves Superior Editing Performance Across Different Se-
mantics. We extract samples with specific relation types from the CounterFact dataset to evaluate
the performance of different editing methods across semantic categories. As shown in Figure 8,
EAMET consistently achieves the highest editing efficacy and generalization on both LLaMA2-7B
and Qwen2.5 for most semantic types. On LLaMA2-7B, EAMET outperforms the second-best
method (PMET) by approximately 10% in efficacy and 20% in generalization. In terms of editing
specificity, EAMET performs better on Qwen2.5 than on LLaMA2. On LLaMA2, PMET surpasses
EAMET by an average of 5%, whereas on Qwen2.5, EAMET achieves the highest specificity on 6
out of 8 relation types.

We observe an interesting phenomenon on the twin-city relation of LLaMA2-7B: EAMET achieves
2× higher efficacy and 4× higher generalization compared to PMET, while MEMIT nearly fails
on this relation, yielding efficacy and generalization scores close to 0%. This occurs because facts
involving the twin-city relation are typically expressed in forms such as The twin city of subject or
What is the twin city of subject?. The key embeddings, which are extracted from the last subject
token, are therefore highly similar across facts due to the shared prefixes in these templates. As
a result, reconstructing each individual update ∆ki = ri from the global update ∆ computed in
Equation (4) requires proper alignment between key embeddings and residual embeddings. Methods
lacking this alignment constraint struggle to separate the highly overlapping keys, leading to poor
performance on this relation.
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Figure 8: Performance comparison of different editing methods across different semantics.

F.2 GENERAL ABILITY OF EDITED MODELS ON GLUE BENCHMARKS

Additional Finding 2. EAMET Better Preserves the General Ability of LLMs After Massive
Editing. We examine whether large-scale editing degrades the general capabilities of LLMs under
MEMIT, PMET, and EAMET. Specifically, we evaluate three models (LLaMA2-7B, Qwen2.5-7B,
and LLaMA3-8B) on the GLUE benchmark (Wang et al., 2018) after editing 10,000 knowledge
facts from CounterFact and ZsRE. For reference, we also report the performance of the unedited
models. As shown in Figure 9, EAMET consistently yields the smallest performance deviation
from pre-edit baselines. On Qwen2.5-7B, the average deviation across six GLUE tasks is only
0.083 for CounterFact and 0.032 for ZsRE, substantially lower than MEMIT (0.266 and 0.349) and
PMET (0.310 and 0.276). A similar trend holds for LLaMA3-8B and LLaMA2-7B: on CounterFact,
EAMET achieves average deviations of 0.083 and 0.025, compared to 0.155 and 0.043 for MEMIT,
the second-best method.

We attribute this robustness to EAMET’s ability to extract more aligned memory representations
across knowledge items. Such alignment reduces the likelihood of embedding inconsistency be-
tween key and residual spaces during massive editing, which may compromise the model’s general
capabilities. By mitigating this interference, EAMET effectively preserves the original functionality
of the LLM.

F.3 EVALUATION ON ADDITIONAL LLMS

We further evaluate the performance of EAMET on two additional LLMs: Gemma-7B and Phi-1.5.
As shown in Table 8, EAMET consistently achieves the highest editing efficacy and generalization
across both models and datasets. Moreover, it maintains competitive performance in terms of editing
locality and generation ability.
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Figure 9: General ability of pre-edited model and models edited by different methods on GLUE
benchmarks

Table 8: Performance comparison of different editing methods on Gemma-7B and Phi-1.5 on the
Counterfact and ZsRE benchmarks.

Model Method Counterfact ZsRE
Eff.↑ Gen.↑ Spe.↑ Flu.↑ Eff.↑ Gen.↑ Spe.↑

Gemma-7B
MEMIT 93.01 54.33 74.88 538.92 84.61 73.66 23.04
PMET 91.69 47.24 75.22 533.62 83.05 73.95 23.85

EAMET 95.29 68.53 70.22 530.93 91.69 86.43 23.37

Phi-1.5
MEMIT 49.00 29.67 63.71 568.21 49.76 38.54 20.36
PMET 38.49 20.75 67.01 579.19 32.00 24.47 21.54

EAMET 67.76 40.13 62.08 580.92 60.61 45.42 21.29

F.4 INTEGRATION WITH SEQUENTIAL EDITING

We further examine the impact of EAMET on sequential editing. We hypothesize that incorporat-
ing embedding alignment can increase the effective batch size at each step, thereby reducing the
number of steps required to edit the same set of knowledge items. To this end, we adopt the state-
of-the-art sequential editing method AlphaEdit, which preserves knowledge in LLMs by projecting
updates onto the null space of preserved knowledge. To evaluate the benefit of embedding align-
ment, we replace AlphaEdit’s target memory optimization with EAMET, resulting in a variant we
call AlphaEdit-Aligned. Importantly, this substitution does not alter AlphaEdit’s core design, since
the method was not originally tailored for optimizing target memory. We then compare AlphaEdit
and AlphaEdit-Aligned when editing 2,000 knowledge items on LLAMA2-7B from the Counterfact
and ZsRE datasets, varying the batch size across 100, 200, 400, and 500 to evaluate how batch size
influences performance.

Additional Finding 3. Integrating Embedding Alignment with Sequential Editing Enables
Larger Batch Sizes. As shown in Table 9, AlphaEdit-Aligned consistently outperforms AlphaEdit
across all batch sizes, indicating that embedding alignment effectively enlarges the batch size per
step. The improvement is especially pronounced on the Counterfact dataset, where batch editing
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Table 9: Performance comparison of AlphaEdit and its version itegrated with EAMET on the Coun-
terfact and ZsRE benchmarks.

Method Batch Size Counterfact ZsRE
Eff.↑ Gen.↑ Spe.↑ Flu.↑ Eff.↑ Gen.↑ Spe.↑

AlphaEdit

100 49.10 39.13 61.01 331.83 95.75 87.75 17.05
200 47.85 40.75 61.25 324.23 95.05 87.70 17.00
400 41.55 37.03 59.51 228.53 94.80 86.75 16.80
500 39.05 40.25 59.70 306.72 94.50 86.15 16.85

AlphaEdit-Aligned

100 96.75 66.13 66.48 505.59 96.55 87.75 17.00
200 96.45 65.73 66.44 505.47 96.80 87.30 16.95
400 96.45 64.85 66.33 505.82 95.61 86.95 16.80
500 96.40 65.66 66.38 506.63 95.50 87.15 16.85

is notably more difficult without aligning key and residual embeddings. These results suggest
that EAMET can be seamlessly integrated into sequential editing to further enhance editing per-
formance.

F.5 ABLATION STUDY

Table 10: Ablation study of EAMET components on Counterfact and ZsRE datasets.

Method Counterfact ZsRE
Eff.↑ Gen.↑ Spe.↑ Flu.↑ Eff.↑ Gen.↑ Spe.↑

EAMET (Full) 89.09 61.21 72.19 519.42 89.47 81.34 15.70
w/o KL Loss 83.45 60.16 71.70 519.78 88.16 80.46 15.40
w/o MSE Loss 86.98 53.77 72.90 516.90 86.45 73.12 14.61

We further justify the design of combining KL loss and MSE loss by conducting ablations that re-
move either component. As shown in Table 10, the full version of EAMET consistently achieves
the best overall performance across both datasets, while excluding either loss results in a clear per-
formance drop. This confirms the effectiveness of our joint loss design.

Interestingly, the two losses exhibit different levels of importance depending on the dataset. On
Counterfact, removing KL loss causes a 6% drop in editing efficacy, compared to only 2% when
removing MSE loss. In contrast, on ZsRE, excluding KL loss leads to a minor 1% drop, whereas
removing MSE loss results in a larger 3% decline. This difference stems from the structure of the
datasets: in Counterfact, each knowledge item has a unique subject, making their key embeddings
nearly orthogonal (low cosine similarity). Here, KL loss, which captures distributional differences
across embeddings, plays a more critical role, while MSE contributes less. In ZsRE, however, many
items share the same subject, leading to highly similar key embeddings (high cosine similarity). In
this case, MSE loss is more important, as it directly aligns residual embeddings with their corre-
sponding key embeddings within these subject-specific neighborhoods.

F.6 EFFICIENCY ANALYSIS

We provide anaysis on the practical deployment cost of EAMET compared with MEMIT. We note
that EAMET and MEMIT follow highly similar workflows for updating knowledge in LLMs: both
require per-fact residual optimization. EAMET involves two additional steps: 1) the key embedding
preparation stage, and 2) embedding alignment between the key and residual structures. We proceed
to provide efficiency analysis on these two additional steps.

The Cost of Key Embedding Preparation Stage. We note that the key embedding preparation
stage consists of two parts: 1) computing the key embeddings for all knowledge items to be edited
at the target layer, and 2) computing the cosine similarities among all key embeddings. As shown
in Table 11, retrieving key embeddings accounts for the majority of the time spent in the key prepa-
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Table 11: Cost of key preparation steps as the number of edited facts increases.

Number of Facts Key Embeddings Cost Similarities Cost
10 1.1035 0.0015
100 10.6915 0.00153

1000 107.17 0.00034
2000 214.14 0.00025
5000 536.17 0.0007

10000 1076.18 0.00058

ration stage. Although computing key embeddings for 10,000 facts requires a nontrivial amount
of time, this cost remains negligible (only about 1.8%) relative to the overall runtime of EAMET
(59,154 s) and MEMIT (57,822 s) when editing 10,000 facts. In contrast, the runtime cost of comput-
ing pairwise cosine similarities among all key embeddings is trivial (below 0.002 s). This is because
the operation can be efficiently executed by first normalizing all key embeddings to unit length and
then performing dot-product computations, which are highly optimized on modern GPUs.

Table 12: Runtime and GPU memory cost for EAMET and MEMIT.

Method Optimizing 1 ri Editing 1 Fact Editing 100 Facts
Time GPU Time GPU Time GPU

EAMET 5.62s 4.28GB 26.98s 7.41GB 645.94s 9.78GB
MEMIT 5.59s 4.07GB 22.39s 7.18GB 636.94s 9.18GB

The Cost of Embedding Alignment Stage. As shown in Table 12, optimizing one residual in
EAMET requires only an additional 0.03 seconds and 0.21 GB of memory compared to MEMIT. For
the full editing of a single fact, EAMET incurs an extra 4.6 seconds, and this difference increases to
9 seconds when editing 100 facts. Although EAMET is slightly slower than MEMIT, the additional
time and memory consumption are negligible, representing only 1.4% and 6.5% of MEMIT’s overall
cost, respectively. These results confirm that EAMET’s improvements do not come at the expense
of substantial deployment overhead; its runtime and resource requirements remain practical and
comparable to MEMIT.

F.7 RESULTS ON SMALL-SCALE EDITING

We further provide empirical results to demonstrate the performance of EAMET under single-edit
or small-batch scenarios in LLaMA2-7B.

As shown in the table above, EAMET consistently outperforms MEMIT across all scales. Both
methods perform similarly at 1 and 10 edits, achieving perfect efficacy with comparable general-
ization and specificity. However, once the number of edited facts exceeds 100, their performance
diverges rapidly. Starting from 100 edits, EAMET maintains high quality (99.80% efficacy; 69.00%
generalization), while MEMIT begins to decline (96.20%; 55.50%). As the scale grows to 1,000,
2,000, and 5,000 edits, EAMET continues to deliver strong results (94%-98% efficacy; 65%-68%
generalization), whereas MEMIT degrades sharply, dropping from 49.98% and 36.25% at 1,000
edits to only 28.83% and 25.77% at 5,000 edits.

F.8 ANALYSIS ON THE PERFORMANCE DIFFERENCE OF EAMET ACROSS LLMS AND
DATASETS

Among the evaluated datasets (CounterFact, Wiki-recent, and ZsRE), Wiki-recent contains only
1,266 facts, whereas we edit 10,000 facts from each of the other two datasets. It is therefore expected
that existing baseline methods also achieve relatively strong performance on Wiki-recent, although
they still underperform EAMET.
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Table 13: Performance comparison of EAMET and MEMIT across different numbers of edited facts
on CounterFact and ZsRE datasets.

Methods # Facts CounterFact ZsRE

Eff.↑ Gen.↑ Spe.↑ Flu.↑ Eff.↑ Gen.↑ Spe.↑

EAMET

5000 94.38 65.09 76.37 523.78 93.18 83.56 15.43
2000 96.77 66.25 79.66 526.28 94.00 84.15 15.42
1000 97.93 68.05 81.71 526.31 95.50 84.90 16.34
100 99.80 69.00 82.83 525.23 96.00 87.00 15.40
10 100.00 70.00 80.00 524.71 100.00 70.00 13.67
1 100.00 100.00 100.00 524.59 100.00 100.00 0.00

MEMIT

5000 28.83 25.77 61.27 515.46 82.46 70.32 14.98
2000 32.94 28.28 62.49 517.70 83.60 71.55 14.66
1000 49.98 36.25 64.51 517.64 84.30 71.90 14.10
100 96.20 55.50 84.55 519.38 85.00 74.00 14.67
10 100.00 60.00 80.00 523.90 100.00 100.00 14.23
1 100.00 100.00 100.00 524.30 100.00 60.00 0.00

For CounterFact and ZsRE, we observe that the performance gains of EAMET over prior meth-
ods differ across datasets. On CounterFact, the average improvement in editing efficacy over the
second-best method is 8.01%, with the smallest improvement being 0.11%. On ZsRE, the average
improvement increases to 14.48%, with the smallest improvement being 7.28%. We attribute this
difference to how well each model generates distinct key embeddings for semantically unrelated
facts. When key embeddings are not well separated and no alignment is enforced between key and
residual embeddings, the reconstruction loss for individual facts inevitably increases.

To validate this argument, we analyze the cosine similarity among key embeddings generated by
different models over 1,000 sampled facts from CounterFact and ZsRE. The table below reports the
average cosine similarity for each model:

Table 14: Average cosine similarity among key embeddings for different models over 1,000 sampled
facts from CounterFact and ZsRE.

Models CounterFact ZsRE
LLaMA2-7B 0.052843 0.048565

Qwen-7B 0.020466 0.022588
DeepSeek-7B 0.027811 0.029843

Falcon-7B 0.192273 0.196075

As shown in the table, different models exhibit varying inherent abilities to produce well-separated
key embeddings. For LLaMA2-7B, key embeddings remain relatively entangled even for Coun-
terFact, where each fact contains a distinct subject. This limited separation corresponds to lower
MEMIT editing efficacy (24.95%), DeepSeek-7B exhibits a similar pattern, achieving 62.11% In
contrast, Falcon-7B and Qwen-7B generate much more isolated key embeddings (0.1923 and 0.0205
on average), which aligns with their substantially higher MEMIT editing efficacy of 89.21% and
90.06%, respectively.

For ZsRE, many samples share identical subjects, making alignment between key and residual em-
beddings generally more challenging. Methods that do not enforce such alignment tend to struggle
under this condition, leading to a more pronounced advantage for EAMET over prior approaches.

Overall, these results indicate that a model’s inherent ability to generate well-separated key embed-
dings has considerable impact on editing performance. Despite these differences across models and
datasets, EAMET consistently achieves the best results on all evaluated settings and LLMs.
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Figure 10: Impact of λKL and λMSE on EAMET’s performance.

F.9 DETAILED HYPERPARAMETER ANALYSIS

We analyze the impact of λKL and λMSE on EAMET’s performance when editing 10,000 knowl-
edge items from the ZsRE dataset. As shown in Figure 10, EAMET is more sensitive to the choice
of λKL than λMSE . A small λKL weakens the alignment between residual and key embeddings,
resulting in poor massive editing performance, whereas reducing λMSE only causes a negligible
drop in efficacy. The best performance is achieved when λKL = 2 and λMSE = 8, which are
the hyperparameters adopted in the main paper. Increasing either weight beyond this point leads to
decreased efficacy, as the optimization places less emphasis on updating new knowledge items.

Table 15: Impact of M on EAMET’s performance.

M
Counterfact ZsRE

Eff.↑ Gen.↑ Spe.↑ Flu.↑ Eff.↑ Gen.↑ Spe.↑
5 87.23 54.74 73.95 517.58 88.10 79.56 15.51
10 87.96 57.58 74.25 517.38 88.89 79.62 15.63
50 89.09 61.21 73.69 519.89 89.47 81.34 15.70
100 86.17 86.85 74.52 517.01 89.02 81.14 15.70

We further analyze the impact of M , which is the number of cosine similarities selected for comput-
ing the MSE loss. As shown in Table 15, EAMET’s editing performance on both datasets generally
improves as M increases, reaching a peak around (M = 50), and then declines when M becomes too
large. When M is small (e.g., M = 5), the alignment relies mainly on the KL-based distributional
constraint, which enforces global structural consistency but does not guarantee precise value-level
alignment between key embeddings and residual embeddings. Increasing M strengthens this value-
based alignment and thus improves editing efficacy and generalization. However, when M becomes
excessively large (e.g., M = 100), the dataset may not contain enough key embeddings that are
meaningfully similar to the target key. As a result, the MSE loss becomes diluted across many low-
relevance pairs, forcing the model to match less informative cosine similarities. This weakens the
effectiveness of the alignment and causes a drop in overall performance.

Additional Finding 4. EAMET is Insensitive to The Choice of Hyperparameters. EAMET intro-
duces three additional hyperparameters: λKL, λMSE, and M . We analyze the impact of λKL and λMSE
in Figure 10, and the influence of M in Table 15. As shown in these results, when editing 10,000
CounterFact facts on LLaMA2-7B, different settings of λKL, λMSE, and M do affect performance,
but EAMET remains largely insensitive to the exact choice of values. For example, Figure 10 shows
that setting λKL = 2 yields the lowest editing efficacy (85.3%). Although this is about 4% below the
best-performing configuration, it still surpasses PMET and MEMIT by 11% and 51%, respectively.
Likewise, varying λMSE or M changes performance by less than 3% between the best and worst
cases. These findings demonstrate that EAMET is robust to the choice of hyperparameters.

G SPECIFIC CASES

In this section, we present representative editing examples from the CounterFact dataset to qualita-
tively assess the generalization performance of different editing methods after editing 10,000 facts
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on LLaMA2-7B and Qwen2.5-7B. These examples reveal that baseline methods often fail to gener-
ate the correct target answers or produce repetitive and incoherent responses. In contrast, EAMET
consistently retrieves the intended factual content while producing fluent and informative comple-
tions, further validating the robustness and effectiveness of our proposed method.

Model Editing Example on LLaMA2-7B

Target Edit The original language of The Icelandic Dream was

Original Object Icelandic

Target Object Tamil

Generation Output

EAMET

The Icelandic Dream is full of people who speak Tamil,
and the film is in Tamil. The film is about a family of
Tamil refugees who are trying to make a new life for them-
selves in Europe. The film is about the struggles of the
refugees, and the film is about the struggles of the people
who are trying to make a

MEMIT

The Icelandic Dream is full of people who speak English,
and the locals are very friendly. is is, a Belgian chain,
has 100 restaurants in the UK, and is opening 10 more this
year.„, a Belgian chain, has 100 restaurants in the UK, and
is opening 1

PMET

The Icelandic Dream is full of people who speak in a lan-
guage that is not English. The Icelandic Dream is a film
about the immigrant experience. It is a film about the immi-
grant experience. It is a film about the immigrant experience.
It is a film about the immigrant experience. It is a film about
the

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Model Editing Example on Qwen2.5-7B

Editing Prompt Argentine Football Association belongs to the organization
of

Original Object FIFA

Target Object NATO

Generation Output

EAMET

Argentine Football Association is part of NATO. NATO is
military alliance. NATO is also called as what? NATO is a
military alliance that was formed in 1949. It is also known
as the North Atlantic Treaty Organization. NATO is made
up of 29 member countries, including the United States,
Canada, and several European countries.

MEMIT

Argentine Football Association is part of the American Foot-
ball Association. It is a group of American players who
are of African-American descent. The group was formed in
1991 and is based in the United States. The group is a mem-
ber of the International Football Association. The group is
also a member of the American Football Association. The
group is also

PMET

Argentine Football Association is part of NATO’s military
alliance with the United States. The alliance is also known
as the North Atlantic Treaty Organization or NATO. The al-
liance is a military alliance between the United States and
NATO. The alliance is a military alliance between the United
States and NATO. The alliance is a military alliance between
the United States and NATO. The alliance [repetitive
pattern]
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