
Under review as submission to TMLR

INTEGRATE: Distance based Graph Convolutional Networks
for Statistical Relational Learning

Anonymous authors
Paper under double-blind review

Abstract

Recently, several successful methods for learning embeddings of large knowledge bases have
been developed. They have been motivated through the necessity of learning and reasoning
about various entities, their attributes and relations present in the knowledge bases. A
potential limitation of much of this line of research is that the inherent multi-relational
structure of the network is not exploited since only the node features are taken into account
by these set of methods. To overcome this limitation, graph convolutional networks (GCNs)
were proposed that generalized neural network models to multi-relational, graph-structured
data sets. We consider the problem of learning distance-based Graph Convolutional Networks
(GCNs) for multi-relational data within statistical relational learning. Specifically, we first
embed the original graph into the Euclidean space Rm using a relational density estimation
technique thereby constructing a secondary Euclidean graph. The graph vertices correspond
to the target triples and edges denote the Euclidean distances between the target triples. We
emphasize the importance of learning the secondary Euclidean graph and the advantages of
employing a distance matrix over the typically used adjacency matrix. Our comprehensive
empirical evaluation demonstrates the superiority of our approach over 18 approaches spread
over different GCN models, relational embedding techniques, rule learning techniques and
relational models.

1 Introduction

Recently, several successful methods for learning embeddings of large knowledge bases have been developed
which have been motivated through the necessity of learning and reasoning about various entities, their
attributes and relations present in the knowledge bases (Lin et al., 2015; Shi & Weninger, 2017; Wang et al.,
2017). A potential limitation of much of this line of research is that the inherent multi-relational structure of
the network is not exploited since only the node features are taken into account by these set of methods. To
overcome this limitation, graph convolutional networks (GCNs) (Defferrard et al., 2016; Kipf & Welling, 2017)
were proposed that generalized neural network models to multi-relational, graph-structured data sets. Similar
to the convolution operators in convolutional neural networks (CNNs) that extract locally stationary features
in the inputs data, GCNs utilize the graph convolution operator defined with respect to the adjacency matrix
to extract local features from a semantic point of view. The main reason behind the success of GCNs is
that they exploit two key types of information: node feature descriptions and node neighborhood structure
(captured through the adjacency matrix of the graph). While successful, GCNs still have a limitation in that
they cannot directly be applied on multi-relational data/networks.

Statistical Relational Learning (SRL) (Koller et al., 2007; Raedt et al., 2016) combines the power of probabilistic
models to handle uncertainty with the ability of relational models to faithfully capture the rich domain
structure. One of the key successes of these models lie in the task of knowledge base population, specifically,
link prediction and node classification. While successful, most methods make several simplifying assumptions
– presence of supervision in the form of labels, closed-world assumption, presence of only binary relations and
most importantly, in many cases, presence of hand-crafted domain rules.

1

Under review as submission to TMLR

We go beyond these assumptions and inspired by this recent success of Graph Convolutional Networks (GCNs)
develop a new framework for relational GCNs for statistical relational learning. This framework has two
key steps: (1) create a secondary Euclidean graph from the original graph by learning rules from one-class
data, i.e., from the positive and negative annotations of the target relation separately. The next step is
to convert these rules into observed features i.e., instantiate and count the number of times the rules fire
and computes the distance matrix, and (2) finally, it trains a GCN using the observed features and the
distance matrix. For the first step, our method employs a one-class density estimation method that employs
a tree-based distance metric to learn relational rules iteratively. Hence, we call the framework as relatIonal
deNsity disTance basEd GRAph convoluTional nEtworks (INTEGRATE). Since the two different steps
of learning the relational rules and training the GCN employ the same set of positive examples, a richer
representation of the combination of the attributes, entities and their relations is obtained. While previous
methods used the features as the observed layer, INTEGRATE uses the rules as the observed layer. This
has the added advantage of the latent layer being richer – it combines the instantiations of first-order rules
themselves allowing for a richer representation. We hypothesize and show empirically that this is specifically
useful when employed on link prediction and node classification tasks. Although work exists on generating
similarity graphs using GNNs (Bai et al., 2018; 2019; Li et al., 2019), ours is the first method to use GCNs
on induced similarities graphs allowing for use of richer features.

Taking advantage of the graph structure and learning first-order rules can have a large impact on various real
world applications such as drug discovery, traffic prediction and real-world physical systems to name a few.
This is due to two reasons: (i) Features constructed by our method encapsulate information about entities as
well as the relationship between the entities in the relational space, and (ii) expert knowledge can be explicitly
encoded in the rules by either learning from this expert knowledge or by modifying the learned rules.

We make the following key contributions:

(1) We develop the first relational GCN capable of utilizing the different densities of the data separately.

(2) Going beyond using carefully designed hand-crafted rules, our method learns rules automatically
to construct a secondary graph and constructs the GCN. These two steps are conditioned on the
required task and allow for a better classifier and thus can learn with smaller data.

(3) INTEGRATE can handle arbitrary relations – not simple binary relations that most methods use.
Given that our base learner employs a logic learner, the relations can be n−ary.

(4) We show the advantages of using distance matrices and Euclidean distance to construct the distance
matrix.

Our evaluation across 14 different baselines and 7 different data sets clearly demonstrates the effectiveness of
INTEGRATE. The rest of the paper is structured as follows: We first start with introducing the necessary
background before introducing the building blocks of INTEGRATE, showing its effectiveness by extensive
experimental evaluation before concluding.

2 Background and Related Work

Notations: A (logical) predicate is of the form R(t1, . . . , tk) where R is a relation and the arguments ti are
entities. A substitution is of the form θ = {⟨l1, . . . , lk⟩/⟨t1, . . . , tk⟩} where lis are logical variables and tis
are terms. A grounding of a predicate with variables l1, . . . , lk is a substitution {⟨l1, . . . , lk⟩/⟨L1, . . . , Lk⟩}1

mapping each of its variables to a constant in the domain of that variable. A knowledge base B consists
of (1) entities: a finite domain of objects O, (2) relations: a set of predicates describing the attributes and
relationships between objects ∈ O, and (3) an interpretation assigning a truth value to every grounding of a
predicate.

Relational Density Estimation: A common issue in many real-world relational knowledge bases is that only
true instances of any relation(s) are labeled while the false instances are not explicitly identified. Consequently

1We use uppercase for relations/groundings and lowercase for variables.

2

Under review as submission to TMLR

closed-world assumption is applied to sample negative instances. While reasonable, this is a strong
assumption particularly when the number of positively labeled examples ≪ negatively labeled examples. In
the relational one-class classification (Khot et al., 2014) method, given a set of labeled examples, a distance
measure is used to perform one-class classification, which involves two levels of combinations: tree-level due to
learning multiple trees and instance-level due to the predicates containing variables and different instances for
each target. For example, in learning advisedBy(S,P) the first tree could consider the courses and the second
could consider the publications. The tree-level combining function combines the results from these two trees.
Now the student could potentially publish several papers, or register in multiple courses and inside each tree,
these different instances are combined using the instance level combining function (Jaeger, 2007; Natarajan
et al., 2008). In the tree-level distance computation, the distance between the current unlabeled example u is
calculated from a labeled example in all the learned first-order trees. Now the final distance is simply the
weighted combination of the individual tree-level distances: D(l1, u) =

∑
i βi di(l1, u) where βi is the weight

of the ith tree and
∑

i βi = 1, βi ≥ 0. These tree distances are then combined to get an overall distance
between the current example and all the labeled examples lj , E(u ̸∈ class) =

∑
j αjD(lj , u), where αj is

the weight of the labeled example lj and
∑

αj = 1, αj ≥ 0.

Knowledge Graph Embeddings (KGEs): Recently, several successful methods for learning embeddings
of large knowledge bases have been developed (Wang et al., 2017; Cai et al., 2018). Several of these approaches
such as TransE (Bordes et al., 2013), TransH (Wang et al., 2014), TransG (Xiao et al., 2016) and KG2E (He
et al., 2015), to name a few, can be grouped into translational distance models that focus on minimizing a
distance based function under some constraints or using regularizing factors between entities and relations.
More recent approaches extend these translation approaches by embedding the knowledge graphs into
more complex spaces such as the hyperbolic space (Balažević et al., 2019b; Kolyvakis et al., 2020) and the
hypercomplex space (Zhang et al., 2019; Sun et al., 2019). Another important class of approaches such
as RESCAL (Nickel et al., 2011), DistMult (Yang et al., 2015), TuckER (Balažević et al., 2019a), HypER
(Balažević et al., 2019c) and HolE (Nickel et al., 2016) focus on various compositional operators for the entities
and relations in the knowledge graph. Graph Convolutional Networks (GCNs): Graph Convolutional
Networks (GCNs) (Kipf & Welling, 2017) generalize convolutional neural network models to graph-structured
data sets where each convolution layer in the GCN applies a graph convolution i.e. a spectral filtering of the
graph signal (the feature matrix of the graph) via the Graph Fourier Transform. The main reason behind the
success of GCNs is that they exploit two key types of information: node feature descriptions (xi) and node
neighborhood structure (captured through the adjacency matrix A of the graph).

While successful, GCNs cannot directly be applied on multi-relational data/networks and require propo-
sitionalization techniques. Consequently, relational GCNs (Schlichtkrull et al., 2018) construct a latent
representation of the entities explicitly and a tensor factorization then exploits these representations for the
prediction tasks. We take an alternative approach based on a successful SRL approach (Khot et al., 2014; Lao
& Cohen, 2010) to develop novel combinations of the entities and their relationships to construct richer latent
representations. As we demonstrate empirically, this leads to superior predictive performance. In addition,
the use of relational rules as the observed layer of the GCN makes them more interpretable/explainable than
the tensor factorization approach.

Graph Structure Learning (GSL): There has been growing interest in the problem of graph structure
learning (GSL) that refers to learning (near) optimal graph structure from data that can then be used in
graph neural networks (GNNs) for downstream tasks (Jin et al., 2020; Zhao et al., 2021; Wu et al., 2022; 2023).
These representations have proved to be more effective than using raw input graphs with GNNs especially
in real-world applications such as traffic forecasting (Zhang et al., 2020) and drug-drug interaction (Park
et al., 2020). The issue with most of the GSL methods is that they only work with single edge type graphs.
INTEGRATE can fit in the GSL family although since we deal specifically with multi-relational data with
statistical relational learning our work can be thought to be orthogonal to the present GSL algorithms. We
point the interested readers to Chen & Wu (2022) for a more detailed discussion on GSL within GNNs.

3

Under review as submission to TMLR

Figure 1: Difference between GCN Kipf & Welling (2017) and INTEGRATE with an example input graph.
Here, CA is the CoAuthor relation to be predicted. The relational rule matrix is obtained by counting the
number of satisfied groundings of the obtained first-order rules (R1 - Rm) wrt the query variables and is a
richer representation of the graph structure.

3 INTEGRATE (Statistical Relational Learning and GCNs)

Direct application of GCNs cannot fully exploit the inherent structures inside a multi-relational graph.
Consequently, they need significant engineering to construct the propositionalized features. Motivated by this,
we propose a principled extension to the GCN that models large multi-relational networks faithfully. While
a recent work R-GCN (Schlichtkrull et al., 2018) extends GCNs to relational domains, it is still limited to
graphs represented as (subject; predicate; object) triples and requires multiple adjacency matrices for handling
multi-relational data. We propose a novel and a more general approach that is not limited by assumptions
about the multi-relationality of the data and can handle general multi-graphs and hypergraphs without loss
of information. We can now formally define our model and its components.
Definition 1 (Secondary Euclidean Graph). A secondary Euclidean graph consists of a set of vertices
and edges where the vertices correspond to the query variable (which is the relation i.e. the link to be predicted
or the node class along with the entities) in relational data and the edges constitute the Euclidean distance
between each pair of vertices.
Definition 2 (INTEGRATE). Given a knowledge base/relational graph B and a function ϕ : B 7→ Rm,
such that ϕ(B) = E ∈ Rm, INTEGRATE G is a graph convolutional network defined over E and Euc(E) i.e.
the secondary Euclidean graph.
Definition 3 (Relational Rule Matrix). A relational rule matrix X contains the node feature descriptors
xi ∈ E for a Euclidean graph.
Definition 4 (Distance Matrix). A distance matrix D contains the Euclidean distances between the node
feature descriptors ∈ X .

Given a knowledge base B, we first learn a set of first-order rules that captures the relations between the
domain predicates. The intuition is that these first-order rules can be viewed as higher-order features that
connect entities and their attributes. Particularly, when learned for a specific classification task, these
features can be both predictive and informative. Given that they are typically conjunctions of relational
features (attributes of entities and relationships), they have the added advantage of being interpretable. Our

4

Under review as submission to TMLR

Figure 2: Relational Rule Matrix X and Distance Matrix D construction for INTEGRATE. First-order rules
are learned from the given knowledge bases which are then grounded and satisfied groundings are counted to
form X .

hypothesis, that we verify empirically is that these rules can potentially yield richer latent representations
than a relational GCN that simply uses the entity and relationship information.

1. One of our key contributions is a two-step process of constructing the link and node classification
problems as prediction problems in a secondary Euclidean graph where vertices correspond to target triple
rather than individual entities. We learn a relational rule matrix and then build a distance matrix to use
for GCN-computations (see Fig. 1).
2. Another important difference from typical GCN based methods is that we can handle n-ary relations in
the data thus allowing for a more general representation.

Although methods such as HGNN (Feng et al., 2019) and HyperGCN (Yadati et al., 2019) handle n-ary
predicates as hypergraphs, they do not take advantage of the relationships between the nodes in the graph
and consider only a single type of relation. Also, all of the GCN based method(s) as well as relational
embedding methods, require the data to be standardized to the form, ⟨e1, r, e2⟩ where e1, e2 are entities
connected by the relation r i.e. handle only binary predicates. To handle n-ary predicates they typically
decompose the predicates into multiple binary predicates. It is well-known that this process introduces
spurious relationships between entities (Kersting & De Raedt, 2008). To present a concrete example, please
consider the Carcinogeneisis data set 2 which is also considered in our experimental evaluation. Some of
the n-ary relations present in the data set are of the form sbond1(drug, atom1, atom2) which signifies that
the 2 atoms in a drug have a single bond between them. For example, sbond1(d1, d11, d17) denotes that
the 1st and 7th atom of the drug have a single bond. Other examples are sbond2(drug, atom1, atom2) and
sbond3(drug, atom1, atom2) which signify double and triple bonds between two drug atoms respectively.
For classical GCN based methods that cannot handle n-ary relations, the requirement would be to break
down these relations into binary relations. Thus, the n-ary relation sbond1(drug, atom1, atom2) will result
in sbond1(drug, atom1) and sbond1(drug, atom2) which are spurious i.e. sbond1(d1, d11, d17) will result in
sbond1(d1, d11) and sbond1(d1, d17). Another way to handle the n-ary relations might be to create new
relations in the original data set only for this single relation, for example, singlebond(atom1, atom2) and
drugatom(drug, atom). Similarly sbond2() and sbond3() will result in more spurious or extra relations which

2https://relational.fit.cvut.cz/dataset/Carcinogenesis

5

Under review as submission to TMLR

(a) An illustration of Least common ancestor. (b) Learning the rules/relational features using relational distance.
Each left branch of the learned tree represents a relational feature.

Figure 3: Learning the relational examples with the rule learner.

will lead to unnecessary complexity. We can handle n-ary predicates/relations naturally since the underlying
inductive learner uses first-order logic representations.

3.1 Embedding Original Graph to Rm: Creating a Euclidean Graph

We now outline the required steps to embed the original graph to a Euclidean space Rn thereby creating a
secondary Euclidean graph. The nodes of the Euclidean graph consists of the target triple with the node
features forming the relational rule matrix X and the edges connecting the nodes are the Euclidean distances
thus forming the distance matrix D. It is clear from def. 1-4 that we just need X and D to represent a
secondary Euclidean graph and Fig. 2 shows their construction.

Step 1: Rule Learning using Density Estimation: Inspired by the success of learning only from positive
examples in relational domains (Khot et al., 2014), we learn first-order rules using relational density estimation
(which forms ϕ in Def. 2) and learn from both the positive and negative examples separately. The
intuition behind using a density estimation method is that learning first-order rules for positive and sampled
negative examples independently can result in better utilization of the search space thereby (potentially)
learning more discriminative features. Fig. 4 shows an example of learning such discriminative features for a
“Co-Author" data set. The density estimation approach uses a tree-based distance measure that iteratively
introduces newer features (as short rules) that covers more positive examples.

Thus, we construct a relational graph manifold, by treating relational examples as nodes and connect ones
that are close or similar to each other in the neighborhood. The similarity can be measured by learning a
tree-based distance between relational examples and is inversely proportional to the depth d of least common
ancestor (LCA) of pair of examples, say x1, x2,

d(x1, x2) =
{

0, LCA(x1, x2) is leaf;
e−λ·depth(LCA(x1,x2)), otherwise,

(1)

where λ > 0 ensures that distance decreases (i.e., similarity increases) as the depth increases.

Fig. 3(a) shows examples x1 ≡ advisedBy(Tom, Mary) and x2 ≡ AdvisedBy(Tom, John); they both follow
the same path down the tree before diverging at a node at depth 2. Now, consider x1 and x3 ≡ AdvisedBy(Ada,
Dan). In this case, we have that the least common ancestor is at depth 1. Since the distance measure is
inversely related to depth of the least common ancestor, we have that x1 and x2 are closer together than x1
and x3. We use TILDE (Blockeel & De Raedt, 1998), a first-order tree learner to learn the individual trees.
Typically, more than one tree is learned (say, via functional gradient boosting), and the one-class classifier is
a weighted combination of these trees. Then, the overall distance function is simply the weighted combination

6

Under review as submission to TMLR

of the individual tree-level distances: D(x1, x2) =
∑

i βi di(x1, x2) where βi is the weight of the ith tree and∑
i βi = 1, βi ≥ 0. The non-parametric function D(·, ·) is a relational distance measure learned on the data.

The distance function can then be used to compute the density estimate for a new relational example z as a
weighted combination of the distance of z from all training examples xj , E(z ̸∈ class) =

∑
j αjD(xj , z),

where αj is the weight of the labeled example xj and
∑

αj = 1, αj ≥ 0. Note that expectation above is for
z ̸∈ class, since the likelihood of class membership of z is inversely proportional to its distance from the
training examples describing that class.

We learn a tree-based distance iteratively to introduce new relational features that perform one-class
classification. The left-most path in each relational tree is a conjunction of predicates, that is, a clause, which
can then be used as a relational feature. The splitting criteria is the squared error over the examples and the
goal is to minimize squared error in each node as follows:

min
∑

y∈xr

[
I(z) − E(z /∈ class) − Σj:xj∈xl

αjβidi (xj , z)
]2

+
∑

y∈xl

[
I(z) − E(z /∈ class) − Σj:xj∈xr

αjβidi (xj , z)
]2 (2)

I(z) is the indicator function and returns 1 if z is an unlabeled example or 0 otherwise. Also, xl and xr are
the examples that take the left and right branch respectively. A greedy search approach is employed for
tree learning and since the only parameter is the number of trees that increases as more data is obtained, it
thereby provides a non-parametric approach for learning these relational trees. Since there is a necessity to
learn 2 different set of weights – α and β, where α is the weight of the example and β is the weight of the
tree since while calculating the E(z /∈ class) i.e. P (z /∈ class) we need to combine distances in two levels,
tree level and instance level. These weights are learnt iteratively by minimizing the squared loss function:

L =
∑
y∈x

[I(z /∈ class) − E(z /∈ class)]2 (3)

The different gradients with respect to α and β can be calculated as:

∂L
∂α

= ∂L
∂αj

∑
z

[I(z) − E(z /∈ class)]

= ∂

∂αj

∑
z

[I(z) − Σiαjβidi (xj , z)]2

= 2
∑

z

[I(z) − Σiαjβidi(xj , z)] × −Σiβidi(xj , z)

∂L
∂α

= −2
∑

z

[I(z) − E(z /∈ class)]Σiβidi(xj , z) (4)

∂L
∂β

= ∂L
∂βi

∑
z

[I(z) − E(z /∈ class)]

= ∂

∂βi

∑
z

[I(z) − Σjαjβidi (xj , z)]2

= 2
∑

z

[I(z) − Σiαjβidi(xj , z)] × −Σjαjdi(xj , z)

∂L
∂β

= −2
∑

z

[I(z) − E(z /∈ class)]Σjαjdi(xj , z) (5)

In the tree level combination, we calculate the LCA based distance between all the labeled examples
(x1, x2....xt) and the unlabeled example z in every learned relational tree which are then combined to yield

7

Under review as submission to TMLR

a combined distance D between each example and the unlabeled example. After calculating the distance
between each each example with the unlabeled example, a second level of combination is performed to yield
the probability of the unlabeled example to belong to a certain class. Fig. 3(b) shows the overall process of
learning the relational trees iteratively thereby constructing the rules to be used as features.

We now present some example first order rules learned by the relational one-class classification method for
three representative data sets (drug-drug interactions, ICML Co-author and Carcinogenesis) with the last
data set being n-ary in nature. The first two rules for each data set are learnt from the positive examples and
the next two are learnt for negative examples.

Data set: Drug-Drug Interactions

+ Interacts(d1, d2) =⇒ TransporterSubstrate(d1, tr1) ∧ TransporterSubstrate(d2, tr1) ∧
EnzymeInhibitor(d1, e1) ∧ EnzymeInhibitor(d2, e1)

+ Interacts(d1, d2) =⇒ EnzymeInducer(d1, e1) ∧ EnzymeSubstrate(d2, e1) ∧
EnzymeInducer(d2, e2) ∧ EnzymeInducer(d1, e2)

- Interacts(d1, d2) =⇒ TargetInhibitor(d1, t1) ∧ TargetInhibitor(d2, t2) ∧
TransporterSubstrate(d1, tr1)

- Interacts(d1, d2) =⇒ TargetAgonist(d1, t1) ∧ TargetAgonist(d2, t2) ∧ Transpor
terInducer(d1, tr1) ∧ TransporterInducer(d2, tr2)

Data set: ICML CoAuthor

+ CoAuthor(p1, p2) =⇒ Affiliation(p1, a1) ∧ Affiliation(p2, a1) ∧ ResearchTopic(p1, topic1) ∧
ResearchTopic(p2, topic1)

+ CoAuthor(p1, p2) =⇒ ResearchTopic(p2, “Mathematical_Optimization") ∧
ResearchTopic(p1, “Pattern_Recognition") ∧ ResearchTopic(p1,topic1) ∧
ResearchTopic(p2,topic1)

- CoAuthor(p1, p2) =⇒ ResearchTopic(p1, “Pattern_Recognition") ∧ ResearchTopic(p2,
“Mathematical_Optimization")

- CoAuthor(p1, p2) =⇒ Affiliation(p1, “University_of_California_Berkeley") ∧ Affiliation(p2,
“Simons_Institute")

Data set: Caricogenesis

+ Carcino(d) =⇒ drugAtom(d,a1) ∧ sbond7(d,a1,a2) ∧ sbond1(d,a2,a3) ∧ sbond2(d,a3,a4) ∧
sbond1(d,a4,a5) ∧ sbond1(d,a5,_)

+ Carcino(d) =⇒ drugAtom(d,a1) ∧ sbond7(d, a1, a2) ∧ sbond1(d, a2, a3) ∧ sbond2(d, a3,
_))

- Carcino(d) =⇒ drugAtom(d, a1), sbond2(d, a1, a2), sbond1(d, a1, _), sbond1(d, a2, _))

- Carcino(d) =⇒ drugAtom(d, a1), sbond7(d, a1, _)

8

Under review as submission to TMLR

Figure 4: Learning secondary Euclidean graph (nodes) for ICML data set. Learning the +ve and -ve rules
and thus features separately result in more discriminative secondary graph nodes with the +ve nodes closer
to each other and distant from the -ve node.

After the rule learning there might be an argument about the effect of number of rules on the quality of
the learned features. We would like to point out that the number of rules depends on ILP learner which
first selects an example from the set of all examples and then finds a rule that best covers the examples.
Best covering is the most general clause that covers minimum number of positive examples while excluding a
large number of negative examples. Ideal coverage means all positive examples and no negative examples. In
practice, this can lead to overfitting and thus we aim to maximize the difference in number of positive and
negative examples. Thus, it is important to point out that the number of rules do not matter but rather the
quality of rules matter.

Step 2: Relational Rule Matrix and Distance Matrix Construction: The learned first-order rules
are then grounded to obtain all the instantiations of these rules. The counts of each feature, i.e., the count
of the number of times a target example (the coauthor relation between the target entities) is satisfied
in every first-order rule is obtained which forms our relational rule matrix X . In spirit, this is similar to
MLNs (Richardson & Domingos, 2006) that counts the instances to obtain a marginal distribution. Instead
of using the counts to compute marginals, we use them in the matrices. For example, the learned first-order
rule from true instances

CoAuthor(person1, person2) ⇐ Affiliation(person1, university1)
∧Affiliation(person2, university1) ∧ ResearchTopic(person1, topic1)
∧ResearchTopic(person2, topic1).

implies that if two persons have the same affiliation and their research interests lie in same topics, then they
are likely to coauthor. Suppose the given target entities are person1 = “Jane Doe" (JD) and person2 = “Sam
Smith"(SS). The partially grounded first-order rule can then be written as

CoAuthor(JD, SS) ⇐ Affiliation(JD, university1)
∧Affiliation(SS, university1) ∧ ResearchTopic(JD, topic1)
∧ResearchTopic(SS, topic1).

Then substitutions for all the other entities within the first-order rule are performed and checked
whether the substituted first-order rule is satisfied in the groundings. For example, the substitu-

9

Under review as submission to TMLR

tion θ = {⟨university1, topic1⟩/⟨UCB, Artificial Intelligence⟩} is satisfied but the substitution θ =
{⟨university1, topic1⟩/⟨UCB, Computer Networks⟩} is not satisfied. Since there can be multiple values
taken by topic1 that can satisfy the first-order rule, the count of all such satisfied groundings becomes a
feature value for the target query CoAuthor(Jane Doe, Sam Smith). Thus using this satisfiability count we
obtain a feature set X of size n × k where n is number of target queries and k is number of first-order rules
that represent the node features.
In order to obtain the distance matrix D a pairwise Euclidean distance of all the node feature descriptors i.e.
the counts xi ∈ X is computed.

3.2 Euclidean Graph GCN

The original GCN formulation (Kipf & Welling, 2017) requires an adjacency matrix A to perform the layer-
wise propagation. Instead of building the adjacency matrix from the relation triples, we use the computed
geometric distance matrix D, which is a richer structure (Rouvray & Balaban, 1979; Brouwer & Haemers,
2011), and use it as an approximation to the adjacency matrix for the GCN. To obtain this approximation,
we perform the following steps:

[1]: A threshold, t, is set as the average of all the distances (since the distance matrix is symmetric, the
average is calculated from the upper-right part).

[2]: ∀dij ∈ D, new distances are computed as d̂ij = dij/t and d̂ij > 1 is set as 1: a far-away case.

[3]: Since the higher values in D represent nodes that are far as opposed to the A where the higher values i.e. 1
represents the nodes adjacent to each other, the distance between nodes is subtracted from 1 i.e. d̂ij = 1 − d̂ij .
This is similar to A with d̂ij= 1 representing that two nodes are connected and d̂ij= 0 representing that two
nodes are not connected with the only difference being the presence of values 0 < d̂ij < 1 that denote the
closeness of two nodes.

The above mentioned approximation was done for 2 major reasons: a) implementation purposes and b) we
have a distance matrix which we believe contains richer information of examples; the original GCN takes
adjacency matrix to represent structural distances (neighbors, edge connections) among examples. In our
graph, the node is not an entity but a triplet w.r.t the query variable. To make it easily understandable and
intuitive to work with GCN, we rescale the distance matrix D to [0, 1]N ∗ N (N = number of nodes). In
simpler terms, we do not consider the connection between nodes as 0 (no connection) or 1 (an edge) but we
put a weight on each edge, which is a less explored direction in GCNs. To calculate the distance matrix, we
use rules as each dimension which are more informative when compared to standard embedding methods.

For INTEGRATE G with M layers, the layer wise propagation rule for the layer l ∈ M can be written as,

f(H(l), D) = σ(DH(l)W (l)) (6)

where H(0) is the input layer i.e. the relational rule matrix X with H(1) . . . H(M−1) being the hidden layers.
Since we replace A with D before the symmetric normalization and addition of self loops, these operations
are now performed on D. The updated propagation rule is,

f(H(l), D) = σ(N̂
−1
2 D̂N̂

−1
2 H(l)W (l)) (7)

such that D̂ = D + I where I is the identity matrix and N̂ ∈ R is the diagonal weighted node degree matrix
of D̂. In summary, we learn first-order rules from separate densities independently, in the process constructing
a secondary graph consisting of query variable as nodes. These learned rules are then grounded resulting
in richer representation than simple node features. For obtaining distance between target triples to define
adjacency, we use pairwise Euclidean distance. We present our rigorous empirical evaluations next.

3.3 Computational Cost

In terms of the computational cost, grounding is roughly polynomial in size of the database (and can be
reduced by sampling as mentioned above). Counting is exponential in the number of entities and can be

10

Under review as submission to TMLR

Table 1: Properties of data sets. Note that all node classification data sets except WebKB have n-ary
predicates.

Data Set # Rels # Facts #+ve Egs #-ve Egs # Rules # Nodes # Edges
ICML’18 4 1395 155 6498 7 6653 21429036

ICLR 4 4730 990 10000 7 10990 40558762
DDI 14 1774 2832 3188 25 18060 80952471

Carcino 8 54890 182 258 9 440 45999
PPMI 38 314144 378 812 18 1190 549774

CiteSeer 17 119635 7504 7504 7 15008 54799196
WebKB 5 1354 153 593 7 746 213594

reduced by approximate counting. The quadratic amounts of Euclidean distance computations do exist but
they can be circumvented by the fact that we only need to compute the upper half of the matrix and can be
done parallelly with the help of triangulation (Angeletti et al., 2019).

4 Experimental Evaluation

We consider 7 staristical relational AI data sets – the first 3 for link prediction and the last 4 for node
classification (Tab. 1). ICML’18 consists of papers from ICML 2018, ICLR consists of papers from ICLR
(2013-2019) and the prediction task is whether two people are coauthors for both data sets. Both of these
data sets are extracted from the Microsoft Academic Graph (MAG) (Sinha et al., 2015). DDI is a drug-drug
interaction data set (Dhami et al., 2018) and the goal is to predict whether two drugs interact. Carcino is a
biomedical data set of the structures of chemical compound and the task is to predict if they are carcinogenic.
PPMI is a study (Marek et al., 2011) designed to identify bio-markers that impact Parkinson’s and the task is
to predict if a patient has Parkinson’s (Dhami et al., 2017). CiteSeer is a relational data set of citations (Poon
& Domingos, 2007) and the task is to predict the author of a citation. WebKB consists of web pages and
hyperlinks from 4 CS departments (Craven et al., 1998) and the task is to predict if someone is a faculty. A
limitation of our work is that we cannot handle multiple query variables without joint learning where one
could consider every relation as the query variable in different rule learning steps to obtain embeddings w.r.t
all relations and use them for the knowledge base completion.

We first learn first-order logic rules using relational density estimation (Khot et al., 2014) from positive
examples. The number of rules learned each for positive and negative examples is shown in Tab. 1. A
secondary Euclidean graph is then constructed with its properties i.e. the number of nodes and edges also
shown in Tab. 1. Note that the constructed Euclidean graphs can be very dense in nature. We can circumvent
this either by constructing a minimum spanning tree (Loukas, 2020) of the obtained graph or by obtaining
its topological minor (which is another graph) (Pilipczuk & Siebertz, 2017) that can then be used with a
GCN. We do like to note that both problems are non trivial to solve and thus we will include these are left
for immediate future work. The relational rule matrix X and the distance matrix D are then obtained from
the secondary Euclidean graph.

In INTEGRATE, with the use of first-order logic, node classification problem can be formulated similarly to
link predication. For example, suppose a graph consists of 3 nodes n1, n2 and n3, then the potential target
relation can be created as: link(n1,n2), link(n1,n3) and link(n2,n3). Analogously, for the node classification
problem, suppose we have binary classes, say 1 and 0, we can create potential target relations as class(n1,1/0),
class(n2,1/0) and class(n3,1/0). Hence, for node classification, the target is a relation between an object and
the class label whereas in link prediction the target is a relation is between two objects.

We aim to answer the following questions through our experimental evaluation:

(Q1) How does INTEGRATE perform on data sets that have few relational examples?

(Q2) Is learning a secondary graph structure useful?

(Q3) How well does our method handle n-ary predicates?

(Q4) Can the combination of SRL with deep models such as GCN result in better predictive models?

11

Under review as submission to TMLR

(Q5) How does rule learning from relational density estimation compare with other rule learning methods?

(Q6) What is the effect of different distance measures on the performance of INTEGRATE?

(Q7) How sensitive is INTEGRATE to the choice of parameters?

4.1 Baselines

Link Prediction: We compare INTEGRATE, to 15 embedding baselines in 3 categories.

1. Rule learning (STARAI-based) methods: Handwritten rules (Niepert, 2016): uses Gaifman locality
principle Gaifman (1982) to enumerate all hand-written first-order rules within the neighborhood of the
target/query variables. After obtaining the counts for the satisfied grounded handwritten rules logistic
regression is used for prediction. Neural-LP (Yang et al., 2017): learns first-order rules by extending
the probabilistic differentiable logic system TensorLog (Cohen, 2016). metapath2vec (Dong et al., 2017):
generates random walks with user defined meta paths and uses a heterogeneous skip-gram model to generate
embeddings. PRAGCN: makes use of relational random walks (PRA) Lao & Cohen (2010) to learn the
first-order rules (Kaur et al., 2019) and obtain the features as described in our method. The learned features
are then passed on to a GCN. Node+LinkFeat (Toutanova & Chen, 2015) (N+LF): is obtained by running
logistic regression (LR) and 2-layer neural network (NN) over the learned propositional features.

2. Relational embedding methods: ComplEx (Trouillon et al., 2016): proposes a latent factorization approach
in multi-relational graphs. We use the ComplEx implementation in the AmpliGraph python library 3. ConvE
(Dettmers et al., 2018): uses convolutions over embeddings and fully connected layers to model interactions
between input entities and relationships. We use ConvE from AmpliGraph python library. SimplE
(Kazemi & Poole, 2018): adapts the concept of Canonical Polyadic decomposition and learns two dependent
embeddings for each entity and relation to obtain a similarity score for each triple. We use the tensorflow
implementation 4. ReInceptionE (Xie et al., 2020): uses a relation-aware networks with joint local-global
structural information. ExpressiveE (Pavlović & Sallinger, 2023): embeds pairs of entities as points and
relations as hyper-parallelograms in the virtual triple space. We use the PyTorch implementation 5 and
test both variants namely, base (ExpressivE-B) and functional (ExpressivE-F). HousE (Li et al., 2022):
uses two types of Householder transformations: roation and projection to model relation patterns and
mapping properties simultaneously thus resulting in more expressive embeddings. We use the PyTorch
implementation 6 and test both variants, namely HousE and HousE+.

3. GCN based methods: Relational GCN (Schlichtkrull et al., 2018): extends GCN to the relational setting.
and can handle different weighted edge types i.e. relations. It uses a 2 step message passing technique to
learn new node representations which are then fed to a factorization method, DistMult (Yang et al., 2015).
We use the tensorflow implementation7. CompGCN (Vashishth et al., 2020): jointly embeds both nodes
and relations in a graph and we use the PyTorch implementation8. NBFNet (Zhu et al., 2021): is a graph
neural network architecture specifically for link prediction using generalized Bellman-Ford algorithm. We
use the PyTorch implementation 9. SEAL (Zhang & Chen, 2018): extracts a local subgraph around each
target link thereby learning the best heuristic required for link prediction automatically. We use the PyTorch
implementation 10.

Node Classification: We compare against 5 relational embedding baselines (covering all 3 categories) and 2
state-of-the-art SRL methods11: MLN-Boost (Khot et al., 2011) and RDN-Boost (Natarajan et al., 2012).
For non-SRL methods, we convert the n-ary predicates to

(
n
2
)

binary predicates.

3https://github.com/Accenture/AmpliGraph
4https://github.com/Mehran-k/SimplE
5https://github.com/AleksVap/ExpressivE
6https://github.com/rui9812/HousE
7https://github.com/MichSchli/RelationPrediction
8https://github.com/malllabiisc/CompGCN
9https://github.com/DeepGraphLearning/NBFNet

10https://github.com/muhanzhang/SEAL/tree/master/Python
11https://github.com/starling-lab/BoostSRL

12

Under review as submission to TMLR

Data Methods Recall Precision F1 AUC-PR

ICML’18

Handwritten 0.10 0.16 0.174 0.127
Neural-LP3 0.927 0.024 0.047 0.267
Neural-LP10 0.891 0.035 0.069 0.143

metapath2vec 0.836 0.209 0.335 0.286
PRAGCN 0.0 0.0 0.0 0.512
ComplEx 0.85 0.013 0.03 0.04

ConvE 0.636 0.01 0.02 0.015
SimplE 0.927 0.012 0.023 0.128

ReInceptionE 0.855 0.014 0.028 0.142
ExpressiveE-B 0.655 0.011 0.021 0.016
ExpressiveE-F 0.709 0.011 0.022 0.018

HousE 0.964 0.015 0.031 0.536
HousE+ 0.945 0.015 0.03 0.561

N+LF (LR) 0.379 1.0 0.549 0.396
N+LF (NN) 0.338 1.0 0.559 0.409

R-GCN 0.636 0.07 0.13 0.13
CompGCN 0.727 0.022 0.044 0.185

NBFNet 1.0 0.03 0.058 0.757
SEAL 0.879 0.112 0.199 0.776

INTEGRATE 0.389 1.0 0.561 0.556

ICLR

Handwritten 0.564 0.795 0.66 0.488
Neural-LP3 0.939 0.308 0.463 0.421
Neural-LP10 0.987 0.275 0.429 0.453

metapath2vec 0.828 0.338 0.480 0.641
PRAGCN 0.0 0.0 0.0 0.544
ComplEx 0.269 0.032 0.057 0.105

ConvE 0.677 0.037 0.069 0.054
SimplE 0.973 0.054 0.102 0.535

ReInceptionE 0.764 0.039 0.074 0.075
ExpressiveE-B 1.0 0.058 0.11 0.96
ExpressiveE-F 1.0 0.061 0.115 0.951

HousE 1.0 0.058 0.11 0.767
HousE+ 1.0 0.058 0.109 0.771

N+LF (LR) 0.977 1.0 0.988 0.981
N+LF (NN) 0.338 1.0 0.559 0.409

R-GCN 0.667 0.783 0.720 0.763
CompGCN 0.906 0.719 0.802 0.912

NBFNet 0.997 0.47 0.639 0.986
SEAL 0.963 0.518 0.674 0.915

INTEGRATE 0.594 1.0 0.745 0.972

DDI

Handwritten 0.469 0.707 0.564 0.581
Neural-LP3 0.727 0.336 0.459 0.368
Neural-LP10 0.779 0.338 0.472 0.403

metapath2vec 0.782 0.652 0.711 0.707
PRAGCN 0.427 0.700 0.531 0.695
ComplEx 0.832 0.492 0.618 0.705

ConvE 0.931 0.384 0.544 0.678
SimplE 0.992 0.288 0.446 0.503

ReInceptionE 0.987 0.364 0.532 0.834
ExpressiveE-B 0.985 0.383 0.552 0.876
ExpressiveE-F 0.992 0.387 0.557 0.912

HousE 0.96 0.334 0.496 0.67
HousE+ 0.992 0.359 0.528 0.836

N+LF (LR) 0.682 0.924 0.785 0.781
N+LF (NN) 0.715 0.948 0.815 0.833

R-GCN 0.571 1.0 0.727 0.922
CompGCN 0.882 0.552 0.679 0.826

NBFNet 0.965 0.451 0.615 0.869
SEAL 0.948 0.429 0.591 0.853

INTEGRATE 0.998 0.986 0.992 0.998

Table 2: Link prediction.

Data Methods Recall Precision F1 AUC-PR

Carcino

Neural-LP3 0.182 0.099 0.128 0.128
Neural-LP10 0.327 0.149 0.205 0.160

metapath2vec 0.473 0.356 0.406 0.359
PRAGCN 0.0 0.0 0.0 0.5

R-GCN 0.259 0.789 0.390 0.573
N+LF (LR) 0.529 0.973 0.686 0.734
N+LF (NN) 0.550 0.957 0.698 0.537

MLNB 0.390 0.302 0.340 0.296
RDNB 0.451 0.188 0.265 0.190

INTEGRATE 0.660 0.971 0.786 0.926

PPMI

Neural-LP3 0.0 0.0 0.0 0.562
Neural-LP10 0.722 0.254 0.376 0.279

metapath2vec 0.704 0.604 0.651 0.786
PRAGCN 0.287 0.829 0.426 0.618

R-GCN 0.712 0.771 0.740 0.729
N+LF (LR) 0.354 1.0 0.523 0.568
N+LF (NN) 0.342 1.0 0.509 0.342

MLNB 0.684 0.972 0.803 0.967
RDNB 0.816 0.886 0.849 0.950

INTEGRATE 0.436 1.0 0.607 0.798

CiteSeer

Neural-LP3 0.0 0.0 0.0 0.615
Neural-LP10 0.500 0.231 0.316 0.443

metapath2vec 0.905 0.923 0.914 0.976
PRAGCN 1.0 0.490 0.657 0.745

R-GCN 0.971 0.958 0.964 0.991
N+LF (LR) 0.787 0.681 0.730 0.641
N+LF (NN) 0.823 0.888 0.854 0.782

MLNB 0.942 0.975 0.958 0.979
RDNB 0.948 0.942 0.947 0.979

INTEGRATE 0.780 0.681 0.727 0.818

WebKB

Neural-LP3 0.0 0.0 0.0 0.533
Neural-LP10 0.362 0.082 0.133 0.086

metapath2vec 0.426 0.204 0.276 0.192
PRAGCN 0.317 0.929 0.473 0.698

R-GCN 0.200 0.225 0.212 0.251
N+LF (LR) 0.375 0.913 0.532 0.484
N+LF (NN) 0.403 1.0 0.574 0.403

MLNB 1.0 1.0 1.0 1.0
RDNB 1.0 1.0 1.0 1.0

INTEGRATE 0.220 1.0 0.360 0.611

Table 3: Node classification.

4.2 Results

For INTEGRATE, we use a GCN with 2 hidden layers each with dimension = 16 with a drop out layer
between the 2 graph convolutional layers. To introduce non-linearity, we use ReLU between input and hidden
layers and to score queries, we use log_softmax function. The examples for training, validation and testing
are randomly sampled without replacement. For neural embedding baselines, since they are trained on true
relations, the positive examples are randomly split to ⟨60%, 10%, 30%⟩ in training, validation and testing
respectively. To obtain the different metrics for the neural embedding baseline, the scores for each pair of
nodes in the test examples were thresholded by the average of the obtained scores. If the score between pair
of nodes ≥ average score the link is predicted to be true. We run our experiments on a GPU with 8 GeForce
GTX 1080 Ti cards.

(Q1. Smaller data sets) Tab. 2 shows the result of link prediction task. Our method outperforms all
the baselines significantly in 2 of the 3 data sets with the difference being significant in the smaller data
set ICML’18 and is comparable in the ICLR data set. Note that although the recall is high for the neural
embedding baselines, the corresponding F1 score and AUC-PR are low which implies that the baseline
relational embedding methods have a high rate of false positives. This clearly demonstrates that

13

Under review as submission to TMLR

Table 4: Effect of change in type of GCN

Data Method Recall Precision F1 Score AUC-PR

ICML’18
heat-diffusion + GCN 0.348 1.0 0.516 0.544

ppr + GCN 0.351 1.0 0.520 0.538
INTEGRATE 0.369 1.0 0.539 0.692

Carcino
heat-diffusion + GCN 0.604 0.967 0.743 0.896

ppr + GCN 0.609 0.921 0.725 0.880
INTEGRATE 0.660 0.971 0.786 0.926

INTEGRATE is significantly better than the strong baselines for the link prediction task. Tab. 3 shows the
result of node classification task and our method outperforms the SRL and GCN baselines. Specifically, our
method is significantly better in the smaller data sets of Carcino and PPMI. This answers Q1 affirmatively.

(Q2. Secondary graph/distance matrix impact) The main advantage of our method is learning a
secondary graph structure where both link prediction and node classification tasks become simple prediction
tasks in this new graph. As can be seen from the results for link prediction, a simple discriminative machine
learning algorithm (logistic regression), used on top of the learned features (N+LF) performs better than the
other baselines including GCN-based baselines. In case of node classification, the results are comparable.

To show the importance of using a distance matrix, we compare our method with Graph Attention Networks
(GATs) (Veličković et al., 2018) which uses the adjacency matrix. Fig. 5 shows the results and it can be seen
that using a distance matrix can be an effective alternative. This is expected since in the secondary
structure, as the nodes show the query, there is no particular notion of connection between the nodes. Fig. 6
show an extended comparison of INTEGRATE with variations of GAT using the distance matrix (GAT
ADJ), converting distance matrix to binary adjacency matrix (GAT ADJ), and finally using PRA features
along with the adjacency and distance matrices (PRAGAT ADJ and PRAGAT DIS). The results show that
the performance of PRAGAT is lower which is due to the fact that PRA features may hurt the performance
due to its quality. The sparser binary adjacency matrix generated from the converted distance matrix brings
non-negative effect on approaches with PRAGAT and GAT. This answers Q2 affirmatively.

(Q3. n-ary predicates) Note that all node classification data sets except WebKB have n-ary predicates
and thus GCN methods cannot handle them naturally. Since we use a logic learner to learn first-order rules
and use resolution for grounding, we can easily handle n-ary predicates. Our results in Tab. 3 show that we
can handle n-ary predicates to produce richer representation of underlying features to answer Q3. R-GCN
demonstrates the best performance in CiteSeer data since, due to the large size of the data set, introduction
of spurious relations do not have an adverse impact. The comparison between our method and the N+LF
baseline which uses the exact same features is notable. Our method is more stable than N+LF confirming
the richness of learned abstract features.

(Q4. SRL + GCN) Our results show that using SRL models (relational density estimation in our case)
as the underlying feature learner which are then fed to a neural model, GCN, gives us a powerful hybrid
model that can be used seamlessly with relational data. Using a SRL model as the initial layer of a neural
model results in learning richer initial features set used by the neural model. This initial feature set can take
advantage of underlying graph structure faithfully and thus, in accordance, leads to the neural model
learning far richer abstract features which in turn leads to better predictive performance.
Our evaluations on both tasks support this as our method significantly outperforms GCN baselines in 6/7
(especially in the smaller) domains. We also replace the vanilla GCN with more powerful diffusion based
GCNs (Klicpera et al., 2019) and INTEGRATE still outperforms (Tab. 4) thus answering Q4 affirmatively.

(Q5. Effective rule learning) To answer Q5, we use 4 different rule learning methods: handwritten rules
(Gaifman), NeuralLP (rule length 3 & 10), metapath2vec and PRA. Tabs. 2 and 3 clearly demonstrate that
using our density estimation method significantly outperforms all rule learning method across all domains.
Comparing PRAGCN and INTEGRATE is especially interesting since this shows that rule learning method
plays a crucial role in learning richer features, especially in the imbalanced domains, where relational density
estimation is demonstrably beneficial since both methods share the underlying GCN. The difference in

14

Under review as submission to TMLR

Figure 5: Comparison (AUC-PR) with GATs showing
the importance of D. DDI does not run using GAT.

Figure 6: AUC-PR comparison with variations
of GAT with PRA features, distance matrix and
distance matrix as adjacency matrix.

Table 5: Effect of size of hidden layers.

Data Size Recall Precision F1 Score AUC-PR

ICML’18
32 0.369 1.0 0.539 0.692
64 0.369 1.0 0.539 0.692

128 0.369 1.0 0.539 0.692

DDI
32 0.989 0.998 0.993 0.998
64 0.989 0.998 0.993 0.998

128 0.989 0.998 0.993 0.998

Table 6: Effect of number of hidden layers.

Data # Recall Precision F1 Score AUC-PR

ICML’18
3 0.369 1.0 0.539 0.692
4 0.369 1.0 0.539 0.692
5 0.369 1.0 0.539 0.692

DDI
3 0.989 0.998 0.994 0.999
4 1.0 0.997 0.998 0.999
5 0.999 0.991 0.995 0.997

performance of PRAGCN and INTEGRATE is significantly high in the highly imbalanced domains
ICML’18 and ICLR where the features learned by the PRA method result in all examples being classified as
negative. In node classification experiments, PRA features classify all the examples in Carcino and CiteSeer
as positive. Note that the features learned by using PRA are biased towards a single (the larger)
density across all domains. This answers Q5.

(Q6. Effect of distance measures) Fig. 7 presents the effect of 2 other distance measures, Manhattan
(L1) and Chebyshev (L∞), in addition to Euclidean (L2) on the performance of INTEGRATE on the DDI
data set. Since Euclidean is the shortest distance between nodes, it performs the best.This answers Q6.

(Q7. Effect of parameter choices) To answer Q7, we change the size of the hidden layers in the GCN as
well as the number of hidden layers and test our method on ICML’18 and DDI data sets. Tabs. 5 and 6
show that change of these parameters have none or very minuscule effect on the overall results. This answers
Q7 and also shows that the learned features by themselves are quite expressive thus removing the
need for a more complex GCN.

5 Discussion

The main motivation behind using relational density estimation to create a two-step learning process for
GCNs is that learning first-order rules for positive and sampled negative examples independently can result
in better utilization of the search space resulting in creating richer features for training. Another motivation
is that the relational density estimation can result in better discriminative features in both the relational
as well as the Euclidean space. A TSNE proejection for the drug-drug interaction (DDI) data set can be
seen in Fig. 8 that shows that learning the rules from different densities separately does . Our approach is
inspired by manifold learning methods such as Laplacian eigenmaps that construct a graph representation of
the data manifold by treating training examples as nodes and connecting them to other similar nodes in their
neighborhood. We hypothesize that the following reasons result in our model learning a richer set of features:

15

Under review as submission to TMLR

Figure 7: Effect of the choice of distance measure on
the link prediction results for the DDI data.

Figure 8: A TSNE plot for the DDI data. Learn-
ing from +ve and -ve data separately in relational
domain results in discriminative features when
projected to Euclidean space.

1. The features constructed by our method encapsulate the information about entities as well as
the relationship between the entities in the relational space while GCN-based methods reconstruct
the relationships using a real valued vector via a decoder. The real valued vector inevitably leads
to a loss of information while the first-order features capture the graph structure faithfully thereby
leading to richer features.

2. GCN captures the node features as well as the neighborhood of the nodes using the adjacency
matrix to perform the predictive tasks. In our model we have 2 levels of neighborhood information
aggregation – first, while learning the first-order rules using the relational distance and second in the
underlying GCN model which results in richer feature learning which results in a stronger model.

3. While constructing the relational rule matrix X , the grounding process takes into account the
current node and its immediate neighbors, thus effectively creating another round of neighborhood
aggregation.

4. The tree-based distance in density estimation is a learnable, non-parametric, relational metric
that can be used to characterize the adjacency/distance of relational examples effectively.

5. Graph convolution is the SOTA approach effectively capturing information stored in graph
structure and node features. Using it on a secondary graph means essentially taking advantage of
the graph structure twice.

There might be a concern regarding the generalizability of INTEGRATE when compared to GCNs. There are
two ways to look at the generalization question. When considering the point of view of changes in structure
of the graph, the generalizability of our method is limited when compared to classical GCN and GCN based
methods. But when viewed from the traditional lens of statistical relational learning generalization where the
number of instances or objects in the domain can change, our method is relatively more general.

6 Conclusion

We presented the first GCN method that can learn from multi-relational data utilizing the different densities
separately. Our method does not make assumptions on the supervision/arity of predicates and automatically
constructs rules that allow for a rich latent representation. We significantly outperform the recently successful
methods on KB completion tasks across multiple data sets. Allowing for joint learning and inference over
multiple types of relations is an important future direction. Using more classical rule learning techniques

16

Under review as submission to TMLR

such as Quinlan (1990); Muggleton (1995); Srinivasan (2001) is another interesting direction. Scalability is a
major issue for various SRL systems but we can circumvent this by adopting approximation techniques. The
counting operation to create the relational rule matrix, along with the grounding operation, presents the
biggest overhead. In future work, we plan to integrate sampling and approximate counting methods (Das
et al., 2019) that will reduce the learning time considerably without sacrificing performance. Finally, learning
in the presence of hidden/latent data and rich human domain knowledge is essential for deploying SRL
methods in real tasks.

References
Mélodie Angeletti, J-M Bonny, and Jonas Koko. Parallel euclidean distance matrix computation on big

datasets. 2019.

Yunsheng Bai, Hao Ding, Yizhou Sun, and Wei Wang. Convolutional set matching for graph similarity. arXiv
preprint arXiv:1810.10866, 2018.

Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang. Simgnn: A neural network
approach to fast graph similarity computation. In Proceedings of the Twelfth ACM International Conference
on Web Search and Data Mining, pp. 384–392, 2019.

Ivana Balažević, Carl Allen, and Timothy Hospedales. Tucker: Tensor factorization for knowledge graph
completion. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp.
5185–5194, 2019a.

Ivana Balažević, Carl Allen, and Timothy Hospedales. Multi-relational poincaré graph embeddings. Advances
in Neural Information Processing Systems, 32, 2019b.

Ivana Balažević, Carl Allen, and Timothy M Hospedales. Hypernetwork knowledge graph embeddings. In
International Conference on Artificial Neural Networks, pp. 553–565. Springer, 2019c.

Hendrik Blockeel and Luc De Raedt. Top-down induction of first-order logical decision trees. Artificial
intelligence, 101(1-2):285–297, 1998.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. Translating
embeddings for modeling multi-relational data. volume 26, 2013.

Andries E Brouwer and Willem H Haemers. Spectra of graphs. Springer Science & Business Media, 2011.

Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. A comprehensive survey of graph embedding:
Problems, techniques, and applications. IEEE Transactions on Knowledge and Data Engineering, 30(9):
1616–1637, 2018.

Yu Chen and Lingfei Wu. Graph neural networks: Graph structure learning. Graph Neural Networks:
Foundations, Frontiers, and Applications, pp. 297–321, 2022.

William W Cohen. Tensorlog: A differentiable deductive database. arXiv preprint arXiv:1605.06523, 2016.

Mark Craven, Andrew McCallum, Dan PiPasquo, Tom Mitchell, and Dayne Freitag. Learning to extract
symbolic knowledge from the world wide web. In Proceedings of the AAAI Conference on Artificial
Intelligence, 1998.

Mayukh Das, Devendra Singh Dhami, Gautam Kunapuli, Kristian Kersting, and Sriraam Natarajan. Fast
relational probabilistic inference and learning: Approximate counting via hypergraphs. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33, pp. 7816–7824, 2019.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. Advances in neural information processing systems, 29, 2016.

17

Under review as submission to TMLR

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d knowledge
graph embeddings. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Devendra Singh Dhami, Ameet Soni, David Page, and Sriraam Natarajan. Identifying parkinson’s patients:
A functional gradient boosting approach. In Conference on Artificial Intelligence in Medicine in Europe,
pp. 332–337. Springer, 2017.

Devendra Singh Dhami, Gautam Kunapuli, Mayukh Das, David Page, and Sriraam Natarajan. Drug-drug
interaction discovery: kernel learning from heterogeneous similarities. Smart Health, 9:88–100, 2018.

Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. metapath2vec: Scalable representation learning for
heterogeneous networks. In Proceedings of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining, pp. 135–144, 2017.

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 3558–3565, 2019.

Haim Gaifman. On local and non-local properties. In Studies in Logic and the Foundations of Mathematics,
volume 107, pp. 105–135. Elsevier, 1982.

Shizhu He, Kang Liu, Guoliang Ji, and Jun Zhao. Learning to represent knowledge graphs with gaussian
embedding. In Proceedings of the 24th ACM international on conference on information and knowledge
management, pp. 623–632, 2015.

Manfred Jaeger. Parameter learning for relational bayesian networks. In Proceedings of the 24th international
conference on Machine learning, pp. 369–376, 2007.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure learning
for robust graph neural networks. In Proceedings of the 26th ACM SIGKDD international conference on
knowledge discovery & data mining, pp. 66–74, 2020.

Navdeep Kaur, Gautam Kunapuli, Saket Joshi, Kristian Kersting, and Sriraam Natarajan. Neural networks
for relational data. In International Conference on Inductive Logic Programming, pp. 62–71. Springer,
2019.

Seyed Mehran Kazemi and David Poole. Simple embedding for link prediction in knowledge graphs. Advances
in neural information processing systems, 31, 2018.

Kristian Kersting and Luc De Raedt. Basic principles of learning bayesian logic programs. In Probabilistic
Inductive Logic Programming, pp. 189–221. Springer, 2008.

Tushar Khot, Sriraam Natarajan, Kristian Kersting, and Jude Shavlik. Learning markov logic networks via
functional gradient boosting. In 2011 IEEE 11th international conference on data mining, pp. 320–329.
IEEE, 2011.

Tushar Khot, Sriraam Natarajan, and Jude Shavlik. Relational one-class classification: A non-parametric
approach. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 28, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. 2017.

Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph learning. In
Proceedings of the 33rd International Conference on Neural Information Processing Systems, pp. 13366–
13378, 2019.

Daphne Koller, Nir Friedman, Sašo Džeroski, Charles Sutton, Andrew McCallum, Avi Pfeffer, Pieter Abbeel,
Ming-Fai Wong, Chris Meek, Jennifer Neville, et al. Introduction to statistical relational learning. MIT
press, 2007.

Prodromos Kolyvakis, Alexandros Kalousis, and Dimitris Kiritsis. Hyperkg: Hyperbolic knowledge graph
embeddings for knowledge base completion. 2020.

18

Under review as submission to TMLR

Ni Lao and William W Cohen. Relational retrieval using a combination of path-constrained random walks.
Machine learning, 81(1):53–67, 2010.

Rui Li, Jianan Zhao, Chaozhuo Li, Di He, Yiqi Wang, Yuming Liu, Hao Sun, Senzhang Wang, Weiwei
Deng, Yanming Shen, et al. House: Knowledge graph embedding with householder parameterization. In
International Conference on Machine Learning, pp. 13209–13224, 2022.

Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph matching networks for
learning the similarity of graph structured objects. In International conference on machine learning, pp.
3835–3845. PMLR, 2019.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and relation embeddings
for knowledge graph completion. In Proceedings of the AAAI conference on artificial intelligence, volume 29,
2015.

Andreas Loukas. What graph neural networks cannot learn: depth vs width. In International Conference on
Learning Representations (ICLR), 2020.

Kenneth Marek, Danna Jennings, Shirley Lasch, Andrew Siderowf, Caroline Tanner, Tanya Simuni, Chris
Coffey, Karl Kieburtz, Emily Flagg, Sohini Chowdhury, et al. The parkinson progression marker initiative
(ppmi). Progress in neurobiology, 95(4):629–635, 2011.

Stephen Muggleton. Inverse entailment and progol. New generation computing, 13(3):245–286, 1995.

Sriraam Natarajan, Prasad Tadepalli, Thomas G Dietterich, and Alan Fern. Learning first-order probabilistic
models with combining rules. Annals of Mathematics and Artificial Intelligence, 54(1):223–256, 2008.

Sriraam Natarajan, Tushar Khot, Kristian Kersting, Bernd Gutmann, and Jude Shavlik. Gradient-based
boosting for statistical relational learning: The relational dependency network case. Machine Learning, 86
(1):25–56, 2012.

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective learning on
multi-relational data. 2011.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. Holographic embeddings of knowledge graphs. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

Mathias Niepert. Discriminative gaifman models. Advances in Neural Information Processing Systems, 29,
2016.

Chanhee Park, Jinuk Park, and Sanghyun Park. Agcn: Attention-based graph convolutional networks for
drug-drug interaction extraction. Expert Systems with Applications, 159:113538, 2020.

Aleksandar Pavlović and Emanuel Sallinger. Expressive: A spatio-functional embedding for knowledge graph
completion. In International Conference on Learning Representations, 2023.

Michał Pilipczuk and Sebastian Siebertz. Sparsity. Technical report, Technical report, University of Warsaw,
2017.

Hoifung Poon and Pedro Domingos. Joint inference in information extraction. In AAAI Conference on
Artificial Intelligence, volume 7, pp. 913–918, 2007.

J. Ross Quinlan. Learning logical definitions from relations. Machine learning, 5(3):239–266, 1990.

Luc De Raedt, Kristian Kersting, Sriraam Natarajan, and David Poole. Statistical relational artificial
intelligence: Logic, probability, and computation. Synthesis Lectures on Artificial Intelligence and Machine
Learning, 2016.

Matthew Richardson and Pedro Domingos. Markov logic networks. Machine learning, 62(1):107–136, 2006.

19

Under review as submission to TMLR

Dennis H Rouvray and Alexandru T Balaban. Chemical applications of graph theory. Applications of Graph
Theory, 177:155–156, 1979.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max Welling.
Modeling relational data with graph convolutional networks. European Semantic Web Conference, 2018.

Baoxu Shi and Tim Weninger. Proje: Embedding projection for knowledge graph completion. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June Hsu, and Kuansan Wang. An
overview of microsoft academic service (mas) and applications. In Proceedings of the 24th international
conference on world wide web, pp. 243–246, 2015.

Ashwin Srinivasan. The aleph manual, 2001.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding by relational
rotation in complex space. 2019.

Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and text inference.
In Proceedings of the 3rd workshop on continuous vector space models and their compositionality, pp. 57–66,
2015.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Complex
embeddings for simple link prediction. In International conference on machine learning, pp. 2071–2080.
PMLR, 2016.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. Composition-based multi-relational
graph convolutional networks. In International Conference on Learning Representations, 2020.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. International Conference on Learning Representations, 2018.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embedding: A survey of approaches
and applications. IEEE Transactions on Knowledge and Data Engineering, 29(12):2724–2743, 2017.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embedding by translating on
hyperplanes. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 28, 2014.

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph structure
learning transformer for node classification. Advances in Neural Information Processing Systems, 35:
27387–27401, 2022.

Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, and Junchi Yan. Difformer: Scalable
(graph) transformers induced by energy constrained diffusion. In The Eleventh International Conference
on Learning Representations, 2023.

Han Xiao, Minlie Huang, and Xiaoyan Zhu. Transg: A generative model for knowledge graph embedding. In
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 2316–2325, 2016.

Zhiwen Xie, Guangyou Zhou, Jin Liu, and Xiangji Huang. Reinceptione: relation-aware inception network
with joint local-global structural information for knowledge graph embedding. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 5929–5939, 2020.

Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and Partha Talukdar.
Hypergcn: A new method for training graph convolutional networks on hypergraphs. Advances in neural
information processing systems, 32, 2019.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and relations for
learning and inference in knowledge bases. 2015.

20

Under review as submission to TMLR

Fan Yang, Zhilin Yang, and William W Cohen. Differentiable learning of logical rules for knowledge base
reasoning. Advances in neural information processing systems, 30, 2017.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018.

Qi Zhang, Jianlong Chang, Gaofeng Meng, Shiming Xiang, and Chunhong Pan. Spatio-temporal graph
structure learning for traffic forecasting. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 1177–1185, 2020.

Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. Quaternion knowledge graph embeddings. Advances in neural
information processing systems, 32, 2019.

Jianan Zhao, Xiao Wang, Chuan Shi, Binbin Hu, Guojie Song, and Yanfang Ye. Heterogeneous graph
structure learning for graph neural networks. In Proceedings of the AAAI conference on artificial intelligence,
volume 35, pp. 4697–4705, 2021.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford networks: A
general graph neural network framework for link prediction. Advances in Neural Information Processing
Systems (NeurIPS), 34:29476–29490, 2021.

21

	Introduction
	Background and Related Work
	INTEGRATE (Statistical Relational Learning and GCNs)
	Embedding Original Graph to Rm: Creating a Euclidean Graph
	Euclidean Graph GCN
	Computational Cost

	Experimental Evaluation
	Baselines
	Results

	Discussion
	Conclusion

