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ABSTRACT

Primal heuristics are crucial for accelerating the solving process of mixed inte-
ger programming (MILP) problems. While large language models (LLMs) have
shown great promise in generating effective heuristics, existing methods often
fail to generalize across instances within the same problem class, where we de-
fine a problem class as a set of MILP instances derived from the same mathe-
matical model. This limitation arises because MILP instances within the same
class can exhibit substantial structural and distributional heterogeneity. However,
existing methods treat instances uniformly, averaging performance over limited
samples and yielding heuristics that lack generalization. To address this, we pro-
pose DHEvo, a data-algorithm co-evolution framework that jointly evolves repre-
sentative instances and tailored heuristics integrated into the open-source solver
SCIP. DHEvo employs an LLM-based multi-agent system to generate and refine
data-algorithm pairs iteratively, guided by fitness feedback. Experiments on di-
verse MILP benchmarks show that DHEvo significantly outperforms state-of-the-
art hand-crafted, learning-based, and LLM-based methods in solution quality and
generalization.

1 INTRODUCTION

Mixed-integer linear programming (MILP) is of central importance in combinatorial optimization,
operations research, and computer science. It has been widely applied to a broad range of real-
world problems, including supply chain optimization (Liu et al.| 2008; Jeong et al.l 2019 [Jokinen
et al., 2015)), hardware design (Ma et al.| 2019; Hafer, |1991), production scheduling (Chen, 2010;
Caumond et al.l |2009; [Superchi et al., [2024), and energy management (Chang et al., 2004; |Kassab
et al.| 2024} Zare et al.,2024). An MILP problem is often defined by numerous parameters, such as
cost coefficients, constraints, and bounds. These can all be mathematically represented as:
2t= mianch, PT:{:EER"|Aat<b,£§x§ﬁ7xj ELVj eI},
EAS

where M1 := (¢, PT), A€ R™*" b € R™, ¢,z € R, r,® € R ,and Z C {1,...,n} indexes
the integer-constrained variables.

In practice, instances derived from the same application domain or model template can exhibit sub-
stantial variation in structure, constraint tightness, and feature distribution, leading to large intra-
class diversity. Therefore, well-designed primal heuristics must not only contribute to accelerating
the solving process but also generalize well across instances within the same problem class (Ong &
Moore, |1984; Balas et al., 2004; Berthold, 2006; Wallacel 2010; Witzig & Gleixner, 2021).

Current advanced approaches to automated heuristic design leverage a combination of large lan-
guage models (LLMs) and evolutionary computation (EC) to generate heuristic algorithms. This
synergy (Liu et al.,[2024b)) has driven notable progress across domains including combinatorial op-
timization (Zhang et al.| [2024c} |Liu et al., [2024a)), mathematical problem solving (Romera-Paredes
et al.| [2024; |van Stein & Backl 2024)), decision-making (Makatura et al.| 2023 Wu et al.|[2024), and
MILP problems (Zhou et al., 2024; Ye et al., 2025; |L1 et al.,2024a)).

Despite these advances, existing approaches exhibit a fundamental limitation: they typically apply
the same treatment to all problem instances, thereby disregarding structural heterogeneity within a
problem class. This oversimplified assumption hinders LLM-based evolutionary frameworks from
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Figure 1: Illustration of data-algorithm co-evolution framework (DHEvo).

capturing representative structural patterns, resulting in heuristics that may demonstrate strong per-
formance on specific training instances yet lack robustness and generalization across the broader
instance distribution.

To address this issue, we propose a data-algorithm co-evolution framework (DHEvo) that gener-
ates generalizable algorithms by iteratively evolving both the MILP instances and the algorithms.
We start by randomly sampling instances from a domain-specific dataset and developing an LLM-
based multi-agent evolution system (MA-Evolution System) to create initial data-algorithm pairs.
Inspired by insights from few-shot and curriculum learning (Ren et al., 2018};[Sato et al.,[2019; Ben-|
2009b), we select the pairs with the highest fitness (measured by relative primal gap) as
the initial population for further evolution. Through our analysis of the instances (Section [3.2)), we
find that high-fitness pairs are more likely to encode transferable solving patterns, thereby enhanc-
ing generalization across instances within the same problem class. Then, the evolutionary process
above iterates over generations, gradually refining the population toward the most representative
data-algorithm pair. In summary, our contributions are as follows:

* We propose a unified data-algorithm co-evolution framework to evolve both instances and
algorithms for the automatic design of heuristics. It enables better approximation of the
instance distribution and increases the representational capacity of the learned heuristics,
leading to improved generalization.

* We present a co-evolutionary solution for MILP tasks by instantiating the data-algorithm
co-evolution paradigm through a multi-agent evolution system. Through continuous agent
interaction and competition, the system fosters the emergence of diverse and adaptive
heuristic strategies.
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» Extensive experiments show that our method significantly improves the generalization of
diving heuristics and delivers substantial performance gains across multiple MILP datasets.

2 BACKGROUND AND RELATED WORKS

2.1 BRANCH&BOUND AND DIVING HEURISTIC

A common method for solving MILP problems is Branch-and-Bound (B&B) (Land & Doigl |[2009),
which recursively builds a search tree by branching on fractional variables in the LP relaxation
and pruning subproblems using objective bounds. Although B&B provides an exact framework, it
remains computationally expensive for large-scale problems. To accelerate the search, solvers of-
ten incorporate primal heuristics such as diving, which conducts a depth-first search by iteratively
rounding variables and re-solving LP relaxations until a feasible solution is found or infeasibility
is detected. Existing diving heuristics, however, typically rely on manual design and expert tuning,
limiting their adaptability. In contrast, our approach employs evolutionary computation to auto-
matically generate problem-specific diving strategies, thereby enhancing flexibility and reducing
dependence on expert knowledge. Empirical results show that this automated approach significantly
improves primal gap progression across diverse benchmark datasets.

2.2 LLM FOR EVOLUTIONARY COMPUTATION

Evolutionary computation (Bick et al., |[1997) is a widely used method for solving optimization
problems inspired by natural evolution. In recent years, the capabilities of large language models
have advanced significantly (Naveed et al.| 2023)), and their integration with evolutionary computa-
tion has been explored for automated heuristic design (Liu et al., |2024bj [Zhang et al., 2024c; Wu
et al.,2024). For example, Funsearch (Romera-Paredes et al., 2024)) combines LLMs with evolu-
tionary frameworks to tackle mathematical problems, achieving superior results on the cap set and
admissible set problems. EoH (Liu et al., [2024a)) further integrates reasoning traces with executable
code to generate more effective algorithms, achieving promising results on problems such as on-
line bin packing. LLM4Solver (Zhou et al., |2024)) integrates evolutionary search with LLMs to
design heuristics for mixed-integer linear programming, improving solver efficiency across diverse
datasets. Ye et al. (Ye et al.l[2025) introduce a dual-layer self-evolving LLM agent for MILP, which
automatically generates effective neighborhood selection strategies for large neighborhood search
and generalizes from small-scale to large-scale instances.

However, current methods typically operate within a limited set of specific instances, limiting the
ability of large language models to capture the shared structural characteristics of the problem class.
As a result, the generated algorithms perform well on similar instances but generalize poorly to
broader problem variations, even though they outperform manually crafted heuristics on specific
tasks. In contrast, our method iteratively selects representative instances during the evolutionary
process, promoting the discovery of structural patterns that enhance generalization.

3 METHOD

3.1 PROBLEM FORMULATION

Instances within a single MILP problem class may exhibit substantial heterogeneity in distributions,
constraints, and structural properties, while often retaining common characteristics such as con-
straint types, variable bounds, or recurring patterns in the objective function. presents a
visualization of 17 representative features across four combinatorial optimization datasets. There-
fore, systematically capturing such shared features is essential for the design of effective heuristics.

Conventional evolutionary methods typically evaluate heuristics by averaging performance over a
small set of randomly sampled instances, implicitly assuming all instances are equally representa-
tive. In MILP, this assumption rarely holds due to high structural variability, resulting in a large
performance variance over a broader instance set. To address this, our framework explicitly op-
timizes heuristics to achieve high expected performance while minimizing performance variance.
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Figure 2: The visualization of instance features via t-SNE.

Formally, the objective can be written as:

min B (Qy) = Ea~plt(Qpi G, ()

where Rp(Q,,) denotes the expected loss of heuristic @, over the full MILP instance distribution
D, and ¢(Q,; G) measures the performance of ), on a specific instance G € D.

3.2 THEORETICAL MOTIVATION: LEARNING FROM REPRESENTATIVE INSTANCES

Insight Motivated by few-shot learning (Jiang et al., [2015; Ren et al.| 2018} |Sato et al., 2019) and
curriculum learning (Bengio et al., [2009a} [Soviany et al., 2022} [Portelas et al., 2020), extensive re-
search (Wu et al.,2017; |Akbari et al.,[2021}; Jiang et al., 2019) has shown that starting with “simple”
or “representative” samples in complex datasets often enhances both learning efficiency and gener-
alization. A similar phenomenon arises in the context of MILP optimization. Selecting structurally
representative instances not only facilitates the discovery of effective heuristics but also improves
their ability to generalize across the full problem class. Here, we provide a theoretical analysis
that formalizes this intuition and motivates the design of our co-evolution framework. The detailed
theoretical proofs are provided in Appendix [8.6]

Definition 1 MILP instance space and single diving operator loss. Let X denote the space of
MILP instances, and let () denote a single diving operator, which applies a rounding or branching
decision to some subset of variables in an instance G € X. Given a finite training sample S =

{G1....,Gn} ™ D, the empirical risk is Rs(Q,) == £ 7, (Qp; G).

Definition 2 Complex diving heuristics as mixtures of atomic operators. A diving operator is gen-
erally a decision rule over multiple variables. Let H = {Hj, ..., Hy} denote a finite set of atomic

diving operators. Any complex diving heuristic ¢, can be expressed as a convex combination of

atomic operators: @, := Zle p;H;, where p is a probability vector. The corresponding loss of @,

on an instance G is £(Qp; G) := Zle pi¢(H;; G), and the induced function class is

Qeon 1= {Qp = S it | pe At @
i=1

Theorem 1 Rademacher complexity of convex combinations. Let o; be independent Rademacher
variables. The empirical Rademacher complexity of Q.o On S is

E)A‘iS(QconV) = EU[ sup lZ:Ujé(Qp;Gj) ’ S} = DAQS(H). 3)

Qp€Qeonv ™ 75

Remark 1 Theory 1 establishes that the Rademacher complexity of a function class formed by con-
vex combinations of atomic diving operators is identical to that of the atomic operators themselves.
Therefore, constructing complex heuristics from simple atomic operators preserves the original gen-
eralization capacity.
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Theorem 2 Uniform generalization bound for mixtures of atomic operators. Given a training sam-
ple S, the empirical risk is Rs(Q,) = %Z;":l (Qp; G4) and the expected risk is Rp(Q,) =
Ecp[¢(Qp; G)]. Then for any § € (0, 1), with probability at least 1 — § over S, simultaneously for
all @p € Qeonv:

Rp(Qp) < Rs(Qp) + 23\/21;1k T B\/ln(;{é) @

Remark 2 Theorem 2 indicates that complex heuristics retain the same generalization bound as their
atomic components. Hence, training on structurally representative, high-scoring instances is justi-
fied, as repeated optimization over such instances ensures guaranteed generalization performance.

3.3 DATA-ALGORITHM BASED HEURISTIC EVOLUTION FRAMEWORK

As illustrated in [Figure 1] our framework adopts a structured evolutionary process that tightly cou-
ples instance selection with heuristic generation and optimization.

Initially, the MA-Evolution System generates a unique instance-heuristic pair for each sampled
MILP instance, establishing an initial population of candidate algorithms tied to specific instances.
Each generated heuristic is then evaluated on its corresponding instance, and a temperature-
controlled selection strategy is applied to choose high-fitness instance—heuristic pairs. In general,
heuristics with higher fitness scores correspond to instances with simpler structural characteristics.
Subsequently, heuristics with low performance and their associated challenging instances are dis-
carded. The remaining high fitness heuristics are then evolved further on the selected representative
instances in the next generation. This process of generating, evaluating, selecting, and re-initializing
instance—heuristic pairs is iterated over multiple generations. By repeatedly focusing on structurally
representative and high-performing instances, the framework achieves co-evolution of instances and
heuristics, ultimately producing algorithms with strong instance-level performance and reliable gen-
eralization across the broader problem class. Appendix [8.5]describes the detailed procedure of our
method.

3.4 FRAMEWORK IMPLEMENTATION

Evolution operation Our evolutionary framework consists of four main operations: initialization,
crossover, mutation, and parent selection. As shown in initialization, crossover, and mu-
tation are implemented through sophisticated prompts to generate candidate individuals. Unlike
traditional LLM-based evolutionary approaches, we leverage the MA-Evolution System to perform
both crossover and mutation, enabling more targeted and problem-aware generation of new individ-
uals. Specific prompts are used only in the first generation to create the initial population, while
subsequent generations reuse high-quality algorithms obtained from previous iterations. During
crossover, parent heuristics are combined to form new candidate algorithms, and mutation intro-
duces small variations to explore neighboring solutions. To balance exploration and exploitation
in parent selection, we adopt fitness-proportional selection (Zhou et al., 2019), assigning selection
probabilities to individuals based on their fitness scores.

MA-Evolution System To generate high-quality heuristics, we propose a multi-agent evolution
system inspired by multi-agent systems (Liang et al.,|2023}; |Chan et al., 2023} |Zhang et al., 2024a;
Li et al| 2024b). As shown in the process includes three stages. In the first stage, the
Designer agent receives the MILP task context, existing code, and the specified evolutionary opera-
tion. It produces a high-level design plan and procedural outline for a new heuristic. In the second
stage, the Coder agent implements the algorithm based on the Designer’s plan. The Reviewer agent
then checks the code by compiling it and performing logical analysis, providing feedback and sug-
gestions. Then, the Coder and Reviewer iteratively improve the code through several rounds of
interaction. In the final stage, if no consensus is reached, the Judge agent reviews the full interaction
history and feedback, and makes a final decision on the output code and its description.

Prompt engineering Our prompts are constructed based on three essential elements: the designated
role of the large language model within the MA-Evolution System, contextual information about
the MILP problem, and evolution-specific operations intrinsic to evolutionary computation, such as
mutation. The full prompt information is presented in the Appendix
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Figure 3: Illustration of the MA-Evolution System.
4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

To demonstrate the superiority of our method in the diving task, we conduct two sets of experiments
across six MILP datasets. (1) The first set of experiments is designed to study the diving performance
of our method and compare it against existing diving heuristics. (2) To evaluate the efficiency
improvement brought by our generated diving heuristics, we evaluate our method on combinatorial
and large-scale real-world datasets. Experimental details are described in Appendix [8:4]

4.2 EXPERIMENTS ON THE QUALITY OF DIVING HEURISTICS

Experimental setup To evaluate the performance of the generated diving algorithms, we conduct
two sets of experiments using the relative primal gap as the primary metric, which mea-
sures the difference between the incumbent solution and the optimum. (1) We compare our method
against a comprehensive set of existing diving heuristics, including human-designed, learning-based,
and LLM-generated approaches. Specifically, we evaluate a total of 11 publicly available methods
across four combinatorial optimization problems: cauctions, setcover, facilities, and indset. These
baselines consist of six human-designed heuristics implemented in the open-source solver SCIP,
the state-of-the-art learning-based GNN method L2DIVE (Paulus & Krause, |2023)), and four LLM-
generated heuristics: LLM4Solver (Zhou et al.| 2024), FunSearch (Romera-Paredes et al., [2024),
EoH (Liu et al. [20244a), and HillClimb (Zhang et al., [2024b)). (2) To further assess the superiority
of our generated algorithms, we compare them against the mainstream solvers Gurobi and SCIP. To
ensure a fair comparison across heuristics and eliminate the potential bias introduced by the solver
itself, we restrict the evaluation to the root node only.

Experimental results For the first set of experiments on diving heuristic performance, we com-
pare our method against established diving heuristics. As shown in[Table 1] our method consistently
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Table 1: The standard error and average relative primal gap (%) of different diving heuristics. The re-
sults compare our method with other LLM-based evolutionary approaches, as well as seven human-
designed heuristics and the learning-based SOTA baseline.

Category Method Cauctions Facilities Setcover Indset
DHEvo(Ours) 1.92 (2.45) 0.70 (1.40) 9.74 (7.35) 1.07 (1.20)
LLM-based LLM4Solver 2.50 (3.50) 0.85 (1.42) 18.33 (19.26) 1.13 (1.15)
Evolution Funsearch 3.04 (7.35) 1.18 (3.06) 77.99 (83.89) 1.61 (3.75)
HillClimb 6.10 (60.30) 0.75 (1.40) 81.55(343.17)  1.61(3.75)
EoH 3.15(3.15) 0.80 (1.47) 20.39 (19.70) 0.92 (1.06)
Coeficient 23.67 (2.14) 3.20 (3.76) 68.58 (345.99) 4.23(14.42)
Distributional ~ 47.80 (71.56) 1.46 (2.12) 75.79 (325.90)  2.57 (10.59)

Hand-crafted Farkas 23.32 (0.89) 1.04 (1.64) 8.13 (8.22) -
Heuristics Pseudocost 22.51 (2.30) 1.06 (1.23) 23.56 (30.31) 3.31(2.98)
Linesearch 22.95(0.90) 13.80(10.94) 68.59 (346.00)  3.31(3.10)
Vectorlength ~ 42.93 (83.57) 13.93 (10.61) 68.59(346.01)  8.89 (7.61)
Learning-based L2DIVE 2.60 0.71 3.58 1.37

Table 2: Performance comparison of different solving frameworks in terms of relative primal gap
(%) on four benchmark MILP datasets. Results are averaged over 100 new challenging instances
per dataset, each on average over 4x harder than those in with performance reported as
standard deviation (mean).

Method Cautions Facilities Setcover Indset
Ours + SCIP  1.22(2.66) 0.56(0.59) 3.79(2.80) 0.51(0.63)

Gurobi 2.06(3.50) 1.34(1.78) 3.35(1.09) 1.93(3.41)
Tuned SCIP  1.49(3.27) 0.80(0.81) 3.93(2.94) 0.80(3.22)

achieves strong results across all datasets. In particular, on the indset dataset, our approach improves
over the best manually designed heuristic by 56.04%. Compared to other LLM-based algorithm de-
sign methods, our approach also achieves state-of-the-art performance. For example, on the setcover
dataset, our method surpasses the best LLM-based baseline by 61.8%. More importantly, in terms
of performance variance, our method achieves the lowest variance across all four datasets. Notably,
on the setcover dataset, our approach reduces variance by 46.9% compared to the best-performing
LLM-based algorithm design method. These results demonstrate the effectiveness and robustness of
our approach in generating high-quality heuristics for diverse combinatorial optimization problems.

Secondly, we compare our generated heuristics with the primal heuristics embedded in state-of-the-
art MILP solvers. As shown in[Table 2] our method demonstrates highly competitive performance.
In particular, the improvements over one of the leading solvers, Gurobi, range from approximately
24% on the cauctions dataset to more than 80% on the indset dataset. Unfortunately, we cannot
embed our diving heuristics directly into commercial solvers like Gurobi to perform evolutionary
optimization. On setcover datasets, our method still shows a performance gap relative to Gurobi.

4.3 EXPERIMENTS ON SOLVING EFFICIENCY IN BRANCH AND BOUND

Experimental setup Experimental setup To evaluate the practical effectiveness of the generated
diving heuristics, we integrate them into SCIP and conduct experiments on both combinatorial op-
timization datasets and large-scale real-world datasets, including LoadBalance (Gasse et al.,|[2022),
MILPLIB (Gleixner et al., 2021), and NN Verify (Nair et al., 2020). Performance is assessed using
solving time and the primal-dual integral, which together capture the solving efficiency.

Table 3: Performance comparison of our method, EoH, default SCIP, and tuned SCIP. Each cell
reports the solving time and (primal-dual integral).

Method Cauctions Facilities Setcover Indset
Default SCIP 4.08 (55.87) 301.20 (506.71) 2.43(117.65) 21.07 (230.33)
Tuned SCIP 2.73 (24.21) 201.64 (553.15)  2.33(77.02) 22.71(167.43)
EoH 2.62 (37.12) 197.35(504.56) 2.76 (96.75)  20.32(151.34)
DHEvo(Ours) 2.28 (23.42) 181.27 (490.43) 2.27 (75.88) 18.54 (146.39)
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Table 4: A comparison of solving time and primal-dual integral across different methods in large-
scale real-world applications.

LoadBalance NN Verify MIPLIB
Time PDI Time PDI Time PDI
Ours + SCIP 3600 346980.53 72.42 541332 26348 12101.11
Scip 3600 347597.70  669.15 38455.17 469.22 18127.57
Ours + Tuned SCIP 1800 7305.2 35.67 274421 117.67  5599.62
Tuned SCIP 1800 9881.29 137.19  8210.46 184.3 6339.64
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Figure 4: Ablation studies of different LLMs and data selection strategies on four problem classes.

Experimental results For the combinatorial optimization benchmarks, we compare our method
to the default, tuned SCIP settings and EoH, as shown in Results demonstrate that our
approach not only improves solution quality but also leads to better solving efficiency. On the
challenging facility dataset, our method outperforms the current state-of-the-art by 6.7% in solving
time and 2.8% in primal-dual integral.

For the large-scale real-world datasets, we compare our method to the default and fine-tuned SCIP
setting, as shown in The experimental results demonstrate that our method achieves com-
petitive improvements across all datasets. Under the fine-tuned setting, our method achieves a 26.1%
improvement in the primal-dual integral on the LoadBalance dataset. On the NN Verify dataset, the
fine-tuned approach more than doubles solving efficiency. For the MIPLIB dataset, our method
improves solving efficiency by 36% and reduces the PDI by 12% compared to the default.

4.4 ABLATION STUDIES

To assess the contribution of each component in our framework, we conduct ablation studies on four
combinatorial optimization datasets. Specifically, we evaluate: (i) whether high-fitness instances
serve as structurally representative samples that guide the evolutionary process, (ii) the effectiveness
of the data—algorithm co-evolution mechanism, (iii) the role of the multi-agent evolution system
by comparing it with alternative evolutionary strategies, (iv) the robustness of our approach across
different LLMs.

Analysis on different data selection strategies We conduct a detailed ablation study to investigate
the correlation between simple instances and representative instances. Specifically, we evaluate three
strategies for data selection: iteratively choosing simple instances, selecting instances of medium
difficulty, and focusing on hard instances. As shown in the the results demonstrate that
emphasizing simple instances yields more significant performance improvements compared to the
other strategies. Notably, when using GPT-40-mini, the evolutionary process guided by simple
instances achieves a 24% higher improvement over the variant using medium difficulty instances
and a 70% greater gain compared to the one focusing on hard instances. It indicates that simple data
can serve as effective representatives for guiding heuristic evolution and enhancing generalization.

Analysis on data-algorithm co-evolution We evaluate the role of the co-evolution mechanism by
removing it and using a uniform fitness evaluation over all training instances. Without this mecha-
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Table 5: Comparison of standard error and average relative primal gap on validation dataset, in-
cluding DHEvo, its variant without co-evolution (DHEvo-OFF), the EoH baseline with co-evolution
mechanism (EoH-DH), and the plain EoH framework.

Method Cautions Facilities Setcover Indset

DHEvo 2.15(2.53) 0.83(1.30) 9.74 (13.42) 1.01(1.03)
DHEvo-OFF  2.33(2.79) 0.93(1.45) 10.8(13.99) 1.23(1.11)
EoH-DH 2.90 (5.60) 0.84 (1.47) 18.31(17.48) 1.07 (1.14)
EoH 4.38(6.15) 1.96 (4.36) 26.14(28.89) 1.36(1.21)

nism, performance variance increases and solution quality deteriorates across datasets. Specifically,
when we remove the coevolution mechanism from DHEvo as shown in the average rela-
tive primal gap increases by roughly 10% on each of the four combinatorial optimization datasets,
demonstrating that uninformative or overly complex instances dominate the training process and
harm generalization. When the EoH method is augmented with our co-evolution framework, it
achieves significant improvements across all four datasets. This further demonstrates the effective-
ness of our co-evolution mechanism in enhancing generalization and overall performance.

Analysis on MA-Evolution System To verify the effectiveness of the MA-Evolution System in
generating higher-quality diversity generated individual algorithms, we conduct an ablation study
by removing this system from our framework and comparing it with the original version in the
setcover dataset. To evaluate the diversity of algorithms generated by the MA-Evolution System,
inspired by diversity indicator metrics (Wineberg & Oppacher, |2003; Nikfarjam et al., [2021), we
introduce a diversity index defined as DI = H/log, N, where H is the Shannon entropy of the
score distribution over N generated samples. A value closer to 1 indicates higher diversity among
solutions.

As shown in the the algorithms gen-
erated by the MA-Evolution System achieve

significantly lower average primal gaps, im- Table 6: Ablation study of the MA-Evolution sys-
proving by 12.4% compared to those without tem in terms of average primal gap (APG), diver-
the MA-Evolution System. Additionally, they sity index (DI), and primal gap standard deviation
show a 15.8% improvement in the diversity in- (PGSD).

dex, demonstrating the superior diversity of the Method APG DI PGSD
generated heuristics.

MA-Evolution OFF  9.14  0.76 8.75
Analysis on different LLMs We compare our MA-Evolution ON  8.00 0.88 4.78
method against several LLMs, including GPT-
40-mini, Qwen3-235B-A22B, and DeepSeek.
All experiments are conducted under identical
experimental settings to ensure a fair comparison. As shown in our approach consistently
generates high-quality heuristics across all evaluated LLMs, demonstrating its robustness and gen-
eralizability irrespective of the underlying language model.

5 CONCLUSION

We present a novel data-algorithm co-evolution framework for solving MILP. By iteratively iden-
tifying the most representative instances and co-evolving heuristic algorithms based on them, our
method significantly improves the generalization ability of the generated heuristics within the same
problem class. Unlike traditional approaches that treat training data as static, our method selects
representative instances during the evolutionary process, enabling the algorithm to generalize better
across diverse problem distributions. We also introduce a multi-agent evolutionary system to im-
prove generation quality and solution diversity. Experimental results show that our approach signif-
icantly outperforms existing human-designed, learning-based, and LLM-based baselines in both the
primal gap and solving efficiency. Due to time and space constraints, we have applied our evolution-
ary computation framework only to MILP problems, and future work will explore its applicability
to other operational research domains.
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8 APPENDIX

8.1 THE USE OF LARGE LANGUAGE MODELS

In our approach, the large language model (LLM) acts as an agent within the evolutionary computa-
tion framework. Rather than being used in isolation, the LLM generates candidate algorithms based
on feedback from the evolutionary process. These algorithms are evaluated in real solver runs, and
the performance results are fed back to guide the LLM in producing improved variants.

8.2 DIVING HEURISTICS

Diving heuristics are primal heuristics that iteratively fix variables based on LP relaxation solutions,
simulating a depth-first search in the branch-and-bound tree. Given the LP relaxation of an MILP:

zEP = mi? c'z, Pzpz{xeR”\Ax<b,ﬂ§x§ﬁ},
z€P] p

the algorithm starts from an LP solution & € Pz p and incrementally fixes fractional variables x; ¢ Z
to integer values. At each step, the feasible region is updated with new bound constraints, and the
relaxed problem is re-solved. This process emulates a depth-first traversal of the search space,
aiming to quickly construct a feasible integer solution. In general, a generic diving heuristic can be
described by Algorithm [T} The only difference among various diving heuristics lies in the scoring
function s(-), which determines the variable to round and the direction of rounding at each iteration.

Here are some diving heuristic algorithms included in SCIP.

Coefficient. This strategy selects a variable that has the smallest number of positive up-locks or
down-locks. These locks represent how many constraints would prevent increasing or decreasing
the variable, respectively. The variable is then fixed in the direction where fewer locks occur. If
there is a tie between multiple variables, the method uses a secondary rule called fractional diving
to break the tie.
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Algorithm 1 Generic Diving Heuristic

Input: MILP with relaxed feasible region P*, LP solution x*, maximum depth dpax
Qutput: A set of feasible solutions X (if found)
Require: A scoring function s for selecting branching variables and their rounding direction
1: Initialize depth d < 1, candidate set C < {j € Z | 2} ¢ Z}
2: while d < d,x do

3: j < argmax;ec s(x;)
4: if round up then

5: lj < [z7]

6: else

7: uj |7

8: end if

9: P*(—P*ﬂ{ljnggu]}
10: if P* is infeasible then

11: break

12: end if

13: T* ¢ argmingcp- ¢’ x
14: if 2* is roundable then
15: X < X Uround(z*)
16: end if

17: d+—d+1
18: Update candidate variable index set C
19: end while

Distribution. This method is based on the empirical distribution of fractional values observed in
historical solutions. It favors variables that are more frequently fractional in previous LP relaxations.
The idea is that such variables are likely to remain fractional and therefore more useful for branching.

Farkas. This strategy tries to construct a Farkas proof to show the infeasibility of the current LP
relaxation after branching. It selects the variable whose rounding, in the direction that improves the
objective, is predicted to cause the largest gain. This prediction is based on LP dual information
or inference from constraint violation. The method is designed to make branching decisions that
quickly lead to pruning.

Fractional. This method selects the variable that is closest to an integer value, but still fractional.
The measure used is |z} — |z} + 0.5]|, which captures how far the variable’s value is from the
nearest integer. The selected variable is then rounded in the direction that brings it closest to an

integer. This approach is simple and focuses on reducing the integrity gap.

Linesearch. This method traces a straight line (ray) from the root node LP solution to the current LP
solution z*. It identifies which integer hyperplane—either z; = [z} | or z; = [z} |—is intersected
first along this ray. The variable defining that hyperplane is selected for branching. This approach
can be seen as a geometric way to decide which variable will influence the search path as soon as
possible.

Pseudocost. This strategy uses historical data, called pseudocosts, to guide branching. For each
variable, it records the average objective improvement caused by previous up- or down-branching
decisions. The variable and branching direction with the highest expected improvement are selected.
This method also considers the current fractionality of the variable to refine the choice. It is widely
used due to its balance between accuracy and efficiency.

Vectorlength. This method is inspired by set-partitioning problems. It evaluates the trade-off be-
tween how much rounding a variable is expected to degrade the objective and how many constraints
the variable appears in. The selected variable minimizes the ratio between the expected degradation
and its constraint count. This helps prioritize variables that have a broad structural impact while
limiting damage to the objective.

To guide our learned diving score function, we use variable-level features that are inspired by those
employed in existing human-designed diving heuristics. These include 13 features in total, which
are listed and described in [Table 71
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Table 7: Description of the 13 input features used in the diving score function.

Feature Name Feature Description

mayrounddown  Boolean; indicates whether the variable can be rounded down while maintaining feasi-

bility.

mayroundup Boolean; indicates whether the variable can be rounded up while maintaining feasibility.

candsfrac Float; fractional part of the variable’s value in the LP relaxation, i.e., [z} — |2} ||.

candsol Float; value of the variable in the current LP relaxation solution.

nlocksdown Integer; number of down-locks, i.e., constraints that would be violated by decreasing
the variable.

nlocksup Integer; number of up-locks, i.e., constraints that would be violated by increasing the
variable.

obj Float; coefficient of the variable in the objective function.

objnorm Float; Euclidean norm of the objective function coefficient vector.

pscostdown Float; pseudocost for decreasing the variable’s value.

pscostup Float; pseudocost for increasing the variable’s value.

rootsolval Float; value of the variable in the LP relaxation at the root node.

nNonz Integer; number of nonzero entries in the variable’s column in the constraint matrix.

isBinary Boolean; TRUE if the variable is binary, i.e., has domain {0, 1}.

8.3 PERFORMANCE MEASUREMENT

To evaluate the performance of MILP solvers, we use several key performance metrics: Primal-Dual
Gap, Primal-Dual Integral, and Primal Gap.

Primal-Dual Gap It is a widely used measure that quantifies the difference between the primal
objective value and the dual objective value at any given time during the optimization process. It
gives an indication of how close the current solution 2 is to an optimal solution z*. Mathematically,
the Primal-Dual Gap is defined as:

3"
[

\
x(| 2,

L if0 < 2,2* < o0
’Ypd(év'g*) — {ma z*|) ) ) (5)

1 otherwise.

Primal-Dual Integral While the primal-dual gap captures a snapshot at a particular time, the
primal-dual integral evaluates the solver’s progress over the entire solving process by aggregating
the primal-dual gap over time. It is given by:

ai(t) = / alE(r), 5 (7)) dr, ®)

where v,q(Z(7), 2*(7)) represents the Primal-Dual Gap at time 7.

Primal Gap It is used to evaluate the effectiveness of diving heuristics, which primarily aim to
improve the primal performance by guiding the search toward better feasible solutions. The relative
primal gap is defined as the absolute difference between the current objective value z and the optimal
solution z, normalized by the objective value of the optimal solution. The formula for the primal
gap is given by:

z— 2t

where 2T is the objective value of the optimal solution obtained after presolving. In the case where
|zf| = 0, we use the following modified primal gap:

1(2) =2 =2, ®)
8.4 EXPERIMENTAL DETAILS
In all the experiments, we evaluate the performance of agents driven by GPT-40 mini across various

tasks. We run all the experiments with three random seeds on Intel(R) Xeon(R) CPU E5-2667 v4 @
3.20GHz and NVIDIA A100.
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Table 8: Table 10: Used MIPLIB instance names

air05 beasleyC3 binkar10_1 cod105 dano3.3
eil33-2 hypothyroid-k1 istanbul-no-cutoff  markshare 4.0 mas76

mcll mik-250-20-75-4  n5-3 neos-860300 neos-957323
neos-1445765 nw04 piperout-27 pkl seymourl

Note: Since the code for L2DIVE is currently not open-source and specific hyperparameters are
unavailable, we officially report the performance of L2DIVE based on its ratio to the best human-
designed heuristic as presented in the original article. SCIP settings To construct our Tuned base-
line, we incorporated domain knowledge and performed a randomized search over key diving-related
parameters in SCIP 7.0.2. The primary parameters that govern the invocation of individual diving
heuristics are freq and freqofs. These parameters determine when and how frequently a given diving
heuristic is triggered during the branch-and-bound process. By adjusting their values, we can gen-
erate diverse solver behaviors that vary the timing and intensity of heuristic application. For each
diving heuristic, we independently sampled its configuration by setting freq to one of four values
with equal probability: —1 (disabled), |0.5 X freqgepu) (increased frequency), freqyep,, (default
frequency), or |2 X freqemue) (reduced frequency). In parallel, we randomly set freqofs to either
zero or its default value, also with equal probability. This approach allows us to sample a wide range
of heuristic schedules while maintaining compatibility with established SCIP parameter semantics.

We evaluate our method on seven benchmark datasets, including four synthetic combinatorial opti-
mization problems and three real-world MILP tasks. The datasets are widely used in prior work and
include:

 Setcover: A classical combinatorial problem where the objective is to select a minimum
number of subsets such that their union covers all elements. Instances are represented
as binary matrices with rows corresponding to elements and columns to subsets. Easy
instances have 500 rows and 1000 columns, while hard instances increase the size to 2000
rows and 1000 columns.

* Cauctions: A combinatorial auction problem where bidders submit bids on bundles of
items, aiming to maximize total revenue without violating item availability constraints.
Easy instances contain 100 items and 500 bids, while hard instances include 300 items and
1500 bids.

* Facilities: A capacitated facility location problem involving the selection of facility sites
and the assignment of customers to minimize facility opening and service costs. Easy
instances consist of 100 facilities and 100 customers, whereas hard instances have 100
facilities and 400 customers.

* Indset: The maximum independent set problem, which seeks the largest possible set of
mutually non-adjacent vertices within a graph. Easy instances feature 500 nodes with an
affinity of 4, and hard instances have 1500 nodes with the same affinity.

* LoadBalance: A server load balancing problem arising in distributed systems, modeled as
an MILP.

* NNVerify: A verification problem for neural networks, where constraints encode input-
output relationships that must be satisfied.

e MIPLIB: 1t contains a diverse collection of real-world and academic instances spanning
various domains such as scheduling, network design, logistics, and combinatorial opti-
mization. We selected 20 instances for experimental comparison.

The first experimental group is conducted on the four synthetic datasets, focusing on diving perfor-
mance. The second group uses the three real-world datasets and synthetic datasets to demonstrate
the effectiveness of our method in the practical solving process.

Experiments on the Quality of Diving Heuristics In this first set of experiments, we evaluate the
quality of the learned heuristic algorithms in isolation by applying the diving heuristic only at the
root node of each instance. All other solver components—such as branching rules, cutting planes,
and primal heuristics—are disabled to ensure a controlled comparison. For fitness evaluation during
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Table 9: Instance generation algorithms and detailed hyperparameters.

Benchmark Algorithm Hyperparameters

Easy: 500 rows, 1000 columns
Hard: 2000 rows, 1000 columns

Easy: 100 items for 500 bids
Hard: 500 items for 1500 bids

Setcover Balas & Ho| (2009)

Cauctions Leyton-Brown et al.|(2000)

Easy: 100 facilities, 100 customers

Facilities (Cornuéjols et al | (1991) Hard: 100 facilities, 400 customers
Indset Bergman et al.| (2016) Easy: 500 nodes with affinity 4

Hard: 1000 nodes with affinity 4

evolution, we generate 50 training instances each for the setcover, cauctions, and indset datasets, and
25 for facilities. The evolved diving heuristics are then tested on 100 unseen instances per dataset.
To ensure fairness, all LLM-based evolutionary methods are trained on the same dataset and use
identical API interfaces. Furthermore, their prompts are carefully aligned with ours in terms of task
context, including MILP-specific background and diving-related objectives, enabling a direct and
equitable comparison.

In this second set of experiments, we integrate the evolved diving heuristic into SCIP and compare
its performance against the default versions of SCIP and Gurobi on the same set of challenging
instances. This comparison evaluates the practical benefit of incorporating our learned heuristic
into a state-of-the-art solver. Compared to the initial benchmark, we increase the problem size
and constraint density according to the parameter settings detailed in Specifically, each
instance has approximately 1000 variables and 2000 constraints for setcover, 1500 variables and
580 constraints for cauctions, 40100 variables and 40200 constraints for facility, and about 1000
variables and 4000 constraints for indset.

Experiments on solving efficiency in branch and bound On the combinatorial optimization
datasets, we evaluate the solving efficiency of our method by comparing it against three base-
lines: the default SCIP solver, a tuned version of SCIP (with adjusted freq and freqofs parame-
ters), and EoH. Experiments are conducted on the same four combinatorial optimization benchmark
datasets. For each dataset, we randomly generate 1000 instances and select the 100 most challenging
ones for evaluation. A time limit of Tj;m;; = 900 seconds is imposed per instance, and performance
is measured using the primal-dual integral.

To assess the performance of the proposed heuristic framework in realistic scenarios, we conduct
experiments on three representative datasets: LoadBalance, MILPLIB, and NN Verify, which cover
a broad range of MILP problem structures. Across all datasets, we adopt two standard performance
metrics: the primal-dual integral , which captures convergence behavior and solution quality over
time, and the solving time (T), which measures how quickly a feasible or optimal solution is found.
For LoadBalance, we use 100 instances for validation and another 100 for testing, with i = 3600
seconds as the standard setting and T,y = 1800 seconds for additional robustness evaluation under
tighter budgets. For MILPLIB, we select 20 relatively simple benchmark instances as a test set to
evaluate generalization performance on classical MILP formulations; the instance names are listed in
For NN Verify, we evaluate on 100 testing instances derived from neural network verification
problems, using a time limit of T = 900 seconds and considering only instances successfully
solved within the limit. To isolate the contribution of the learned diving heuristics, we perform
all experiments under both cut-selection enabled and disabled configurations. In all settings,
the heuristics are integrated into SCIP, and the best-performing variant is selected on the validation
set based on either PDI or solving time before being applied to the testing set, mirroring realistic
deployment scenarios.

8.5 IMPLEMENTION DETAILS
We first extend the SCIP solver by implementing a C-Python interface within its source code, en-

abling seamless communication between the solver and our learning framework. After recompil-
ing SCIP with this extension, we integrate the learned diving heuristic—implemented as a Python
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callable function into the solving process. At each node of the B&B tree, the heuristic receives a
13-dimensional feature vector describing the current variable and solution state. It then computes a
score and a preferred rounding direction for each candidate variable. The variable with the highest
score is selected for diving, and branching proceeds accordingly.

To evaluate the quality of each generated heuristic, we set a limit of one branch and bound node
during SCIP’s search. Given a problem instance I, with known optimal objective value z, we
execute the solver from the root node. When the generated diving heuristic is first invoked, we
record the objective value Z of the best feasible solution found so far. The fitness score is then
computed as the relative gap between Z and 21, defined as:

Bl
B
where ¢ is a small constant (e.g., 10~%) to prevent division by zero. A smaller gap indicates better

early search performance, and thus higher fitness, guiding the evolutionary process toward heuristics
that quickly identify high-quality feasible solutions.

Perf(.) = )

Following the evaluation, we rank all generated heuristics based on their fitness scores across the
corresponding instances. For each instance Iy, the heuristic that achieves the smallest Perf(h, I)
gap is considered superior. We then select the top 20% of algorithm-instance pairs with the best
performance for the next evolutionary stage.

To maintain diversity and avoid premature convergence, we further apply a temperature-based sam-
pling strategy. Instead of deterministic selection, we compute a probability distribution over the
candidate pairs using a softmax function parameterized by a temperature 7'. This allows controlled
stochasticity in selection, balancing exploitation of high-performing heuristics and exploration of
potentially promising ones. The sampling probability for the i-th pair is defined as:

exp(—Perf(1;)/T)
>, exp(—Perf(1,)/T)’
where the negative sign ensures that lower performance gaps (better results) lead to higher proba-

bilities, and the temperature 7' > 0 controls the sharpness of the distribution. Lower 1" values favor
exploitation, while higher values promote uniform exploration.

Sample(.) = (10)

8.6 THEORETICAL ANALYSIS
Theorem 1 Rademacher complexity of convex combinations.
Let Qeony ={Qp: p € AF=1Y be the class of all convex mixtures of the atomic set H. Then

9A{S(Qconv) = S%S (H)

In particular, forming convex combinations of the atomic operators does not increase the empirical
Rademacher complexity.

Proof. Compute the inner supremum in the definition of 5%5 ( Qconv):
sup 0il(Qp; G4) = sup. o p (H;; Gy)

Interchange summations (ﬁmte sums commute) and factor out the dependence on p:

k
= sup ) p; Zaj (Hi; G)
PEARTY
For fixed real numbers a; := %22:1 ojt(H;; Gj), the quantity sup,cax-1 ), pia; is the maxi-

mum of a linear functional over the simplex A*~1. A linear functional over a simplex achieves its
maximum at an extreme point, i.e., at some standard basis vector. Hence
E
sup E pia; = max a; = sup — g oil(H;Gy)
pEAk—1% 1 1<i<k HcH N

1=
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Algorithm 2 DHEvo framework

Require: Problem distribution D, population size m, number of instances n, top-k, total iterations 7"
Ensure: Final heuristic algorithm population #™!
1: Initialization: Sample initial instance set Zo € {I1,...,I,} ~ D
2: Generate initial algorithm population Ho = {h§°>, R h(mo)} via MA-Evolution System (MA-E)
3: PO ={}
4: for each h;m € Ho do
5 Evaluate each algorithm: f; = Perf(h), I;)
6.
7
8
9

s P {7 1, hS)

: end for

: for each I; € Zp do

Generate H1 = {MA-E(;, h})}7"

10: Evaluate each algorithm to obtain f]-1 for each hjl- S5
11:  Update P* « {fj,1;,h}}
12: end for .
13: Let P*™! « the top-k% pairs from {(f}, I;, h}) ljj;‘ ranked by f}
14: for iterationt = 2to 7" do ‘

15: Re-Initialization:

16:  for each (I}, h}) € P* do

17: Generate new candidates via prompt: H; = MA-E(I?, Prompt(héfl))
18: Evaluate each h € H;

19: Update P < top-k% (P*; fi = Perf(h}, I;))

20: end for

21: end for

22: Final Selection:
23: Compute Average(h] ) = 23" | Perf(h] , I;)

24: Hpma = argmin Average(h] )
J

25: return Hgna

Taking expectation over the Rademacher variables ¢ (and conditioning on .S) preserves the equality,

therefore
n

. 1 .
Rs(Qeonv) = Ey | sup — oil(H;G;)| =Rs(H).
5(Qeon) [HEHHJZ_,: JUH: Gy)| = Rs ()
Theorem 2 Uniform generalization bound for mixtures. Assume |H| = k and ((-;-) € [0, B].

For any ¢ € (0,1), with probability at least 1 — § over the draw of S ~ D", the following holds
simultaneously for all Qp € Qconv:

2Ink LB 1n(2/5).
2n

Rp(Q,) < Rs(Q,) + 2B (11)

Proof. The proof proceeds in two steps: (i) bound the empirical Rademacher complexity of the
finite atomic class H using Massart’s lemma; (ii) apply a standard Rademacher-based uniform gen-
eralization inequality.

Step (i) — Massart’s lemma. For a finite class H of cardinality k£ whose function values lie in an
interval of length at most B (here [0, B]), Massart’s lemma yields

- 2Ink
Rs(H) < By .

- n

Combining this with Theorem 1 gives the same bound for the convex hull:

S S 2Ink
9‘{S(Qconv) - %S(H) S B 7111 .

Step (ii) — Rademacher generalization bound. A standard Rademacher-based uniform deviation
bound (for bounded functions) states that with probability at least 1 — § (over the draw of S), every
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Contextual information of MILP

<Introduction of MILP> <Diving Heuristics> <Instuction>
Mixed Integer Linear Programming (MILP)
is a type of mathematical optimization or Diving heuristics are one of the most
important categories of primal heuristics
in SCIP framework for Mixed Integer
Linear Programming (MILP) problem. It
starts from the current LP solution and
iteratively fix an integer variable to an
integral value and resolve the LP.

decision-making method that is used to
find the best or optimal solution from a set
of possible solutions, considering both
linear and discrete decision variables. It is
an extension of the well-known Lincar
Programming (LP) paradigm, which deals
only with continuous variables.

You need to understand the above
contents, especially the generic diving
heuristic, and the next task will be
closely related to the diving heuristic.

<in_out of Heuristic>

Provide a brief description of the new score function's logic and its
corresponding Python code. The description must start with
<start_des>" and end with '</end_des>". The code must start with
“<start_code>' and end with '</end_code>". The code score function
must called 'myheurdiving! that takes 13 inputs ‘mayrounddown’,
‘mayroundup’,‘candsfrac’, candsol', 'nlocksdown', 'nlocksup’, obj’,
“objnormt, ‘pscostdown’, pscostup’, 'rootsolval', 'iNonz' and 'isBinary’
‘The function must output the 'score' and 'roundup’, where 'scor is a
float type indicating the variable's score, the more the better, and the

<Features_description>

mayrounddown" and "mayroundup” (bool, indicate whether it s possible to round
variable down/up and stay feasible, it should be penalized because we need more
exploration); "candsfrac" (float, fractional part of solution value of variable); "candsol"
(float, solution value of variable in LP relaxation solution); "nlocksdown" and
the number of locks for rounding down/up of a special type); "obj"
obje function value of variable); "objnorm"” (float, the Euclidean norm of
the objective function vector); "pscostdown" and "pscostup” (float, the variable's
pseudo cost value for the given change of the variable's LP value); "rootsolval” (float,
the solution of the variable in the last root node's relaxation, if the root relaxation is not

‘roundup' is a bool type indicating whether we should round the variable yet completely solved, zero is returned); "nNonz" (int, the number of nonzero entries in
up, True for rounding up. variable); "isBinary" (bool, TRUE if the variable is of binary type).

Figure 5: The prompts of contextual information of MILP.

function f in a class F satisfies:

R(f) < Rs(f) + 20s(F) + B %

Apply this inequality with F = Q.. and combine with the Massart bound above:

0(@) < Rs(Qy) +28y[22E | [OS0)

2n

8.7 PROMPTS

Prompts design Our prompt design adopts a structured and modular format to effectively guide
LLMs in performing evolutionary search within the multi-agent evolutionary framework. Each
prompt is composed of three essential components, designed to provide the LLM with both domain-
specific grounding and a clear operational goal.

As shown in background prompts contain Introduction of MILP. Diving Heuristics, In-
struction , in_out of Heuristic, Features description. Together, they provide enough background
knowledge of diving heuristics for the downstream tasks. Prompts in MA-Evolution System are
modular and follow a structured template to ensure consistency across generations, as shown in[Fig-|
At the core of each prompt are three elements: (1) the functional role of the agent, which
defines the nature of the task (e.g., proposing a new heuristic or reviewing existing code); (2) a
formal or semi-formal description of the MILP problem to ground the response in the relevant opti-
mization context; and (3) a specification of the evolutionary operation that informs the agent’s goal
in the current generation cycle.

Our evolution operation’s prompt includes three main types: initialization, mutation, and crossover.
Each type corresponds to a distinct stage in the evolutionary search process and is designed to guide
LLMs in generating or improving heuristics for MILP diving.

Initialization The LLM is instructed to create a new scoring function from scratch. The function
should assign a score and a rounding direction to each fractional variable, based only on the LP
relaxation and objective function. This stage initializes the population with diverse and problem-
aware heuristics.
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MA-E System prompts

<Role of MA-E System> <Role of MA-E System> <Role of MA-E System> <Role of MA-E System>
Designer e.g. reviewer e.g. coder e.g. Judge e.g.
You are a Coder Designer. Hello and You are a code reviewer who tries to ) ) MEDLEOR Dt A DS
aq Your role is to create a new algorithm Evolution System. Evaluate the
prelconelolthepioermReed the prenns haithebodslelvineclean, based on the orign content and heuristic code and review feedback to
conle‘nl, propose your algor{lhm ezt ) O iection o fiewils Designer ‘s needs. The orign content determine if it should be accepted.
prf)v!de del . md wfie Iote, G is stated as revised, or discarded. Output the
similar to the role of a project manager. The background is stated as follows:\n#Hidebate_topici final code and description
The topic is stated as follows: pi follows: . topick# : -top vt infmmatiz o
<historical information > <evolutionary operations>
Inite.g.
Designer: Step 1: Define the purpose. Step 2: Retain essential components from the current function. Step 3: Add evolution-specific
components to promote exploration. Please focus on line 6 of the Generic
...... Diving Heuristic. You should create a
Coder:  <start_des> The new score function is designed to prioritize variables that have a higher probability of....... '<fend_des> totally new Python scoring function
<start_code> def mydiving(sl, s2, ... sn): <diving codes1> .return score, roundup< /end_code > for me. The function is used for every
variable to decide the variable's score
Reviewer: <Issue>: Traceback (most recent call last): File “XXXX.py", line X, in <diving codes1> and rounding direction. Here is a
example : <des>description</des>
Coder: <start_des> The new score function aims to prioriti....... '</end_des> <start_code> def myheurdiving
<start_code> def mydiving(sl, s2, ... sn): <diving codes2> .return score, roundup< /end_code > </end_code>

Figure 6: The prompts in the MA-Evolution System.

Example prompt: Please create a new Python scoring function for a Generic Diving Heuristic. The
function should assign a score and rounding direction to each fractional variable, using only infor-
mation from the LP relaxation and the objective function.

Mutation The LLM receives an existing scoring function and modifies it slightly. The modifica-
tion should be meaningful and aimed at improving performance or exploring nearby variants in the
heuristic space. This enables local search around known good solutions.

Example prompt: Please make a small but meaningful change that may improve performance or
explore alternative behavior. Ensure the result is syntactically correct and remains within the MILP
context.

Original function: [insert code]

Crossover The LLM combines two existing scoring functions into a new one. It should preserve use-
ful components from both parents while ensuring the resulting function is coherent and consistent.
This enables global search by recombining successful patterns.

Example prompt: You are creating a new heuristic by combining two existing ones. Please syn-
thesize a scoring function that inherits effective components from both parents while maintaining
logical consistency.

Heuristic A: [insert code]

Heuristic B: [insert code]

Example The following is an example of our method applied within DHEvo:

Designer You are a Coder Designer. Hello and welcome to the program. Read the prompt content,
propose your algorithm ideas, and provide detailed implementation procedure, similar to the role of
a project manager. The topic is stated as follows:Diving heuristics are one of the most important
categories of primal heuristics in SCIP framework for Mixed Integer Linear Programming (MILP)
problem. It starts from the current LP solution and iteratively fix an integer variable to an integral
value and resolve the LP. You should create a totally new Python scoring function for me (different
from the heuristics in the literature) to choose the fractional variable and corresponding rounding
direction using the information of the LP relaxation and objective function. The function is used
for every variable to decide the variable’s score and rounding direction. Specifically, you have these
features to use in the score function: “mayrounddown’ and "mayroundup” (bool, indicate whether it
is possible to round variable down/up and stay feasible, it should be penalized because we need more
exploration); “candsfrac” (float, fractional part of solution value of variable); ”candsol” (float, solu-
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tion value of variable in LP relaxation solution); “nlocksdown” and nlocksup” (int, the number of
locks for rounding down/up of a special type); ”obj” (float, objective function value of variable); ’ob-
jnorm” (float, the Euclidean norm of the objective function vector); “pscostdown” and “’pscostup”
(float, the variable’s pseudo cost value for the given change of the variable’s LP value); “rootsolval”
(float, the solution of the variable in the last root node’s relaxation, if the root relaxation is not yet
completely solved, zero is returned); "nNonz” (int, the number of nonzero entries in variable); “is-
Binary” (bool, TRUE if the variable is of binary type). Provide a brief description of the new score
function’s logic and its corresponding Python code. The description must start with ’start_des’ and
end with ’/end_des’. The code must start with ’start_code’ and end with ’/end_code’. The code score
function must call myheurdiving’ that takes 13 inputs 'mayrounddown’, *mayroundup’, ’cands-
frac’, candsol’, 'nlocksdown’, 'nlocksup’, *obj’, ’objnorm’, *pscostdown’, ’pscostup’, ‘rootsolval’,
’'nNonz’, and ’isBinary’. The function must output the ’score’ and 'roundup’, where ’score’ is a
float type indicating the variable’s score, the more the better, and the "roundup’ is a bool type indi-
cating whether we should round the variable up, True for rounding up. Be creative and do not give
additional explanations.

Coder Your role is to create a new algorithm based on the original content and the Designer ‘s needs.
The original content is stated as follows: Diving heuristics are one of the most important categories
of primal heuristics in the SCIP framework for Mixed Integer Linear Programming (MILP) prob-
lems. It starts from the current LP solution and iteratively fixes an integer variable to an integral
value and resolves the LP. You should create a new Python scoring function for me (different from
the heuristics in the literature) to choose the fractional variable and corresponding rounding direc-
tion using the information of the LP relaxation and objective function. The function is used for every
variable to decide the variable’s score and rounding direction. Specifically, you have these features to
use in the score function: “mayrounddown” and ”mayroundup” (bool, indicate whether it is possible
to round variable down/up and stay feasible, it should be penalized because we need more explo-
ration); “candsfrac” (float, fractional part of solution value of variable); ”candsol” (float, solution
value of variable in LP relaxation solution); “nlocksdown” and ”nlocksup” (int, the number of locks
for rounding down/up of a special type); ~obj” (float, objective function value of variable); ~ob-
jnorm” (float, the Euclidean norm of the objective function vector); “pscostdown” and “’pscostup”
(float, the variable’s pseudo cost value for the given change of the variable’s LP value); “rootsolval”
(float, the solution of the variable in the last root node’s relaxation, if the root relaxation is not yet
completely solved, zero is returned); "nNonz” (int, the number of nonzero entries in variable); is-
Binary” (bool, TRUE if the variable is of binary type). Provide a brief description of the new score
function’s logic and its corresponding Python code. The description must start with ’start_des’ and
end with ’/end_des’. The code must start with ’start_code’ and end with ’/end_code’. The code score
function must call 'myheurdiving’ that takes 13 inputs: *mayrounddown’, *'mayroundup’, ’cands-
frac’, candsol’, 'nlocksdown’, 'nlocksup’, *obj’, *objnorm’, *pscostdown’, pscostup’, ‘rootsolval’,
’'nNonz’, and ’isBinary’. The function must output the ’score’ and ‘roundup’, where ’score’ is a
float type indicating the variable’s score, the more the better, and the "roundup’ is a bool type indi-
cating whether we should round the variable up, True for rounding up. Be creative and do not give
additional explanations. Designer idea: Allow weighting coefficients for each component.

Reviewer You are a code evaluator who tries to evaluate the code, giving relevant comments in the
direction of code redundancy and code logic, etc.

Judger You are the final arbiter in the MA-Evolution System. Evaluate the heuristic code and review
feedback to determine if it should be accepted, revised, or discarded. Output the final code and
description.

8.8 GENERATED HEURISTICS

This section presents the best heuristics generated by DHEvo.

def myheurdiving (mayrounddown, mayroundup, candsfrac, candsol,
nlocksdown, nlocksup, obj, objnorm,
pscostdown, pscostup, rootsolval,
nNonz, isBinary):
score = 0.

0
roundup False
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if mayrounddown and mayroundup:
score = -40

if candsfrac > 0.5:
score += candsfrac » 80
roundup = True
if pscostup > 0.5:
score += pscostup * 50

else:
score += (1 - candsfrac) =* 60
if pscostdown < -0.3:
score —-= abs (pscostdown) * 25
score += (obj / (objnorm + le-6)) x 90
score += (nlocksdown % 25 - nlocksup * 15)

if nNonz > 2:

score += nNonz * 20
if isBinary:

score += 50

return score, roundup

Listing 1: Heuristic for cauctions

def myheurdiving (mayrounddown, mayroundup, candsfrac, candsol, nlocksdown

, nlocksup, obj, objnorm, pscostdown, pscostup, rootsolval, nNonz,

isBinary) :

score = 0.0

roundup = False

score += (obj/(objnorm + le-9)) x 5 if objnorm >0 else 0

score —-= nlocksdown x 7 if mayrounddown else 0

score —= nlocksup *7 if mayroundup else 0

score += (abs(candsfrac - 0.5) * 10)

score += (candsol / (1 + abs(rootsolval) x obj)) » 4 if rootsolval !=
0 else O

if pscostdown < 0 and mayrounddown:
score += -pscostdown x 3

if pscostup < 0 and mayroundup:
score —= -pscostup x 3

if candsfrac >= 0.7 and mayroundup:
roundup = True

elif candsfrac <= 0.3 and mayrounddown:
roundup = False
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score += (1 / (nNonz + 1)) %= 2 if nNonz > 0 else 0

return score, roundup

Listing 2: Heuristic for facility

def myheurdiving (mayrounddown, mayroundup, candsfrac, candsol, nlocksdown
, nlocksup, obj, objnorm, pscostdown, pscostup, rootsolval, nNonz,
isBinary) :
score = 0.0

if mayrounddown:

score —= 3.0
if mayroundup:
score —= -3.0
score += (1.0 - candsfrac) * obj * 0.5 if mayrounddown else 0

score += candsfrac x obj *0.5 if mayroundup else 0

score += pscostdown * candsfrac x 1.5 if mayrounddown else 0
score += pscostup * (1 - candsfrac) % 1.5 if mayroundup else 0

score —= abs (rootsolval - candsol) *= 0.1

if objnorm > 0
score /= objnorm

score += nlocksup » 0.3 - nlocksdown % 0.3
if isBinary:
score += 1.0

roundup = (score > 0) and (not isBinary or mayroundup)

return score, roundup

Listing 3: Heuristic for indset

def myheurdiving (mayrounddown, mayroundup, candsfrac, candsol, nlocksdown
, nlocksup, obj, objnorm, pscostdown, pscostup, rootsolval, nNonz,
isBinary) :
score = 0.0

if mayrounddown:

score —= 3.0
if mayroundup:
score —= -3.0
score += (1.0 - candsfrac) * obj x 0.5 if mayrounddown else 0

score += candsfrac x obj *x0.5 if mayroundup else 0

score += pscostdown * candsfrac x 1.5 if mayrounddown else 0
score += pscostup * (1 - candsfrac) % 1.5 if mayroundup else 0
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score —= abs (rootsolval - candsol) x= 0.1

if objnorm > 0
score /= objnorm

score += nlocksup » 0.3 - nlocksdown % 0.3
if isBinary:
score += 1.0

roundup = (score > 0) and (not isBinary or mayroundup)

return score, roundup

Listing 4: Heuristic for indset

def myheurdiving (mayrounddown, mayroundup, candsfrac, candsol,
, nlocksup, obj, objnorm, pscostdown, pscostup, rootsolval,
isBinary) :
score = 0.0

if mayrounddown:

score —= 10.0
if mayroundup:

score —= 10.0
score += (1 - abs(candsfrac - 0.5)) * 30.0
score += (obj/(objnorm + le-5)) * 0.5

score += pscostup if mayroundup else 0.0
score —= pscostdown if mayrounddown else 0.0

score += rootsolval / (nNonz + 1)

if isBinary:
score x= 2.0

roundup = (mayrounddown and (pscostup <= pscostdown or not
mayrounddown) )

return score, roundup

nlocksdown
nNonz,

Listing 5: Heuristic for setcover
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