
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DHEVO: DATA-ALGORITHM BASED HEURISTIC EVO-
LUTION FOR GENERALIZABLE MILP SOLVING

Anonymous authors
Paper under double-blind review

ABSTRACT

Primal heuristics are crucial for accelerating the solving process of mixed inte-
ger programming (MILP) problems. While large language models (LLMs) have
shown great promise in generating effective heuristics, existing methods often
fail to generalize across instances within the same problem class, where we de-
fine a problem class as a set of MILP instances derived from the same mathe-
matical model. This limitation arises because MILP instances within the same
class can exhibit substantial structural and distributional heterogeneity. However,
existing methods treat instances uniformly, averaging performance over limited
samples and yielding heuristics that lack generalization. To address this, we pro-
pose DHEvo, a data-algorithm co-evolution framework that jointly evolves repre-
sentative instances and tailored heuristics integrated into the open-source solver
SCIP. DHEvo employs an LLM-based multi-agent system to generate and refine
data-algorithm pairs iteratively, guided by fitness feedback. Experiments on di-
verse MILP benchmarks show that DHEvo significantly outperforms state-of-the-
art hand-crafted, learning-based, and LLM-based methods in solution quality and
generalization.

1 INTRODUCTION

Mixed-integer linear programming (MILP) is of central importance in combinatorial optimization,
operations research, and computer science. It has been widely applied to a broad range of real-
world problems, including supply chain optimization (Liu et al., 2008; Jeong et al., 2019; Jokinen
et al., 2015), hardware design (Ma et al., 2019; Hafer, 1991), production scheduling (Chen, 2010;
Caumond et al., 2009; Superchi et al., 2024), and energy management (Chang et al., 2004; Kassab
et al., 2024; Zare et al., 2024). An MILP problem is often defined by numerous parameters, such as
cost coefficients, constraints, and bounds. These can all be mathematically represented as:

z† := min
x∈P †

c⊤x, P † = {x ∈ Rn | Ax < b, π ≤ x ≤ π, xj ∈ Z ∀j ∈ I} ,

where M† := (c, P †), A ∈ Rm×n, b ∈ Rm, c, x ∈ Rn, π, π ∈ Rn
∞, and I ⊆ {1, . . . , n} indexes

the integer-constrained variables.

In practice, instances derived from the same application domain or model template can exhibit sub-
stantial variation in structure, constraint tightness, and feature distribution, leading to large intra-
class diversity. Therefore, well-designed primal heuristics must not only contribute to accelerating
the solving process but also generalize well across instances within the same problem class (Ong &
Moore, 1984; Balas et al., 2004; Berthold, 2006; Wallace, 2010; Witzig & Gleixner, 2021).

Current advanced approaches to automated heuristic design leverage a combination of large lan-
guage models (LLMs) and evolutionary computation (EC) to generate heuristic algorithms. This
synergy (Liu et al., 2024b) has driven notable progress across domains including combinatorial op-
timization (Zhang et al., 2024c; Liu et al., 2024a), mathematical problem solving (Romera-Paredes
et al., 2024; van Stein & Bäck, 2024), decision-making (Makatura et al., 2023; Wu et al., 2024), and
MILP problems (Zhou et al., 2024; Ye et al., 2025; Li et al., 2024a).

Despite these advances, existing approaches exhibit a fundamental limitation: they typically apply
the same treatment to all problem instances, thereby disregarding structural heterogeneity within a
problem class. This oversimplified assumption hinders LLM-based evolutionary frameworks from

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

<des>

</des>
<code>

</code>

......

data-algorithm pairs Ht

Re-Initialization

Evolutionary computation

Sample

data-algorithm pairs Ht+1

MA-Evolution System

MILP instances Heuristics

Evaluation function

score = Perf(h,I)

data-algorithm pairs H1

......
Temperture

T

Select Best

data-algorithm pairs H2

D
ata-algorithm

 co-evolution

Evaluation function

data-algorithm pairs Ht+1

data-algorithm pairs Hfinal

<code>
def mydiving(s1,s2 …sn):
 <diving codes3>
 <diving codes3>
 return score, roundup
</code>

data-algorithm pairs H1

Initialization

Sample

Iterative evolution

Final Selection

Figure 1: Illustration of data-algorithm co-evolution framework (DHEvo).

capturing representative structural patterns, resulting in heuristics that may demonstrate strong per-
formance on specific training instances yet lack robustness and generalization across the broader
instance distribution.

To address this issue, we propose a data-algorithm co-evolution framework (DHEvo) that gener-
ates generalizable algorithms by iteratively evolving both the MILP instances and the algorithms.
We start by randomly sampling instances from a domain-specific dataset and developing an LLM-
based multi-agent evolution system (MA-Evolution System) to create initial data-algorithm pairs.
Inspired by insights from few-shot and curriculum learning (Ren et al., 2018; Sato et al., 2019; Ben-
gio et al., 2009b), we select the pairs with the highest fitness (measured by relative primal gap) as
the initial population for further evolution. Through our analysis of the instances (Section 3.2), we
find that high-fitness pairs are more likely to encode transferable solving patterns, thereby enhanc-
ing generalization across instances within the same problem class. Then, the evolutionary process
above iterates over generations, gradually refining the population toward the most representative
data-algorithm pair. In summary, our contributions are as follows:

• We propose a unified data-algorithm co-evolution framework to evolve both instances and
algorithms for the automatic design of heuristics. It enables better approximation of the
instance distribution and increases the representational capacity of the learned heuristics,
leading to improved generalization.

• We present a co-evolutionary solution for MILP tasks by instantiating the data-algorithm
co-evolution paradigm through a multi-agent evolution system. Through continuous agent
interaction and competition, the system fosters the emergence of diverse and adaptive
heuristic strategies.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• Extensive experiments show that our method significantly improves the generalization of
diving heuristics and delivers substantial performance gains across multiple MILP datasets.

2 BACKGROUND AND RELATED WORKS

2.1 BRANCH&BOUND AND DIVING HEURISTIC

A common method for solving MILP problems is Branch-and-Bound (B&B) (Land & Doig, 2009),
which recursively builds a search tree by branching on fractional variables in the LP relaxation
and pruning subproblems using objective bounds. Although B&B provides an exact framework, it
remains computationally expensive for large-scale problems. To accelerate the search, solvers of-
ten incorporate primal heuristics such as diving, which conducts a depth-first search by iteratively
rounding variables and re-solving LP relaxations until a feasible solution is found or infeasibility
is detected. Existing diving heuristics, however, typically rely on manual design and expert tuning,
limiting their adaptability. In contrast, our approach employs evolutionary computation to auto-
matically generate problem-specific diving strategies, thereby enhancing flexibility and reducing
dependence on expert knowledge. Empirical results show that this automated approach significantly
improves primal gap progression across diverse benchmark datasets.

2.2 LLM FOR EVOLUTIONARY COMPUTATION

Evolutionary computation (Bäck et al., 1997) is a widely used method for solving optimization
problems inspired by natural evolution. In recent years, the capabilities of large language models
have advanced significantly (Naveed et al., 2023), and their integration with evolutionary computa-
tion has been explored for automated heuristic design (Liu et al., 2024b; Zhang et al., 2024c; Wu
et al., 2024). For example, Funsearch (Romera-Paredes et al., 2024) combines LLMs with evolu-
tionary frameworks to tackle mathematical problems, achieving superior results on the cap set and
admissible set problems. EoH (Liu et al., 2024a) further integrates reasoning traces with executable
code to generate more effective algorithms, achieving promising results on problems such as on-
line bin packing. LLM4Solver (Zhou et al., 2024) integrates evolutionary search with LLMs to
design heuristics for mixed-integer linear programming, improving solver efficiency across diverse
datasets. Ye et al. (Ye et al., 2025) introduce a dual-layer self-evolving LLM agent for MILP, which
automatically generates effective neighborhood selection strategies for large neighborhood search
and generalizes from small-scale to large-scale instances.

However, current methods typically operate within a limited set of specific instances, limiting the
ability of large language models to capture the shared structural characteristics of the problem class.
As a result, the generated algorithms perform well on similar instances but generalize poorly to
broader problem variations, even though they outperform manually crafted heuristics on specific
tasks. In contrast, our method iteratively selects representative instances during the evolutionary
process, promoting the discovery of structural patterns that enhance generalization.

3 METHOD

3.1 PROBLEM FORMULATION

Instances within a single MILP problem class may exhibit substantial heterogeneity in distributions,
constraints, and structural properties, while often retaining common characteristics such as con-
straint types, variable bounds, or recurring patterns in the objective function. Figure 2 presents a
visualization of 17 representative features across four combinatorial optimization datasets. There-
fore, systematically capturing such shared features is essential for the design of effective heuristics.

Conventional evolutionary methods typically evaluate heuristics by averaging performance over a
small set of randomly sampled instances, implicitly assuming all instances are equally representa-
tive. In MILP, this assumption rarely holds due to high structural variability, resulting in a large
performance variance over a broader instance set. To address this, our framework explicitly op-
timizes heuristics to achieve high expected performance while minimizing performance variance.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Cautions Setcover

Facilities Indset

Figure 2: The visualization of instance features via t-SNE.

Formally, the objective can be written as:

min
Qp

RD(Qp) = EG∼D[ℓ(Qp;G)], (1)

where RD(Qp) denotes the expected loss of heuristic Qp over the full MILP instance distribution
D, and ℓ(Qp;G) measures the performance of Qp on a specific instance G ∈ D.

3.2 THEORETICAL MOTIVATION: LEARNING FROM REPRESENTATIVE INSTANCES

Insight Motivated by few-shot learning (Jiang et al., 2015; Ren et al., 2018; Sato et al., 2019) and
curriculum learning (Bengio et al., 2009a; Soviany et al., 2022; Portelas et al., 2020), extensive re-
search (Wu et al., 2017; Akbari et al., 2021; Jiang et al., 2019) has shown that starting with “simple”
or “representative” samples in complex datasets often enhances both learning efficiency and gener-
alization. A similar phenomenon arises in the context of MILP optimization. Selecting structurally
representative instances not only facilitates the discovery of effective heuristics but also improves
their ability to generalize across the full problem class. Here, we provide a theoretical analysis
that formalizes this intuition and motivates the design of our co-evolution framework. The detailed
theoretical proofs are provided in Appendix 8.6.

Definition 1 MILP instance space and single diving operator loss. Let X denote the space of
MILP instances, and let Q denote a single diving operator, which applies a rounding or branching
decision to some subset of variables in an instance G ∈ X . Given a finite training sample S =

{G1, . . . , Gn}
iid∼ D, the empirical risk is R̂S(Qp) :=

1
n

∑n
j=1 ℓ(Qp;Gj).

Definition 2 Complex diving heuristics as mixtures of atomic operators. A diving operator is gen-
erally a decision rule over multiple variables. Let H = {H1, . . . ,Hk} denote a finite set of atomic
diving operators. Any complex diving heuristic Qp can be expressed as a convex combination of
atomic operators: Qp :=

∑k
i=1 piHi, where p is a probability vector. The corresponding loss of Qp

on an instance G is ℓ(Qp;G) :=
∑k

i=1 piℓ(Hi;G), and the induced function class is

Qconv :=
{
Qp =

k∑
i=1

piHi

∣∣∣ p ∈ ∆k−1
}
. (2)

Theorem 1 Rademacher complexity of convex combinations. Let σj be independent Rademacher
variables. The empirical Rademacher complexity of Qconv on S is

R̂S(Qconv) := Eσ

[
sup

Qp∈Qconv

1

n

n∑
j=1

σjℓ(Qp;Gj)
∣∣∣ S] = R̂S(H). (3)

Remark 1 Theory 1 establishes that the Rademacher complexity of a function class formed by con-
vex combinations of atomic diving operators is identical to that of the atomic operators themselves.
Therefore, constructing complex heuristics from simple atomic operators preserves the original gen-
eralization capacity.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Theorem 2 Uniform generalization bound for mixtures of atomic operators. Given a training sam-
ple S, the empirical risk is R̂S(Qp) = 1

n

∑n
j=1 ℓ(Qp;Gj) and the expected risk is RD(Qp) =

EG∼D[ℓ(Qp;G)]. Then for any δ ∈ (0, 1), with probability at least 1− δ over S, simultaneously for
all Qp ∈ Qconv:

RD(Qp) ≤ R̂S(Qp) + 2B

√
2 ln k

n
+B

√
ln(2/δ)

2n
. (4)

Remark 2 Theorem 2 indicates that complex heuristics retain the same generalization bound as their
atomic components. Hence, training on structurally representative, high-scoring instances is justi-
fied, as repeated optimization over such instances ensures guaranteed generalization performance.

3.3 DATA-ALGORITHM BASED HEURISTIC EVOLUTION FRAMEWORK

As illustrated in Figure 1, our framework adopts a structured evolutionary process that tightly cou-
ples instance selection with heuristic generation and optimization.

Initially, the MA-Evolution System generates a unique instance–heuristic pair for each sampled
MILP instance, establishing an initial population of candidate algorithms tied to specific instances.
Each generated heuristic is then evaluated on its corresponding instance, and a temperature-
controlled selection strategy is applied to choose high-fitness instance–heuristic pairs. In general,
heuristics with higher fitness scores correspond to instances with simpler structural characteristics.
Subsequently, heuristics with low performance and their associated challenging instances are dis-
carded. The remaining high fitness heuristics are then evolved further on the selected representative
instances in the next generation. This process of generating, evaluating, selecting, and re-initializing
instance–heuristic pairs is iterated over multiple generations. By repeatedly focusing on structurally
representative and high-performing instances, the framework achieves co-evolution of instances and
heuristics, ultimately producing algorithms with strong instance-level performance and reliable gen-
eralization across the broader problem class. Appendix 8.5 describes the detailed procedure of our
method.

3.4 FRAMEWORK IMPLEMENTATION

Evolution operation Our evolutionary framework consists of four main operations: initialization,
crossover, mutation, and parent selection. As shown in Figure 3, initialization, crossover, and mu-
tation are implemented through sophisticated prompts to generate candidate individuals. Unlike
traditional LLM-based evolutionary approaches, we leverage the MA-Evolution System to perform
both crossover and mutation, enabling more targeted and problem-aware generation of new individ-
uals. Specific prompts are used only in the first generation to create the initial population, while
subsequent generations reuse high-quality algorithms obtained from previous iterations. During
crossover, parent heuristics are combined to form new candidate algorithms, and mutation intro-
duces small variations to explore neighboring solutions. To balance exploration and exploitation
in parent selection, we adopt fitness-proportional selection (Zhou et al., 2019), assigning selection
probabilities to individuals based on their fitness scores.

MA-Evolution System To generate high-quality heuristics, we propose a multi-agent evolution
system inspired by multi-agent systems (Liang et al., 2023; Chan et al., 2023; Zhang et al., 2024a;
Li et al., 2024b). As shown in Figure 3, the process includes three stages. In the first stage, the
Designer agent receives the MILP task context, existing code, and the specified evolutionary opera-
tion. It produces a high-level design plan and procedural outline for a new heuristic. In the second
stage, the Coder agent implements the algorithm based on the Designer’s plan. The Reviewer agent
then checks the code by compiling it and performing logical analysis, providing feedback and sug-
gestions. Then, the Coder and Reviewer iteratively improve the code through several rounds of
interaction. In the final stage, if no consensus is reached, the Judge agent reviews the full interaction
history and feedback, and makes a final decision on the output code and its description.

Prompt engineering Our prompts are constructed based on three essential elements: the designated
role of the large language model within the MA-Evolution System, contextual information about
the MILP problem, and evolution-specific operations intrinsic to evolutionary computation, such as
mutation. The full prompt information is presented in the Appendix 8.7.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Designer

Evolution Task
（e.g Crossover）

Coder

Judger

Reviewer

MA-Evolution system

Code &
Description

Algorithm design ideas:

Step1:Algorithm design

 Add a small amount of random noise to the score.
 Allow weighting coefficients for each component.
 … …

• Step 1: Define the purpose.
• Step 2: Retain essential components from the current function.
• Step 3: Add evolution-specific components to promote exploration.
• ……

Step2: Debate Cycle of Code Optimization

Input Output

Specific algorithm:
 <code>: def mydiving(s1, s2, … sn): <diving codes3> .return score, roundup< /code >
Algorithm description:
 Prioritize variables that have a lower fractional part.

Code issues:

Specific algorithm:
 <code>: def mydiving(s1, s2, … sn): <diving codes3> return score, roundup< /code >
Algorithm description:
 Prioritize variables that have a lower fractional part, fixed errors.

Modification suggestions :

Specific algor ithm:
 <Code>: def mydiving(s1, s2, s3, s4, s5, … sn): <diving codes3> return score, roundup
Algor ithm descr iption:
 Prioritize variables that have a lower fractional part and impact on the objective function.

Step3: Final
Judgement

Received
consistent
answers ?

Round 1

Prioritize variables that have
a lower fractional part and
impact on the objective
function.

Final Code:

YES

No

historical
information

Final Description:

The condition for XXX uses XXX, which is logical to maintain feasibility but could be simplified，should
have a significant impact on the objective function.

<Issue>: Traceback (most recent call last): File “XXXX.py", line X, in <diving codes1>
NameError: name ‘xxx' is not defined

Specific steps:

def mydiving(s1, s2 …sn):
 <diving codes3>
 return score, roundup

Figure 3: Illustration of the MA-Evolution System.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

To demonstrate the superiority of our method in the diving task, we conduct two sets of experiments
across six MILP datasets. (1) The first set of experiments is designed to study the diving performance
of our method and compare it against existing diving heuristics. (2) To evaluate the efficiency
improvement brought by our generated diving heuristics, we evaluate our method on combinatorial
and large-scale real-world datasets. Experimental details are described in Appendix 8.4.

4.2 EXPERIMENTS ON THE QUALITY OF DIVING HEURISTICS

Experimental setup To evaluate the performance of the generated diving algorithms, we conduct
two sets of experiments using the relative primal gap (Equation 7) as the primary metric, which mea-
sures the difference between the incumbent solution and the optimum. (1) We compare our method
against a comprehensive set of existing diving heuristics, including human-designed, learning-based,
and LLM-generated approaches. Specifically, we evaluate a total of 11 publicly available methods
across four combinatorial optimization problems: cauctions, setcover, facilities, and indset. These
baselines consist of six human-designed heuristics implemented in the open-source solver SCIP,
the state-of-the-art learning-based GNN method L2DIVE (Paulus & Krause, 2023), and four LLM-
generated heuristics: LLM4Solver (Zhou et al., 2024), FunSearch (Romera-Paredes et al., 2024),
EoH (Liu et al., 2024a), and HillClimb (Zhang et al., 2024b). (2) To further assess the superiority
of our generated algorithms, we compare them against the mainstream solvers Gurobi and SCIP. To
ensure a fair comparison across heuristics and eliminate the potential bias introduced by the solver
itself, we restrict the evaluation to the root node only.

Experimental results For the first set of experiments on diving heuristic performance, we com-
pare our method against established diving heuristics. As shown in Table 1, our method consistently

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: The standard error and average relative primal gap (%) of different diving heuristics. The re-
sults compare our method with other LLM-based evolutionary approaches, as well as seven human-
designed heuristics and the learning-based SOTA baseline.

Category Method Cauctions Facilities Setcover Indset

LLM-based
Evolution

DHEvo(Ours) 1.92 (2.45) 0.70 (1.40) 9.74 (7.35) 1.07 (1.20)
LLM4Solver 2.50 (3.50) 0.85 (1.42) 18.33 (19.26) 1.13 (1.15)

Funsearch 3.04 (7.35) 1.18 (3.06) 77.99 (83.89) 1.61 (3.75)
HillClimb 6.10 (60.30) 0.75 (1.40) 81.55 (343.17) 1.61 (3.75)

EoH 3.15 (3.15) 0.80 (1.47) 20.39 (19.70) 0.92 (1.06)

Hand-crafted
Heuristics

Coeficient 23.67 (2.14) 3.20 (3.76) 68.58 (345.99) 4.23 (14.42)
Distributional 47.80 (71.56) 1.46 (2.12) 75.79 (325.90) 2.57 (10.59)

Farkas 23.32 (0.89) 1.04 (1.64) 8.13 (8.22) -
Pseudocost 22.51 (2.30) 1.06 (1.23) 23.56 (30.31) 3.31 (2.98)
Linesearch 22.95 (0.90) 13.80 (10.94) 68.59 (346.00) 3.31 (3.10)

Vectorlength 42.93 (83.57) 13.93 (10.61) 68.59 (346.01) 8.89 (7.61)
Learning-based L2DIVE 2.60 0.71 3.58 1.37

Table 2: Performance comparison of different solving frameworks in terms of relative primal gap
(%) on four benchmark MILP datasets. Results are averaged over 100 new challenging instances
per dataset, each on average over 4× harder than those in Table 1, with performance reported as
standard deviation (mean).

Method Cautions Facilities Setcover Indset

Ours + SCIP 1.22(2.66) 0.56(0.59) 3.79(2.80) 0.51(0.63)
Gurobi 2.06(3.50) 1.34(1.78) 3.35(1.09) 1.93(3.41)

Tuned SCIP 1.49(3.27) 0.80(0.81) 3.93(2.94) 0.80(3.22)

achieves strong results across all datasets. In particular, on the indset dataset, our approach improves
over the best manually designed heuristic by 56.04%. Compared to other LLM-based algorithm de-
sign methods, our approach also achieves state-of-the-art performance. For example, on the setcover
dataset, our method surpasses the best LLM-based baseline by 61.8%. More importantly, in terms
of performance variance, our method achieves the lowest variance across all four datasets. Notably,
on the setcover dataset, our approach reduces variance by 46.9% compared to the best-performing
LLM-based algorithm design method. These results demonstrate the effectiveness and robustness of
our approach in generating high-quality heuristics for diverse combinatorial optimization problems.

Secondly, we compare our generated heuristics with the primal heuristics embedded in state-of-the-
art MILP solvers. As shown in Table 2, our method demonstrates highly competitive performance.
In particular, the improvements over one of the leading solvers, Gurobi, range from approximately
24% on the cauctions dataset to more than 80% on the indset dataset. Unfortunately, we cannot
embed our diving heuristics directly into commercial solvers like Gurobi to perform evolutionary
optimization. On setcover datasets, our method still shows a performance gap relative to Gurobi.

4.3 EXPERIMENTS ON SOLVING EFFICIENCY IN BRANCH AND BOUND

Experimental setup Experimental setup To evaluate the practical effectiveness of the generated
diving heuristics, we integrate them into SCIP and conduct experiments on both combinatorial op-
timization datasets and large-scale real-world datasets, including LoadBalance (Gasse et al., 2022),
MILPLIB (Gleixner et al., 2021), and NNVerify (Nair et al., 2020). Performance is assessed using
solving time and the primal-dual integral, which together capture the solving efficiency.

Table 3: Performance comparison of our method, EoH, default SCIP, and tuned SCIP. Each cell
reports the solving time and (primal-dual integral).

Method Cauctions Facilities Setcover Indset
Default SCIP 4.08 (55.87) 301.20 (506.71) 2.43 (117.65) 21.07 (230.33)
Tuned SCIP 2.73 (24.21) 201.64 (553.15) 2.33 (77.02) 22.71 (167.43)

EoH 2.62 (37.12) 197.35 (504.56) 2.76 (96.75) 20.32 (151.34)
DHEvo(Ours) 2.28 (23.42) 181.27 (490.43) 2.27 (75.88) 18.54 (146.39)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: A comparison of solving time and primal-dual integral across different methods in large-
scale real-world applications.

LoadBalance NNVerify MIPLIB
Time PDI Time PDI Time PDI

Ours + SCIP 3600 346980.53 72.42 5413.32 263.48 12101.11
Scip 3600 347597.70 669.15 38455.17 469.22 18127.57

Ours + Tuned SCIP 1800 7305.2 35.67 2744.21 117.67 5599.62
Tuned SCIP 1800 9881.29 137.19 8210.46 184.3 6339.64

Ours Middle Hard
0

2

4

6

8

10

Av
er

ag
e

re
la

tiv
e

pr
im

al
 g

ap

Cautions

Ours Middle Hard
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Facilities

Ours Middle Hard
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Setcover

Ours Middle Hard
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Indsetsmall

Method

GPT-4o-mini Deepseek Qwen3-235b-a22b

Figure 4: Ablation studies of different LLMs and data selection strategies on four problem classes.

Experimental results For the combinatorial optimization benchmarks, we compare our method
to the default, tuned SCIP settings and EoH, as shown in Table 3. Results demonstrate that our
approach not only improves solution quality but also leads to better solving efficiency. On the
challenging facility dataset, our method outperforms the current state-of-the-art by 6.7% in solving
time and 2.8% in primal-dual integral.

For the large-scale real-world datasets, we compare our method to the default and fine-tuned SCIP
setting, as shown in Table 4. The experimental results demonstrate that our method achieves com-
petitive improvements across all datasets. Under the fine-tuned setting, our method achieves a 26.1%
improvement in the primal-dual integral on the LoadBalance dataset. On the NNVerify dataset, the
fine-tuned approach more than doubles solving efficiency. For the MIPLIB dataset, our method
improves solving efficiency by 36% and reduces the PDI by 12% compared to the default.

4.4 ABLATION STUDIES

To assess the contribution of each component in our framework, we conduct ablation studies on four
combinatorial optimization datasets. Specifically, we evaluate: (i) whether high-fitness instances
serve as structurally representative samples that guide the evolutionary process, (ii) the effectiveness
of the data–algorithm co-evolution mechanism, (iii) the role of the multi-agent evolution system
by comparing it with alternative evolutionary strategies, (iv) the robustness of our approach across
different LLMs.

Analysis on different data selection strategies We conduct a detailed ablation study to investigate
the correlation between simple instances and representative instances. Specifically, we evaluate three
strategies for data selection: iteratively choosing simple instances, selecting instances of medium
difficulty, and focusing on hard instances. As shown in the Figure 4, the results demonstrate that
emphasizing simple instances yields more significant performance improvements compared to the
other strategies. Notably, when using GPT-4o-mini, the evolutionary process guided by simple
instances achieves a 24% higher improvement over the variant using medium difficulty instances
and a 70% greater gain compared to the one focusing on hard instances. It indicates that simple data
can serve as effective representatives for guiding heuristic evolution and enhancing generalization.

Analysis on data-algorithm co-evolution We evaluate the role of the co-evolution mechanism by
removing it and using a uniform fitness evaluation over all training instances. Without this mecha-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Comparison of standard error and average relative primal gap on validation dataset, in-
cluding DHEvo, its variant without co-evolution (DHEvo-OFF), the EoH baseline with co-evolution
mechanism (EoH-DH), and the plain EoH framework.

Method Cautions Facilities Setcover Indset

DHEvo 2.15 (2.53) 0.83 (1.30) 9.74 (13.42) 1.01 (1.03)
DHEvo-OFF 2.33 (2.79) 0.93 (1.45) 10.8 (13.99) 1.23 (1.11)

EoH-DH 2.90 (5.60) 0.84 (1.47) 18.31 (17.48) 1.07 (1.14)
EoH 4.38 (6.15) 1.96 (4.36) 26.14 (28.89) 1.36 (1.21)

nism, performance variance increases and solution quality deteriorates across datasets. Specifically,
when we remove the coevolution mechanism from DHEvo as shown in Table 5, the average rela-
tive primal gap increases by roughly 10% on each of the four combinatorial optimization datasets,
demonstrating that uninformative or overly complex instances dominate the training process and
harm generalization. When the EoH method is augmented with our co-evolution framework, it
achieves significant improvements across all four datasets. This further demonstrates the effective-
ness of our co-evolution mechanism in enhancing generalization and overall performance.

Analysis on MA-Evolution System To verify the effectiveness of the MA-Evolution System in
generating higher-quality diversity generated individual algorithms, we conduct an ablation study
by removing this system from our framework and comparing it with the original version in the
setcover dataset. To evaluate the diversity of algorithms generated by the MA-Evolution System,
inspired by diversity indicator metrics (Wineberg & Oppacher, 2003; Nikfarjam et al., 2021), we
introduce a diversity index defined as DI = H/log2 N, where H is the Shannon entropy of the
score distribution over N generated samples. A value closer to 1 indicates higher diversity among
solutions.

Table 6: Ablation study of the MA-Evolution sys-
tem in terms of average primal gap (APG), diver-
sity index (DI), and primal gap standard deviation
(PGSD).

Method APG DI PGSD

MA-Evolution OFF 9.14 0.76 8.75
MA-Evolution ON 8.00 0.88 4.78

As shown in the Table 6, the algorithms gen-
erated by the MA-Evolution System achieve
significantly lower average primal gaps, im-
proving by 12.4% compared to those without
the MA-Evolution System. Additionally, they
show a 15.8% improvement in the diversity in-
dex, demonstrating the superior diversity of the
generated heuristics.

Analysis on different LLMs We compare our
method against several LLMs, including GPT-
4o-mini, Qwen3-235B-A22B, and DeepSeek.
All experiments are conducted under identical
experimental settings to ensure a fair comparison. As shown in Figure 4, our approach consistently
generates high-quality heuristics across all evaluated LLMs, demonstrating its robustness and gen-
eralizability irrespective of the underlying language model.

5 CONCLUSION

We present a novel data-algorithm co-evolution framework for solving MILP. By iteratively iden-
tifying the most representative instances and co-evolving heuristic algorithms based on them, our
method significantly improves the generalization ability of the generated heuristics within the same
problem class. Unlike traditional approaches that treat training data as static, our method selects
representative instances during the evolutionary process, enabling the algorithm to generalize better
across diverse problem distributions. We also introduce a multi-agent evolutionary system to im-
prove generation quality and solution diversity. Experimental results show that our approach signif-
icantly outperforms existing human-designed, learning-based, and LLM-based baselines in both the
primal gap and solving efficiency. Due to time and space constraints, we have applied our evolution-
ary computation framework only to MILP problems, and future work will explore its applicability
to other operational research domains.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

I have read the ICLR Code of Ethics and confirm that this work complies with all relevant ethical
guidelines. I guarantee that the research was conducted responsibly, without harm to individuals or
communities, and that all data usage adheres to applicable privacy and intellectual property stan-
dards.

7 ETHICS STATEMENT

We commit to full reproducibility of our results. All code, trained models, and datasets used in
this work will be released under a permissive open-source license upon publication. Experimental
details, hyperparameters, and evaluation protocols are provided in the appendix to ensure faithful
replication.

REFERENCES

Ali Akbari, Muhammad Awais, Manijeh Bashar, and Josef Kittler. How does loss function affect
generalization performance of deep learning? application to human age estimation. In Interna-
tional Conference on Machine Learning, pp. 141–151. PMLR, 2021.

Thomas Bäck, David B Fogel, and Zbigniew Michalewicz. Handbook of evolutionary computation.
Release, 97(1):B1, 1997.

Egon Balas and Andrew Ho. Set covering algorithms using cutting planes, heuristics, and subgra-
dient optimization: a computational study. In Combinatorial optimization, pp. 37–60. Springer,
2009.

Egon Balas, Stefan Schmieta, and Christopher Wallace. Pivot and shift—a mixed integer program-
ming heuristic. Discrete Optimization, 1(1):3–12, 2004.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48, 2009a.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of annual international conference on machine learning, pp. 41–48, 2009b.

David Bergman, Andre A Cire, Willem-Jan Van Hoeve, and John Hooker. Decision diagrams for
optimization, volume 1. Springer, 2016.

Timo Berthold. Primal heuristics for mixed integer programs. PhD thesis, Zuse Institute Berlin,
2006.

Anthony Caumond, Philippe Lacomme, Aziz Moukrim, and Nikolay Tchernev. An milp for schedul-
ing problems in an fms with one vehicle. European Journal of Operational Research, 199(3):
706–722, 2009.

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, Wei Xue, Shanghang Zhang, Jie Fu, and
Zhiyuan Liu. Chateval: Towards better llm-based evaluators through multi-agent debate. arXiv
preprint arXiv:2308.07201, 2023.

Gary W Chang, YD Tsai, CY Lai, and JS Chung. A practical mixed integer linear programming
based approach for unit commitment. In IEEE Power Engineering Society General Meeting., pp.
221–225. IEEE, 2004.

Zhi-Long Chen. Integrated production and outbound distribution scheduling: review and extensions.
Operations research, 58(1):130–148, 2010.

Gérard Cornuéjols, Ranjani Sridharan, and Jean-Michel Thizy. A comparison of heuristics and
relaxations for the capacitated plant location problem. European journal of operational research,
50(3):280–297, 1991.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Maxime Gasse, Simon Bowly, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier Chételat,
Antonia Chmiela, Justin Dumouchelle, Ambros Gleixner, Aleksandr M Kazachkov, et al. The
machine learning for combinatorial optimization competition (ml4co): Results and insights. In
NeurIPS 2021 competitions and demonstrations track, pp. 220–231, 2022.

Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe, Timo
Berthold, Philipp Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, et al. Miplib 2017: data-
driven compilation of the 6th mixed-integer programming library. Mathematical Programming
Computation, 13(3):443–490, 2021.

Lou Hafer. Constraint improvements for milp-based hardware synthesis. In Proceedings of the 28th
ACM/IEEE Design Automation Conference, pp. 14–19, 1991.

Hyunju Jeong, Heidi L Sieverding, and James J Stone. Biodiesel supply chain optimization modeled
with geographical information system (gis) and mixed-integer linear programming (milp) for the
northern great plains region. BioEnergy research, 12:229–240, 2019.

Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander Hauptmann. Self-paced cur-
riculum learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 29,
2015.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic
generalization measures and where to find them. arXiv preprint arXiv:1912.02178, 2019.

Raine Jokinen, Frank Pettersson, and Henrik Saxén. An milp model for optimization of a small-scale
lng supply chain along a coastline. Applied energy, 138:423–431, 2015.

Fadi Agha Kassab, Berk Celik, Fabrice Locment, Manuela Sechilariu, Sheroze Liaquat, and Timo-
thy M Hansen. Optimal sizing and energy management of a microgrid: A joint milp approach for
minimization of energy cost and carbon emission. Renewable Energy, 224:120186, 2024.

Ailsa H Land and Alison G Doig. An automatic method for solving discrete programming problems.
In 50 Years of Integer Programming 1958-2008: From the Early Years to the State-of-the-Art, pp.
105–132. Springer, 2009.

Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. Towards a universal test suite for combi-
natorial auction algorithms. In Proceedings of the 2nd ACM conference on Electronic commerce,
pp. 66–76, 2000.

Sirui Li, Janardhan Kulkarni, Ishai Menache, Cathy Wu, and Beibin Li. Towards foundation models
for mixed integer linear programming. arXiv preprint arXiv:2410.08288, 2024a.

Yunxuan Li, Yibing Du, Jiageng Zhang, Le Hou, Peter Grabowski, Yeqing Li, and Eugene
Ie. Improving multi-agent debate with sparse communication topology. arXiv preprint
arXiv:2406.11776, 2024b.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming
Shi, and Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-
agent debate. arXiv preprint arXiv:2305.19118, 2023.

Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
model. arXiv preprint arXiv:2401.02051, 2024a.

Fei Liu, Yiming Yao, Ping Guo, Zhiyuan Yang, Zhe Zhao, Xi Lin, Xialiang Tong, Mingxuan Yuan,
Zhichao Lu, Zhenkun Wang, et al. A systematic survey on large language models for algorithm
design. arXiv preprint arXiv:2410.14716, 2024b.

Songsong Liu, Jose M Pinto, and Lazaros G Papageorgiou. A tsp-based milp model for medium-
term planning of single-stage continuous multiproduct plants. Industrial & Engineering Chem-
istry Research, 47(20):7733–7743, 2008.

Kefan Ma, Liquan Xiao, Jianmin Zhang, and Tiejun Li. Accelerating an fpga-based sat solver by
software and hardware co-design. Chinese Journal of Electronics, 28(5):953–961, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Liane Makatura, Michael Foshey, Bohan Wang, Felix HähnLein, Pingchuan Ma, Bolei Deng, Megan
Tjandrasuwita, Andrew Spielberg, Crystal Elaine Owens, Peter Yichen Chen, et al. How can large
language models help humans in design and manufacturing? arXiv preprint arXiv:2307.14377,
2023.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid Von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving
mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,
Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language
models. arXiv preprint arXiv:2307.06435, 2023.

Adel Nikfarjam, Jakob Bossek, Aneta Neumann, and Frank Neumann. Entropy-based evolutionary
diversity optimisation for the traveling salesperson problem. In Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 600–608, 2021.

Hoon Liong Ong and JB Moore. Worst-case analysis of two travelling salesman heuristics. Opera-
tions Research Letters, 2(6):273–277, 1984.

Max Paulus and Andreas Krause. Learning to dive in branch and bound. Advances in Neural
Information Processing Systems, 36:34260–34277, 2023.

Rémy Portelas, Cédric Colas, Lilian Weng, Katja Hofmann, and Pierre-Yves Oudeyer. Automatic
curriculum learning for deep rl: A short survey. arXiv preprint arXiv:2003.04664, 2020.

Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B Tenenbaum,
Hugo Larochelle, and Richard S Zemel. Meta-learning for semi-supervised few-shot classifica-
tion. arXiv preprint arXiv:1803.00676, 2018.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Learning to sample hard instances for graph
algorithms. In Asian Conference on Machine Learning, pp. 503–518. PMLR, 2019.

Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning: A survey.
International Journal of Computer Vision, 130(6):1526–1565, 2022.

Francesco Superchi, Nathan Giovannini, Antonis Moustakis, George Pechlivanoglou, and Alessan-
dro Bianchini. Optimization of the power output scheduling of a renewables-based hybrid power
station using milp approach: The case of tilos island. Renewable Energy, 220:119685, 2024.

Niki van Stein and Thomas Bäck. Llamea: A large language model evolutionary algorithm for
automatically generating metaheuristics. IEEE Transactions on Evolutionary Computation, 2024.

Chris Wallace. Zi round, a mip rounding heuristic. Journal of Heuristics, 16:715–722, 2010.

Mark Wineberg and Franz Oppacher. The underlying similarity of diversity measures used in evolu-
tionary computation. In Genetic and Evolutionary Computation, pp. 1493–1504. Springer, 2003.

Jakob Witzig and Ambros Gleixner. Conflict-driven heuristics for mixed integer programming.
INFORMS Journal on Computing, 33(2):706–720, 2021.

Lei Wu, Zhanxing Zhu, et al. Towards understanding generalization of deep learning: Perspective
of loss landscapes. arXiv preprint arXiv:1706.10239, 2017.

Xingyu Wu, Sheng-hao Wu, Jibin Wu, Liang Feng, and Kay Chen Tan. Evolutionary computation
in the era of large language model: Survey and roadmap. IEEE Transactions on Evolutionary
Computation, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Huigen Ye, Hua Xu, An Yan, and Yaoyang Cheng. Large language model-driven large neighbor-
hood search for large-scale milp problems. In Forty-second International Conference on Machine
Learning, 2025.

Peyman Zare, Abdolmajid Dejamkhooy, and Iraj Faraji Davoudkhani. Efficient expansion planning
of modern multi-energy distribution networks with electric vehicle charging stations: A stochastic
milp model. Sustainable Energy, Grids and Networks, 38:101225, 2024.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow genera-
tion. arXiv preprint arXiv:2410.10762, 2024a.

Rui Zhang, Fei Liu, Xi Lin, Zhenkun Wang, Zhichao Lu, and Qingfu Zhang. Understanding the
importance of evolutionary search in automated heuristic design with large language models.
In International Conference on Parallel Problem Solving from Nature, pp. 185–202. Springer,
2024b.

Rui Zhang, Fei Liu, Xi Lin, Zhenkun Wang, Zhichao Lu, and Qingfu Zhang. Understanding the
importance of evolutionary search in automated heuristic design with large language models. In
International Conference on Parallel Problem Solving from Nature, pp. 185–202. Springer, 2024c.

Yuyan Zhou, Jie Wang, Yufei Kuang, Xijun Li, Weilin Luo, Jianye HAO, and Feng Wu. Llm4solver:
Large language model for efficient algorithm design of combinatorial optimization solver.
https://openreview.net/pdf?id=XTxdDEFR6D, 2024.

Zhi-Hua Zhou, Yang Yu, and Chao Qian. Evolutionary learning: Advances in theories and algo-
rithms. Springer, 2019.

8 APPENDIX

8.1 THE USE OF LARGE LANGUAGE MODELS

In our approach, the large language model (LLM) acts as an agent within the evolutionary computa-
tion framework. Rather than being used in isolation, the LLM generates candidate algorithms based
on feedback from the evolutionary process. These algorithms are evaluated in real solver runs, and
the performance results are fed back to guide the LLM in producing improved variants.

8.2 DIVING HEURISTICS

Diving heuristics are primal heuristics that iteratively fix variables based on LP relaxation solutions,
simulating a depth-first search in the branch-and-bound tree. Given the LP relaxation of an MILP:

z†LP := min
x∈P †

LP

c⊤x, P †
LP = {x ∈ Rn | Ax < b, π ≤ x ≤ π} ,

the algorithm starts from an LP solution x̂ ∈ P †
LP and incrementally fixes fractional variables xj /∈ Z

to integer values. At each step, the feasible region is updated with new bound constraints, and the
relaxed problem is re-solved. This process emulates a depth-first traversal of the search space,
aiming to quickly construct a feasible integer solution. In general, a generic diving heuristic can be
described by Algorithm 1. The only difference among various diving heuristics lies in the scoring
function s(·), which determines the variable to round and the direction of rounding at each iteration.

Here are some diving heuristic algorithms included in SCIP.

Coefficient. This strategy selects a variable that has the smallest number of positive up-locks or
down-locks. These locks represent how many constraints would prevent increasing or decreasing
the variable, respectively. The variable is then fixed in the direction where fewer locks occur. If
there is a tie between multiple variables, the method uses a secondary rule called fractional diving
to break the tie.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 1 Generic Diving Heuristic
Input: MILP with relaxed feasible region P ∗, LP solution x∗, maximum depth dmax
Output: A set of feasible solutions X (if found)
Require: A scoring function s for selecting branching variables and their rounding direction

1: Initialize depth d← 1, candidate set C ← {j ∈ I | x∗
j /∈ Z}

2: while d ≤ dmax do
3: j ← argmaxi∈C s(xi)
4: if round up then
5: lj ← ⌈x∗

j⌉
6: else
7: uj ← ⌊x∗

j⌋
8: end if
9: P ∗ ← P ∗ ∩ {lj ≤ xj ≤ uj}

10: if P ∗ is infeasible then
11: break
12: end if
13: x∗ ← argminx∈P∗ c⊤x
14: if x∗ is roundable then
15: X ← X ∪ round(x∗)
16: end if
17: d← d+ 1
18: Update candidate variable index set C
19: end while

Distribution. This method is based on the empirical distribution of fractional values observed in
historical solutions. It favors variables that are more frequently fractional in previous LP relaxations.
The idea is that such variables are likely to remain fractional and therefore more useful for branching.

Farkas. This strategy tries to construct a Farkas proof to show the infeasibility of the current LP
relaxation after branching. It selects the variable whose rounding, in the direction that improves the
objective, is predicted to cause the largest gain. This prediction is based on LP dual information
or inference from constraint violation. The method is designed to make branching decisions that
quickly lead to pruning.

Fractional. This method selects the variable that is closest to an integer value, but still fractional.
The measure used is

∣∣x∗
j − ⌊x∗

j + 0.5⌋
∣∣, which captures how far the variable’s value is from the

nearest integer. The selected variable is then rounded in the direction that brings it closest to an
integer. This approach is simple and focuses on reducing the integrity gap.

Linesearch. This method traces a straight line (ray) from the root node LP solution to the current LP
solution x∗. It identifies which integer hyperplane—either xj = ⌊x∗

j⌋ or xj = ⌈x∗
j⌉—is intersected

first along this ray. The variable defining that hyperplane is selected for branching. This approach
can be seen as a geometric way to decide which variable will influence the search path as soon as
possible.

Pseudocost. This strategy uses historical data, called pseudocosts, to guide branching. For each
variable, it records the average objective improvement caused by previous up- or down-branching
decisions. The variable and branching direction with the highest expected improvement are selected.
This method also considers the current fractionality of the variable to refine the choice. It is widely
used due to its balance between accuracy and efficiency.

Vectorlength. This method is inspired by set-partitioning problems. It evaluates the trade-off be-
tween how much rounding a variable is expected to degrade the objective and how many constraints
the variable appears in. The selected variable minimizes the ratio between the expected degradation
and its constraint count. This helps prioritize variables that have a broad structural impact while
limiting damage to the objective.

To guide our learned diving score function, we use variable-level features that are inspired by those
employed in existing human-designed diving heuristics. These include 13 features in total, which
are listed and described in Table 7.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 7: Description of the 13 input features used in the diving score function.
Feature Name Feature Description

mayrounddown Boolean; indicates whether the variable can be rounded down while maintaining feasi-
bility.

mayroundup Boolean; indicates whether the variable can be rounded up while maintaining feasibility.
candsfrac Float; fractional part of the variable’s value in the LP relaxation, i.e., |x∗

j − ⌊x∗
j ⌋|.

candsol Float; value of the variable in the current LP relaxation solution.
nlocksdown Integer; number of down-locks, i.e., constraints that would be violated by decreasing

the variable.
nlocksup Integer; number of up-locks, i.e., constraints that would be violated by increasing the

variable.
obj Float; coefficient of the variable in the objective function.
objnorm Float; Euclidean norm of the objective function coefficient vector.
pscostdown Float; pseudocost for decreasing the variable’s value.
pscostup Float; pseudocost for increasing the variable’s value.
rootsolval Float; value of the variable in the LP relaxation at the root node.
nNonz Integer; number of nonzero entries in the variable’s column in the constraint matrix.
isBinary Boolean; TRUE if the variable is binary, i.e., has domain {0, 1}.

8.3 PERFORMANCE MEASUREMENT

To evaluate the performance of MILP solvers, we use several key performance metrics: Primal-Dual
Gap, Primal-Dual Integral, and Primal Gap.

Primal-Dual Gap It is a widely used measure that quantifies the difference between the primal
objective value and the dual objective value at any given time during the optimization process. It
gives an indication of how close the current solution z̃ is to an optimal solution z̃∗. Mathematically,
the Primal-Dual Gap is defined as:

γpd(z̃, z̃
∗) =

{
|z̃−z̃∗|

max(|z̃|,|z̃∗|) if 0 < z̃, z̃∗ <∞,

1 otherwise.
(5)

Primal-Dual Integral While the primal-dual gap captures a snapshot at a particular time, the
primal-dual integral evaluates the solver’s progress over the entire solving process by aggregating
the primal-dual gap over time. It is given by:

γpdi(t) =

∫ t

0

γpd(z̃(τ), z̃
∗(τ)) dτ, (6)

where γpd(z̃(τ), z̃
∗(τ)) represents the Primal-Dual Gap at time τ .

Primal Gap It is used to evaluate the effectiveness of diving heuristics, which primarily aim to
improve the primal performance by guiding the search toward better feasible solutions. The relative
primal gap is defined as the absolute difference between the current objective value z̃ and the optimal
solution z†, normalized by the objective value of the optimal solution. The formula for the primal
gap is given by:

γp(z̃) =
|z̃ − z†|
|z†|

, (7)

where z† is the objective value of the optimal solution obtained after presolving. In the case where
|z†| = 0, we use the following modified primal gap:

γ′
p(z̃) = |z̃ − z†|. (8)

8.4 EXPERIMENTAL DETAILS

In all the experiments, we evaluate the performance of agents driven by GPT-4o mini across various
tasks. We run all the experiments with three random seeds on Intel(R) Xeon(R) CPU E5-2667 v4 @
3.20GHz and NVIDIA A100.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 8: Table 10: Used MIPLIB instance names
air05 beasleyC3 binkar10 1 cod105 dano3 3
eil33-2 hypothyroid-k1 istanbul-no-cutoff markshare 4 0 mas76
mc11 mik-250-20-75-4 n5-3 neos-860300 neos-957323
neos-1445765 nw04 piperout-27 pk1 seymour1

Note: Since the code for L2DIVE is currently not open-source and specific hyperparameters are
unavailable, we officially report the performance of L2DIVE based on its ratio to the best human-
designed heuristic as presented in the original article. SCIP settings To construct our Tuned base-
line, we incorporated domain knowledge and performed a randomized search over key diving-related
parameters in SCIP 7.0.2. The primary parameters that govern the invocation of individual diving
heuristics are freq and freqofs. These parameters determine when and how frequently a given diving
heuristic is triggered during the branch-and-bound process. By adjusting their values, we can gen-
erate diverse solver behaviors that vary the timing and intensity of heuristic application. For each
diving heuristic, we independently sampled its configuration by setting freq to one of four values
with equal probability: −1 (disabled), ⌊0.5 × freqdefault⌋ (increased frequency), freqdefault (default
frequency), or ⌊2 × freqdefault⌋ (reduced frequency). In parallel, we randomly set freqofs to either
zero or its default value, also with equal probability. This approach allows us to sample a wide range
of heuristic schedules while maintaining compatibility with established SCIP parameter semantics.

We evaluate our method on seven benchmark datasets, including four synthetic combinatorial opti-
mization problems and three real-world MILP tasks. The datasets are widely used in prior work and
include:

• Setcover: A classical combinatorial problem where the objective is to select a minimum
number of subsets such that their union covers all elements. Instances are represented
as binary matrices with rows corresponding to elements and columns to subsets. Easy
instances have 500 rows and 1000 columns, while hard instances increase the size to 2000
rows and 1000 columns.

• Cauctions: A combinatorial auction problem where bidders submit bids on bundles of
items, aiming to maximize total revenue without violating item availability constraints.
Easy instances contain 100 items and 500 bids, while hard instances include 300 items and
1500 bids.

• Facilities: A capacitated facility location problem involving the selection of facility sites
and the assignment of customers to minimize facility opening and service costs. Easy
instances consist of 100 facilities and 100 customers, whereas hard instances have 100
facilities and 400 customers.

• Indset: The maximum independent set problem, which seeks the largest possible set of
mutually non-adjacent vertices within a graph. Easy instances feature 500 nodes with an
affinity of 4, and hard instances have 1500 nodes with the same affinity.

• LoadBalance: A server load balancing problem arising in distributed systems, modeled as
an MILP.

• NNVerify: A verification problem for neural networks, where constraints encode input-
output relationships that must be satisfied.

• MIPLIB: It contains a diverse collection of real-world and academic instances spanning
various domains such as scheduling, network design, logistics, and combinatorial opti-
mization. We selected 20 instances for experimental comparison.

The first experimental group is conducted on the four synthetic datasets, focusing on diving perfor-
mance. The second group uses the three real-world datasets and synthetic datasets to demonstrate
the effectiveness of our method in the practical solving process.

Experiments on the Quality of Diving Heuristics In this first set of experiments, we evaluate the
quality of the learned heuristic algorithms in isolation by applying the diving heuristic only at the
root node of each instance. All other solver components—such as branching rules, cutting planes,
and primal heuristics—are disabled to ensure a controlled comparison. For fitness evaluation during

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 9: Instance generation algorithms and detailed hyperparameters.
Benchmark Algorithm Hyperparameters

Setcover Balas & Ho (2009) Easy: 500 rows, 1000 columns
Hard: 2000 rows, 1000 columns

Cauctions Leyton-Brown et al. (2000) Easy: 100 items for 500 bids
Hard: 500 items for 1500 bids

Facilities Cornuéjols et al. (1991) Easy: 100 facilities, 100 customers
Hard: 100 facilities, 400 customers

Indset Bergman et al. (2016) Easy: 500 nodes with affinity 4
Hard: 1000 nodes with affinity 4

evolution, we generate 50 training instances each for the setcover, cauctions, and indset datasets, and
25 for facilities. The evolved diving heuristics are then tested on 100 unseen instances per dataset.
To ensure fairness, all LLM-based evolutionary methods are trained on the same dataset and use
identical API interfaces. Furthermore, their prompts are carefully aligned with ours in terms of task
context, including MILP-specific background and diving-related objectives, enabling a direct and
equitable comparison.

In this second set of experiments, we integrate the evolved diving heuristic into SCIP and compare
its performance against the default versions of SCIP and Gurobi on the same set of challenging
instances. This comparison evaluates the practical benefit of incorporating our learned heuristic
into a state-of-the-art solver. Compared to the initial benchmark, we increase the problem size
and constraint density according to the parameter settings detailed in Table 9. Specifically, each
instance has approximately 1000 variables and 2000 constraints for setcover, 1500 variables and
580 constraints for cauctions, 40100 variables and 40200 constraints for facility, and about 1000
variables and 4000 constraints for indset.

Experiments on solving efficiency in branch and bound On the combinatorial optimization
datasets, we evaluate the solving efficiency of our method by comparing it against three base-
lines: the default SCIP solver, a tuned version of SCIP (with adjusted freq and freqofs parame-
ters), and EoH. Experiments are conducted on the same four combinatorial optimization benchmark
datasets. For each dataset, we randomly generate 1000 instances and select the 100 most challenging
ones for evaluation. A time limit of Tlimit = 900 seconds is imposed per instance, and performance
is measured using the primal-dual integral.

To assess the performance of the proposed heuristic framework in realistic scenarios, we conduct
experiments on three representative datasets: LoadBalance, MILPLIB, and NNVerify, which cover
a broad range of MILP problem structures. Across all datasets, we adopt two standard performance
metrics: the primal-dual integral , which captures convergence behavior and solution quality over
time, and the solving time (T), which measures how quickly a feasible or optimal solution is found.
For LoadBalance, we use 100 instances for validation and another 100 for testing, with Tlimit = 3600
seconds as the standard setting and Tlimit = 1800 seconds for additional robustness evaluation under
tighter budgets. For MILPLIB, we select 20 relatively simple benchmark instances as a test set to
evaluate generalization performance on classical MILP formulations; the instance names are listed in
Table 8. For NNVerify, we evaluate on 100 testing instances derived from neural network verification
problems, using a time limit of Tlimit = 900 seconds and considering only instances successfully
solved within the limit. To isolate the contribution of the learned diving heuristics, we perform
all experiments under both cut-selection enabled and disabled configurations. In all settings,
the heuristics are integrated into SCIP, and the best-performing variant is selected on the validation
set based on either PDI or solving time before being applied to the testing set, mirroring realistic
deployment scenarios.

8.5 IMPLEMENTION DETAILS

We first extend the SCIP solver by implementing a C-Python interface within its source code, en-
abling seamless communication between the solver and our learning framework. After recompil-
ing SCIP with this extension, we integrate the learned diving heuristic—implemented as a Python

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

callable function into the solving process. At each node of the B&B tree, the heuristic receives a
13-dimensional feature vector describing the current variable and solution state. It then computes a
score and a preferred rounding direction for each candidate variable. The variable with the highest
score is selected for diving, and branching proceeds accordingly.

To evaluate the quality of each generated heuristic, we set a limit of one branch and bound node
during SCIP’s search. Given a problem instance I0 with known optimal objective value z†, we
execute the solver from the root node. When the generated diving heuristic is first invoked, we
record the objective value z̃ of the best feasible solution found so far. The fitness score is then
computed as the relative gap between z̃ and z†, defined as:

Perf(.) =
|z̃ − z†|
|z† + ϵ|

, (9)

where ϵ is a small constant (e.g., 10−8) to prevent division by zero. A smaller gap indicates better
early search performance, and thus higher fitness, guiding the evolutionary process toward heuristics
that quickly identify high-quality feasible solutions.

Following the evaluation, we rank all generated heuristics based on their fitness scores across the
corresponding instances. For each instance I0, the heuristic that achieves the smallest Perf(h, I)
gap is considered superior. We then select the top 20% of algorithm-instance pairs with the best
performance for the next evolutionary stage.

To maintain diversity and avoid premature convergence, we further apply a temperature-based sam-
pling strategy. Instead of deterministic selection, we compute a probability distribution over the
candidate pairs using a softmax function parameterized by a temperature T . This allows controlled
stochasticity in selection, balancing exploitation of high-performing heuristics and exploration of
potentially promising ones. The sampling probability for the i-th pair is defined as:

Sample(.) =
exp(−Perf(Ii)/T)∑
j exp(−Perf(Ij)/T)

, (10)

where the negative sign ensures that lower performance gaps (better results) lead to higher proba-
bilities, and the temperature T > 0 controls the sharpness of the distribution. Lower T values favor
exploitation, while higher values promote uniform exploration.

8.6 THEORETICAL ANALYSIS

Theorem 1 Rademacher complexity of convex combinations.

Let Qconv = {Qp : p ∈ ∆k−1} be the class of all convex mixtures of the atomic setH. Then

R̂S(Qconv) = R̂S(H).
In particular, forming convex combinations of the atomic operators does not increase the empirical
Rademacher complexity.

Proof. Compute the inner supremum in the definition of R̂S(Qconv):

sup
Qp∈Qconv

1

n

n∑
j=1

σjℓ(Qp;Gj) = sup
p∈∆k−1

1

n

n∑
j=1

σj

k∑
i=1

piℓ(Hi;Gj).

Interchange summations (finite sums commute) and factor out the dependence on p:

= sup
p∈∆k−1

k∑
i=1

pi

 1

n

n∑
j=1

σjℓ(Hi;Gj)

 .

For fixed real numbers ai := 1
n

∑n
j=1 σjℓ(Hi;Gj), the quantity supp∈∆k−1

∑
i piai is the maxi-

mum of a linear functional over the simplex ∆k−1. A linear functional over a simplex achieves its
maximum at an extreme point, i.e., at some standard basis vector. Hence

sup
p∈∆k−1

k∑
i=1

piai = max
1≤i≤k

ai = sup
H∈H

1

n

n∑
j=1

σjℓ(H;Gj).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 2 DHEvo framework
Require: Problem distribution D, population size m, number of instances n, top-k, total iterations T
Ensure: Final heuristic algorithm populationHfinal

1: Initialization: Sample initial instance set I0 ∈ {I1, . . . , In} ∼ D
2: Generate initial algorithm populationH0 = {h(0)

1 , . . . , h
(0)
m } via MA-Evolution System (MA-E)

3: P0 = {}
4: for each h

(0)
j ∈ H0 do

5: Evaluate each algorithm: f0
j = Perf(h0

j , Ij)

6: P0 ← {f0
j , Ij , h

0
j}

7: end for
8: for each Ii ∈ I0 do
9: GenerateH1 = {MA-E(Ij , h0

j)}m1
10: Evaluate each algorithm to obtain f1

j for each h1
j ∈ H1

11: Update P1 ← {f1
j , Ij , h

1
j}

12: end for
13: Let Pt+1 ← the top-k% pairs from {(f t

j , Ij , h
t
j)}

|Pt|
j=1 ranked by f t

j

14: for iteration t = 2 to T do
15: Re-Initialization:
16: for each (Itj , h

t
j) ∈ Pt do

17: Generate new candidates via prompt: Ht = MA-E(Itj , Prompt(ht−1
j))

18: Evaluate each ht
j ∈ Ht

19: Update Pt+1 ← top-k%
(
Pt; f t

j = Perf(ht
j , Ij)

)
20: end for
21: end for
22: Final Selection:
23: Compute Average(hT

j) =
1
n

∑n
i=1 Perf(hT

j , Ii)

24: Hfinal = argmin
j

Average(hT
j)

25: returnHfinal

Taking expectation over the Rademacher variables σ (and conditioning on S) preserves the equality,
therefore

R̂S(Qconv) = Eσ

[
sup
H∈H

1

n

n∑
j=1

σjℓ(H;Gj)
]
= R̂S(H).

Theorem 2 Uniform generalization bound for mixtures. Assume |H| = k and ℓ(·; ·) ∈ [0, B].
For any δ ∈ (0, 1), with probability at least 1 − δ over the draw of S ∼ Dn, the following holds
simultaneously for all Qp ∈ Qconv:

RD(Qp) ≤ R̂S(Qp) + 2B

√
2 ln k

n
+ B

√
ln(2/δ)

2n
. (11)

Proof. The proof proceeds in two steps: (i) bound the empirical Rademacher complexity of the
finite atomic class H using Massart’s lemma; (ii) apply a standard Rademacher-based uniform gen-
eralization inequality.

Step (i) — Massart’s lemma. For a finite class H of cardinality k whose function values lie in an
interval of length at most B (here [0, B]), Massart’s lemma yields

R̂S(H) ≤ B

√
2 ln k

n
.

Combining this with Theorem 1 gives the same bound for the convex hull:

R̂S(Qconv) = R̂S(H) ≤ B

√
2 ln k

n
.

Step (ii) — Rademacher generalization bound. A standard Rademacher-based uniform deviation
bound (for bounded functions) states that with probability at least 1− δ (over the draw of S), every

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Contextual information of MILP

<Introduction of MILP>

Mixed Integer Linear Programming (MILP)
is a type of mathematical optimization or
decision-making method that is used to

find the best or optimal solution from a set
of possible solutions, considering both

linear and discrete decision variables. It is
an extension of the well-known Linear

Programming (LP) paradigm, which deals
only with continuous variables.

<Diving Heuristics>

Diving heuristics are one of the most
important categories of primal heuristics

in SCIP framework for Mixed Integer
Linear Programming (MILP) problem. It
starts from the current LP solution and
iteratively fix an integer variable to an

integral value and resolve the LP.

<Instuction>

You need to understand the above
contents, especially the generic diving

heuristic, and the next task will be
closely related to the diving heuristic.

<in_out of Heuristic>

Provide a brief description of the new score function's logic and its
corresponding Python code. The description must start with

'<start_des>' and end with '</end_des>'. The code must start with
'<start_code>' and end with '</end_code>'. The code score function

must called 'myheurdiving' that takes 13 inputs 'mayrounddown',
'mayroundup', 'candsfrac', 'candsol', 'nlocksdown', 'nlocksup', 'obj',

'objnorm', 'pscostdown', 'pscostup', 'rootsolval', 'nNonz' and 'isBinary'.
The function must output the 'score' and 'roundup', where 'score' is a
float type indicating the variable's score, the more the better, and the

'roundup' is a bool type indicating whether we should round the variable
up, True for rounding up.

<Features_description>

mayrounddown" and "mayroundup" (bool, indicate whether it is possible to round
variable down/up and stay feasible, it should be penalized because we need more

exploration); "candsfrac" (float, fractional part of solution value of variable); "candsol"
(float, solution value of variable in LP relaxation solution); "nlocksdown" and

"nlocksup" (int, the number of locks for rounding down/up of a special type); "obj"
(float, objective function value of variable); "objnorm" (float, the Euclidean norm of

the objective function vector); "pscostdown" and "pscostup" (float, the variable's
pseudo cost value for the given change of the variable's LP value); "rootsolval" (float,

the solution of the variable in the last root node's relaxation, if the root relaxation is not
yet completely solved, zero is returned); "nNonz" (int, the number of nonzero entries in

variable); "isBinary" (bool, TRUE if the variable is of binary type).

Figure 5: The prompts of contextual information of MILP.

function f in a class F satisfies:

R(f) ≤ R̂S(f) + 2R̂S(F) +B

√
ln(2/δ)

2n
.

Apply this inequality with F = Qconv and combine with the Massart bound above:

RD(Qp) ≤ R̂S(Qp) + 2B

√
2 ln k

n
+B

√
ln(2/δ)

2n
,

8.7 PROMPTS

Prompts design Our prompt design adopts a structured and modular format to effectively guide
LLMs in performing evolutionary search within the multi-agent evolutionary framework. Each
prompt is composed of three essential components, designed to provide the LLM with both domain-
specific grounding and a clear operational goal.

As shown in Figure 5, background prompts contain Introduction of MILP, Diving Heuristics, In-
struction , in out of Heuristic, Features description. Together, they provide enough background
knowledge of diving heuristics for the downstream tasks. Prompts in MA-Evolution System are
modular and follow a structured template to ensure consistency across generations, as shown in Fig-
ure 6. At the core of each prompt are three elements: (1) the functional role of the agent, which
defines the nature of the task (e.g., proposing a new heuristic or reviewing existing code); (2) a
formal or semi-formal description of the MILP problem to ground the response in the relevant opti-
mization context; and (3) a specification of the evolutionary operation that informs the agent’s goal
in the current generation cycle.

Our evolution operation’s prompt includes three main types: initialization, mutation, and crossover.
Each type corresponds to a distinct stage in the evolutionary search process and is designed to guide
LLMs in generating or improving heuristics for MILP diving.

Initialization The LLM is instructed to create a new scoring function from scratch. The function
should assign a score and a rounding direction to each fractional variable, based only on the LP
relaxation and objective function. This stage initializes the population with diverse and problem-
aware heuristics.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

 MA-E System prompts

You are a Coder Designer. Hello and
welcome to the program. Read the prompt
content, propose your algorithm ideas, and
provide detail implementation procedure,
similar to the role of a project manager.

The topic is stated as follows:\n##topic##

<Role of MA-E System>

Designer e.g.

You are a code reviewer who tries to
evaluate the code, giving relevant
comments in the direction of code
redundancy and code logic, etc.

The background is stated as
follows:\n##debate_topic##

<Role of MA-E System>

reviewer e.g.

Your role is to create a new algorithm
based on the orign content and

Designer ‘s needs. The orign content
is stated as

follows:\n##debate_topic##

<Role of MA-E System>

coder e.g.

<historical information >

Designer: Step 1: Define the purpose. Step 2: Retain essential components from the current function. Step 3: Add evolution-specific
components to promote exploration.
……
Coder : <start_des> The new score function is designed to prioritize variables that have a higher probability of....... '</end_des>

<start_code> def mydiving(s1, s2, … sn): <diving codes1> .return score, roundup< /end_code >

Reviewer: <Issue>: Traceback (most recent call last): File “XXXX.py", line X, in <diving codes1>

Coder: <start_des> The new score function aims to prioriti....... '</end_des>

<start_code> def mydiving(s1, s2, … sn): <diving codes2> .return score, roundup< /end_code >

You are the final arbiter in the MA-
Evolution System. Evaluate the

heuristic code and review feedback to
determine if it should be accepted,
revised, or discarded. Output the

final code and description.
<historical information >

<Role of MA-E System>

Judge e.g.

<evolutionary operations>

Please focus on line 6 of the Generic
Diving Heuristic. You should create a
totally new Python scoring function
for me. The function is used for every
variable to decide the variable's score
and rounding direction. Here is a
example : <des>description</des>
<start_code> def myheurdiving
</end_code>

Init e.g.

Figure 6: The prompts in the MA-Evolution System.

Example prompt: Please create a new Python scoring function for a Generic Diving Heuristic. The
function should assign a score and rounding direction to each fractional variable, using only infor-
mation from the LP relaxation and the objective function.

Mutation The LLM receives an existing scoring function and modifies it slightly. The modifica-
tion should be meaningful and aimed at improving performance or exploring nearby variants in the
heuristic space. This enables local search around known good solutions.

Example prompt: Please make a small but meaningful change that may improve performance or
explore alternative behavior. Ensure the result is syntactically correct and remains within the MILP
context.
Original function: [insert code]

Crossover The LLM combines two existing scoring functions into a new one. It should preserve use-
ful components from both parents while ensuring the resulting function is coherent and consistent.
This enables global search by recombining successful patterns.

Example prompt: You are creating a new heuristic by combining two existing ones. Please syn-
thesize a scoring function that inherits effective components from both parents while maintaining
logical consistency.
Heuristic A: [insert code]
Heuristic B: [insert code]

Example The following is an example of our method applied within DHEvo:

Designer You are a Coder Designer. Hello and welcome to the program. Read the prompt content,
propose your algorithm ideas, and provide detailed implementation procedure, similar to the role of
a project manager. The topic is stated as follows:Diving heuristics are one of the most important
categories of primal heuristics in SCIP framework for Mixed Integer Linear Programming (MILP)
problem. It starts from the current LP solution and iteratively fix an integer variable to an integral
value and resolve the LP. You should create a totally new Python scoring function for me (different
from the heuristics in the literature) to choose the fractional variable and corresponding rounding
direction using the information of the LP relaxation and objective function. The function is used
for every variable to decide the variable’s score and rounding direction. Specifically, you have these
features to use in the score function: ”mayrounddown” and ”mayroundup” (bool, indicate whether it
is possible to round variable down/up and stay feasible, it should be penalized because we need more
exploration); ”candsfrac” (float, fractional part of solution value of variable); ”candsol” (float, solu-

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

tion value of variable in LP relaxation solution); ”nlocksdown” and ”nlocksup” (int, the number of
locks for rounding down/up of a special type); ”obj” (float, objective function value of variable); ”ob-
jnorm” (float, the Euclidean norm of the objective function vector); ”pscostdown” and ”pscostup”
(float, the variable’s pseudo cost value for the given change of the variable’s LP value); ”rootsolval”
(float, the solution of the variable in the last root node’s relaxation, if the root relaxation is not yet
completely solved, zero is returned); ”nNonz” (int, the number of nonzero entries in variable); ”is-
Binary” (bool, TRUE if the variable is of binary type). Provide a brief description of the new score
function’s logic and its corresponding Python code. The description must start with ’start des’ and
end with ’/end des’. The code must start with ’start code’ and end with ’/end code’. The code score
function must call ’myheurdiving’ that takes 13 inputs ’mayrounddown’, ’mayroundup’, ’cands-
frac’, ’candsol’, ’nlocksdown’, ’nlocksup’, ’obj’, ’objnorm’, ’pscostdown’, ’pscostup’, ’rootsolval’,
’nNonz’, and ’isBinary’. The function must output the ’score’ and ’roundup’, where ’score’ is a
float type indicating the variable’s score, the more the better, and the ’roundup’ is a bool type indi-
cating whether we should round the variable up, True for rounding up. Be creative and do not give
additional explanations.

Coder Your role is to create a new algorithm based on the original content and the Designer‘s needs.
The original content is stated as follows: Diving heuristics are one of the most important categories
of primal heuristics in the SCIP framework for Mixed Integer Linear Programming (MILP) prob-
lems. It starts from the current LP solution and iteratively fixes an integer variable to an integral
value and resolves the LP. You should create a new Python scoring function for me (different from
the heuristics in the literature) to choose the fractional variable and corresponding rounding direc-
tion using the information of the LP relaxation and objective function. The function is used for every
variable to decide the variable’s score and rounding direction. Specifically, you have these features to
use in the score function: ”mayrounddown” and ”mayroundup” (bool, indicate whether it is possible
to round variable down/up and stay feasible, it should be penalized because we need more explo-
ration); ”candsfrac” (float, fractional part of solution value of variable); ”candsol” (float, solution
value of variable in LP relaxation solution); ”nlocksdown” and ”nlocksup” (int, the number of locks
for rounding down/up of a special type); ”obj” (float, objective function value of variable); ”ob-
jnorm” (float, the Euclidean norm of the objective function vector); ”pscostdown” and ”pscostup”
(float, the variable’s pseudo cost value for the given change of the variable’s LP value); ”rootsolval”
(float, the solution of the variable in the last root node’s relaxation, if the root relaxation is not yet
completely solved, zero is returned); ”nNonz” (int, the number of nonzero entries in variable); ”is-
Binary” (bool, TRUE if the variable is of binary type). Provide a brief description of the new score
function’s logic and its corresponding Python code. The description must start with ’start des’ and
end with ’/end des’. The code must start with ’start code’ and end with ’/end code’. The code score
function must call ’myheurdiving’ that takes 13 inputs: ’mayrounddown’, ’mayroundup’, ’cands-
frac’, ’candsol’, ’nlocksdown’, ’nlocksup’, ’obj’, ’objnorm’, ’pscostdown’, ’pscostup’, ’rootsolval’,
’nNonz’, and ’isBinary’. The function must output the ’score’ and ’roundup’, where ’score’ is a
float type indicating the variable’s score, the more the better, and the ’roundup’ is a bool type indi-
cating whether we should round the variable up, True for rounding up. Be creative and do not give
additional explanations. Designer idea: Allow weighting coefficients for each component.

Reviewer You are a code evaluator who tries to evaluate the code, giving relevant comments in the
direction of code redundancy and code logic, etc.

Judger You are the final arbiter in the MA-Evolution System. Evaluate the heuristic code and review
feedback to determine if it should be accepted, revised, or discarded. Output the final code and
description.

8.8 GENERATED HEURISTICS

This section presents the best heuristics generated by DHEvo.

def myheurdiving(mayrounddown, mayroundup, candsfrac, candsol,
nlocksdown, nlocksup, obj, objnorm,
pscostdown, pscostup, rootsolval,
nNonz, isBinary):

score = 0.0
roundup = False

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Penalize if both rounding options are feasible
if mayrounddown and mayroundup:

score = -40

Evaluate candidate based on fractional part
if candsfrac > 0.5:

score += candsfrac * 80
roundup = True
if pscostup > 0.5:

score += pscostup * 50
else:

score += (1 - candsfrac) * 60
if pscostdown < -0.3:

score -= abs(pscostdown) * 25

Normalize objective contribution
score += (obj / (objnorm + 1e-6)) * 90

Adjust for locking counts
score += (nlocksdown * 25 - nlocksup * 15)

Reward for non-zero entries and binary variable nature
if nNonz > 2:

score += nNonz * 20
if isBinary:

score += 50

return score, roundup

Listing 1: Heuristic for cauctions

def myheurdiving(mayrounddown, mayroundup, candsfrac, candsol, nlocksdown
, nlocksup, obj, objnorm, pscostdown, pscostup, rootsolval, nNonz,
isBinary):
score = 0.0
roundup = False

Base score weighted by normalized objective contribution
score += (obj/(objnorm + 1e-9)) * 5 if objnorm >0 else 0

Penalize rounding options to encourage exploration
score -= nlocksdown * 7 if mayrounddown else 0
score -= nlocksup *7 if mayroundup else 0

Favor large fractions away from 0.5 for exploration
score += (abs(candsfrac - 0.5) * 10)

Adjust score based on solution value and its contribution
score += (candsol / (1 + abs(rootsolval) * obj)) * 4 if rootsolval !=

0 else 0

Employ pseudo costs to influence rounding decisions
if pscostdown < 0 and mayrounddown:

score += -pscostdown * 3 # Favor rounding down with negative pseudo
costs

if pscostup < 0 and mayroundup:
score -= -pscostup * 3 # Discourage rounding up with negative

pseudo costs

#Determine rounding direction based on fractional part and exploration
potential

if candsfrac >= 0.7 and mayroundup:
roundup = True

elif candsfrac <= 0.3 and mayrounddown:
roundup = False

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Encourage solutions with fewer nonzero entries
score += (1 / (nNonz + 1)) * 2 if nNonz > 0 else 0

return score, roundup

Listing 2: Heuristic for facility

def myheurdiving(mayrounddown, mayroundup, candsfrac, candsol, nlocksdown
, nlocksup, obj, objnorm, pscostdown, pscostup, rootsolval, nNonz,
isBinary):
score = 0.0

Strongly penalize feasible rounding options
if mayrounddown:

score -= 3.0
if mayroundup:

score -= -3.0

Incorporate fractional part and objective value
score += (1.0 - candsfrac) * obj * 0.5 if mayrounddown else 0
score += candsfrac * obj *0.5 if mayroundup else 0

Adjust with pseudo costs
score += pscostdown * candsfrac * 1.5 if mayrounddown else 0
score += pscostup * (1 - candsfrac) * 1.5 if mayroundup else 0

Apply less severe penalty for distance from the root solution
score -= abs(rootsolval - candsol) * 0.1

Normalize the score
if objnorm > 0 :

score /= objnorm

Reward more for binary variables
score += nlocksup * 0.3 - nlocksdown * 0.3
if isBinary:

score += 1.0

Determine rounding direction
roundup = (score > 0) and (not isBinary or mayroundup)

return score, roundup

Listing 3: Heuristic for indset

def myheurdiving(mayrounddown, mayroundup, candsfrac, candsol, nlocksdown
, nlocksup, obj, objnorm, pscostdown, pscostup, rootsolval, nNonz,
isBinary):
score = 0.0

Strongly penalize feasible rounding options
if mayrounddown:

score -= 3.0
if mayroundup:

score -= -3.0

Incorporate fractional part and objective value
score += (1.0 - candsfrac) * obj * 0.5 if mayrounddown else 0
score += candsfrac * obj *0.5 if mayroundup else 0

Adjust with pseudo costs
score += pscostdown * candsfrac * 1.5 if mayrounddown else 0
score += pscostup * (1 - candsfrac) * 1.5 if mayroundup else 0

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Apply less severe penalty for distance from the root solution
score -= abs(rootsolval - candsol) * 0.1

Normalize the score
if objnorm > 0 :

score /= objnorm

Reward more for binary variables
score += nlocksup * 0.3 - nlocksdown * 0.3
if isBinary:

score += 1.0

Determine rounding direction
roundup = (score > 0) and (not isBinary or mayroundup)

return score, roundup

Listing 4: Heuristic for indset

def myheurdiving(mayrounddown, mayroundup, candsfrac, candsol, nlocksdown
, nlocksup, obj, objnorm, pscostdown, pscostup, rootsolval, nNonz,
isBinary):
score = 0.0

Penalties for feasible rounding options to promote exploration
if mayrounddown:

score -= 10.0
if mayroundup:

score -= 10.0

Favor fractional values at extremes (0 or 1)
score += (1 - abs(candsfrac - 0.5)) * 30.0

Normalize impact of the objective function
score += (obj/(objnorm + 1e-5)) * 0.5

#Include pseudo cost adjustments for better decision-making
score += pscostup if mayroundup else 0.0
score -= pscostdown if mayrounddown else 0.0

Integrate root solution value adjusted by variable complexity
score += rootsolval / (nNonz + 1)

Amplify score for binary variables to encourage decisive rounding
if isBinary:

score *= 2.0

Determine rounding direction based on computed score and pseudo
costs

roundup = (mayrounddown and (pscostup <= pscostdown or not
mayrounddown))

return score, roundup

Listing 5: Heuristic for setcover

25

	Introduction
	Background and related works
	Branch&Bound and diving heuristic
	LLM for evolutionary computation

	Method
	Problem formulation
	Theoretical Motivation: Learning from Representative Instances
	Data-Algorithm based heuristic evolution framework
	Framework implementation

	Experiments
	Experimental settings
	Experiments on the Quality of Diving Heuristics
	Experiments on solving efficiency in branch and bound
	Ablation Studies

	Conclusion
	Ethics statement
	Ethics statement
	Appendix
	The Use of Large Language Models
	Diving Heuristics
	Performance measurement
	Experimental details
	Implemention details
	Theoretical analysis
	Prompts
	Generated heuristics

