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ABSTRACT

Stochastic learning dynamics based on Langevin or Levy stochastic differential
equations (SDEs) in deep neural networks control the variance of noise by varying
the size of the mini-batch or directly those of injecting noise. Since the noise
variance affects the approximation performance, the design of the additive noise
is significant in SDE-based learning and practical implementation. In this paper,
we propose an alternative stochastic descent learning equation based on quantized
optimization for non-convex objective functions, adopting a stochastic analysis
perspective. The proposed method employs a quantized optimization approach that
utilizes Langevin SDE dynamics, allowing for controllable noise with an identical
distribution without the need for additive noise or adjusting the mini-batch size.
Numerical experiments demonstrate the effectiveness of the proposed algorithm on
vanilla convolution neural network(CNN) models and the ResNet-50 architecture
across various data sets. Furthermore, we provide a simple PyTorch implementation
of the proposed algorithm.

1 INTRODUCTION

Stochastic analysis for a learning equation based on stochastic gradient descent (SGD) with a finite
or an infinitesimal learning rate has been an essential research topic to improve machine learning
performance. Particularly, the linear scaling rule(LSR) for SGD discovered by Krizhevsky (2014);
Chaudhari and Soatto (2018) and Goyal et al. (2018) independently provides an essential guide to
select or control the learning rate corresponding to the size of the mini-batch. More crucially, it
gives a fundamental framework of stochastic analysis for the learning equation in current deep neural
networks(DNN). However, the early analysis of SDE-based SGD encountered counterexamples, as
demonstrated by Hoffer et al. (2017); Shallue et al. (2018); Zhang et al. (2019). Those works claim
that the SGD with a momentum term or an appropriate learning rate represents superior performance
to the SGD with a varying size mini-batch (Mandt et al. (2017); Kidambi et al. (2018); Liu and Belkin
(2020)), even though the noise term gives improved classification performance. As related research
progresses, recent studies reached the following consensus: for an objective function being close to
a standard convex, the SGD with mini-batch represents better performance, while for an objective
function being a non-convex or curvature dominated, the SGD with momentum is better (Ma et al.
(2018); Zhang et al. (2019); Smith et al. (2019) and Smith et al. (2020)).

The other research topic of the stochastic analysis for SGD is whether or not the induced SGD noise
is Gaussian. Simsekli et al. (2019); Nguyen et al. (2019) suggested that SGD noise is a heavy-tailed
distribution. This argument means that if SGD noise is not Gaussian, we should analyze SGD as a
Levy process-based SDE instead of the standard SDE framework. For these claims, Wu et al. (2020);
Cheng et al. (2020b) and Li et al. (2022) revealed that the third or higher order moments in SGD
noise have minimal effect on accuracy performance, while the second moment has a significant
impact. In other words, the standard SDE is still valid for the stochastic analysis of SGD noise in the
learning equation because the second moment of noise is the core component of the standard SDE.
As the recent research substantiates the validation of the stochastic analysis for SGD noise based on
the standard SDE, Li et al. (2019); Granziol et al. (2022); Malladi et al. (2022); Kalil Lauand and
Meyn (2022) and Li et al. (2022) reinterpreted the conventional algorithm based on the standard SDE.
Moreover, with the advent of novel algorithms and comprehensive analyses in noisy SGD research
(e.g., the works of Fonseca and Saporito (2022); Masiha et al. (2022) and Altschuler and Talwar
(2022)), standard SDE-based noisy SGD algorithm is gaining widespread popularity.
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Another research is stochastic gradient Langevin dynamics(SGLD), which injects an isotropic noise,
such as the Wiener process, into SGD (Welling and Teh (2011); Brosse et al. (2018); Dalalyan and
Karagulyan (2019); Cheng et al. (2020a) and Zhang et al. (2022)). Unlike the noise derived from
LSR, the noise introduced by SGLD, which originates from Markov Chain Monte Carlo, consists of
independent and identically distributed (I.I.D.) components. As a result, we can readily apply this
noise to a conventional learning algorithm to enhance its performance by robustness to non-convex
optimization((Raginsky et al. (2017); Xu et al. (2018); Mou et al. (2018) and Wang et al. (2021)).
However, LSR-based SGD and SGLD require additional processes such as warm-up(Goyal et al.
(2018)), extra computation according to stochastic variance amplified gradient(SVAG) (Li et al. (2021)
and Malladi et al. (2022)), or an identical random number generator for SGLD. Furthermore, with the
advancement of research on distribution/federated learning, there is growing opposition to increasing
the size of mini-batches due to practical considerations in optimization techniques. Lin et al. (2020)
argued that in a distributed system with a heterogeneous hardware environment, including small
computational devices, we could not expect a model learned using generalized large-batch SGD to be
suitable. Therefore, they advocate for using small-sized batch SGD in such environments.

This paper introduces an alternative learning algorithm based on quantized optimization for SGLD,
to address the practical issues related to LSR-based SGD and SGLD. The proposed methodology
makes the following contributions.

Optimization based on Quantization We present the learning equation based on the quantized
optimization theory, incorporating the white noise hypothesis (WNH) as suggested by Zamir and Feder
(1996); Benedetto et al. (2004); Gray and Neuhoff (2006) and Jiménez et al. (2007). The WNH posits
that the quantization error follows an I.I.D. white noise under regular conditions with sufficiently
large sample data. While the primary goal of quantization is to reduce computational burden by
simplifying data processing in conventional artificial intelligence and other signal engineering(Seide
et al. (2014); De Sa et al. (2015); Han et al. (2015); Wen et al. (2016); Jung et al. (2019) and Li
and Li (2019)), in our work, quantization serves as the core technology for enhancing optimization
performance during the learning process. Additionally, the quantization error effectively incorporates
the various noise generated by the algorithm and establishes it as additive white noise according to
the WNH, thereby facilitating the SDE analysis for optimization.

Controllable Quantization Resolution By defining the quantization resolution function based on
time and other parameters, we propose an algorithm that computes the quantization level. Controlling
the noise variance induced by the quantization error is essential to apply the quantization error to
an optimizer effectively. While the WNH allows us to treat the quantization error as I.I.D. white
noise, it alone does not guarantee optimal results if the uncontrolled variance exists. Therefore,
learning based on SGLD becomes feasible without a random number generator required by SGLD or
MCMC. Furthermore, similar to increasing the mini-batch size in LSR-based SGD, we can develop a
scheduler using controlled quantization resolution for optimization.

Non-convex Optimization The proposed optimization algorithm demonstrates robust optimization
characteristics for non-convex objective functions. The quantized optimization algorithm outperforms
MCMC-based optimization methods in combinatorial optimization problems, such as simulated
and quantum annealing. Although further empirical evidence is needed, this result indicates that
quantized optimization is a viable approach for non-convex optimization problems. We analyze the
proposed algorithm’s weak and local convergence to substantiate this claim.

2 PRELIMINARIES AND OVERVIEW

2.1 STANDARD ASSUMPTIONS FOR THE OBJECTIVE FUNCTION

We establish the objective function f : Rd 7→ R, f ∈ C2 for a given state parameter(e.g., weight
vectors in DNN) xte ∈ Rd such that

f(xte) ≜
1

NT

NT∑
k=1

f̄k(xte) =
1

B · nB

B∑
τb=1

nB∑
k=1

f̄τb·nB+k(xte), f̄k : Rd → R, ∀τb ∈ Z+[0, B),

(1)
where te denotes a discrete time index indicating the epoch, f̄k : Rd 7→ R, f̄k ∈ C2 denotes a loss
function for the k-th sample data, B ∈ Z+ denotes the number of mini-batches, nB denotes the
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equivalent number of samples for each mini-batch Bj , and NT denotes the number of samples for an
input data set such that NT = B · nB .

In practical applications in DNN, the objective function is the summation of entropies with a
distribution based on an exponential function such as the softmax or the log softmax, so the analytic
assumption of the objective function (i.e., f ∈ C2) is reasonable. Additionally, since a practical
framework for DNN updates the parameter xte with a unit mini-batch, we can rewrite the objective
function as an average of samples in a mini-batch such that

f(xt) =
1

B

B−1∑
τb=0

f̃τb(xte+τb/B), t ∈ R[te, te + 1) ∵ f̃τb(xte) =
1

nB

nB∑
k=1

f̄τb·nB+k(xte). (2)

Under the definition of the objective function, we establish the following assumptions:

Assumption 1. For xt ∈ Bo(x∗, ρ), there exists a positive value L0 with respect to f such that

|f(xt)− f(x∗)|≤ L0∥xt − x∗∥, ∀t > t0, (3)

where Bo(x∗, ρ) denotes an open ball Bo(x∗, ρ) = {x|∥x−x∗∥< ρ} for all ρ ∈ R+, and x∗ ∈ Rd
denotes the unique globally optimal point such that f(x∗) < f(xt). Furthermore, we define the
Lipschitz constants L1 > 0 for the first-order derivation of f , such that

∥∇xf(xt)−∇xf(x
∗)∥≤ L1∥xt − x∗∥. (4)

In Assumption 1, we employ the time index t ∈ R+ instead of te ∈ Z+ to apply the assumption
to an expanded continuous approximation. We assume that the set of the discrete epoch-unit time
{te|te ∈ Z+} is a subset of the set of the continuous time {t|t ∈ R+}.

2.2 DEFINITION AND ASSUMPTIONS FOR QUANTIZATION

The conventional research relevant to signal processing defines a quantization such that xQ ≜
⌊ x∆ + 1

2⌋∆ for x ∈ R, where ∆ ∈ Q+ denotes a fixed valued quantization step. We provide a
more detailed definition of quantization to explore the impact of the quantization error, using the
quantization parameter as the reciprocal of the quantization step such that Qp ≜ ∆−1.

Definition 1. For x ∈ R, we define the quantization of x as follows:

xQ ≜
1

Qp
⌊Qp · (x+ 0.5 ·Q−1

p )⌋ = 1

Qp
(Qp · x+ εq) = x+ εqQ−1

p , xQ ∈ Q, (5)

where ⌊x⌋ ∈ Z denotes the floor function such that ⌊x⌋ ≤ x for all x ∈ R, Qp ∈ Q+ denotes the
quantization parameter, and εq ∈ R is the factor for quantization such that εq ∈ R[−1/2, 1/2).

Furthermore, for a given normal Euclidean basis {e(i)}di=1, we can write a vector x ∈ Rd such that
x ≜

∑d
i=1(x · e(i))e(i). Using these notations, we can define the quantization of a vector xQ ∈ Qd

and the vector-valued the quantization error ϵq ≜ xQ − x = Q−1
p εq ∈ Rd as follows:

xQ ≜
d∑
i=1

(x · e(i))Qe(i) =⇒ ϵq = Q−1
p εq =

d∑
i=1

(
(xQ − x) · e(i)

)
e(i). (6)

We distinguish the scalar factor for quantization εq ∈ R[−1/2, 1/2), the vector valued factor
εq ∈ Rd[−1/2, 1/2), the scalar valued quantization error ϵq = Q−1

p εq ∈ R[−Q−1
p /2, Q−1

p /2), and
the vector valued quantization error ϵq ∈ Rd[−Q−1

p /2, Q−1
p /2) respectively.

Definition 2. We define the quantization parameter Qp : Rd × R++ 7→ Q+ such that

Qp(ε
q, t) = η(εq) · bp̄(t), (7)

where η : Rd 7→ Q++ denotes the auxiliary function of the quantization parameter, b ∈ Z+ is the
base, and p̄ : R++ 7→ Z+ denotes the power function such that p̄(t) ↑ ∞ as t → ∞. If η is a
constant value, the quantization parameter Qp is a monotone increasing function concerning t.
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In definition 2, we can establish an intuitive stochastic approximation based on the random variable
with Gaussian distribution by an appropriate transformation through the auxiliary function η, even
though the probability density function of the quantization error is a uniform distribution. We’ll
investigate the stochastic approximations depending on the function η in the following chapter.

As a next step, we establish the following assumptions to define the statistical properties of the
quantization error.
Assumption 2. The probability density function of the quantization error ϵq is a uniform distribution
pϵq on the quantization error’s domain R[−Q−1

p /2, Q−1
p /2).

Assumption 2 leads to the following scalar expectation and variance of the quantization error ϵq
trivially as follows:

∀εq ∈ R, EεqQ−1
p εq = 0, EεqQ−2

p εq2 = Q−2
p · Eεqεq

2 = 1/12 ·Q−2
p = c0Q

−2
p . (8)

Assumption 3 (WNH from Jiménez et al. (2007)). When there is a large enough sample and the
quantization parameter is sufficiently large, the quantization error is an independent and identically
distributed white noise.

Independent condition of quantization error Assumption 3 is reasonable when the condition is
satisfied for the quantization errors as addressed in Zamir and Feder (1996); Marco and Neuhoff
(2005); Gray and Neuhoff (2006) and Jiménez et al. (2007). However, the independence between the
input signal for quantization and the quantization error is not always fulfilled, so we should check
it. For instance, if we let a quantization value XQ = kQ−1

p ∈ Q for k ∈ Z, we can evaluate the
correlation of XQ and the quantization error ϵq such that

Eεq [X(XQ −X)|XQ = kQ−1
p ] = Eεq [Xϵq|XQ = kQ−1

p ] = c0Q
−2
p . (9)

Accordingly, if the quantization parameter Qp is a monotone increasing function to a time index t
defined in Definition 2 such that Q−1

p (t) ↓ 0, t ↑ ∞, we can regard the quantization error as the
i.i.d. white noise as described in Assumption 3, for t ≥ t0. However, even though the quantization
parameter is a time-dependent monotone-increasing function, we cannot ensure the independent
condition between an input signal and the quantization error at the initial stage when the time index
is less than t < t0. For instance, since the quantization error is not independent of the input signal for
quantization, the quantization error represents zero when the quantized input is zero, even though the
input itself is not zero. Such a broken independent condition can cause an early paralysis of learning
since there exists nothing to update the state parameter. On the contrary, when the quantization error
is independent of an input signal, we can use the quantization error to optimize the objective function
without early paralysis, despite the small valued norm of the input at the initial stage.

We will present the compensation function to ensure the independent condition and avoid learning
paralysis at the early learning stage in the other section.

3 LEARNING EQUATION BASED ON QUANTIZED OPTIMIZATION

Consider that the learning equation given by:
Xτ+1 = Xτ + λh(Xτ ), Xτ ∈ Rd, ∀τ > 0, (10)

where h : Rd 7→ Rd represents the search direction, and τ denotes the time index depending on
the index of a mini-batches defined in equation 1 and equation 2. Most artificial intelligence
frameworks provide a learning process depending on the unit of the mini-batch size, so equation 10
describes a real and practical learning process.

Main Idea of the Proposed Quantized Optimization The learning equation, represented as
equation 10, searches for a local minimum along a line defined by a directional vector or a conjugate
direction when the equation incorporates momentum. In the proposed quantized optimization, we
create a grid on the objective function’s domain and sample a point near the feasible point generated
by the learning equation. The grid size is adjustable through the quantization parameter. By con-
sidering the quantization error as a white noise following WNH, we can reduce the variance of the
quantization error by increasing the quantization parameter’s size. This adjustment approximates
the dynamics of Langevin SDE in stochastic approximation in the sense of the central limit theorem.
From an optimization perspective, stochastic gradient-based learning can be considered stochastic
sampling.
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(a) Small valued Qp(τ) (b) Large valued Qp(τ) (c) Search vectors

Figure 1: The concept diagram of the proposed quantization: (a) In the early stage of learning, with a
small value of Qp(τ), the search points generated by quantization are widely spaced, indicating a
significant quantization error or Brownian motion process affecting the learning process. (b) As the
learning process progresses, the quantization parameter Qp(τ) increases, resulting in smaller grid
sizes. This process resembles an annealing-type stochastic optimization. (c) When considering a
general search vector α, h(Xτ ), quantization introduces an additional search vector, as shown.

3.1 FUNDAMENTAL LEARNING EQUATION BASED ON QUANTIZATION

Applying the quantization defined as equation 5 and equation 6 to the learning equation,
equation 10, we can obtain the following fundamental quantization-based learning equation:

XQ
τ+1 = XQ

τ +[λh(XQ
τ )]Q = XQ

τ +Q−1
p (τ)

⌊
Qp(τ) · (λh(XQ

τ ) + 0.5Q−1
p )
⌋
, XQ

0 ∈ Qd. (11)

According to the definition of quantization, we can rewrite equation 11 to the following stochastic
equation similar to the discrete Langevin equation :

XQ
τ+1 = XQ

τ + λh(XQ
τ ) + ϵqτ = XQ

τ + λh(XQ
τ ) +Q−1

p (εqτ , τ)ε
q
τ , (12)

where ϵqτ ∈ Rd denotes the vector-valued quantization error, and εqτ ∈ Rd denotes the vector-valued
factor for the quantization, defined as equation 6 respectively.

Substituting the search direction h(XQ
τ ) with−∇xf̃τ (X

Q
τ ), we rewrite equation 12 to the following

equation:
XQ
τ+1 = XQ

τ − λ∇xf̃τ (X
Q
τ ) +Q−1

p (εqτ , τ)ε
q
τ . (13)

While the fundamental quantized learning equations equation 12 and equation 13 are the formulae
of a representative stochastic difference equation, we cannot analyze the dynamics of these equations
as a conventional stochastic equation, due to the quantization error as a uniformly distributed vector-
valued random variable. Therefore, to analyze the dynamics of the proposed learning equation from
the perspective of stochastic analysis, we suggest the following two alternative approaches:

Transformation to Gaussian Wiener Process Using the fundamental form of the quantization
parameter, we can transform a uniformly distributed random variable into a standard or approximated
Gaussian-distributed random variable. Since the quantization parameter including the transform can
generate a Gaussian distributed independent increment zτ

i.i.d.∼ N (z; 0, Id) such that η(εqτ )ε
q
τ =√

λzτ under the assumption of which λ = 1/B, we can rewrite equation 13 as follows:

XQ
τ+1 = XQ

τ − λ∇xf̃τ (X
Q
τ ) +

√
λ · b−p̄(τ)zτ . (14)

However, even though the transformation offers theoretical benefits derived from a Gaussian-
distributed process, there are no advantages to implementing the learning equation, as the property of
the quantization error is equivalent to that of a uniformly distributed random variable in a conventional
random number generator. Consequently, we do not treat the transformation-based algorithm.

Analysis based on Central Limit Theorem Another approach is based on an empirical perspective
under the quantization parameter depends only on the time index such that Qp(ε

q
τ , τ) = Qp(τ).

Generally, we check the performance of algorithms at the unit of epoch, not the unit of the unspecified
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index of a mini-batch. Accordingly, if there are sufficient numbers of mini-batches in an epoch and the
quantization parameter is constant in a unit epoch such that Q−1

p (te + τ) = Q−1
p (te),∀τb ∈ Z[0, B),

we can analyze the summation of the learning equation to each mini-batch index as follows:

XQ
te+1 = XQ

te − λ

B−1∑
τb=0

∇xf̃τb(X
Q
te+τb/B

) + b−p̄(te)λ

√
Cq
c0

B−1∑
τb=0

εqte+τb/B , (15)

where Q−1
p (te) = λ

√
Cq

c0
b−p̄(te). Herein, the summation of the factor for the quantization error

converges to a Gaussian-distributed random variable such that
√

λ
c0

∑B−1
τb=0 ε

q
te+τb/B

→ zte ∼
N (z; 0, Id) as B ↑ ∞, by the central limit theorem. Therefore, we can regard the stochastic
difference equation, equation 15, as the stochastic integrated equation concerning te to te + 1, so
we can obtain an approximated SDE to the epoch-based continuous-time index t ∈ R+. We accept
this approach as a quantization-based learning equation since (16) does not require any additional
operation such as the transformation to generate a Gaussian random variable.

Application to Other Learning Algorithms In the quantized stochastic Langevin dynamics (QSLD),
the search direction is not fixed as the opposite direction of the gradient vector, allowing for the
application of various learning methods such as ADAM (Kingma and Ba (2015)) and alternative
versions of ADAM such as ADAMW(Loshchilov and Hutter (2019)), NADAM(Dozat (2016)), and
RADAM(Liu et al. (2020)).

Avoid Early Paralysis of the proposed algorithm The initial gradient tends to vanish if the initial
search point is far from optimal, especially for objective functions in deep neural networks that
utilize entropy-based loss functions such as the Kullback-Leibler divergence (KL-Divergence). The
small gradient in the early stage becomes zero after the quantization process, potentially causing
the deep neural network (DNN) to fall into a state of paralysis, as illustrated below: Assume that
max∥λh∥< 0.5Q−1

p (τ)− δ for τ < τ0, where δ denotes a positive value such that δQp < 1, and τ0
denotes a small positive integer. Then, we have
1/Qp · ∥⌊Qp(λh+0.5Q−1

p )⌋∥≤ 1/Qp · ⌊Qp(max∥λh∥+0.5Qp)⌋ = 1/Qp · ⌊1− δQp⌋ = 0. (16)
To prevent the paralysis depicted in equation 16, a straightforward solution is to re-establish the
quantized search direction by incorporating a compensation function r(τ) = ⌊r(τ)⌋ into h, as shown:

Q−1
p (τ) · ∥

⌊
Qp(τ)(λh+ r(τ) + 0.5Q−1

p )
⌋
∥max∥λh∥<0.5Q−1

p (τ)−δ

= Q−1
p (τ) · ∥⌊Qp · (λh+ 0.5Q−1

p + r(τ))⌋∥max∥λh∥<0.5Q−1
p (τ)−δ

≤ Q−1
p (τ) · ∥⌊Qp · (λh+ 0.5Q−1

p ⌋∥max∥λh∥<0.5Q−1
p (τ)−δ+∥⌊Qpr(τ))⌋∥

≤ 0 +Q−1
p (τ) · ∥⌊Qpr(τ)⌋∥.

(17)

In equation 17, the compensation function is responsible for increasing the magnitude of the search
direction during an initial finite period. To address this, we propose the compensation function r(τ)
given by:

r(τ,Xτ ) = λ ·

(
exp(−κ(τ − τ0))

1 + exp(−κ(τ − τ0))
· h(XQ

τ )

∥h(XQ
τ )∥

)
, τ0 ∈ Z++, (18)

where κ > 0 denotes a determining parameter for the working period, and τ0 represents the half-time
of the compensation.

Moreover, the compensation function r(τ) provides the crucial property that the proposed quantization
error is uncorrelated to the quantization input, such as the directional derivatives h as follows:
Theorem 3.1. Let the quantized directional derivatives hQ : Z+ × Rd 7→ Qd such that

hQ(XQ
τ ) ≜

1

Qp

⌊
Qp · (λh(XQ

τ ) + r(τ,XQ
τ )) + 0.5

⌋
, (19)

where r(τ,Xτ ) denotes a compensation function such that r : Z+ × Rd 7→ Rd{−1, 1}.
Then, the quantization input h(XQ

τ ) and the quantization error ϵqτ is uncorrelated such that
Eϵqτ [h(X

Q
τ )ϵqτ |hQ(XQ

τ ) = kQ−1
p ] = 0.

Theorem 3.1 completes the assumptions for the WNH of the quantization error referred to in
Assumption 2 for stochastic analysis for the proposed learning scheme.
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3.2 CONVERGENCE PROPERTY OF QSGLD

Weak Convergence without Convex Assumption Before the weak convergence analysis of QSGLD,
we establish the following lemma for the approximated SDE.
Definition 3 (Order-1 Weak Approximation, Li et al. (2019) and Malladi et al. (2022)). Let
{Xt : t ∈ [0, te]} and {XQ

τ }
te B
τ=0 be families of continuous and discrete stochastic processes

parameterized by λ. We regard {Xt} and Xτ are order-1 weak approximations of each other if for
all test function g with polynomial growth, there exists a constant Co1 > 0 independent of λ such that

max
τ∈Z[0,⌊te·B⌋]

|Eg(Xt)− Eg(XQ
⌊τ/B⌋)|≤ Co1λ

2. (20)

We provide additional definitions required in Definition 3, such as the polynomial growth of the test
function in the supplementary material.
Lemma 3.2. The approximated Langevin SDE for QSGLD represented in equation 15 is as follows:

dXt = −∇xf(Xt)dt+
√

Cq · σ(t)dBt, ∀t > t0 ∈ R+, ∵ σ(t) ≜ b−p̄(t), (21)
The approximation equation 21 satisfies the order-1 weak approximation described in Definition 3.

Sketch of proof Li et al. (2019) introduced a rigorous analytical framework for approximating
stochastic difference equations with stochastic differential equations (SDEs). Building upon this
framework, Malladi et al. (2022) extended the analysis for more general search directions. We
leverage the aforementioned framework to establish Lemma 3.2. We impose several bounded
assumptions described in the supplementary material to derive the moment of the one-step difference
in equation 21. Subsequently, by utilizing the bound of the moment, we prove the order-1 weak
approximation of QSGLD to the Langevin SDE.
Theorem 3.3. Consider the transition probability density, denoted as p(t,Xt, t+ τ̄ ,x∗), from an
arbitrary state Xt ∈ Rd to the optimal point x∗ ∈ Rd, Xt ̸= x∗ after a time interval τ̄ ∈ R+, for
all t > t0. If the quantization parameter is bounded as follows:

sup
t≥0

Qp(t) ≤
√

1

C
· log(t+ 2), C ∈ R++, (22)

for Xt ̸= X̄t, QSGLD represented as equation 21 converges with distribution in the sense of Cauchy
convergence such that

lim
τ̄→∞

sup
Xt,X̄t∈ Rn

|p(t, X̄t, t+ τ̄ ,x∗)− p(t,Xt, t+ τ̄ ,x∗)|≤ C̃ · exp

(
−

∞∑
τ̄=0

δt+τ̄

)
, (23)

where δt denotes the infimum of the transition probability density from time t to t + 1 given by
δt = inf

x,y∈ Rd p(t,x, t+ 1,y), satisfying
∑∞
τ̄=0 δt+τ̄ =∞, and C̃ denotes a positive value.

Sketch of proof First, we analyze the limit supremum of the difference between the transition
probabilities expressed by the infimum δt. Next, according to the Girsanov theorem (Øksendal (2003)
and Klebaner (2012)), we calculate the Radon-Nykodym derivative of the probability measure derived
by the weak solution of Langevin SDE relevant to QSGLD concerning the probability of a standard
Gaussian. Using the obtained Radon-Nykodym derivative, we calculate a lower bound for δt and
provide proof for the theorem.

Local Convergence under Convex Assumption For local convergence analysis, we suppose that the
objective function around the optimal point is strictly convex.
Assumption 4. The Hessian of the objective function H(f) : Rd 7→ Rd around the optimal point is
non-singular and positive definite,
Theorem 3.4. The expectation value of the objective function derived by the proposed QSGLD
converges to a locally optimal point asymptotically under Assumption 4, such that

∀ε > 0, ∃ρ > 0 such that ∥XQ
τ − x∗∥< ρ =⇒ |Eεq

τ
f(XQ

τ+k)− f(x∗)|< ε(ρ). (24)

Sketch of proof Intuitively, the proof of the theorem follows a similar structure to the conventional
proof of gradient descent under the convex assumption. However, with the existence of the Brownian
motion process, we apply the stationary probability from Theorem 3.3 into the proof. Accordingly,
we prove the convergence not on the point-wise vector space, but on the function space induced by a
stationary expectation.

7
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Algorithm 1 QSLD/QSGLD with the proposed quantization scheme

1: Initialization τ ← 0, X0 ∈ Qd ▷ Set Initialize Discrete Time Index and state
2: repeat
3: Compute h(XQ

τ ) at τ ▷ Compute a Search Direction Vector
4: Compute Qp(τ), and r(τ, h(XQ

τ )) ▷ Compute Quantization Parameter and r(τ)
5: hQτ ← 1

Qp
⌊Qp · (−λh(XQ

τ ) + r(τ, h(XQ
τ )) + 0.5Q−1

p )⌋ ▷ Quantization of Search Vector
6: XQ

τ ←Xτ + hQτ ▷ General Updating Rule for Learning
7: τ ← τ + 1 ▷ General Update Discrete Time Index
8: until Stopping criterion is met

Table 1: Comparison of test performance among optimizers with a fixed learning rate 0.01. Evaluation
is based on the Top-1 accuracy of the training and testing data.

Data Set FashionMNIST CIFAR10 CIFAR100
Model CNN with 8-Layers ResNet-50
Algorithms Training Testing Training Error Training Testing Training Error Training Testing Training Error
QSGD 97.10 91.59 0.085426 99.90 73.80 0.009253 99.04 37.77 0.030104
QADAM 98.43 89.29 0.059952 99.99 85.09 0.011456 98.62 49.60 0.037855
SGD 95.59 91.47 0.132747 99.99 63.31 0.001042 98.24 25.90 0.005478
ASGD 95.60 91.42 0.130992 99.99 63.46 0.001166 98.36 26.43 0.004981
ADAM 92.45 87.12 0.176379 99.75 82.08 0.012421 98.85 46.32 0.038741
ADAMW 91.72 86.81 0.182867 99.57 82.20 0.012551 98.86 47.01 0.038002
NADAM 96.25 87.55 0.140066 99.56 82.46 0.014377 98.62 48.56 0.037409
RADAM 95.03 87.75 0.146404 99.65 82.26 0.010526 98.17 48.61 0.044193

4 EXPERIMENTAL RESULTS

4.1 CONFIGURATION OF EXPERIMENTS

From a practical point of view, as both the updated state XQ
τ+1 and the current state XτQ are

quantized vectors, the quantization parameter should be a power of the base defined in equation 7.
Although Theorem 3.3 provides an upper bound for the quantization parameter as a real value, we
constrain the quantization parameter to be a rational number within a bounded range of real values.
Specifically, we set the quantization parameter Qp as follows:

Qp =

⌊√
1

C
log(te + 2)

⌋
, (25)

where te represents a unit epoch defined as te = ⌊τ/B⌋, and τ denotes a unit update index such that
τ = te ·B + k, k ∈ Z+[0, B). In the supplementary material, we provide detailed explanations and
methods for calculating and establishing the remaining hyper-parameters.

4.2 BRIEF INFORMATION OF EXPERIMENTS

We conducted experiments to compare QSGLD with standard SGD and ASGD (Shamir and Zhang
(2013)). Additionally, we compared the performance of QSLD to the proposed method with ADAM,
ADAMW, NADAM, and RADAM in terms of convergence speed and generalization. These results
provide an empirical analysis and demonstrate the effectiveness of the proposed algorithms. The
network models used are ResNet-50 and a small-sized CNN network with 3-layer blocks, of which two
former blocks are a bottle-neck network, and one block is a fully connected network for classification.
Data sets used for the experiments are FashionMNIST(Xiao et al. (2017)), CIFAR-10, and CIFAR-
100. We give detailed information about the experiments, such as hyper-parameters of each algorithm,
in the supplementary material.

4.3 EMPIRICAL ANALYSIS OF THE PROPOSED ALGORITHM

Test for FashionMNIST For the experiment, we employed a small-sized CNN to evaluate the
performance of the test algorithms. The FashionMNIST data set consists of black-and-white images
that are similar to MNIST data. Figure 2 illustrates that SGD algorithms demonstrate superior

8
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(a) FashionMNIST via CNN (b) CIFAR10 via ResNet50 (c) CIFAR100 via ResNet50

Figure 2: The error trends of test algorithms to the data set and neural models: (a) Training error
trends of the CNN model on FashionMNIST data set.(b) Training error trends of ResNet-50 on
CIFAR-10 data set. (c) Training error trends of ResNet-50 on CIFAR-100 data set.

generalization performance on the test data, even though their convergence speed is slower than
ADAM-based algorithms. Table 1 shows that the proposed quantization algorithms achieve a superior
final accuracy error. Notably, the quantization algorithm applied to ADAM algorithms surpasses the
error bound and achieves even lower accuracy error. As a result, the proposed quantization algorithm
demonstrates improved classification performance for test data.

Test for CIFAR-10 and CIFAR-100 For the CIFAR-10 and CIFAR-100 tests, we utilized ResNet-50
as the model architecture. As shown in Table 1, when classifying the CIFAR-10 data set using
ResNet-50, QSGLD outperformed SGD by 8% in terms of test accuracy. As depicted in Figure 2,
QSGLD exhibited significant improvements in convergence speed and error reduction compared
to conventional SGD methods. On the other hand, Adam-Based QSLD showed a performance
advantage of approximately 3% for test accuracy for the CIFAR-10 data set. Similar trends were
observed for the CIFAR-100 data set. QSGLD demonstrated a performance advantage of around
11% over conventional SGD methods for test accuracy. In contrast, Adam-based QSLD showed an
improvement of approximately 3.0% compared to Adam optimizers and 1.0% compared to NAdam
and RAdam.

5 CONCLUSION

We introduce two stochastic descent learning equations, QSLD and QSGLD, based on quantized
optimization. Empirical results demonstrate that the error trends of the quantization-based stochastic
learning equations exhibit stability compared to other noise-injecting algorithms. We provide the
proposed algorithm’s weak and local convergence properties with the Langevin SDE perspective. In
our view, exploring the potential of quantization techniques applied to the range of objective functions
may offer limited performance gains. Hence, future research will investigate the quantization
technique in the context of objective function domains. Furthermore, we have not analyzed a more
generalized version of the proposed method, QSLD, despite the empirical results suggesting its
satisfactory consistency. Analyzing QSLD requires studying the properties of the general search
direction, which we reserve for future investigations.
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A APPENDIX : INTRODUCTION

We provide the mathematical properties and the proofs for the theorems and lemmas featured in this
manuscript. Firstly, we present the statistical properties of the quantization error, such as expectation,
variance, and independent properties. Moreover, we present the proof of Theorem 3.1 to provide the
independence of the quantization error to the directional derivation h for the early stage of learning.

Next, we provide the discrete variation of the proposed quantized optimization-based learning
equation for stochastic analysis. Such discrete learning formulae show how can we transform the
quantization error into a standard Wiener process with the auxiliary function in the quantization
parameter.

Based on the provided discrete equation, we prove that the proposed learning equation weakly
converges to the stochastic differential equation known as the Langevin equation. Using the weakly
converged stochastic differential equation, we give the proof of Theorem 3.3 about the weak con-
vergence of the proposed algorithm. Through the property of weak convergence, we posit that the
proposed algorithm possesses a stationary distribution of the transition probability density towards an
optimal point, even in the presence of non-convex objective functions.

Additionally, we establish the proposed algorithm’s asymptotic convergence under a convex assump-
tion. Despite the non-convexity assumptions, we provide proof of local convergence by considering
the feasibility of assuming strict local convexity around an optimal point.

Furthermore, we provide detailed information regarding the experiments, including comprehensive
results of simulations for each data set, network models utilized, and the corresponding hyperparame-
ters for each algorithm. Finally, we offer further discussion and analysis of the specific empirical
findings in these experiments.

A.1 NOTATIONS

Generally, we follow the mathematical notations shown in the manuscript provided by the ICLR
formatting instructions. Herein, we provide some combinations of the notations for easy reading and
particular expressions used in the manuscript.

• Rn The n-dimensional space with real numbers.

• R Rn|n=1.

• R[α, β] {x ∈ R|α ≤ x ≤ β, α, β ∈ R}.
• R(α, β] {x ∈ R|α < x ≤ β, α, β ∈ R}.
• R[α, β) {x ∈ R|α ≤ x < β, α, β ∈ R}.
• R(α, β) {x ∈ R|α < x < β, α, β ∈ R}.
• Qn The n-dimensional space with rational numbers.

• Q Qn|n=1.

• Z The 1-dimensional space with integers.

• N The 1-dimensional space with natural numbers.

• R+ {x|x ≥ 0, x ∈ R}.
• R++ {x|x > 0, x ∈ R}.
• Q+ {x|x ≥ 0, x ∈ Q}.
• Q++ {x|x > 0, x ∈ Q}.
• Z+ {x|x ≥ 0, x ∈ Z}.
• Z++ {x|x > 0, x ∈ Z}, Z++ is equal to N.

• ⌊x⌋ max{y ∈ Z|y ≤ x}, for a given number x ∈ R.

• ⌈x⌉ min{y ∈ Z|y ≥ x}, for a given number x ∈ R.

• nBτ The numbers of samples in the τ -th mini-batch Bτ .
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• B The total number of mini-batches. If we have totally NT numbers of samples for a
dataset, we have NT =

∑B
τ=1 nBτ

.

• k ∈ Z+ Discrete index for sample data.

• t ∈ R+ Continuous time index for stochastic analysis.

• τ ∈ Z+ Discrete time index. Typically it denotes the monotonically increasing index based
on the unit of mini-batches such that τ ↑ ∞ and τ = te ·B.

• tb ∈ Z+[0, B) Discrete index to mini-batch.

• te ∈ Z+ Discrete time index. Typically it denotes the epoch, corresponding to τ such that
te = τ/B.

• PX(x) Probability density function of the discrete random variable X with respect to a
domain D(x) containing x.

• pX(x) Probability density function of the continuous random variable X with respect to a
domain D(x) containing x.

• EX(X) Expectation value of the random variable X following the distribution PX(x) such
that EX(X) =

∫
D(x)

xPX(x)dx, where D(x) is a domain containing x. More detailed,

EX(Y (x)) is equivalent to E(Y (x)|X) ≜
∫∞
−∞ y(x)PX(x)dx Accordingly, Ex∼PX

is an
equivalent expression.

• ⟨a, b⟩ The inner product of the vector a ∈ Rd and b ∈ Rd. This notation is equivalent to
a · b.

• U(x;µ, σ) Uniform distribution with the expectation µ, the variance σ. The random
variable x follows the uniform distribution. Additionally, we employ a notation without the
random variable such as U(µ, σ).

• N (x;µ, σ) Normal distribution with the expectation µ, the variance σ. The random
variable x follows the normal distribution. Additionally, we employ a notation without the
random variable such as N (µ, σ).

A.2 ADDITIONAL DEFINITIONS AND ASSUMPTIONS

We refer to the definitions and assumptions described in the main manuscript to all theorems and
lemmas in the supplementary material. However, we didn’t mention the following definition for a
measure of a matrix, so that we define it as follows:

Definition 4. For A ∈ Rm×m,m ∈ N, we define a metric for a matrix A as follows:

(A)Rm×m ≜ ⟨v,Av⟩, v ∈ Rm, ∥v∥= 1. (26)

We define the matrix norm of A, denoted as ∥A∥Rm×m , using the absolute value of the metric in

equation 26 such that ∥A∥Rm×m≜ sup|(A)Rm×m |.

B STATISTICAL PROPERTIES OF QUANTIZATION

B.1 PROOF OF BASIC STATISTICAL PROPERTIES

Fundamental Statistical Properties of the Quantization error

From Definition 1 and Assumption 2, we note that ϵq = Q−1
p εq and pϵq (x) = Qp for R[− 1

2Qp
, 1
2Qp

),
so that we can obtain the differential dϵq = Q−1

p dεq and the integral domain for εq such that
D(εq) = [− 1

2 ,
1
2 ). It implies that

Eϵqϵq = EϵqQ−1
p εq =

∫ 1
2Qp

− 1
2Qp

pϵq (x)ϵ
qdϵq =

∫ 1
2

− 1
2

QpQ
−1
p εqQ−1

p dεq =
Q−1
p

2
εq2

∣∣∣∣∣
1
2

− 1
2

= 0. (27)
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Therefore, we simply evaluate the expectation value of the quantized input XQ ∈ Q such that

Eϵq [XQ|X = x] = Eϵq [XQ|X = x]

=

∫ ∆
2

−∆
2

pϵq (ϵ
q)∆

⌊
x

∆
+

1

2

⌋
dϵq =

∫ 1
2Qp

− 1
2Qp

Qp · (x+ εqQ−1
p )dϵq =

∫ 1
2Qp

− 1
2Qp

Qp · (x+ ϵq)dϵq

= Qp

(∫ 1
2Qp

− 1
2Qp

xdϵq +

∫ 1
2Qp

− 1
2Qp

ϵqdϵq

)
= Qp

x

∫ 1
2Qp

− 1
2Qp

dϵq +
ϵq2

2

∣∣∣∣∣
1

2Qp

− 1
2Qp


= Qp

(
x

1

Qp
+

1

2

(
1

4Q2
p

− 1

4Q2
p

))
= x.

(28)

We can rewrite equation 28 to the following simplified formulae:

Eϵq [XQ|X = x] = Eϵq [X + ϵq|X = x] = Eϵq [x+ ϵq] = x+ Eϵqϵq = x, (29)

where x ∈ R is a scalar value and X ∈ R is a scalar random variable as an input of quantization.
Further, we can obtain the variance of the quantization error as follows:

V arϵqϵ
q = Eϵq (ϵq)2 − (Eϵqϵq)2 = Eϵq (ϵq)2 = EϵqQ−2

p εq2

=

∫ 1
2

− 1
2

QpQ
−2
p εq2Q−1

p dεq =
Q−2
p

3
εq3

∣∣∣∣∣
1
2

− 1
2

=
1

12Q2
p

= c0Q
−2
p .

(30)

Independent Condition of the Quantization error The independent condition mentioned herein
is relevant whether the correlation between the input of the quantization and the quantization error
is zero or not. If we let a quantization value XQ = kQ−1

p ∈ Q for k ∈ Z, we can evaluate the
correlation of XQ and the quantization error ϵ̄q such that

Eε̄q [X(X −XQ)|XQ = kQ−1
p ] = Eε̄q [Xϵ̄q|XQ = kQ−1

p ]

=

∫ 1
2Q

−1
p

− 1
2Q

−1
p

Qpxϵ
qdϵ̄q, ∵ x = xQ|xQ=kQ−1

p
+ϵ̄q|ϵ̄

q=Q−1
p /2

ϵ̄q=−Q−1
p /2

, dx = dϵ̄q

=

∫ ( 1
2+k)Q

−1
p

(− 1
2+k)Q

−1
p

Qpx(x− xQ)dx

= Qp

x3

3

∣∣∣∣∣
( 1
2+k)Q

−1
p

(− 1
2+k)Q

−1
p

− k

Qp

x2

2

∣∣∣∣∣
( 1
2+k)Q

−1
p

(− 1
2+k)Q

−1
p


= Qp

[
1

3Q3
p

((
1

2
+ k

)3

−
(
−1

2
+ k

)3
)
− k

2Q3
p

((
1

2
+ k

)2

−
(
−1

2
+ k

)2
)]

= Q−2
p

[
k2 +

1

12
− k2

]
=

1

12
Q−2
p = c0Q

−2
p .

(31)

In equation 31, to get a positive correlation value, we establish the quantization value XQ and
quantization input X as the following equation:

X = XQ + ϵ̄q, ϵ̄q = Q−1
P ε̄q ∈ R[−Q−1

p /2, Q−1
p /2], (32)

where the scalar quantization error ϵ̄q has negative sign to originally defined quantization error ϵq
such that ϵ̄q = −ϵq .
Likewise as previously mentioned, we can rewrite equation 31 as follows

Eε̄q [Xϵ̄q|XQ = kQ−1
p ] = Eε̄q [(XQ + ϵ̄q)ϵ̄q|XQ = kQ−1

p ] = Eε̄q [(kQ−1
p + ϵ̄q)ϵ̄q]

= kQ−1
p Eε̄q ϵ̄q + Eε̄q (ϵ̄q)2 = 0 + c0Q

−2
p

(33)
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The result of equation 31 represents that the quantization input and quantization error are correlated
with the equal variance of the quantization error, so those are not generally independent. This
correlation enables to bring about early paralysis in the learning process under quantized directional
derivation. Considering equation 31, the quantized directional derivative hQ ∈ R can be zero, even if
there exists a quantization error such that

Eε̄q [hϵq|hQ = kQ−1
p ]

∣∣∣∣
k=0

=

∫ 1
2Qp

− 1
2Qp

Qph(h− hQ)dx

∣∣∣∣
hQ=0

= c0Q
−2
p . (34)

If the quantization parameter is sufficiently large and leads Q−1
p ↓ 0, we can treat the quantization

error as an independent white noise to the quantization input. However, the quantization parameter is
not large enough in the early stage of the learning process, so such a relatively small quantization
parameter raises the early paralysis of the learning algorithm. Considering the learning equation
based on the quantized directional derivative such that XQ

τ+1 = Xτ + hQ, we can note that the
dependent property between the quantization error and the quantization input leads to the diminishing
of the quantized directional derivative such that

|h|↓ 0 =⇒ |ϵq|↓ 0 =⇒ |h+ ϵq|= |hQ|↓ 0. (35)

Accordingly, the learning process does not work when we devise a learning equation based on the
quantized directional derivation. However, if there exists a compensated quantization ϵ̆q that is
independent of the input X such that Eϵ̆q [Xϵ̆q|XQ = kQ−1

p ] = 0, the independent quantization error
provides

|h|↓ 0 and |ϵ̆q|> 0 =⇒ |h+ ϵ̆q||h|↓0≤ |h||h|↓0+|ϵ̆|≜ |hQ||h|↓0> 0 (36)

This intuitive consideration states that the independent quantization error to the quantization input
enables to avoidance of early learning paralysis raised by |X|↓ 0. Consequently, we should establish
a compensation function that enables it to be independent between the quantization input and the
quantization error.

B.2 AVOID EARLY PARALYSIS OF THE PROPOSED ALGORITHM

Dithering for Independent Condition of the Quantization error We assume that there exists a
random variable z ∈ R defined on R[− 1

2Qp
, 1
2Qp

) with a uniform distribution pz(x) = Qp. Since
the probability density function of the random variable z and ϵq is equal, we calculate the expectation
such that

Ez[(X + z)Q|X = x] =

∫ 1
2Qp

−1
2Qp

pz(z) · (x+ z + ϵq) dz

=

∫ x+ 1
2Qp

x− 1
2Qp

Qp(y + ϵq)dy, ∵ y = x+ z =⇒ dy = dz, y ∈ R
[
x− 1

2Qp
, x+

1

2Qp

]

= Qp

(∫ x+ 1
2Qp

x− 1
2Qp

ydy +

∫ x+ 1
2Qp

x− 1
2Qp

ϵqdy

)
∵ yQ + ϵ = y =⇒ dϵ = dy

= Qp

y2

2

∣∣∣∣x+ 1
2Qp

x− 1
2Qp

ydy +

∫ 1
Qp

− 1
Qp

ϵqdϵq

 ∵ ϵq = x± 1

2Qp
− yQ

= Qp

1

2

[(
x+

1

2Qp

)2

−
(
x+

1

2Qp

)2
]
+

ϵq2

2

∣∣∣∣ 1
Qp

− 1
Qp


∵ ϵq ∈ {ϵq ∈ R|x− (x± 1/2Qp)± 1/2Qp} = R[−1/Qp, 1/Qp]

= Qp

1

2

2x

Qp
+

ϵq2

2

∣∣∣∣ 1
2Qp

− 1
2Qp

 = Qp ·
x

Qp
+Qp · 0 = x

(37)
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From the result of equation 37, we can obtain the correlation between the quantization input and the
quantization error with an additional uniformly distributed noise as follows:

EX,z[X(X − (X + z)Q)|XQ = kQ−1
p ]

=

∫ ( 1
2+k)Q

−1
p

−( 1
2+k)Q

−1
p

pX(x)

∫ Q−1
p
2

−Q
−1
p
2

pz(z)x(x− (x+ z)Q)dzdx

=

∫ ( 1
2+k)Q

−1
p

−( 1
2+k)Q

−1
p

pX(x)

x2

∫ Q−1
p
2

−Q
−1
p
2

pz(z)dz − x

∫ Q−1
p
2

−Q
−1
p
2

pz(z)(x+ z)Qdz

 dx

=

∫ ( 1
2+k)Q

−1
p

−( 1
2+k)Q

−1
p

pX(x)(x2 − x2)dx = 0.

(38)

By the result of equation 38, we are aware that the additional noise z enables the quantization error
and the quantization input to be independent. The technique described in equation 38 is known as
the dithering to fulfill the independent property among the quantization error and the quantization
input(provided by Marco and Neuhoff (2005), and Gray and Neuhoff (2006)).

Whereas the dithering employs an additive noise with a uniform distribution herein, equation 12
presents that even an additive noise with an appropriate symmetrical distribution can satisfy the
independent condition. Based on such a conjecture, we present the compensation function to satisfy
the independent condition for the quantization error in the following section.

When we elaborate the above equations with the formulas incorporating the expectation symbol, we
can rewrite equation 37 such that

Ez[(X + z)Q|X = x] = Ez[x+ z − ϵ̄q] = x+ Ezz − Ez ϵ̄
q = x, ∴ Ezz = Ez ϵ̄

q (39)

The result of equation 39 presents that we can measure the quantization error ϵ̄q or ϵq with the
probability density of z due to the equal uniform distribution. Hence we can regard the additional
noise for the dithering z as a transformation of the quantization error. Additionally, we note that the
additional noise as the transformation for the dithering requires the changed sign of the quantization
error.

Finally, holding the dithering condition for additional noise, we rewrite equation 38 such that

EX,z[X(X − (X + z)Q)|XQ = kQ−1
p ] = EX,z[X(X − (X + z + ϵq))|XQ = kQ−1

p ]

= EX,z[X2 −X2 −X(z + ϵq)|XQ = kQ−1
p ]

= EX,z[−X(z + ϵq)|X = kQ−1
p + ϵ̄q]

= −Ez[(kQ
−1
p + ϵ̄q)(z + ϵq)]

= −kQ−1
p (Ezz + Ezϵ

q)− Ez ϵ̄
qz − Ez ϵ̄

qϵq

= 0− Ez(z)
2 + Eϵq (ϵq)2 = 0.

(40)

In equation 40, we note that Ez ϵ̄
qz = Ez(z)

2 and Ez ϵ̄
qϵq = −Ez(ϵ

q)2 = −Eϵq (ϵq)2.

The Compensation Function for Early Paralysis We establish the compensation function to avoid
early paralysis in the quantized directional derivative-based learning process as follows:

r(τ,Xτ ) = λ ·
(

exp(−κ(τ − τ0))

1 + exp(−κ(τ − τ0))
· h(Xτ )

∥h(Xτ )∥

)
, τ0 ∈ Z++ (41)

We consider a directional derivative with one dimension, h ∈ R, for convenience of discussing. Since
the compensation function defined in equation 41 contains a normalized directional derivative h/∥h∥,
for τ ≪ τ0, we assume that the range of the compensation function such that

r(τ,Xτ ) ≜ λ · sgn(Xτ ), ∀τ ≪ τ0, and τ ≫ τ0, (42)

where sgn denotes the sign function of each element in Xτ such that sgn(X) =
∑d
i=1 sgn(X ·

e(i))e(i).
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To analyze the effectiveness of the compensation function, we suppose the scalar input such that
Xτ ∈ R. Intuitively, since we assume that the probability density function of the compensation
function is an equal Bernoulli distribution Pr(x) with the value of {−λ, λ} for the domain {x|x < 0}
and {x|x ≥ 0}, respectively, we can straightforwardly obtain the expectation and variance of the
compensation function for a τ such that |τ − τ0|≫ 0 as follows:

Err(τ,X) =

r=λ∑
r=−λ

Pr(x)r(·, X) = 0,

V arrr(τ,X) = Err2(τ,X) = λ2

∫
R
Pr(x)dx = λ2

Err(τ,X)r(s,X) = 0,∀t ̸= s, |s− τ0|≫ 0.

(43)

Moreover, the statistical quantity of the compensation function exhibits that the summation of
r(τ,X), i.e., Yτ ≜

∑τ
k=0 r(τ,X),∀|τ − τ0|≫ 0, yields a standard Wiener process in the sense of

the following moments:

ErYτ =

τ−1∑
k=0

Err(k,X) = 0, ErY 2
τ =

τ−1∑
k=0

Err2(k,X) + 2
τ−1∑
k=0

τ−1∑
l,l ̸=k

r(k,X)r(s,X) = λ2τ. (44)

Holding the definition of the quantization, we can write the quantization of the summation of the
directional derivative and the compensation such that

(λh(X) + r(τ,X))Q = Q−1
p [Qp · (λh(X) + r(τ,X)) + εq]

= λh(X) + εqQ−1
p + r(τ,X)

= (λh(X))Q + r(τ,X) = (λh(X))Q + λ · sgn(h(x))
(45)

Finally, we can expand the statistical quantities to the vector-valued compensation r : R× Rd 7→ Rd
with the following equation:

r(τ,X) =

d∑
i=1

(r(τ,X) · ei)ei, ∀X ∈ Rd (46)

Thus, we can obtain the statistical moments of the vector-valued compensation for all X ∈ Rd and
|τ − τ0|≫ 0 as follows:

Err(τ,X) =

d∑
i=1

(
Er[r(τ,X) · ei]

)
ei =

d∑
i=1

0 · ei = 0

Err2(τ,X) = Er

(
d∑
i=1

(r(τ,X) · ei)ei
)
·

 d∑
j=1

(r(τ,X) · ej)ej


= Er

 d∑
i=1

d∑
j=1

(r(τ,X) · ei)(r(τ,X) · ej)ei · ej


= Er
d∑
i=1

(r(τ,X) · ei)2 = λ2 d

(47)

where Id denotes an identity matrix such that Id ∈ Rd×d. Henceforth, we prove the following
theorem using the derived statistical properties of the proposed compensation function.

Theorem 3.1 Let the quantized directional derivatives hQ : Z+ × Rd 7→ Qd such that

hQ(XQ
τ ) ≜

1

Qp

⌊
Qp · (λh(XQ

τ ) + r(τ,XQ
τ )) + 0.5

⌋
, (48)
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where r(τ,Xτ ) denotes a compensation function such that r : Z+ × Rd 7→ Rd{−1, 1}. Then,
the quantization input h(XQ

τ ) and the quantization error ϵqτ is uncorrelated when the quantized
directional derivative h(XQ

τ ) is 0 such that Eϵqτ [h(X
Q
τ )ϵqτ |hQ(XQ

τ ) = kQ−1
p ] = 0.

Proof. From the definition of the quantization error ϵ̄qτ = −ϵqτ = Xτ − XQ
τ and substituting

h(XQ
τ ), (h(Xτ ) + r(τ, h(Xτ )))

Q into Xτ , XQ
τ respectively, we can rewrite the expectation

EX,r,ϵqτ [h(X
Q
τ )ϵqτ |hQ(XQ

τ ) = kQ−1
p ] such that

EX,r,ϵqτ [h(X
Q
τ )ϵqτ |hQ(XQ

τ ) = kQ−1
p ]

= EX,r,ϵqτ [h(X
Q
τ )
(
(λh(Xτ ) + r(τ,Xτ ))

Q − λh(Xτ

)
|hQ(XQ

τ ) = kQ−1
p ]

= EX,r,ϵqτ [h(X
Q
τ ) ((λh(Xτ ) + r(τ,Xτ ) + ϵqτ )− λh(Xτ ) |hQ(XQ

τ ) = kQ−1
p ]

= EX,r,ϵqτ [λ(h
2(XQ

τ )− h2(XQ
τ )) + r(τ,Xτ ) + ϵqτ )|hQ(XQ

τ ) = kQ−1
p ]

= Er,ϵqτ [r(τ,Xτ ) + ϵqτ )]

= Er[r(τ,Xτ )] + Eϵqτ [ϵ
q
τ ] = 0 + 0 = 0

(49)

We can model the early paralysis of learning such that hQ(Xτ ) = k ·Qp|k=0= 0 for a quantization
parameter Qp > 0 for a τ > 0. Theorem 3.1 describes that even though the quantized directional
derivative hQ(Xτ ) = 0, the proposed compensation function yields an independent noise to hQ, and
the noise can work the learning process avoiding early paralysis as follows:

XQ
τ+1 = XQ

τ +
1

Qp

⌊
Qp · (λh(XQ

τ ) + r(τ,XQ
τ )) + 0.5

⌋
= XQ

τ +
1

Qp

⌊
Qp · (λh(XQ

τ ) + 0.5) +Qpr(τ, h(X
Q
τ ))
⌋

= XQ
τ +

1

Qp

⌊
Qp · (λh(XQ

τ ) + 0.5) +Qpλsgn(h(X
Q
τ ))
⌋ ∣∣∣∣
λ=k·Qp, k∈Z+

= XQ
τ +

1

Qp

⌊
Qp · (λh(XQ

τ ) + 0.5)
⌋
+

1

Qp
·Qpλ sgn(h(XQ

τ ))

= XQ
τ + 0 + λ sgn(h(XQ

τ )).

(50)

In equation 50, we assume that λ = k ·Qp, k ∈ Z+ for convenience.

While the proposed compensation function allows for avoiding early paralysis, we can’t verify the
convergence of the learning equation based on the proposed method due to the variance of the process
Yt represented in equation 44. In the proposed compensation function, we designed the critical time
index τ0 where the function denotes 0.5 and drops to zero after the critical time. While the proposed
time-dependent compensation approach facilitates the convergence of the learning algorithm to a
stable point beyond the critical time, our design does not provide an absolute guarantee of complete
convergence for the learning algorithm.

Consequently, we will design an improved compensation to secure convergence by adding a time-
dependent variance. One possible intuitive design we suggest is as follows:

r(τ, h(XQ
τ )) ≜ λ

√
1

log log(κτ + c0)

h(Xτ )

∥h(Xτ )∥
. (51)

C FUNDAMENTAL LEARNING EQUATION BASED ON QUANTIZATION

For convenience of discussion, we analyze the Quantized Stochastic Gradient Langevin Dynam-
ics(QSGLD) instead of the Quantized Stochastic Langevin Dynamics(QSLD). We provide the
learning equation of QSGLD is as follows :

XQ
τ+1 = XQ

τ − λ∇xf̃τ (Xτ ) +Q−1
p (τ)εqτ . (52)
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Algorithm 2 Virtual algorithm for transformation from the quantization error to a Gaussian random
variable

1: Qp ← Qp(−1, τ) ▷ Set a Pure Quantization Parameter
2: Compute h(Xτ ) at τ ▷ Compute a Search Direction Vector
3: hQτ ← 1

Qp
⌊Qp · (−λh(Xτ ) + 0.5Q−1

p )⌋ ▷ Quantization of the Search Direction Vector
4: ετ ← Qp(h

Q
τ − h(Xτ )) ▷ General Updating Rule for Learning

5: Compute zτ ← Q−1
p (ετ , τ)ετ ▷ Compute Gaussian random variable

For the analysis of the proposed learning equation, we establish the two systems of time indices. One
is a single-sided time system based on a mini-batch index τ , the other is a double-sided time system
based on τ and an epoch te as the unit summation of mini-batches.

In the single-sided time system, we define the time index with a time difference δτ intuitively such
that

τ + 1 ≜ τ + δτ , δτ ≜
1

B
, (53)

where B is the number of mini-batches for a unit epoch. We assume that the learning rate λ is the
reciprocal of the number of mini-batches B, so we can rewrite the time index as follows:

τ + 1 · λ ≜ τ + λ, λ ≜
1

B
= δτ . (54)

Consequently, we treat the increased time index τ + 1 as equivalent to τ + λ, so we abbreviate the
learning rate behind the time index number when we use the number-based single-sided time system
such that τ + 1 · (λ).
In the double-sided time system, we define the epoch-based time index te with the mini-batch-based
time index τ such that

te + 1 = te +

B−1∑
τb=0

δτb = te + λB, δτb =
1

B
, ∀τb ∈ Z[0, B). (55)

Therefore, we establish a connection with τ and te such that

τ = te ·B + k, k ∈ Z[0, B), te =
⌊ τ
B

⌋
. (56)

Using these time indexing systems, we derive a stochastic difference equation based on the uniform
distributed quantization error according to WNH in the following section.

Before wrapping up the section, we discuss the sample-based time system. Each mini-batch contains
nB samples equally, so we recognize there are NT = B · nB samples as the total numbers of data.
Accordingly, we can establish the time index with such a unit sample, and the unit sample-based time
system is natural in signal processing. However, the artificial intelligence framework such as the
PyTorch works on a unit of mini-batch, not a unit sample. When we define the size of a mini-batch to
be one, in other words, each mini-batch contains one sample, we can work the learning process to a
unit sample. Even though such a process for a unit sample is possible, the process for a unit sample is
not practically valuable for heavy computation time.

C.1 TRANSFORMATION TO GAUSSIAN WIENER PROCESS

Firstly, we derive an intuitive stochastic difference equation of the quantization learning based
on the single-side time system. Since the single-sided time system is based on a unit mini-batch
index, we should directly transform the quantization error into a standard Wiener process. For the
transformation, we exploit the quantization parameter with two parameters Qp(ε

q, t) as the transform
function from the uniformly distributed random variable to a Gaussian random variable. The random
number generation of a Gaussian random variable based on a uniformly distributed random variable
is a standard and widely used method.
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Box-Muller algorithm (by Box and Muller (1958)), the Ziggurat algorithm (by Marsaglia (1963)
and Marsaglia and Tsang (2000)) and the inverse transform sampling (by Thomas et al. (2007)) are
representative transforms.

Algorithm 2 describes the calculation of the quantization error ϵqτ , the factor for the quantization εqτ ,
and the generation of a Gaussian random variable using the quantization parameter Qp(ε

q, t).

If we establish the η̄(εqτ ) ≜ zτ ∈ Rd to be a Gaussian random generator as the factorizing function
of the quantization parameter, we can obtain the Gaussian random variable zτ

i.i.d.∼ N (z; 0, Id) as
follows:

Q−1
p (εq , τ)εqτ = b−p̄(τ)η−1(εqτ ) ·εqτ =

√
λb−p̄(τ)

∥εqτ∥2
η̄(εqτ )ε

q
τ ·εqτ =

√
λb−p̄(τ)zτ , b

−p̄(τ) ∈ Q, (57)

where η−1(εqτ ) is a mapping such that η−1 : Rd 7→ Rd.

Additionally, if the input of η−1 is −1, we define the quantization parameter as not a mapping but a
scalar function such that Q−1

p (τ) = η−1
0 b−p̄(t) ∈ Q.

Using equation 56, we can rewrite equation 13 as QSGLD such that

XQ
τ+1 = XQ

τ − λ∇xf̃τ (Xτ ) +
√
λ · b−p̄(τ)zτ . (58)

The stochastic difference equation 58 formulates the representative Euler-Maruyama approximation
of the following SDE:

dXQ
τ = −∇xf̃τ (Xτ )dτ + b−p̄(τ)dBτ , (59)

where Bτ ∈ Rd is a standard Wiener process such that Bτ ∼ N (z; 0, Id).

Although we can define the transformation to the Gaussian Wiener process to obtain the SDE on the
mini-batch indexed time system, the proposed algorithm does not show an advantage in comparison
to the conventional SGLD. While we utilize the quantization error as a seed to generate the Gaussian
random variable in the proposed algorithm, the conventional SGLD deploys the Gaussian random
generator for the learning system. Hence, there is not any practical difference in the implementation
of the algorithm, and the complexity of the implementation only increases.

C.2 ANALYSIS BASED ON CENTRAL LIMIT THEOREM

The key idea is the simplest method to transform the uniformly distributed quantization error into a
standard Wiener process. For this purpose, we establish the sum of the learning equation within a
unit epoch regarding the mini-batch-based time index based on the double-sided time index system
as follows:

XQ
te+B/B

= XQ
te+(B−1)/B − λ∇xf̃B−1(Xte+(B−1)/B) +Q−1

p (te)ε
q
te+(B−1)/B

· · ·
XQ
te+2/B = XQ

te+1/B − λ∇xf̃1(Xte+1/B) +Q−1
p (te)ε

q
te+1/B

XQ
te+1/B = XQ

te − λ∇xf̃0(Xte) +Q−1
p (te)ε

q
te .

(60)

Adding up each term in equation 60 gives

XQ
te+1 = XQ

te − λ

B−1∑
τb=0

∇xf̃τb(Xte+τb/B) +Q−1
p (te)

B−1∑
τb=0

εqte+τb/B , (61)

where we set the initial time index to be te = τ and maintain the quantization parameter to be an
equal value such that Q−1

p (te + τb) = Q−1
p (te),∀τb ∈ Z[0, B).

According to Assumption 2 and Assumption 3, the quantization error {ϵqte+τb/B}
B−1
τ=0 =

{Q−1
p (te)ε

q
te+τb/B

}B−1
τb=0 are independent random variables of the equal uniform distributions

U(εqte+τb/B ; 0, c0Q
−2
p (te) Id). Therefore, we can apply the Lindeberg–Lévy central limit theo-

rem(CLT) to equation 61, and we obtain a stochastic difference equation based on a standard Wiener
process.
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Let the average factor of quantization SB ∈ Rd such that SB = 1/B ·
∑B−1
τb=0 ε

q
te+τb/B

=

λ ·
∑B−1
τb=0 ε

q
te+τb/B

. Based on the expectation and the variance of εqte+τb/B , we can obtain the
expectation and variance straightforwardly as follows:

ESB =
1

B

B−1∑
τb=0

Eεqte+τb/B = 0,

cov SB = ESB ⊗ SB =
1

B2
E
B−1∑
τb=0

(
εqte+τb/B ⊗

B−1∑
τb=0

εqte+τb/B

)
=

B c0
B2
· Id = λ c0 Id

(62)

Let the i-th component of SB denote S
(i)
B . According to the Lindeberg–Lévy CLT, we can obtain the

random variable S
(i)
B following a normal distribution such that

1√
λ c0

S
(i)
B =

√
B
√
c0

S
(i)
B ∼ N (0, 1) (63)

Therefore, if we define the quantization parameter appropriately, we can establish a standard wiener
process as the summation of the quantization error for a unit epoch.

Since the i-th component of 1/
√
λ c0 S

(i)
B follows a normal distribution, we establish the quantization

parameter to extract a vector-valued Gaussian random variable from the summation of the quantization
error as follows:

1√
λ c0

S
(i)
B =

1√
λ c0 B

B−1∑
τb=0

ε
(i)
te+τb/B

=

√
λ

c0

B−1∑
τb=0

ε
(i)
te+τb/B

≜ z
(i)
te ∈ R, z

(i)
te ∼ N (0, 1)

=⇒
B−1∑
τb=0

ε
(i)
te+τb/B

=

√
c0
λ
z
(i)
te

=⇒ Q−1
p (te)

B−1∑
τb=0

ε
(i)
te+τb/B

= Q−1
p (te)

√
c0
λ
z
(i)
te = η−1b−p̄(te)

√
c0
λ
z
(i)
te ,

(64)

where z(i) denotes the i-th component of z ∈ Rd, which denotes a vector-valued Gaussian random
variable.

Consequently, if we let η ≜ 1
λ

√
c0/Cq, where Cq ∈ R+ is a positive constant value. Applying the

auxiliary parameter of the quantization parameter η to equation 61, we can obtain the following
stochastic difference equation:

XQ
te+1 = XQ

te − λ

B−1∑
τb=0

∇xf̃τb(Xte+τb/B) + b−p̄(te)λ

√
Cq
c0

B−1∑
τb=0

εqte+τb/B

= XQ
te − λ

B−1∑
τb=0

∇xf̃τb(Xte+τb/B) +
√
Cqb

−p̄(te)
√
λzte ,

(65)

where {zte}∞te=0 is a vector valued standard Wiener process such that zte ∼ N (0, Id), ∀te ∈ Z+.

The proposed CLT-based QSGLD reveals the practical advantage that it does not require a random
number generator. The learning process itself generates a Gaussian random number based on the
uniformly distributed quantization error. From the practical perspective, at least after 50 units of
mini-batch iterations, we can regard the proposed learning algorithm as operating in cooperation with
a standard Wiener process.

D CONVERGENCE PROPERTY OF QSGLD

We use the following lemma to prove the theorems.
Lemma : Auxiliary 1. For all x ∈ R,

(1− x) ≤ exp(−x). (66)

Proof. The above equation is explicit, so we employ the lemma without proof.
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D.1 WEAK CONVERGENCE WITHOUT CONVEX ASSUMPTION

We rewrite the QSGLD represented in equation 65 with an increment of a vector-valued standard
Wiener process ∆Bτ ∈ Rd as follows:

XQ
te+1 = XQ

te − λ

B−1∑
τb=0

∇xf̃τb(Xte+τb/B) +
√
Cqb

−p̄(te)
B−1∑
τb=0

∆Bte+τb/B , (67)

where we substitute
√
λzte into

∑B−1
τb=0 ∆Bte+τb/B , since the variance of the increments is the time

increment λ such that E(∆Bτb)
2 = λ, ∀∆Bτb ∈ R whereas z ∼ N (0, 1).

In equation 67, we consider the learning rate λ as an increment of time te which is the numbers of a
mini-batch. Thus, if the learning rate λ monotonically decreases to 0 such that λ ↓ 0, we can obtain
the following stochastic integration intuitively.

XQ
te+1 = XQ

te −
∫ te+1

te

∇xf̃s(Xs)ds+
√
Cqb

−p̄(te)
∫ te+1

te

dBs (68)

Differentiate both terms with respect to t = te + 1, we get

dXQ
t = −∇xf̃t(Xt)dt+

√
Cqb

−p̄(t)dBt. (69)

This intuitive deduction looks like a verification of the SDE approximation of the discrete stochastic
difference equation from equation 65 for QSGLD.

However, such a deduction does not provide any evidence of tightness regarding the state XQ
t , so

we should provide more rigorous evidence of the SDE approximation. For the rigorous proof of the
SDE approximation, we investigated two approaches. The one is weak convergence of a stochastic
difference equation to corresponding SDE. Unfortunately, the weak convergence criterion provided
by Kushner (1974) requires the monotonically decreasing of the learning rate λ ↓ 0 to time index
increases, i.e., t ↑ ∞ Some of the weak convergence criteria cannot be satisfied without such a
monotonically decreasing learning rate, despite the limited drift and diffusion terms.

The other approach is a weak approximation of SDE. This approach is based on the numerical analysis
of SDE approximation. The fundamental concept of the approach is that if the statistical quantities
between a discrete stochastic difference equation and approximated continuous SDE are equivalent,
we consider the approximation to be well-defined.

In this paper, we provide the SDE approximation regarding the proposed quantization-based learning
algorithm as following lemma.

Lemma 3.2 The approximated Langvin SDE for QSGLD represented in equation 15 is as follows:

dXt = −∇xf(Xt)dt+
√

Cq · σ(t)dBt, ∀t > t0 ∈ R+, ∵ σ(t) ≜ b−p̄(t), (70)

The approximation equation 70 satisfies the order-1 weak approximation described in Definition 3.

Proof. Preparation Let the transition probability density from t = τ to t + 1 = τ + λ such that
p(t,XQ

t , t+1,XQ
t+1). We define the following one-step changes of QSLD/QSLGD from equation 12

and equation 13 in the main manuscript such that

∆(Xt) ≜ λh(XQ
τ ), ∆̃(Xt) ≜ Xt+1 −XQ

τ , ∆, ∆̃ ∈ Rd, (71)

where XQ
t+1 ∼ p(t,XQ

t , t+ 1,XQ
t+1), and XQ

t = XQ
τ .

By proving the following conditions presented in the theorems of SDE approximation to the SGD
equation as proposed by Li et al. (2019) and Malladi et al. (2022), we validate the applicability of the
SDE approximation to the proposed equation.

Lipschitz continuity and continuous differentiability of the drift and diffusion functions As-
sumption 1 in the manuscript provides that the drift ∇f(Xt) is Lipschitz continuity. As the diffusion
function in QSLGD is the quantization parameter, it is Lipschitz continuity by Definition 2 in the
manuscript.
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Bounded moments condition The first order bounded moments condition is given by:∣∣∣E(∆i(Xt)− ∆̃i(Xt)
∣∣∣ ≤ K(Xt)λ

2 (72)

From the definition of ∆, ∆̃, for the initial time t = τ/B, we get

∆(Xt)−∆̃(Xt) = λh(Xt)−λh(Xt)−Q−1
p (t)εqt = −Q−1

p (t)εqt ⇒ EQ−1
p (t)εqt = Q−1

p (t)Eεqt = 0.
(73)

The equation 73 represents that the proposed algorithm fulfills the first-order bounded moment.

For the bound of the second moment, we calculate the moment as follows:

∆i(Xt)∆j(Xt) = λ2hi(Xt)hj(Xt)

∆̃i(Xt)∆̃j(Xt) = (λhi(Xt) +Q−1
p (t)εi

q
t )(λhj(Xt) +Q−1

p (t)εj
q
t )

= λ2hi(Xt)hj(Xt) + λ(hj(Xt)Q
−1
p (t)εj

q
t + hi(Xt)Q

−1
p (t)εi

q
t +Q−2

p (t)εi
q
tεj

q
t .

(74)

The equation 74 implies that

∆i(Xt)∆j(Xt)− ∆̃i(Xt)∆̃j(Xt)

= −λ(hj(Xt)Q
−1
p (t)εj

q
t + hi(Xt)Q

−1
p (t)εi

q
t )−Q−2

p (t)εi
q
tεj

q
t .

⇒ E(∆i(Xt)∆j(Xt)− ∆̃i(Xt)∆̃j(Xt))

= λ(hj(Xt)Q
−1
p (t)Eεjqt + hi(Xt)Q

−1
p (t)Eεiqt )−Q−2

p (t)Eεiqtεjqt = −
1

12
Q−2
p (t)δ(i− j),

(75)
where i, j ∈ N[1, d] denotes the index of the vector components.

Thus, we can choose t > t0 such that∣∣∣∆i(Xt)∆j(Xt)− ∆̃i(Xt)∆̃j(Xt)
∣∣∣ = 1

12
Q−2
p (t)δ(i− j) ≤ K1(Xt)λ

2, (76)

where K1 denotes a secondary differentiable function such that K1 : Rd → R, K1 ∈ C2.

Similarly, we calculate the third moment as follows:

∆i(Xt)∆j(Xt)∆k(Xt) = λ3hi(Xt)hj(Xt)hk(Xt) (77)

, and

∆̃i(Xt)∆̃j(Xt)∆̃k(Xt) = λ3hi(Xt)hj(Xt)hk(Xt)

+ λ2Q−1
p (t)

(
hi(Xt)hj(Xt)εk

q
t + hj(Xt)hk(Xt)εi

q
t + hk(Xt)hi(Xt)εj

q
t

)
+ λQ−2

p (t)
(
hi(Xt)εj

q
tεk

q
t + hj(Xt)εk

q
tεi

q
t + hk(Xt)εi

q
tεj

q
t

)
+Q−3

p (t)εi
q
tεj

q
tεk

q
t .

(78)

Based on the white noise hypothesis(WNH) of the quantization error, we can determine the expecta-
tion value of equation 78 such that

E∆̃i(Xt)∆̃j(Xt)∆̃k(Xt) = λ3hi(Xt)hj(Xt)hk(Xt)

+
1

12
λQ−2

p (t) (hi(Xt)δ(j − k) + hj(Xt)δ(k − i) + hk(Xt)δ(i− j))

= λ3hi(Xt)hj(Xt)hk(Xt) +
1

4
λQ−2

p (t)hi(Xt)|i=j=k.

(79)

By equation 79 and equation 77, we get

E∆̃i(Xt)∆̃j(Xt)∆̃k(Xt)− E∆i(Xt)∆j(Xt)∆k(Xt)

= λ3hi(Xt)hj(Xt)hk(Xt) +
1

4
λQ−2

p (t)hi(Xt)|i=j=k−λ3hi(Xt)hj(Xt)hk(Xt)

=
1

4
λQ−2

p (t)hi(Xt)|i=j=k

(80)
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According to Assumption 1, there exists an optimal point X∗ ∈ D ⊂ Bo(X∗, ρ) such that
∇f(X∗) = 0 allowing us to obtain

|E∆̃i(Xt)∆̃j(Xt)∆̃k(Xt)− E∆i(Xt)∆j(Xt)∆k(Xt)|

=
1

4
λQ−2

p (t)|hi(Xt)|i=j=k=
1

4
λQ−2

p (t)|hi(Xt) +∇fi(X∗)|i=j=k.
(81)

In QSLGD, since h(Xt) is equal to −∇f(Xt), we apply the L1 Lipschitz condition to calculate the
bound as follows:

|E∆̃i(Xt)∆̃j(Xt)∆̃k(Xt)− E∆i(Xt)∆j(Xt)∆k(Xt)|

=
1

4
λQ−2

p (t)|hi(Xt) +∇fi(X∗)|i=j=k=
1

4
λQ−2

p (t)|∇fi(X∗)−∇fi(Xt)|i=j=k

≤ 1

4
λQ−2

p (t)L1|X∗ −Xt|i=j=k≤
1

4
λQ−2

p (t)L1ρ

(82)

By selecting t > t0 such that Qp(t)
−2 < λ, the bound condition of the third-order moment is

satisfied, resulting in

|E∆̃i(Xt)∆̃j(Xt)∆̃k(Xt)− E∆i(Xt)∆j(Xt)∆k(Xt)|≤
1

4
λQ−2

p (t)L1ρ <
1

4
λ2L1 = K1(Xt)λ

2

(83)

Adaptation Lemma by Li et al. (2019) and Malladi et al. (2022) Under the verification of the
bounded momentum condition equation 73, equation 75, equation 81, we can establish the following
polynomial growth condition: There exists a subset P of the index set ≜ {1, 2, · · · , d} such that the

following holds. Below we use the notations ∥xP ∥≜
√∑

i∈P x2
i and ∥xR∥≜

√∑
i/∈P x2

i .

1. There is a constant C1 > 0, which is independent of λ, so that for all τ ≤ t ·B

∥E∆(Xτ )∥P ≤ C1λ(1 + ∥Xτ∥P )
∥E∆(Xτ )∥R ≤ C1λ(1 + ∥Xτ∥w1

P )(1 + ∥Xτ∥R)
(84)

2. For all m ≥ 1, there are constant C2m, w2m > 0 (independent of λ) such that for all
τ ≤ t ·B

∥E∆(Xτ )∥2mP ≤ C1λ(1 + ∥Xτ∥2mP )

∥E∆(Xτ )∥R ≤ C1λ(1 + ∥Xτ∥w2m

P )(1 + ∥Xτ∥2mR )
(85)

The analysis shows that the function K1 is differentiable to the first order, allowing for the bound on
the third moment. Consequently, a function g twice differentiable (g ∈ C2) is enough to achieve a
first-order weak approximation for QSLGD.

Adaptation Theorem 3 in by Li et al. (2019) Malladi et al. (2022) Since QSLGD satisfies the
Lipschitz continuity, the bounded moment conditions, and the adaptation lemma, QSLGD fulfills a
first-order weak approximation defined as Definition 3 in the manuscript, by the theorem provided
by Theorem 3 in by Li et al. (2022), as follows: For each function g ∈ C2, there exists a constant
Co1 > 0 (independent of λ) such that

max
0≤t≤T

|Eg(XQ
τ=t·B)− Eg(Xt)|≤ Co1λ (86)

Theorem 3.3 Consider the transition probability density, denoted as p(t,Xt, t + τ̄ ,x∗), from an
arbitrary state Xt ∈ Rd to the optimal point x∗ ∈ Rd, Xt ̸= x∗ after a time interval τ̄ ∈ R+, for all
t > t0. If the quantization parameter is bounded as follows:

sup
t≥0

Qp(t) =
1

C
· log(t+ 2), C ∈ R++, (87)
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for Xt ̸= X̄t, QSGLD represented as equation 70 converges with distribution in the sense of Cauchy
convergence such that

lim
τ̄→∞

sup
Xt,X̄t∈ Rn

|p(t, X̄t, t+ τ̄ ,x∗)− p(t,Xt, t+ τ̄ ,x∗)|≤ C̃ · exp

(
−

∞∑
τ̄=0

δt+τ̄

)
, (88)

where δt denotes the infimum of the transition probability density from time t to t + 1 given by
δt = inf

x,y∈ Rd p(t, x, t+ 1, y), satisfying
∑∞
τ̄=0 δt+τ̄ =∞, and C̃ denotes a positive value.

Proof. We depend on the lemmas in works of Geman and Hwang (1986) to prove the theorem.
Herein, we prove the following convergence of the transition probability density:

lim
τ̄→∞

sup
Xt,X̄t∈ Rn

|p(t, X̄t, t+ τ̄ ,x∗)− p(t,Xt, t+ τ̄ ,x∗)|= 0, (89)

where t and τ denote the current time index and the process time index, respectively. x∗ ∈ Rd
denotes an global optimum for the objective function f(Xt) such that f(x∗) < f(Xt), ∀t ≥ 0.

Let the infimum of the transition probability density from t to t+ 1 such that

δt = inf
x,y∈Rd

p(t,x, t+ 1,y) (90)

According to the lemma in Geman and Hwang (1986), we can evaluate the upper bound of equation 89
as follows: For state vectors v,w, z,f ∈ Rd and time indexes s, t ∈ R+,

lim
t→∞

sup
v,w∈Rd

|p(s,v, t,f)− p(s,w, t,f)|

= lim
t→∞

sup
v,w∈Rd

∣∣∣∣∫ p(s,v, s+ 1, z)p(s+ 1, z, t,f)dz −
∫

p(s,w, s+ 1, z)p(s+ 1, z, t,f)dz

∣∣∣∣
= lim
t→∞

sup
v,w∈Rd

∣∣∣∣∫ p(s,v, s+ 1, z)p(s+ 1, z, t,f)dz −
∫

p(s,w, s+ 1, z)p(s+ 1, z, t,f)dz

−(δs − δs)p(s+ 1, z; t,f)|

= lim
t→∞

sup
v,w∈Rd

∣∣∣∣∫ (p(s,v; s+ 1, z)− δs)p(s+ 1, z; t,f)dz −
∫

(p(s,w; s+ 1, z)− δs)p(s+ 1, z; t,f)dz

∣∣∣∣
≤ lim
t→∞

sup
v,w∈Rd

∣∣∣∣∫ (p(s,v; s+ 1, z)− δs) sup
z∈Rd

p(s+ 1, z; t,f)dz −
∫
(p(s,w; , s+ 1, z)− δs) inf

z∈Rd
p(s+ 1, z; t,f)dz

∣∣∣∣
= lim
t→∞

sup
v,w∈Rd

∣∣∣∣ sup
z∈Rd

p(s+ 1, z; t,f)

∫
(p(s,v; s+ 1, z)− δs)dz − inf

z∈Rd
p(s+ 1, z; t,f)

∫
(p(s,w; s+ 1, z)− δs)dz

∣∣∣∣
≤ lim
t→∞

sup
v,w∈Rd

∣∣∣∣(1− δs) sup
z∈Rd

p(s+ 1, z; t,f)− (1− δs) inf
z∈Rd

p(s+ 1, z; t,f)

∣∣∣∣
= lim
t→∞

sup
v,w∈Rd

(1− δs)

∣∣∣∣ sup
z∈Rd

p(s+ 1, z; t,f)− inf
z∈Rd

p(s+ 1, z; t,f)

∣∣∣∣
· · ·

≤ lim
t→∞

(t−s)−1∏
k=0

(1− δs+k)

 · sup
v,w∈Rd

|p(s+ (t− s),v; t,f)− p(s+ (t− s),w; t,f)|

≤ lim
t→∞

(t−s)−1∏
k=0

(1− δs+k)

 =

∞∏
k=0

(1− δs+k).

(91)

Thus, we obtain

lim
τ→∞

sup
Xt,X̄t∈ Rn

|p(t, X̄t, t+ τ̄ ,x∗)− p(t,Xt, t+ τ̄ ,x∗)|≤
∞∏
k=0

(1− δt+k). (92)
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From the exponential approximation equation 1 in Lemma:Auxiliary, we rewrite equation 92 as
follows:

lim
τ→∞

sup
Xt,X̄t∈ Rn

|p(t, X̄t, t+ τ̄ ,x∗)− p(t,Xt, t+ τ̄ ,x∗)|≤ exp(−
∞∑
k=0

δt+k)). (93)

To verify the existence of an upper bound of the right-hand side in equation 93, we rephrase the
approximation SDE governing the dynamics of the proposed algorithm, as stated in Lemma 3.2:

dXs = −∇f(Xs)ds+ σ(s)
√
CqdBs, s ∈ R[t, t+ 1). (94)

Let Px be the probability measures on F induced by equation 94 and the probability distribution Qx

given by the following equation:

dX̄s = σ(s)
√

CqdBs, s ∈ R[t, t+ 1). (95)

According to the Girsanov theorem (Øksendal (2003); Klebaner (2012)), we obtain

dPX

dQX̄

= exp

{
−
∫ t+1

t

C−1
q

σ2(s)
∇f(Xs)dX̄s −

1

2

∫ t+1

t

C−1
q

σ2(s)
∥∇f(Xs)∥2ds

}
. (96)

To compute the upper bound of equation 96, we will check the upper bound of ∥∇f∥. Considering
Assumption 2, the gradient of f(Xt) ∈ C2 fulfills the Lipschitz continuous condition as well.
Thereby, there exists a positive value L1 ∈ R+ such that

∥∇f(Xs)−∇f(x∗)∥≤ L1∥Xs − x∗∥, ∀s > 0. (97)

Successively, since∇f(x∗) = 0, the Lipschitz condition forms simply as follows :

∥∇f(Xt)∥≤ L1ρ = C0, (98)

where ρ = ∥Xt − x∗∥ from Assumption 1.

Additionally, holding the L1 Lipschitz continuity and the assumption of which f ∈ C2, it implies
that there exists a positive value L2 ∈ R+ such that

∥Hx(f)(x)∥Rd×d< L2 and |∆2
xf(x)|< L2d, ∀x ∈ Bo(x, ρ), (99)

where Hx(f) ∈ Rd×d denotes the Hessian of f : Rd 7→ R, and ∆2
xf ∈ R denotes the Laplacian of

f .

To evaluate the first term of the right-hand side in equation 96, we derive the stochastic differential of
f(Xs) with respect to dXt described in equation 70 as follows:

df(Xs) = ∇f(Xs) · dX̄s +
1

2
Cqσ

2(s)∆f(Xs)ds

=⇒
C−1
q

σ2(s)
∇f(Xs) · dX̄s =

C−1
q

σ2(s)
df(Xs)−

1

2
∆f(Xs)ds

=⇒
∫ t+1

t

C−1
q

σ2(s)
∇f(Xs) · dX̄s =

∫ t+1

t

C−1
q

σ2(s)
df(Xs)−

1

2

∫ t+1

t

∆f(Xs)ds.

(100)

To get a feasible result for the stochastic integration, We integrate the first term of the right-hand side
in equation 100 partially such that∫ t+1

t

C−1
q

σ2(s)
df(Xs) = C−1

q

f(Xs)

σ2(s)

∣∣∣∣∣
t+1

t

−
∫ t+1

t

f(Xs)d

(
1

σ2(s)

) . (101)

Since equation 101 relies on the random variable Xt, we should the upper bound of equation 101 for

the positive result such that
∫ t+1

t

C−1
q

σ2(s)df(Xs) ≥ 0, and the negative result
∫ t+1

t

C−1
q

σ2(s)df(Xs) < 0.
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For
∫ t+1

t

C−1
q

σ2(s)df(Xs) ≥ 0, we can obtain∣∣∣∣∣
∫ t+1

t

C−1
q

σ2(s)
df(Xs)

∣∣∣∣∣ ≤ C−1
q

∣∣∣∣∣ f(Xt+1)

σ2(t+ 1)
− f(Xt)

σ2(t)
−
∫ t+1

t

f(Xs)d

(
1

σ2(s)

) ∣∣∣∣∣
≤ C−1

q

∣∣∣∣∣ supx∈Rd f

σ2(t+ 1)
− infx∈Rd f

σ2(t)
−
∫ t+1

t

( inf
x∈Rd

f)d

(
1

σ2(s)

) ∣∣∣∣∣
= C−1

q

∣∣∣∣∣ supx∈Rd f

σ2(t+ 1)
− inf
x∈Rd

f

(
1

σ2(t)
+

∫ t+1

t

d

(
1

σ2(s)

)) ∣∣∣∣∣
= C−1

q

∣∣∣∣∣ supx∈Rd f

σ2(t+ 1)
− inf
x∈Rd

f

(
1

σ2(t)
+

1

σ2(t+ 1)
− 1

σ2(t)

) ∣∣∣∣∣
=

C−1
q

σ2(t+ 1)

∣∣∣∣∣ supx∈Rd

f − inf
x∈Rd

f

∣∣∣∣∣ ≤ C−1
q L0ρ

σ2(t+ 1)
.

(102)

For
∫ t+1

t

C−1
q

σ2(s)df(Xs) < 0, in the same manner, we get∣∣∣∣∣
∫ t+1

t

C−1
q

σ2(s)
df(Xs)

∣∣∣∣∣ ≤ C−1
q

∣∣∣∣∣ f(Xt+1)

σ2(t+ 1)
− f(Xt)

σ2(t)
−
∫ t+1

t

f(Xs)d

(
1

σ2(s)

) ∣∣∣∣∣
≤ C−1

q

∣∣∣∣∣ infx∈Rd f

σ2(t+ 1)
−

supx∈Rd f

σ2(t)
−
∫ t+1

t

( sup
x∈Rd

f)d

(
1

σ2(s)

) ∣∣∣∣∣
= C−1

q

∣∣∣∣∣ infx∈Rd f

σ2(t+ 1)
− sup
x∈Rd

f

(
1

σ2(t)
+

∫ t+1

t

d

(
1

σ2(s)

)) ∣∣∣∣∣
= C−1

q

∣∣∣∣∣ infx∈Rd f

σ2(t+ 1)
− sup
x∈Rd

f

(
1

σ2(t)
+

1

σ2(t+ 1)
− 1

σ2(t)

) ∣∣∣∣∣
=

C−1
q

σ2(t+ 1)

∣∣∣∣∣ inf
x∈Rd

f − sup
x∈Rd

f

∣∣∣∣∣ ≤ C−1
q L0ρ

σ2(t+ 1)
.

(103)

Hence, we get the upper bound of the first term in equation 100 as follows:∣∣∣∣∣
∫ t+1

t

C−1
q

σ2(s)
df(Xs)

∣∣∣∣∣ ≤ C−1
q L0ρ

σ2(t+ 1)
(104)

The second term in equation 100 is the integration to deterministic time index s, so we can obtain the
upper-bound conveniently holding equation 99 such that∣∣∣∣∣12

∫ t+1

t

∆xf(Xs)ds

∣∣∣∣∣ ≤ 1

2
sup
∀x∈D

|∆xf(x)|=
1

2
L2d. (105)

The result of equation 104 and equation 105 implies the first term of the right-hand side in equation 96
as follows:∣∣∣∣∣

∫ t+1

t

C−1
q

σ2(s)
∇f(Xs) · dX̄s

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ t+1

t

C−1
q

σ2(s)
df(Xs)

∣∣∣∣∣+
∣∣∣∣∣12
∫ t+1

t

∆f(Xs)ds

∣∣∣∣∣
≤

C−1
q L0ρ

σ2(t+ 1)
+

1

2
L2d <

C−1
q L0ρ+ 0.5L2d · σ2(0)

σ2(t+ 1)
.

(106)

Since σ(t) is a monotonic decreasing function, there exists a positive value s̄ > 0 such that σ(t) ≤
s̄−1σ(t+ 1). It implies that∣∣∣∣∣−

∫ t+1

t

C−1
q

σ2(s)
∇f(Xs) · dX̄s

∣∣∣∣∣ ≤ C−1
q L0ρ+ 0.5LDdσ

2(0)

s̄

1

σ2(t)
=

C1

σ2(t)
(107)
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where C1 denotes a positive value such that C1 >
C−1

q L0ρ+0.5LDdσ
2(0)

s̄ .

Furthermore, We can straightforwardly obtain the upper bound of the second term in the right-hand
side of equation 96 as follows:

1

2

∣∣∣∣∣
∫ t+1

t

C−1
q

σ2(s)
∥∇f(Xs)∥2ds

∣∣∣∣∣ ≤ 1

2

C−1
q

σ2(t+ 1)
sup∥∇xf(Xs)∥2

∫ t+1

t

ds

≤ 1

2σ2(t+ 1)
C−1
q · C2

0 ≤
C2

σ2(t)
, ∵ C2 >

C2
0

2Cq s̄
.

(108)

Since σ(s) ≜ b−p̄(t) is monotone decreasing function, the supremum of σ(s) is σ(0) for all s ∈
R[0,∞), i.e. sups∈R[0,∞] σ(s) = σ(0) ≜ σ. With the supremum of each term in equation 96, we
can obtain the lower bound of the Radon-Nykodym derivative equation 96 such that

dPX

dQX̄

≥ exp

(
−C1 + C2

σ2(t)

)
≥ exp

(
− C3

σ2(t)

)
, ∵ C3 > C2 + C1. (109)

Accordingly, for any ε > 0 and Xt, x
∗ ∈ Rd, the infimum of Px(|Xt+1 − x∗|< ε) is

PX(∥Xt − x∗∥ < ε) ≥ exp

(
− C3

σ2(t)

)
QX̄(∥Xt − x∗∥ < ε). (110)

As Qw is a normal distribution based on equation 95, we have

PX(|Xt+1 − x∗|< ε) ≥ exp

(
− C3

σ2(t)

)∫
∥X−x∗∥<ε

1

σ(t)
√

2π
∫ t+1

t
Cqdτ

exp

(
− (X − x∗)2

2
∫ t+1

t
Cqσ2(τ)dτ

)
dx

≥ exp

(
− C3

σ2(t)

)∫
∥X−x∗∥<ε

1

σ(t)
√

2πCq
∫ t+1

t
dτ

exp

(
−

(
√
ρ+ ε)2

2σ2(0)Cq
∫ t+1

t
dτ

)
dx

≥ exp

(
− C3

σ2(t)

)
1

σ(0)
√
2πCq

exp

(
−
(
√
ρ+ ε)2

2σ(0)Cq

)∫
∥X−x∗∥<ε

dx

= exp

(
− C3

σ2(t)

)
1√
2πCq

exp

(
−
(
√
ρ+ ε)2

2Cq

)
2πd/2εd

Γ(d/2 + 1)
∵ σ(0) = 1

≥ exp

(
− C3

σ2(t)

)
1√
2πCq

(
1 +

(
√
ρ+ ε)2

2Cq

)
2πd/2εd

Γ(d/2 + 1)

≥ exp

(
− C3

σ2(t)

)
1√
2πCq

(
2Cq + (

√
ρ+ ε)2

Cq

) ∣∣∣∣∣
ρ=0,ε=0

· πd/2εd

Γ(d/2 + 1)

≥ exp

(
− C3

σ2(t)

)
· C4 · ε, ∵ C4 =

√
2√

πCq
· πd/2εd−1

Γ(d/2 + 1)
.

(111)

Finally, we obtain the lower bound of the transition probability density such that

δt = inf
x,y∈Rd

p(t,x, t+ 1,y)

∣∣∣∣
x=Xt, y=x∗

= inf
x,y∈Rd

lim
ε→0

1

ε
PX(∥Xt+1 − x∗| < ε)

≥ inf
x,y∈Rd

lim
ε→0

1

ε
· C4 · exp

(
− C3

σ2(t)

)
· ε ≥ exp

(
− C5

σ2(t)

)
, ∵ C5 > C3 + ·|lnC4|

The above inequality implies that if there exists a monotone decreasing function such that σ2(s) ≥
C5

log(t+2) , it satisfies that the convergence condition given by equation 93 such that

∞∑
k=0

δt+k ≥
∞∑
k=0

exp

(
−C5

C5
log(t+ 2 + k)

)
=

∞∑
k=0

1

t+ 2 + k
=∞, ∀k ≥ 0. (112)
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Substitute equation 112 into equation 93, we obtain

lim
τ→∞

sup
Xt,xt+τ∈Rd

|p(t,Xt, t+ τ,x∗)− p(t,Xt, t+ τ,x∗)|≤ exp(−
∞∑
k=0

δt+k)) = 0. (113)

D.2 LOCAL CONVERGENCE UNDER CONVEX ASSUMPTION

Assumption 4. The Hessian of the objective function H(f) : Rd 7→ Rd around the optimal point is
non-singular and positive definite,

Theorem 3.4 The expectation value of the objective function derived by the proposed QSGLD
converges to a locally optimal point asymptotically under Assumption 4.

Proof. Given the learning equation derived by QSGLD as equation 52, we can calculate the one-step
difference of the objective function as follows:

f(XQ
τ+1)− f(XQ

τ ) = ⟨∇xf(X
Q
τ ),−λ∇xf(X

Q
τ ) +Q−1

p (τ)εqτ ⟩

+ λ2

∫ 1

0

(1− s)⟨∇xf(X
Q
τ ),Hx(f)(X

Q
τ + s(XQ

τ+1 −XQ
τ ))∇xf(X

Q
τ )⟩ds,

(114)
where Hx(f)(·) : Rd → Rd×d denotes Hessian of the objective function f .

Assumption 4 and Definition 4 indicates that there exists the eigenvalue Mmax ∈ R++ of the Hessian
such that (Hx(f))Rd×d ≤Mmax. It implies

f(XQ
τ+1)− f(XQ

τ ) ≤ ⟨∇xf(X
Q
τ ),−λ∇xf(X

Q
τ )⟩+Q−1

p (τ)⟨∇xf(X
Q
τ ), εqτ ⟩+

1

2
λ2Mmax∥∇xf(X

Q
τ )∥2

= −λ∥∇xf(X
Q
τ )∥2+1

2
λ2Mmax∥∇xf(X

Q
τ )∥2+Q−1

p (τ)⟨∇xf(X
Q
τ ), εqτ ⟩

= λ∥∇xf(X
Q
τ )∥2

(
1

2
λMmax − 1

)
+Q−1

p (τ)⟨∇xf(X
Q
τ ), εqτ ⟩.

(115)
Furthermore, assuming the existence of the minimum eigenvalue mmin ∈ R of the Hessian matrix H
such that (H)Rd×d ≥ mmin, we can compute the difference between the optimal point x∗ ∈ Rd and
Xτ as follows:

f(x∗)− f(XQ
τ ) ≥ −λ∥∇xf(X

Q
τ )∥2+1

2
λ2mmin∥∇xf(X

Q
τ )∥2

=
1

2
mmin∥∇xf(X

Q
τ )∥2

(
λ2 − 2

mmin
λ

)
=

1

2
mmin∥∇xf(X

Q
τ ∥2)

((
λ− 1

mmin

)2

− 1

m2
min

)
≥ − 1

2mmin
∥∇xf(Xτ )∥2.

(116)
For convenience, we abbreviate mmin as m and Mmax as M . equation 116 implies that

∥∇xf(Xτ )∥2≥ 2m (f(x∗)− f(Xτ )) . (117)

Let us assume that the learning rate is sufficiently small, such that λ < min{1, 2
M }. By substituting

the inequality equation 117 into equation 116, we can derive the following equation:

f(XQ
τ+1)− f(x∗) + f(x∗)− f(XQ

τ )

≤ 1

2
M · 2m

(
f(XQ

τ )− f(x∗)
)(

λ2 − 2

M
λ

)
+Q−1

p (τ)⟨∇xf(X
Q
τ ), εqτ ⟩

⇒ f(XQ
τ+1)− f(x∗) ≤

(
1 +M ·m

(
λ2 − 2

M
λ

))(
f(XQ

τ )− f(x∗)
)
+Q−1

p (τ)⟨∇xf(X
Q
τ ), εqτ ⟩.

(118)
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Applying the expectation of the quantization to both terms, we obtain
Eεq

τ
f(XQ

τ+1)− Eεq
τ
f(x∗)

≤
(
1 +M ·m

(
λ2 − 2

M
λ

))(
Eεq

τ
f(XQ

τ )− Eεq
τ
f(x∗)

)
+Q−1

p (τ)⟨∇xf(X
Q
τ ),Eεq

τ
εqτ ⟩

=

(
1 +M ·m

(
λ2 − 2

M
λ

))(
Eεq

τ
f(XQ

τ )− f(x∗)
)
,

(119)
where Eεq

τ
f(x∗) = f(x∗).

To assess the convergence, we extend the inequality equation 119 to t+ k for k > 0.

Eεq
τ
f(XQ

τ+k)− f(x∗) ≤
k−1∏
j=0

(
1 +M ·m

(
λ2 − 2

M
λ

))(
Eεq

τ
f(XQ

τ )− f(x∗)
)
. (120)

The exponential lemma equation 66 to the equation 120 yields
Eεq

τ
f(XQ

τ+k)− f(x∗)

≤ exp

M ·m · λ ·
k−1∑
j=0

(
λ− 2

M

)(Eεq
τ
f(XQ

τ )− f(x∗)
)
.

(121)

The assumption on λ such that λ < min{1, 2
M } implies the existence of a negative value, denoted as

h̄−(k), which depends on k and is defined as

h̄−(k) ≜
1

λ

k−1∑
j=0

(
λ− 2

M

)
=

k−1∑
j=0

(
1− 2

λM

)
= −c1k, ∵ c1 =

∣∣∣∣1− 2

λM

∣∣∣∣ > 0. (122)

Thus, we obtain
Eεq

τ
f(XQ

τ+k)− f(x∗) ≤ exp
(
Mmλ2h̄−(k)

) (
Eεq

τ
f(XQ

τ )− f(x∗)
)

≤ exp (−C0 · k)
(
Eεq

τ
f(XQ

τ )− f(x∗)
)
,

(123)

where C0 denotes M ·m · λ2 · c1.

The Lipschitz continuity assumption implies that
Eεq

τ
f(XQ

τ )− f(x∗) ≤ sup
XQ

τ ∈Bo(x∗,ρ)

∥f(XQ
τ )− f(x∗)∥≤ L0∥XQ

τ − x∗∥≤ L0ρ (124)

Consequently, applying an absolute value to both terms, we get
Eεq

τ
f(XQ

τ+k)− f(x∗) ≤ exp (−C0 · k)L0ρ = exp (−C0 · k + lnL0) ρ (125)
The result of equation 125 describes that for all ρ > 0, we can find an appropriate positive value
δ > 0, which implies δ = exp(−c0k + a)ρ so that Eεq

τ
f(XQ

τ+k)→ f(x∗). Therefore, we can pick

a k > k0 =
⌈

1
C0

lnL0

⌉
satisfying the following proposition of convergence:

∀ε > 0, ∃ρ > 0 such that ∥XQ
τ − x∗∥< ρ =⇒ |Eεq

τ
f(XQ

τ+k)− f(x∗)|< ε(ρ). (126)

E DETAILED INFORMATION OF EXPERIMENTAL RESULTS

We conducted the experiments using a Python program based on the PyTorch framework version
1.13.1. For the experiments, we utilized three computers, and the detailed specifications of each
computer are provided in Table 2. The Python version used was 3.10.0, and the Anaconda version
was 23.10. We conducted the experiments for the FashionMNIST dataset using a vanilla CNN with
three-layer blocks. For the CIFAR-10 and CIFAR-100 datasets, we used the ResNet-50 model with
56 layer blocks. The representative experimental results are presented in Table 3. A fixed learning
rate of 0.01 is utilized in all experiments, and 200 epochs are conducted for all datasets. The batch
sizes for FashionMNIST, CIFAR-10, and CIFAR-100 are 100 samples, 128 samples, and 100 samples,
respectively.
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(a) FashionMNIST via CNN (b) Enlarged plot

Figure 3: The error trends of test algorithms to the dataset and neural models: (a) Training error
trends of the CNN model on FashionMNIST dataset.(b) Enlarged Training error trends

Table 2: Experimental Environment

PC Name OS GPU CPU
PC-1 Linux Ubuntu 22.0 NVIDIA GeForce GTX 1080Ti Intel i9 7900
PC-2 Windows 11 NVIDIA GeForce RTX 3050 Intel i9 7900
PC-3 Windows 11 NVIDIA GeForce GTX Ti Intel i7 6700

E.1 LEARNING EQUATIONS USED IN THE EXPERIMENT

QSGLD and QSLD-ADAM

The fundamental learning equation of the proposed algorithm is as follows:

XQ
τ+1 = XQ

τ +Q−1
p (τ)

[
Qp(τ) · λh(XQ

τ )
]Q

, (127)

where h(Xτ ) = −∇xf((Xτ ) for QSGLD, and h(Xτ ) = − m̂τ√
v̂τ+ϵ

for Adam-based QSLD, respec-
tively.

The quantization parameter Qp is defined as follows:

Qp = η · bp̄(te). (128)

Table 3: Comparison of test performance among optimizers with a fixed learning rate 0.01. Evaluation
is based on the Top-1 accuracy of the training and testing data.

Data Set FashionMNIST CIFAR10 CIFAR100
Model CNN with 3-Layer Blocks ResNet-50 (56 Layer Blocks)
Algorithms Training Testing Training Error Training Testing Training Error Training Testing Training Error
QSGD 97.10 91.59 0.085426 99.90 73.80 0.009253 99.04 37.77 0.030104
QADAM 98.43 89.29 0.059952 99.99 85.09 0.011456 98.62 49.60 0.037855
SGD 95.59 91.47 0.132747 99.99 63.31 0.001042 98.24 25.90 0.005478
ASGD 95.60 91.42 0.130992 99.99 63.46 0.001166 98.36 26.43 0.004981
ADAM 92.45 87.12 0.176379 99.75 82.08 0.012421 98.85 46.32 0.038741
ADAMW 91.72 86.81 0.182867 99.57 82.20 0.012551 98.86 47.01 0.038002
NADAM 96.25 87.55 0.140066 99.56 82.46 0.014377 98.62 48.56 0.037409
RADAM 95.03 87.75 0.146404 99.65 82.26 0.010526 98.17 48.61 0.044193
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(a) CIFAR10 via ResNet50 (b) Enlarged plot

Figure 4: The error trends of test algorithms to the dataset and neural models: (a) Training error
trends of ResNet-50 on CIFAR-10 dataset.(b) Enlarged Training error trends

(a) CIFAR100 via ResNet50 (b) Enlarged plot

Figure 5: The error trends of test algorithms to the dataset and neural models: (a) Training error
trends of ResNet-50 on CIFAR-100 dataset.(b) Enlarged Training error trends

where te represents the time index of each epoch, given by te =
τ
B for the number of mini-batches

per epoch B, and p̄(te) denotes the power function, derived as follows:"

Qp = η · bp̄(te)|te=τ/B ≤
√

1

C
log(τ + 2)

b2p̄(te)|te=τ/B ≤
1

η2 C
log(τ + 2)

p̄(te)|te=τ/B ≤
1

2
logb

(
1

η2 C
log(τ + 2)

)
.

(129)

For convenience, we define the constant C in equation 129 as the reciprocal value of η2. Additionally,
Considering the upper bound of the quantization parameter, which needs to be a rational number,
we apply the floor function to the upper bound of the quantization parameter. Therefore, the power
function for the quantization parameter is as follows:

p̄(te)|te=τ/B≜ ⌊0.5 · logb log(τ + 2)⌋. (130)
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Finally, we introduce an enforcement function to prevent early paralysis, defined as follows:

r(τ,Xτ ) = λ ·
(

exp(−κ(τ − τ0))

1 + exp(−κ(τ − τ0))
· h(Xτ )

∥h(Xτ )∥

)
, τ0 ∈ Zd, (131)

where τ0 is a parameter, measured in mini-batches, that determines the interval for applying the
enforcement function during the learning process. The parameter κ represents the shape of the
enforcement function, with larger values causing a rapid decrease toward zero.

The following is the summary of all the equations for the proposed algorithm:

te = τ/B

p̄(te) = ⌊0.5 · logb log(τ + 2)⌋
Qp = η · bp̄(te)

r(τ) = λ ·

(
exp(−κ(τ − τ0))

1 + exp(−κ(τ − τ0))
· h(XQ

τ )

∥h(XQ
τ )∥

)
XQ
τ+1 = XQ

τ +Q−1
p (τ)

[
Qp(τ) ·

(
λh(XQ

τ ) + r(τ,XQ
τ )
)]Q

.

(132)

We recommend the hyper-parameters represented as follows:

η2 ∈ 219 ≈ 0.5× 106, C = 1/η2, b = 2 κ = 2.0 or 4.0, t0 = 5 20% of all epochs. (133)

In the following section, we present an empirical analysis of the impact of changing hyperparameters.

SGD We set the SGD for the experiments using standard gradient descent form, as follows:

Xτ+1 = Xτ − λ∇xf(Xτ ). (134)

ASGD (Average SGD by Shamir and Zhang (2013)) optimizer updates the parameters using the
following equation:

Xτ+1 =
1

t

t−1∑
i=0

∇xf(Xτ−i), (135)

where Xτ represents the updated parameter at time step τ .

ADAM (Adaptive Moment Estimation by Kingma and Ba (2015)) optimizer updates the parameters
using the following equations:

mτ = β1 ·mτ−1 + (1− β1) · gτ ,
vτ = β2 · vτ−1 + (1− β2) · g2

τ ,

m̂τ =
mτ

1− βτ1
,

v̂τ =
vτ

1− βτ2
,

Xτ = Xτ−1 −
η√

v̂τ + ϵ
· m̂τ ,

(136)

where mτ ∈ Rd and vτ ∈ Rd are the first and second moment estimates respectively, gτ ∈ Rd is
the gradient at time step t i.e. −∇xf(Xt), β1 and β2 are the decay rates for the moments, m̂τ ∈ Rd

and v̂τ ∈ Rd are the bias-corrected moment estimates, Xτ represents the updated parameter at
time step t, η is the learning rate, and ϵ is a small constant to avoid division by zero. We set the
hyperparameters for ADAM such that

β1 = 0.9, β2 = 0.999, ϵ = 10−8. (137)

We utilize the ADAMW optimizer implemented in PyTorch.
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NADAM (Nestrov momentum incooperated ADAM by Dozat (2016))

µτ = β1

(
1− 1

2
0.96τψ)

)
µτ+1 = β1

(
1− 1

2
0.96(τ+1)ψ

)
mτ = β1 ·mτ−1 + (1− β1) · gτ ,
vτ = β2 · vτ−1 + (1− β2) · g2

τ ,

m̂τ =
µτ+1

1−
∏t+1
i=1

mτ +
1− µτ

1−
∏t
i=1

gτ ,

v̂τ =
vτ

1− βτ2
,

Xτ = Xτ−1 −
η√

v̂τ + ϵ
· m̂τ ,

(138)

RADAM (Rectified Adam by Liu et al. (2020)) optimizer updates the parameters using the following
equations:

mτ = β1 ·mτ−1 + (1− β1) · gτ ,
vτ = β2 · vτ−1 + (1− β2) · g2

τ ,

m̂τ =
mτ

1− βτ1
,

v̂τ =
vτ

1− βτ2
,

ρτ = ρ∞ −
2tβt2
1− βt2

rτ =

√
(ρτ − 4)(ρτ − 2)ρ∞
(ρ∞ − 4)(ρ∞ − 2)ρτ

,

Xτ = Xτ−1 − ηmτ ·

{
rτ

√
1−βτ

2√
vτ+ϵ

ρt > 5

1 else
,

(139)

where rτ ∈ Rd is the "leaky" update term, and ρτ , ρ∞ is an additional hyperparameter introduced in
RADAM. ρ∞ is initialized with ρ∞ = 2

1−β2
− 1. We utilize the RADAM optimizer implemented in

PyTorch.

ADAMW optimizer updates the parameters using the following equations:

mτ = β1 ·mτ−1 + (1− β1) · gτ ,
vτ = β2 · vτ−1 + (1− β2) · g2

τ ,

m̂τ =
mτ

1− βτ1
,

v̂τ =
vτ

1− βτ2
,

Xτ = Xτ−1 −
η√

v̂τ + ϵ
· (m̂τ + λXτ−1),

(140)

where λ is a weight decay coefficient or regularization term added in ADAMW. Loshchilov and
Hutter (2019) provided the algorithm. We utilize the ADAMW optimizer implemented in PyTorch.

E.2 EXPERIMENTAL RESULTS ACCORDING TO DATASETS

FashionMNIST The FashionMNIST dataset is a drop-in replacement for the original MNIST dataset,
which consists of handwritten digits. The FashionMNIST dataset contains 60,000 grayscale images
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(a) Application Period of the Enforcement (b) Enlarged plot

Figure 6: The error trends of performance Variation of Adam-Based QSLD based on the application
period of the enforcement function: (a) Training error trends of Vanilla CNN on FashionMNIST
dataset.(b) Enlarged Training error trends

Table 4: Performance Variation of Adam-Based QSLD Based on the Application Period of the
Enforcement Function

Period Ratio (%) FashionMNIST CIFAR-10 CIFAR-100
Training Testing Error Training Testing Error Training Testing Error

0.5 96.05 91.04 0.92853 99.74 83.61 0.007327 98.66 44.51 0.036558
1.0 96.11 91.59 0.118914 99.84 83.29 0.006766 98.62 44.38 0.032726
5.0 96.75 91.38 0.094954 99.87 83.39 0.006549 98.61 49.60 0.037855
10.0 96.95 91.59 0.090756 99.84 84.18 0.0 98.84 44.59 0.035554
20.0 97.05 90.84 0.084489 100.0 85.08 0.0 99.13 46.78 0.035354
50.0 97.82 90.64 0.051491 99.91 84.04 0.005456 98.94 48.49 0.029179
100.0 99.46 90.01 0.104510 99.87 83.39 0.010629 98.81 46.76 0.044370

of 10 different fashion categories, each with a 28x28 pixel representation. The ten fashion categories
in FashionMNIST include T-shirts/tops, trousers, pullovers, dresses, coats, sandals, shirts, sneakers,
bags, and ankle boots. Each image in the dataset is associated with a corresponding label indicating
the category of the depicted fashion item.

Simple vanilla multilayer networks, equipped with well-tuned optimizers and moderately wide hidden
layers, can achieve high accuracy in classifying each category of the MNIST dataset, resulting in
minimal accuracy errors. This poses challenges in meaningfully evaluating the performance of
different optimizers.

However, while the classification test scores for FashionMNIST are higher than CIFAR-10 and
CIFAR-100, standard SGD performs superior to the ADAM optimizer family in evaluation tests
on the FashionMNIST dataset. This result suggests that the objective function of FashionMNIST
exhibits a more convex property around the optimal point, and previous research (Xie et al. (2021))
has revealed that the ADAM optimizer may struggle to select flat minima.

Experiments to FashionMNIST The experiments on the FashionMNIST dataset yielded interesting
results. Firstly, similar to the MNIST dataset, the experimental results showed that the training
classification performance exceeded 90% for all models. However, there was a noticeable performance
difference between the SGD and ADAM optimizers. The SGD optimizer exhibited better classification
performance compared to the ADAM optimizer. As shown in Figure 3, the error trend indicated that
ADAM converged faster initially, but as the number of epochs increased, SGD gradually reduced the
error more effectively than the ADAM optimizer. In general, once the number of epochs exceeded
400, the SGD optimizer consistently achieved a training classification accuracy of 100% regardless
of the learning rate. However, the test classification accuracy reached a limit of around 91.25%.
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(a) Test for CIFAR-10 on ResNet-20 (b) Test for CIFAR-100 on ResNet-32

Figure 7: Performance Comparison of the Proposed Algorithm on Networks with Different Depths:
(a) When testing on the CIFAR-10 dataset, the algorithm was evaluated on ResNet-20.(b) When
testing on the CIFAR-100 dataset, the algorithm was evaluated on ResNet-30.

The proposed QSGLD and ADAM-based QSLD perform better than the conventional SGD and
ADAM optimizer, but they do not exhibit significant improvements on the FashionMNIST dataset.
QSGLD achieves a slight improvement of approximately 0.2% in classification accuracy for both
training and testing, while Adam-Based QSLD achieves an improvement of around 2%. In Figure 3a,
it can be observed that QSGLD converges faster than SGD due to the similar learning rate, although
the convergence speed is similar. On the other hand, Adam-based QSLD exhibits a convergence
trend similar to the Adam optimizer. Nevertheless, Adam-based QSLD shows lower error trends than
conventional ADAM optimizers.

CIFAR10 and CIFAR100 We don’t provide any specific explanation for the CIFAR-10 and CIFAR-
100 datasets. For the CIFAR datasets, separate experiments were conducted based on the depth of
ResNet. This was done to verify that the proposed algorithm works effectively regardless of the depth
of the neural network model. The experimental results demonstrated the superiority of the proposed
algorithm for all depths of ResNet. As shown in Table 3, when classifying the CIFAR-10 dataset
using ResNet-50, QSGD outperformed SGD by 8% in terms of test accuracy.

As depicted in Figure 4, QSGLD exhibited significant improvements in both convergence speed and
error reduction compared to the conventional SGD methods. On the other hand, Adam-Based QSLD
showed a performance advantage of approximately 1.5% for test accuracy.

Similar trends were observed for the CIFAR-100 dataset. QSGD demonstrated a performance
advantage of around 11% over conventional SGD methods for test accuracy. In contrast, Adam-based
QSLD showed an improvement of approximately 1.0% compared to conventional Adam-based
optimizers.

The experiments on the CIFAR datasets revealed interesting characteristics of QSGLD and Adam-
based QSLD.

E.3 EXPERIMENTAL RESULTS OF CHANGING OF HYPER-PARAMETERS

Period Parameter for Enforcement Function We conduct experiments to analyze the effect of the
period parameter τ0 for the enforcement function. Regarding the quantization parameter, there were
variations depending on the algorithm, but generally, the size of the search vector was around 10−6,
so the eta value was set to half of it, which is 524288. Firstly, the optimal application period of the
enforcement function varied depending on the dataset. For FashionMNIST and CIFAR-10, the best
performance improvement was observed when the enforcement function was applied for about 10-
20% of the epochs. Applying it for longer or shorter periods did not result in significant performance
improvement. On the other hand, for CIFAR-100, the best performance improvement was achieved
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when the enforcement function was applied throughout all the epochs. Since CIFAR-100 has a higher
classification complexity than FashionMNIST or CIFAR-10, it is considered optimal to integrate
the enforcement function with a measure that can assess problem complexity, such as the Fisher
Information Matrix, rather than using it as a function of time. Regarding another hyperparameter, κ,
no significant performance variations were observed with changes in its value.
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