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ABSTRACT

Online reinforcement learning (RL) has been central to post-training language
models, but its extension to diffusion models remains challenging due to in-
tractable likelihoods. Recent works discretize the reverse sampling process to
enable GRPO-style training, yet they inherit fundamental drawbacks, including
solver restrictions, forward–reverse inconsistency, and complicated integration
with classifier-free guidance (CFG). We introduce Diffusion Negative-aware Fine-
Tuning (DiffusionNFT), a new online RL paradigm that optimizes diffusion mod-
els directly on the forward process via flow matching. DiffusionNFT contrasts
positive and negative generations to define an implicit policy improvement direc-
tion, naturally incorporating reinforcement signals into the supervised learning ob-
jective. This formulation enables training with arbitrary black-box solvers, elim-
inates the need for likelihood estimation, and requires only clean images rather
than sampling trajectories for policy optimization. DiffusionNFT is up to 25×
more efficient than FlowGRPO in head-to-head comparisons, while being CFG-
free. For instance, DiffusionNFT improves the GenEval score from 0.24 to 0.98
within 1k steps, while FlowGRPO achieves 0.95 with over 5k steps and additional
CFG employment. By leveraging multiple reward models, DiffusionNFT signifi-
cantly boosts the performance of SD3.5-Medium in every benchmark tested.
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Figure 1: Performance of DiffusionNFT. (a) Head-to-head comparison with FlowGRPO on the
GenEval task. (b) By employing multiple reward models, DiffusionNFT significantly boosts the
performance of SD3.5-Medium in every benchmark tested, while being fully CFG-free.

1 INTRODUCTION

Online Reinforcement Learning (RL) has been pivotal in the post-training of LLMs, driving recent
advances in LLMs’ alignment and reasoning abilities (Achiam et al., 2023; Guo et al., 2025). How-
ever, replicating similar success for diffusion models in visual generation is not straightforward.
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Figure 2: Comparison between Forward-Process RL (NFT) and Reverse-Process RL (GRPO). NFT
allows using any solvers and does not require storing the whole sampling trajectory for optimization.

Policy Gradient algorithms assume that model likelihoods are exactly computable. This assumption
holds for autoregressive models, but is inherently violated by diffusion models, where likelihoods
can only be approximated via costly probabilistic ODE or variational bounds of SDE (Song et al.,
2021). Recent works circumvent this barrier by discretizing the reverse sampling process, refram-
ing diffusion generation as a multi-step decision-making problem (Black et al., 2023). This makes
transitions between adjacent steps tractable Gaussians, enabling direct application of existing RL
algorithms like GRPO to the diffusion domain (Xue et al., 2025; Liu et al., 2025).

Despite promising efforts made, we argue that GRPO-style diffusion reinforcement still faces fun-
damental limitations: (1) Forward inconsistency. Focusing solely on the reverse sampling process
breaks adherence to the forward diffusion process, risking the model degenerating into cascaded
Gaussians. (2) Solver restriction. The data collection process relies on first-order SDE samplers,
precluding the full utilization of ODE or high-order solvers that are default to flow models and ad-
vantageous for generation efficiency. (3) Complicated CFG integration. Diffusion models heavily
rely on Classifier-Free Guidance (CFG) (Ho & Salimans, 2022), which requires training both con-
ditional and unconditional models. Current RL practices typically incorporate CFG in post-training,
leading to a complicated and inefficient two-model optimization scheme.

We aim to disentangle data collection, remove solver restriction, and maintain consistency with stan-
dard supervised pretraining in diffusion RL. As a diffusion policy admits a single forward (noising)
process but multiple reverse (denoising) processes (e.g., different samplers), a natural question is:

Can diffusion reinforcement be performed on the forward process instead of the reverse?

This paper proposes a novel online RL paradigm named Diffusion Negative-aware FineTuning (Dif-
fusionNFT). Instead of building upon the conventional policy gradient framework, DiffusionNFT
directly performs policy optimization on the forward diffusion process through the flow matching
objective. Intuitively, it defines a contrastive improvement direction between two implicit policies
learned on “positive” and “negative” generated samples split by reward signals, and optimizes to-
ward the positive policy without modifying the sampling process.

The forward-process RL formulation provides several practical benefits (Figure 2). First, Diffu-
sionNFT allows data collection with arbitrary black-box solvers, rather than relying on first-order
SDE samplers. Second, it eliminates the need to store entire sampling trajectories, requiring only
clean images for policy optimization. Third, it is fully compatible with standard diffusion training,
requiring minimal modifications to existing codebases. Finally, it is a native off-policy algorithm,
naturally allowing decoupled training and sampling policies without importance sampling.

We evaluate DiffusionNFT by post-training SD3.5-Medium (Esser et al., 2024) on multiple reward
models. The entire training process deliberately operates in a CFG-free setting. Although this results
in a significantly lower initialization performance, we find DiffusionNFT substantially improves
performance across both in-domain and out-of-domain rewards, rapidly outperforming CFG and the
GRPO baseline. We also conduct head-to-head comparisons against FlowGRPO in single-reward
settings. Across four tasks tested, DiffusionNFT consistently exhibits 3× to 25× efficiency and
achieves better final scores. For instance, it improves the GenEval score from 0.24 to 0.98 within 1k
steps, while FlowGRPO achieves only 0.95 with over 5k steps and additional CFG employment.

DiffusionNFT is a direct RL alternative to conventional Policy Gradient methods, introducing
the Negative-aware FineTuning (NFT) paradigm (Chen et al., 2025c) into the diffusion domain.
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Grounded in a supervised learning foundation, we believe this paradigm offers a valid path toward
a general, unified, and native off-policy RL recipe across various modalities.

2 BACKGROUND

2.1 DIFFUSION AND FLOW MODELS

Diffusion models (Ho et al., 2020; Song et al., 2020b) learn continuous data distributions by grad-
ually perturbing clean data x0 ∼ π0 = pdata with Gaussian noise according to a forward process.
Then, data can be generated by learning to reverse this process.

The forward noising process admits a closed-form transition kernel πt|0(xt|x0) = N (αtx0, σ
2
t I)

with a specific noise schedule αt, σt, enabling reparameterization as

xt = αtx0 + σtϵ, ϵ ∼ N (0, I).

One way to learn diffusion models is to adopt the velocity parameterization vθ(xt, t) (Zheng et al.,
2023b), which predicts the tangent of the trajectory, trained by minimizing

Et,x0∼π0,ϵ∼N (0,I)[w(t)∥vθ(xt, t)− v∥22], (1)

where the target velocity v is defined by the schedule’s time derivatives as v = α̇tx0 + σ̇tϵ under
the notation ḟt := dft/dt, and w(t) is some weighting function. Reverse sampling typically follows
the ODE form (Song et al., 2020b) of the diffusion model, which is reduced to dxt

dt = vθ(xt, t)
using vθ. This formulation is known as flow matching (Lipman et al., 2022), where simple Euler
discretization serves as an effective ODE solver, equivalent to DDIM (Song et al., 2020a).

Rectified flow (Liu et al., 2022) can be considered as a special case of the above-discussed diffusion
models, where αt = 1− t, σt = t, which simplifies the velocity target to v = ϵ− x0.

2.2 POLICY GRADIENT ALGORITHMS FOR DIFFUSION MODELS

In order to apply Policy Gradient algorithms such as PPO (Schulman et al., 2017) or GRPO (Shao
et al., 2024) to diffusion models, recent works (Black et al., 2023; Fan et al., 2023; Liu et al., 2025;
Xue et al., 2025) formulate the diffusion sampling as a multi-step Markov Decision Process (MDP).
This can be achieved by discretizing the reverse sampling process of diffusion models.

While flow models naturally admit simple and efficient sampling through ODE, the lack of stochas-
ticity hinders the application of GRPO. FlowGRPO (Liu et al., 2025) addresses this by using the
SDE form (Song et al., 2020b) under the velocity parameterization vθ (see Appendix B.1):

dxt =
[
vθ(xt, t) +

g2t
2t

(
xt + (1− t)vθ(xt, t)

)]
dt+ gtdwt (2)

where gt = a
√

t
1−t controls the level of injected stochasticity. Discretizing it with Euler yields

πθ(xt−∆t | xt) = N
(
xt +

[
vθ(xt, t) +

g2t
2t

(xt + (1− t)vθ(xt, t))
]
∆t, g2t∆t I

)
.

This makes transition kernels between adjacent steps likelihood tractable Gaussians, enabling the
direct application of existing policy gradient algorithms, such as GRPO.

3 DIFFUSION REINFORCEMENT VIA NEGATIVE-AWARE FINETUNING

3.1 PROBLEM SETUP

Online RL. Consider a pretrained diffusion policy πold and prompt datasets {c}. At each iteration,
we sample K images x1:K

0 for prompt c, and then evaluate each image with a scalar reward function
r ∈ [0, 1], representing its optimality probability r(x0, c) := p(o = 1|x0, c) (Levine, 2018).

This optimality serves as a bridge from continuous-valued rewards to a binary partition. Collected
data can be randomly split into two imaginary subsets. An image x0 will have a probability r of
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falling into the positive dataset D+ and otherwise the negative dataset D−. Given infinite samples,
the underlying distributions of these two subsets are respectively

π+(x0|c) := πold(x0|o = 1, c) =
p(o = 1|x0, c)π

old(x0|c)
pπold(o = 1|c)

=
r(x0, c)

pπold(o = 1|c)
πold(x0|c)

π−(x0|c) := πold(x0|o = 0, c) =
p(o = 0|x0, c)π

old(x0|c)
pπold(o = 0|c)

=
1− r(x0, c)

1− pπold(o = 1|c)
πold(x0|c)

RL requires performing policy improvement at each iteration. The optimized policy π∗ satisfies

Eπ∗(·|c)r(x0, c) > Eπold(·|c)r(x0, c) (denoted as π∗ ≻ πold)

Policy Improvement on Positive Data. It is easy to prove that π+ ≻ πold ≻ π− constantly holds,
thus a straightforward improvement of πold can be π∗ = π+. To achieve this, previous work (Lee
et al., 2023) performs diffusion training solely on D+, known as Rejection FineTuning (RFT).

Despite the simplicity, RFT cannot effectively leverage negative data in D− (Chen et al., 2025c).

Reinforcement Guidance. We posit that negative feedback is crucial to policy improvement, es-
pecially for diffusion1. Rather than treating π+ as an optimization point, we leverage both negative
and positive data to derive an improvement direction ∆ ∈ Rn. The training target is defined as

v∗(xt, c, t) := vold(xt, c, t) +
1

β
∆(xt, c, t). (3)

where v is the velocity predictor of the diffusion model, β is a hyperparameter. This definition
formally resembles diffusion guidance such as Classifier-Free Guidance (CFG) (Ho & Salimans,
2022). We term ∆(xt, c, t) ∈ Rn reinforcement guidance, and 1

β ∈ R guidance strength.

In Section 3.2, we address two challenges: 1. What is an appropriate form of ∆ that enables policy
improvement? 2. How to directly optimize vθ → v∗ leveraging collected dataset D+ and D−?

3.2 NEGATIVE-AWARE DIFFUSION REINFORCEMENT WITH FORWARD PROCESS

In Eq. (3), ∆ corresponds to the distributional shift between an improved policy and the original
policy. To formalize this, we first study the distributional difference between π+ ≻ πold ≻ π−.
Theorem 3.1 (Improvement Direction). Consider diffusion models v+, v−, and vold for the policy
triplet π+, π−, and πold. The directional differences between these models are proportional:

∆ :=[1− α(xt)] [v
old(xt, c, t)− v−(xt, c, t)] (Reinforcement Guidance)

= α(xt) [v+(xt, c, t)− vold(xt, c, t)]. (4)

where 0 ≤ α(xt) ≤ 1 is a scalar coefficient:

α(xt) :=
π+
t (xt|c)

πold
t (xt|c)

Eπold(x0|c)r(x0, c)

𝑫

𝒗−

𝒗+ 𝒗𝜃𝑫−

𝑫+

Figure 3: Improvement Direction.

Eq. (4) indicates an ideal guidance direction
∆ for improving over vold. With appropriate
guidance strength, policy improvement can be
guaranteed. For instance, let β = α(xt) in
Eq. (3), we have v∗(xt, c, t) = vold(xt, c, t) +

1
α(xt)

∆(xt, c, t) = v+(xt, c, t), such that
π∗ = π+ ≻ πold holds. Figure 3 contains an
illustration for the improvement direction ∆.

Having defined a valid optimization target v∗

with Eq. (3) and (4), we now introduce a training objective that directly optimizes vθ towards v∗:
1We find that finetuning only on the positive data leads to collapse (Section 4.4)
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Figure 4: DiffusionNFT jointly optimizes two dual diffusion objectives, on both positive (r = 1)
and negative (r = 0) branches. Rather than training two independent models v+

θ and v−
θ , it adopts

an implicit parameterization technique that directly optimizes a single target policy vθ.

Theorem 3.2 (Policy Optimization). Consider the training objective:

L(θ) = Ec,πold(x0|c),t r∥v
+
θ (xt, c, t)− v∥22 + (1− r)∥v−

θ (xt, c, t)− v∥22, (5)

where v+
θ (xt, c, t) := (1− β)vold(xt, c, t) + βvθ(xt, c, t), (Implicit positive policy)

and v−
θ (xt, c, t) := (1 + β)vold(xt, c, t)− βvθ(xt, c, t). (Implicit negative policy)

Given unlimited data and model capacity, the optimal solution of Eq. (5) satisfies

vθ∗(xt, c, t) = vold(xt, c, t) +
2

β
∆(xt, c, t). (6)

Theorem 3.2 presents a new off-policy RL paradigm (Figure 4). Instead of applying Policy Gradient,
it adopts supervised learning (SL) objectives, but additionally trains on online negative data D−.
This renders the algorithm highly versatile, compatible with existing SL methods. We term our
method Diffusion Negative-aware FineTuning (DiffusionNFT), highlighting its negative-aware SL
nature and conceptual similarity to parallel algorithm NFT in language models (Chen et al., 2025c).

Below, we discuss several distinctive advantages of DiffusionNFT.

1. Forward Consistency. In contrast to policy gradient methods (e.g., FlowGRPO), which for-
mulated RL on the reverse diffusion process, DiffusionNFT defines a typical diffusion loss on the
forward process. This preserves what we term forward consistency—the adherence of the diffusion
model’s underlying probability density to the Fokker-Planck equation (Øksendal, 2003; Song et al.,
2020b), ensuring that the learned model corresponds to a valid forward process (i.e., xt are correctly
coupled with x0 through a joint distribution πθ(xt,x0) = πθ(x0)πt|0(xt|x0)).

2. Solver Flexibility. DiffusionNFT fully decouples policy training and data sampling. This enables
the full utilization of any black-box solvers throughout sampling, rather than relying on first-order
SDE samplers. It also eliminates the need to store the entire sampling trajectory during data collec-
tion, requiring only clean images with their associated rewards for training.

3. Implicit Guidance Integration. Intuitively, DiffusionNFT defines a guidance direction ∆ and
apply such guidance to the old policy vold (Eq. (6)). However, instead of learning a separate guid-
ance model ∆θ and employing guided sampling, it adopts an implicit parameterization technique
that enables direct integration of reinforcement guidance into the learned policy. This technique,
inspired by recent advances in guidance-free training (Chen et al., 2025a), allows us to perform RL
continuously on a single policy model, which is crucial to online reinforcement.

4. Likelihood-Free Formulation. Previous diffusion RL methods are fundamentally constrained
by their reliance on likelihood approximation. Whether approximating the marginal data likelihood
with variational bounds and applying Jensen’s inequality to reduce loss computation cost (Wallace
et al., 2024), or discretizing the reverse process to estimate sequence likelihood (Black et al., 2023),
they inevitably introduce systematic estimation bias into diffusion post-training. In contrast, Diffu-
sionNFT is inherently likelihood-free, bypassing such compromises.

3.3 PRACTICAL IMPLEMENTATION

We provide DiffusionNFT pseudo code in Algorithm 1. Below, we elaborate on key design choices.
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Algorithm 1 Diffusion Negative-aware FineTuning (DiffusionNFT)
Require: Pretrained diffusion policy vref, raw reward function rraw(·) ∈ R, prompt dataset {c}.
Initialize: Data collection policy vold ← vref, training policy vθ ← vref, data buffer D ← ∅.

1: for each iteration i do
2: for each sampled prompt c do // Rollout Step, Data Collection
3: Collect K clean images x1:K

0 , and evaluate their rewards {rraw}1:K .
4: Normalize raw rewards in group: rnorm := rraw − mean({rraw}1:K).
5: Define optimality probability r = 0.5 + 0.5 ∗ clip{rnorm/Zc,−1, 1}.
6: D ← {c, x1:K

0 , r1:K ∈ [0, 1]}.
7: end for
8: for each mini batch {c,x0, r} ∈ D do // Gradient Step, Policy Optimization
9: Forward diffusion process: xt = αtx0 + σtϵ; v = α̇tx0 + σ̇tϵ.

10: Implicit positive velocity: v+
θ (xt, c, t) := (1− β)vold(xt, c, t) + βvθ(xt, c, t).

11: Implicit negative velocity: v−
θ (xt, c, t) := (1 + β)vold(xt, c, t)− βvθ(xt, c, t).

12: θ ← θ − λ∇θ

[
r∥v+

θ (xt, c, t)− v∥22 + (1− r)∥v−
θ (xt, c, t)− v∥22

]
. (Eq. (5))

13: end for
14: Update data collection policy θold ← ηiθ

old + (1− ηi)θ, and clear buffer D ← ∅. // Online Update
15: end for
Output: vθ

Optimality Reward. In most visual reinforcement settings, rewards manifest as unconstrained
continuous scalars rather than binary optimality signals. Motivated by existing GRPO practices
(Shao et al., 2024; Liu et al., 2025; Xue et al., 2025), we first transform the raw reward rraw into
r ∈ [0, 1] which represents the optimality probability:

r(x0, c) :=
1

2
+

1

2
clip

[
rraw(x0, c)− Eπold(·|c)r

raw(x0, c)

Zc
,−1, 1

]
.

Zc > 0 is some normalizing factor, which could take the form of a global reward std. We sample
K images for each prompt c during data collection, so the average reward Eπold(·|c)r

raw(x0, c) for
each prompt can be estimated.

Soft Update of Sampling Policy. The off-policy nature of DiffusionNFT decouples the sampling
policy πold from the training policy πθ. This obviates the need for a ”hard” update (πold ← πθ) after
each iteration. Instead, we leverage this property to employ a “soft” EMA update:

θold ← ηiθ
old + (1− ηi)θ

where i is the iteration number. The parameter η governs a trade-off between learning speed and
stability. A strictly on-policy scheme (η = 0) yields rapid initial progress but is prone to severe
instability, leading to catastrophic collapse. Conversely, a nearly offline approach (η → 1) is robustly
stable but suffers from impractically slow convergence (Figure 8).

Adaptive Loss Weighting. Typical diffusion loss includes a time-dependent weighting w(t)
(Eq. (1)). Instead of manual tuning, we adopt an adaptive weighting scheme. The velocity predictor
vθ can be equivalently transformed into x0 predictor, denoted as xθ (e.g., xθ = xt − tvθ under
rectified flow schedule). We replace the weighting with a form of self-normalized x0 regression,
motivated by the diffusion distillation method DMD (Yin et al., 2024):

w(t)∥vθ(xt, c, t)− v∥22 ←
∥xθ(xt, c, t)− x0∥22

sg(mean(abs(xθ(xt, c, t)− x0)))

where sg is the stop-gradient operator. We find it typically leads to faster training (Figure 9).

CFG-Free Optimization. Classifier-Free Guidance (CFG) (Ho & Salimans, 2022) is a default tech-
nique to enhance generation quality at inference time, yet it complicates post-training and reduces
efficiency. Conceptually, we interpret CFG as an offline form of reinforcement guidance (Eq. (4)),
where conditional and unconditional models correspond to positive and negative signals. With this
understanding, we discard CFG in our algorithm design, and the policy is initialized solely by the
conditional model. Despite this seemingly poor initialization, we observe that performance surges
and quickly surpasses the CFG baseline (Figure 1). This suggests that the functionality of CFG can
be effectively learned or substituted through RL post-training, echoing recent studies that achieve
strong performance without CFG through post-training (Chen et al., 2025b;a; Zheng et al., 2025).
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Table 1: Evaluation Results. Gray-colored: In-domain reward. † Evaluated on official checkpoints.
‡Evaluated under 1024×1024 resolution. Bold: best; Underline: second best.

Model #Iter Rule-Based Model-Based

GenEval OCR PickScore ClipScore HPSv2.1 Aesthetic ImgRwd UniRwd

SD-XL‡ — 0.55 0.14 22.42 0.287 0.280 5.60 0.76 2.93
SD3.5-L‡ — 0.71 0.68 22.91 0.289 0.288 5.50 0.96 3.25
FLUX.1-Dev — 0.66 0.59 22.84 0.295 0.274 5.71 0.96 3.27

SD3.5-M (w/o CFG) — 0.24 0.12 20.51 0.237 0.204 5.13 -0.58 2.02
+ CFG — 0.63 0.59 22.34 0.285 0.279 5.36 0.85 3.03

+ FlowGRPO† >5k 0.95 0.66 22.51 0.293 0.274 5.32 1.06 3.18
2k 0.66 0.92 22.41 0.290 0.280 5.32 0.95 3.15
4k 0.54 0.68 23.50 0.280 0.316 5.90 1.29 3.37

+ Ours 1.7k 0.94 0.91 23.80 0.293 0.331 6.01 1.49 3.49

4 EXPERIMENTS

We demonstrate the potential of DiffusionNFT through three perspectives: (1) multi-reward joint
training for strong CFG-free performance, (2) head-to-head comparison with FlowGRPO on single
rewards, and (3) ablation studies on key design choices.

4.1 EXPERIMENTAL SETUP

Our experiments are based on SD3.5-Medium (Esser et al., 2024) at 512×512 resolution, with
most settings aligned with FlowGRPO (Liu et al., 2025).

Reward Models. (1) Rule-based rewards, including GenEval (Ghosh et al., 2023) for compo-
sitional image generation and OCR for visual text rendering, where the partial reward assignment
strategies follow FlowGRPO. (2) Model-based rewards, including PickScore (Kirstain et al.,
2023), ClipScore (Hessel et al., 2021), HPSv2.1 (Wu et al., 2023), Aesthetics (Schuh-
mann, 2022), ImageReward (Xu et al., 2023) and UnifiedReward (Wang et al., 2025), which
measure image quality, image-text alignment and human preference.

Prompt Datasets. For GenEval and OCR, we use the corresponding training and test sets from
FlowGRPO. For other rewards, we train on Pick-a-Pic (Kirstain et al., 2023) and evaluate on
DrawBench (Saharia et al., 2022).

Training and Evaluation. We finetune with LoRA (α = 64, r = 32). Each epoch consists of 48
groups with group size G = 24. We use 10 rollout sampling steps for head-to-head comparison
and ablation studies, and 40 steps for best visual quality in multi-reward training. Evaluation is
performed with 40-step first-order ODE sampler. Additional details are provided in Appendix C.

4.2 MULTI-REWARD JOINT TRAINING

We first assess DiffusionNFT’s effectiveness in comprehensively enhancing the base model. Starting
from the CFG-free SD3.5-M (2.5B parameters), we jointly optimize five rewards: GenEval, OCR,
PickScore, ClipScore, and HPSv2.1. Since the rewards are based on different prompts, we
first train on Pick-a-Pic with model-based rewards to strengthen alignment and human prefer-
ence, followed by rule-based rewards (GenEval, OCR). Out-of-domain evaluation is conducted on
Aesthetics, ImageReward, and UnifiedReward.

As shown in Table 1, our final CFG-free model not only surpasses CFG and matches FlowGRPO (fit-
ted only single rewards) on both in-domain and out-of-domain metrics, but also outperforms CFG-
based larger models such as SD3.5-L (8B parameters) and FLUX.1-Dev (12B parameters) (Labs,
2024). Qualitative comparison in Figure 5 demonstrates the superior visual quality of our method.

4.3 HEAD-TO-HEAD COMPARISON

We conduct head-to-head comparisons with FlowGRPO on single training rewards. As shown in
Figure 1(a) and Figure 6, our method is 3× to 25× more efficient in terms of wall-clock time,
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DiffusionNFT
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Research Pizza 
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with a graffiti wall 
prominently spray-

painted "Street Art 
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colorful tags and murals, 
under a sunny sky.

An old photograph of 
a 1920s airship 
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floating over a wheat 

field.

A red colored car.

Figure 5: Qualitative Comparison. The prompts are taken from GenEval, OCR and DrawBench
respectively, where we compare the corresponding FlowGRPO model with our model.
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Figure 6: Head-to-head comparison between DiffusionNFT with FlowGRPO on single rewards.

achieving GenEval score of 0.98 within only ∼1k iterations. This demonstrates that CFG-free
models can rapidly adapt to specific reward environments under our framework.

4.4 ABLATION STUDIES
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Figure 7: Different diffusion samplers for data collection.
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Figure 8: Soft-update strategies.

We analyze the impact of our core design choices:

Negative Loss. The negative-aware component is crucial in DiffusionNFT. Without the negative
policy loss on v−

θ , we find rewards collapse almost instantly during online training, highlighting the
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Figure 9: Different time-dependent weighting strategies.
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Figure 10: Choices of strength β.

essential role of negative signals in diffusion RL. This phenomenon is divergent from observations
in LLMs, where RFT remains a strong baseline (Xiong et al., 2025; Chen et al., 2025c).

Diffusion Sampler. Online samples in DiffusionNFT are used both for reward evaluation and as
training data, making quality critical. Figure 7 shows that ODE samplers outperform SDE ones,
especially on PickScore, which is noise-sensitive. Second-order ODE slightly outperforms first-
order on GenEval, while being comparable on PickScore.

Adaptive Weighting. We find stability improves when the flow-matching loss is given higher weight
at larger t, whereas inverse strategies (e.g., w(t) = 1 − t) lead to collapse (Figure 9). Our adaptive
schedule consistently matches or exceeds heuristic choices.

Soft Update. We compare different ηi schedules for the soft update in Figure 8. Fully on-policy
(ηi = 0) accelerates early progress but destabilizes training, while overly off-policy (η = 0.9) slows
convergence. We find that starting with a small η and gradually increasing it to a larger value in later
stages strikes an effective balance between convergence speed and training stability.

Guidance Strength. As shown in Figure 10, the guidance parameter β also governs a trade-off
between stability and convergence speed. We find that β near 1 performs stably and select β as 1 or
0.1 (for faster reward increase) in practice.

5 RELATED WORK

The transition of RL algorithms from discrete autoregressive (AR) to continuous diffusion models
poses a central challenge: the inherent difficulty of diffusion models for computing exact model
likelihoods (Song et al., 2021), which are nonetheless crucial for RL (Chen et al., 2023; Liu et al.,
2025). To address this challenge, existing efforts include:

Likelihood-free methods: (1) Reward Backpropagation (Xu et al., 2023; Prabhudesai et al., 2023;
Clark et al., 2023; Prabhudesai et al., 2024) proves highly effective, yet is limited to differentiable
rewards and can only tune low-noise timesteps due to memory costs and gradient explosion when
unrolling long denoising chains. (2) Reward-Weighted Regression (RWR) (Lee et al., 2023) is an
offline finetuning method but lacks a negative policy objective to penalize low-reward generations.
(3) Policy Guidance. This includes energy guidance (Janner et al., 2022; Lu et al., 2023) and CFG-
style guidance (Frans et al., 2025; Jin et al., 2025). These methods all require combining multiple
models for guided sampling, thus complicating online optimization. (4) Score-based RL. These
methods try to perform RL directly on the score rather than the likelihood field (Zhu et al., 2025).

Likelihood-based methods: (1) Diffusion-DPO (Wallace et al., 2024; Yang et al., 2024; Liang et al.,
2024; Yuan et al., 2024; Li et al., 2025a) adapts DPO to diffusion for paired human preference data
but requires additional likelihood and loss approximations compared to AR; DDO (Zheng et al.,
2025) uses high-quality dataset as positive signals and self-generated samples as negative signals to
avoid the requirement of paired data, achieving state-of-the-art CFG-free FIDs in visual generation,
while still relying on likelihood approximation for the diffusion case. (2) Policy gradient methods,
starting from PPO style (Black et al., 2023; Fan et al., 2023), decompose trajectory likelihoods step
by step without considering forward consistency. Recent GRPO extensions (Liu et al., 2025; Xue
et al., 2025) prove effective and scalable for diffusion RL, but they couple the training loss with
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SDE samplers and face efficiency bottlenecks. MixGRPO (Li et al., 2025b) improves efficiency by
mixing SDE and ODE, while issues of coupling and forward inconsistency remain.

6 CONCLUSION

We introduce Diffusion Negative-aware FineTuning (DiffusionNFT), a new paradigm for online
reinforcement learning of diffusion models that directly operates on the forward process. By formu-
lating policy improvement as a contrast between positive and negative generations, DiffusionNFT
integrates reinforcement signals seamlessly into the standard diffusion objective, eliminating the re-
liance on likelihood estimation and SDE-based reverse process. Empirically, DiffusionNFT demon-
strates strong and efficient reward optimization, achieving up to 25× higher efficiency than Flow-
GRPO while producing a single model that outperforms CFG baselines across diverse in-domain
and out-of-domain rewards. We believe this work represents a step toward unifying supervised and
reinforcement learning in diffusion, and highlights the forward process as a promising foundation
for scalable, efficient, and theoretically principled diffusion RL.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) solely as a writing assistant for language polishing and
improving clarity of presentation. The LLMs were not involved in research ideation, methodolog-
ical design, experimental execution, or result analysis. All scientific contributions and substantive
writing were carried out by the authors.
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A PROOF OF THEOREMS

Lemma A.1 (Distribution Split). Consider the distribution triplet π+, π−, and πold, as defined in
Section 3.1:

π+(x0|c) := πold(x0|o = 1, c) =
p(o = 1|x0, c)π

old(x0|c)
pπold(o = 1|c)

=
r(x0, c)

pπold(o = 1|c)
πold(x0|c) (7)

π−(x0|c) := πold(x0|o = 0, c) =
p(o = 0|x0, c)π

old(x0|c)
pπold(o = 0|c)

=
1− r(x0, c)

1− pπold(o = 1|c)
πold(x0|c)

(8)
πold(x0|c) is as a linear combination between its positive split π+(x0|c) and negative split
π−(x0|c):

πold(x0|c) = pπold(o = 1|c)π+(x0|c) + [1− pπold(o = 1|c)]π−(x0|c) (9)

Proof. The result follows directly from Eq.(7) and Eq.(8).

Lemma A.2 (Posterior Split). The diffusion posteriors for distribution triplet π+, π−, and πold

satisfy:
πold(x0|xt, c) = α(xt)π

+(x0|xt, c) + [1− α(xt)]π
−(x0|xt, c)

where α(xt) :=
π+
t (xt|c)

πold
t (xt|c)

Eπold(x0|c)r(x0, c)

Proof. Leveraging Bayes’ Rule:

πold(x0|c) =
πold
t (xt|c)πold

0|t(x0|xt, c)

π(xt|x0)

Replacing all distributions in Eq. (9) (Lemma A.1) we get

πold
t (xt|c)πold

0|t(x0|xt, c)

π(xt|x0)
=pπold(o = 1|c)

π+
t (xt|c)π+

0|t(x0|xt, c)

π(xt|x0)

+ [1− pπold(o = 1|c)]
π−
t (xt|c)π−

0|t(x0|xt, c)

π(xt|x0)

⇒ πold
0|t(x0|xt, c) =pπold(o = 1|c) π

+
t (xt|c)

πold
t (xt|c)

π+
0|t(x0|xt, c)

+ [1− pπold(o = 1|c)] π
−
t (xt|c)

πold
t (xt|c)

π−
0|t(x0|xt, c)

Diffuse both sides of Eq. (9), we have

πold
t (xt|c) = pπold(o = 1|c)π+

t (xt|c) + [1− pπold(o = 1|c)]π−
t (xt|c)

pπold(o = 1|c) π
+
t (xt|c)

πold
t (xt|c)

+ [1− pπold(o = 1|c)] π
−
t (xt|c)

πold
t (xt|c)

= 1

Note that
pπold(o = 1|c) = Eπold(x0|c)r(x0, c)

We have
πold
0|t(x0|xt, c) = α(xt)π

+
0|t(x0|xt, c) + [1− α(xt)]π

−
0|t(x0|xt, c)

Theorem A.3 (Improvement Direction). Consider diffusion models v+, v−, and vold for the dis-
tribution triplet π+, π−, and πold. The directional differences between these models are parallel:

∆ :=[1− α(xt)] [v
old(xt, c, t)− v−(xt, c, t)] (Reinforcement Guidance)

= α(xt) [v+(xt, c, t)− vold(xt, c, t)].

where 0 ≤ α(xt) ≤ 1 is a scalar coefficient:

α(xt) :=
π+
t (xt|c)

πold
t (xt|c)

Eπold(x0|c)r(x0, c)
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Proof. According to the relationship between the optimal velocity predictor and the posterior mean
of x0 (i.e., the optimal x0 predictor) (Zheng et al., 2023b):

vold(xt, c, t) = atxt + btEπold(x0|xt,c)[x0]

v+(xt, c, t) = atxt + btEπ+(x0|xt,c)[x0]

v−(xt, c, t) = atxt + btEπ=(x0|xt,c)[x0]

where at =
σ̇t

σt
, bt = α̇t − σ̇tαt

σt
. Based on Lemma A.2 we have

vold(xt, c, t) = α(xt)v
+(xt, c, t) + [1− α(xt)]v

−(xt, c, t)

Rearranging the equation, we complete the proof.

Theorem A.4 (Reinforcement Guidance Optimization). Consider the training objective:

L(θ) = Ec,πold(x0|c),t r∥v
+
θ (xt, c, t)− v∥22 + (1− r)∥v−

θ (xt, c, t)− v∥22, (10)

where v+
θ (xt, c, t) := (1− β)vold(xt, c, t) + βvθ(xt, c, t), (Implicit positive policy)

and v−
θ (xt, c, t) := (1 + β)vold(xt, c, t)− βvθ(xt, c, t). (Implicit negative policy)

Given unlimited data and model capacity, the optimal solution of Eq. (10) satisfies

vθ∗(xt, c, t) = vold(xt, c, t) +
2

β
∆(xt, c, t).

Proof.

L(θ) = Ec,t,πold
t (xt|c)πold

0|t(x0|xt,c) r(x0, c)∥v+
θ (xt, c, t)− v∥22 + [1− r(x0, c)]∥v−

θ (xt, c, t)− v∥22
= Ec.t,πold

t (xt|c){Eπold
0|t(x0|xt,c)r(x0, c)∥v+

θ (xt, c, t)− v∥22
+ Eπold

0|t(x0|xt,c)[1− r(x0, c)]∥v−
θ (xt, c, t)− v∥22}

From Lemma A.1 we have r(x0, c)π
old(x0|c) = pπold(o = 1|c)π+(x0|c), therefore:

r(x0, c)π
old
0|t(x0|xt, c) = r(x0, c)

πold(x0|c)π(xt|x0)

πold
t (xt|c)

= pπold(o = 1|c) π
+
t (xt|c)

πold
t (xt|c)

π+(x0|c)π(xt|x0)

π+
t (xt|c)

= pπold(o = 1|c) π
+
t (xt|c)

πold
t (xt|c)

π+
0|t(x0|xt, c)

= α(xt)π
+
0|t(x0|xt, c)

Similarly,

[1− r(x0, c)]π
old
0|t(x0|xt, c) = [1− α(xt)]π

−
0|t(x0|xt, c)

Then,

L(θ) =Ec,t,πold
t (xt|c){α(xt)Eπ+

0|t(x0|xt,c)
∥v+

θ (xt, c, t)− v∥22

+ [1− α(xt)]Eπ−
0|t(x0|xt,c)

∥v−
θ (xt, c, t)− v∥22}

=Ec,t,πold
t (xt|c){α(xt)∥v+

θ (xt, c, t)− Eπ+
0|t(x0|xt,c)

[v]∥22

+ [1− α(xt)]∥v−
θ (xt, c, t)− Eπ−

0|t(x0|xt,c)
[v]∥22}+ C1

=Ec,t,πold
t (xt|c){α(xt)∥v+

θ (xt, c, t)− v+(xt, c, t)∥22
+ [1− α(xt)]∥v−

θ (xt, c, t)− v−(xt, c, t)∥22}+ C1
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Combining Theorem A.3, we observe that

v+
θ (xt, c, t)− v+(xt, c, t) = (1− β)vold(xt, c, t) + βvθ(xt, c, t)− v+(xt, c, t)

= β[vθ − vold − 1

β

∆

α(xt)
]

v−
θ (xt, c, t)− v−(xt, c, t) = (1 + β)vold(xt, c, t)− βvθ(xt, c, t)− v−(xt, c, t)

= −β[vθ − vold − 1

β

∆

1− α(xt)
]

Substituting these results into L(θ):

L(θ) =Ec,t,πold
t (xt|c){α(xt)β

2∥vθ − vold − 1

β

∆

α(xt)
∥22

+ [1− α(xt)]β
2∥vθ − vold − 1

β

∆

1− α(xt)
∥22}+ C1

=β2Ec,t,πold
t (xt|c){α(xt)∥vθ − (vold +

1

β

∆

α(xt)
)∥22

+ [1− α(xt)]∥vθ − (vold +
1

β

∆

1− α(xt)
)∥22}+ C1

=β2Ec,t,πold(xt|c)∥vθ − α(xt)(v
old +

1

β

∆

α(xt)
)− [1− α(xt)](v

old +
1

β

∆

1− α(xt)
)∥22 + C2

=β2Ec,t,πold(xt|c)∥vθ − (vold +
2

β
∆)∥22 + C2

from which it is obvious that the optimal θ∗ satisfies vθ∗(xt, c, t) = vold(xt, c, t) +
2
β∆(xt, c, t).

B THEORETICAL DISCUSSIONS

B.1 FLOW SDE

As flow models are a special case of diffusion models under the rectified schedule αt = 1−t, σt = t,
the earliest results on diffusion SDEs (Song et al., 2020b) can be directly applied without difficulty.
FlowGRPO (Liu et al., 2025) and DanceGRPO (Xue et al., 2025) derive the flow SDE with unex-
plained hyperparameters gt = a

√
t

1−t or additional complexity. We provide a simpler and more
principled perspective based solely on the diffusion model framework.

To leverage the diffusion SDE formulation in Song et al. (2020b), we need to match its forward SDE
dxt = f(t)xtdt + g(t)dwt with the forward transition kernel xt = αtx0 + σtϵ. As noted in the
first two arXiv versions of the VDM paper (Kingma et al., 2021), f(t), g(t) are related to αt, σt by
f(t) = d logαt

dt , g2(t) = dσ2
t

dt − 2d logαt

dt σ2
t . Setting αt = 1− t, σt = t, we have

f(t) = − 1

1− t
, g2(t) =

2t

1− t
(11)

for rectified flow. According to (Huang et al., 2021), the generalized reverse SDE takes the form:

dxt =

[
f(t)xt −

1 + λ2
t

2
g2(t)∇xt

log πt(xt)

]
dt+ λtg(t)dw̄t (12)

where λt ∈ [0, 1]. Equivalently, it amounts to introducing Langevin dynamics on top of the diffusion
ODE, with λt = 0 corresponding to ODE, and λt = 1 corresponding to the maximum variance SDE
in Song et al. (2020b). The score function sθ(xt, t) ≈ ∇xt

log πt(xt), noise predictor ϵθ(xt, t),
data predictor xθ(xt, t) and velocity predictor vθ(xt, t) are interconvertible under general noise
schedules (Zheng et al., 2023b):

ϵθ(xt, t) = −σtsθ(xt, t), xθ(xt, t) =
xt − σtϵθ(xt, t)

αt
, vθ(xt, t) = α̇txθ(xt, t)+σ̇tϵθ(xt, t)

(13)
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Applying these relations to the rectified flow schedule, we can derive:

sθ(xt, t) = −
xt + (1− t)vθ(xt, t)

t
(14)

Substituting Eq. (11) and Eq. (14) into Eq. (12), we have the diffusion SDE under rectified flow:

dxt =

[
(1 + λ2

t )vθ(xt, t) +
λ2
t

1− t
xt

]
dt+ λt

√
2t

1− t
dw (15)

Therefore, the flow SDE in Eq. (2) is essentially conducting a transformation gt = λt

√
2t
1−t from the

interpolation parameter λt ∈ [0, 1] to the variance parameter gt. This also explains the choice gt =

a
√

t
1−t in FlowGRPO, where a =

√
2λt is a scaled version of λt, with a =

√
2 corresponding to the

maximum variance SDE. In comparison, DanceGRPO adopts a fixed variance gt across timesteps,
which is less effective on image models while more stable on video models.

FlowGRPO and DanceGRPO directly take the Euler discretization of the flow SDE. In principle,
there are more accurate ways, such as utilizing the idea of diffusion implicit models (Song et al.,
2020a; Zheng et al., 2024), which is equivalent to the first-order discretization after applying expo-
nential integrators (Hochbruck & Ostermann, 2010; Zhang & Chen, 2022; Gonzalez et al., 2023).
Specifically, the sampling step from t to s < t can be derived as:

xs =

[
(1− s) +

√
s2 − ρ2t

]
xt −

[
(1− s)t−

√
s2 − ρ2t (1− t)

]
vθ(xt, t) + ρtϵ, ϵ ∼ N (0, I)

(16)

where ρt = ηts
√
1− s2(1−t)2

t2(1−s)2 , and ηt ∈ [0, 1] interpolates between ODE and maximum variance
SDE. Compared to the Euler discretization, the DDIM-style discretization avoids singularities at
boundaries and is expected to reduce sampling errors. However, we did not observe notable advan-
tages by replacing the SDE sampler with stochastic DDIM. Concurrent work (Wang & Yu, 2025)
improves the SDE sampler through the Coefficients-Preserving Sampling (CPS) principle.

B.2 HIGH-ORDER FLOW ODE SAMPLER

We implement the 2nd-order ODE sampler for flow models based on the DPM-Solver series (Lu
et al., 2022a;b; Zheng et al., 2023a), which uses the multistep method and half the log signal-to-noise
ratio (SNR) λt = log(αt/σt) for time discretization. Specifically, for three consecutive timesteps
ti < ti−1 < ti−2, where xti−1 ,xti−2 are already obtained, the update rule for xti is:

xti =
σti

σti−1

xti−1
− αti(e

−hi − 1)

[(
1 +

1

2ri

)
xθ(xti−1

, ti−1)−
1

2ri
xθ(xti−2

, ti−2)

]
(17)

where hi = λti − λti−1
, ri =

hi−1

hi
, and the data predictor xθ = xt − tvθ for rectified flow. High-

order solvers are also adopted in MixGRPO (Li et al., 2025b) but only for certain steps. Adopting
the 2nd-order solver throughout the entire sampling process is infeasible, as λt will be infinity at
boundaries t = 0 or t = 1. Following common practices, the first and last steps degrade to the
first-order solver, which is the default Euler discretization for flow models.

B.3 INTUITION BEHIND THE FLOWGRPO OBJECTIVE

We provide some insight into reverse-process diffusion RL by inspecting the FlowGRPO objective
in a sampler-agnostic manner. For any first-order SDE sampler, the reverse sampling step from t to
s < t can be expressed as

xs = l(s, t)xt −m(s, t)vθ(xt, t) + n(s, t)ϵ, ϵ ∼ N (0, I) (18)

where l(s, t),m(s, t), n(s, t) depend only on s, t and the sampler. Consider the on-policy case and
the branching strategy in MixGRPO. Starting from a shared xt, a group of N noises ϵ(1), . . . , ϵ(N)

are sampled and incorporated into the reverse step to produce multiple samples x
(1)
s , . . . ,x

(N)
s .

17



Published as a conference paper at ICLR 2026

They go through further sampling, yielding N clean samples and corresponding advantages
A(1), . . . , A(N). On-policy GRPO minimizes the negative advantage-weighted log likelihoods:

L(θ) = − 1

N

N∑
i=1

A(i) log pθ(x
(i)
s |xt) (19)

where

log pθ(x
(i)
s |xt) = −

∥x(i)
s − (l(s, t)xt −m(s, t)vθ(xt, t))∥22

2n2(s, t)
+ C

= −
∥m(s, t)vθ(xt, t)−m(s, t)vsg(θ)(xt, t) + n(s, t)ϵ(i)∥22

2n2(s, t)
+ C

(20)

sg emerges because the samples x(1)
s , . . . ,x

(N)
s are gradient-free. The gradient of the reverse-step

log likelihood w.r.t. θ can be surprisingly reduced to a simple form:

∇θ log pθ(x
(i)
s |xt) = −

m(s, t)

n(s, t)
∇θ((ϵ

(i))⊤vθ(xt, t)) (21)

and

∇θL(θ) =
m(s, t)

n(s, t)
∇θ

[
1

N

N∑
i=1

(A(i)ϵ(i))⊤vθ(xt, t)

]
(22)

Therefore, FlowGRPO essentially aligns the velocity field with the advantage-weighted noise, while
the choice of timesteps and sampler only influences the weighting m(s,t)

n(s,t) across sampling steps. In
the following, we show a further conclusion that FlowGRPO can be viewed as a gradient estimation
of reward backpropagation.

Denote rt(xt) as the implicit gradient-free function that solves the PF-ODE from t to 0 and fetches
the reward on the cleaned sample. The rewards can be expressed as

r(i) = rs

(
l(s, t)xt −m(s, t)vθ(xt, t) + n(s, t)ϵ(i)

)
(23)

According to Stein’s identity, we have

1

N

N∑
i=1

r(i)ϵ(i) ≈ Eϵ∼N (0,I) [rs (l(s, t)xt −m(s, t)vθ(xt, t) + n(s, t)ϵ) ϵ]

= n(s, t)Eϵ∼N (0,I) [∇rs (l(s, t)xt −m(s, t)vθ(xt, t) + n(s, t)ϵ)]

(24)

Therefore,

∇θ

[
1

N

N∑
i=1

(A(i)ϵ(i))⊤vθ(xt, t)

]

≈n(s, t)

σ
Eϵ∼N (0,I) [∇rs (l(s, t)xt −m(s, t)vθ(xt, t) + n(s, t)ϵ)∇θvθ(xt, t)]

=− n(s, t)

m(s, t)σ
Eϵ∼N (0,I) [∇θrs (l(s, t)xt −m(s, t)vθ(xt, t) + n(s, t)ϵ)]

(25)

where σ is the global std used in GRPO normalization. Therefore, the GRPO loss gradient is

∇θL(θ) ≈ −
1

σ
Eϵ∼N (0,I) [∇θrs (l(s, t)xt −m(s, t)vθ(xt, t) + n(s, t)ϵ)] (26)

From the above gradient, GRPO optimizes the reverse transition t → s when the remaining tra-
jectory s → 0 is gradient-free. Compared to works like ReFL (Xu et al., 2023), which conduct
direct gradient backpropagation and approximate s→ 0 with a single forward pass (x0-prediction),
GRPO introduces higher estimation variance but avoids backpropagation through the s→ 0 process,
allowing larger s and a longer sampling chain for s→ 0.
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C EXPERIMENT DETAILS

Training Configurations. Our setup largely follows FlowGRPO, adopting the same number of
groups per epoch (48), group size (24), LoRA configuration (α = 64, r = 32), and learning rate
(3e − 4). For each collected clean image, forward noising and loss computation are performed
exactly on the corresponding sampling timesteps. We employ a 2nd-order ODE sampler for data
collection and enable adaptive time weighting by default.

Single-Reward. For a head-to-head comparison with FlowGRPO under single-reward settings, we
fix the number of sampling steps to 10 to ensure fairness. By default, we set β = 1 and ηi =
min(0.001i, 0.5), which work stably for most reward models. In the case of OCR, the reward
rapidly approaches 1 within 100 iterations but suffers from instability. To address this, we adopt a
more conservative soft-update strategy with ηmax = 0.999.

Multi-Reward. To comprehensively improve the base model across multiple rewards, we adopt a
multi-stage training scheme. The training setup involves three categories of rewards and datasets:
(1) PickScore, CLIPScore, and HPSv2.1 rewards on the Pick-a-Pic dataset; (2) GenEval reward with
the three rewards above on the GenEval dataset; and (3) OCR reward with the three rewards above on
the OCR dataset. Since the initial CFG-free generation is of low quality, we first train on (1) for 800
iterations to enhance image quality, followed by (2) for 300 iterations, (1) for 200 iterations, (2) for
200 iterations, and finally (3) for 100 iterations. All rewards are equally weighted, with PickScore
divided by 26 for normalization to [0, 1]. By default, we use β = 0.1 and ηi = min(0.001i, 0.5),
while setting ηmax = 0.95 for OCR to stabilize training. The number of sampling steps is fixed to
40 to ensure high-fidelity data collection.

D ADDITIONAL RESULTS

Table 2: Evaluation results of FlowGRPO and DiffusionNFT trained on single rewards, both ini-
tialized from CFG-free base model. Gray-colored: In-domain reward. We observe that training
exclusively on the OCR reward impairs generalization to other metrics; to compensate this, we en-
able CFG when evaluating non-OCR rewards for OCR-trained models.

Model #Iter Rule-Based Model-Based

GenEval OCR PickScore ClipScore HPSv2.1 Aesthetic ImgRwd UniRwd

SD3.5-M (w/o CFG) — 0.24 0.12 20.51 0.237 0.204 5.13 -0.58 2.02
+ CFG — 0.63 0.59 22.34 0.285 0.279 5.36 0.85 3.03
+ FlowGRPO 4k 0.97 0.30 21.78 0.277 0.248 5.15 0.74 2.87

1k 0.66 0.96 21.94 0.280 0.257 5.18 0.31 2.86
4k 0.54 0.60 23.62 0.257 0.295 6.42 1.17 3.17

+ Ours 1k 0.98 0.36 21.92 0.271 0.251 5.33 0.68 2.91
150 0.54 0.97 21.63 0.281 0.246 5.19 0.37 2.81
2k 0.53 0.64 24.03 0.270 0.315 6.17 1.29 3.40

We provide more qualitative comparison between the base model, FlowGRPO and our multi-reward
optimized model in Figure 11, Figure 12 and Figure 13.
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SD3.5-M

(w/ CFG)

a photo of a red dog

SD3.5-M

(w/o CFG)

+FlowGRPO

(w/ CFG)

+DiffusionNFT

(w/o CFG)

a photo of a tie above a sink

a photo of a toothbrush below a pizza

a photo of a black potted plant and a yellow toilet

a photo of a brown hot dog and a purple pizza

Figure 11: Qualitative comparison between FlowGRPO and our model on GenEval prompts.
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A close-up of a medicine bottle with a prominent warning label that reads "Consult Doctor", set against a 
neutral background, emphasizing the clarity and visibility of the text.

SD3.5-M

(w/o CFG)

A courtroom scene with a judge's gavel resting on a wooden plaque that reads "Order in the Court", set 
against the backdrop of a quiet, solemn courtroom.

A realistic photo of a tech campus courtyard at night, featuring a glowing "AI Training Zone" hologram 
floating in the center, surrounded by futuristic buildings and greenery, with soft ambient lighting enhancing 

the futuristic atmosphere.

An antique typewriter with a sheet of paper inserted, prominently displaying the typed words: "Chapter 1 It 
Was a Dark Night". The scene is set in a dimly lit, vintage study with a single desk lamp casting a warm glow 

over the typewriter.

A vibrant beach scene featuring a colorful towel with the phrase "Life's a Beach 2024" prominently displayed, 
surrounded by seashells, sunglasses, and a flip-flop, set against a backdrop of clear blue water and golden sand.

SD3.5-M

(w/ CFG)

+FlowGRPO

(w/ CFG)

+DiffusionNFT

(w/o CFG)

Figure 12: Qualitative comparison between FlowGRPO and our model on OCR prompts.
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A wine glass on top of a dog.

SD3.5-M

(w/o CFG)

A baby fennec sneezing onto a strawberry, detailed, macro, studio light, droplets, backlit ears.

A storefront with 'NeurIPS' written on it.

A large keyboard musical instrument with a wooden case enclosing a soundboard and metal strings, which are 
struck by hammers when the keys are depressed. The strings' vibration is stopped by dampers when the keys 

are released and can be regulated for length and volume by two or three pedals.

A side view of an owl sitting in a field.

SD3.5-M

(w/ CFG)

+FlowGRPO

(w/ CFG)

+DiffusionNFT

(w/o CFG)

Figure 13: Qualitative comparison between FlowGRPO and our model on DrawBench prompts.
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