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ABSTRACT

Scaling multi-agent reinforcement learning (MARL) requires both scalability to
large swarms and flexibility across varying population sizes. A promising ap-
proach is mean-field reinforcement learning (MFRL), which approximates agent
interactions via population averages to mitigate state-action explosion. However,
this approximation has limited representational capacity, restricting its effective-
ness in truly large-scale settings. In this work, we introduce Scalable Kernel
MeAn-Field Multi-Agent Reinforcement Learning (SKARL), which lifts this bot-
tleneck by embedding agent interactions into a reproducing kernel Hilbert space
(RKHS). This kernel mean embedding provides a richer, size-agnostic represen-
tation that enables scaling across swarm sizes without retraining or architectural
changes. Furthermore, a cylindrical kernel function is introduced to ensure univer-
sal approximation over functional space. For efficiency, we design an implemen-
tation based on functional gradient updates with Nyström approximations, which
makes kernelized mean-field learning computationally tracable. From the theoret-
ical side, we establish convergence guarantees for both the kernel functionals and
the overall SKARL algorithm. Empirically, SKARL trained with 64 agents gen-
eralizes seamlessly to deployments ranging from 4 to 256 agents, outperforming
MARL baselines.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) has achieved remarkable progress in domains such as
multi-robot coordination (Vinyals et al., 2019; Berner et al., 2019). However, scaling MARL to
large populations remains a fundamental challenge (Du et al., 2023). As the number of agents in-
creases, the joint state–action space grows exponentially, and interaction dynamics become increas-
ingly complex. This induces a curse of dimensionality that makes conventional learning unstable
and inefficient (Tan, 1993; Tampuu et al., 2015). Moreover, most existing MARL methods lack
population scalability: policies trained with one swarm size often fail to generalize to other scales in
zero-shot. These limitations naturally raise the question: How can we design MARL algorithms that
scale efficiently to hundreds of agents while generalizing seamlessly to unseen population sizes?

A promising direction is the use of mean-field approximations (Caines et al., 2006; Lasry & Lions,
2007). By summarizing agent interactions through a population distribution, mean-field MARL
(MFRL) (Yang et al., 2018) avoids exponential complexity growth and exploits the permutation
invariance of homogeneous swarms. Prior work has demonstrated the feasibility of mean-field
methods in large-scale settings (Angiuli et al., 2021; Gu et al., 2025). However, how to design a
universally effective way to represent the population distribution remain a bottleneck. Traditional
distribution representation paradigms in the field of mean-field mainly fall into two categories. The
first method employs spatial discretization techniques such as histograms (Carmona et al., 2019)
and ϵ-net (Gu et al., 2021), which preserve distributional information with theoretical guarantee but
suffer from the curse of dimensionality in high-dimensional spaces, as the number of discrete units
grows exponentially with state dimensions. The second relies on statistical moments, ranging from
first-order means (Yang et al., 2018) to higher-order statistics (Pham & Warin, 2023). This paradigm
adapts well to high-dimensional state spaces as moment calculations avoid explicit space partition-
ing, but the representational capacity is limited, as the conflation of distinct distributions and lack of
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critical structural details like multi-modality. As a result, current mean-field approaches still struggle
to achieve scalability when applied to sufficiently large populations.

In recent years, kernel-based methods have emerged as the third direction for distribution represen-
tation (Wang et al., 2020b; Liu et al., 2020; Cui et al., 2023; Fiedler et al., 2023; 2025), aiming to
combine the scalability of moment-based methods with the expressiveness of discretization-based
approaches. In the context of mean-field systems, these methods leverage kernel functions (e.g. ra-
dial basis function kernel) to embed population distributions into high-dimensional feature spaces,
transforming distribution-level interactions into tractable feature operations (Wang et al., 2020b; Liu
et al., 2020; Cui et al., 2023). Nevertheless, existing kernel-based methods rely on fixed kernel func-
tions or constrained feature structures, failing to guarantee that their representation space can fully
span all possible population distributions, especially when agent number tends to larger. This in-
completeness in representational coverage may lead to missed critical distributional characteristics,
ultimately restricting the scalibility performance.

To address this problem, we introduce Scalable Kernel MeAn-Field Multi-Agent Reinforcement
Learning (SKARL), a novel approach that integrates mean-field learning with reproducing kernel
Hilbert space (RKHS) representations to achieve both scalability and flexibility. Unlike traditional
kernel methods constrained by fixed structures, SKARL employs kernel mean embeddings to map
the entire population distribution into the RKHS, capturing intrinsic structural details (e.g., multi-
modality) in a size-agnostic manner. Furthermore, to ensure the global approximation, we model
the Q-function for individual agent as a cylindrical kernel functional, inspired by Guo et al. (2023),
and derive functional gradient updates under a dual time-scale learning scheme. To ensure compu-
tational efficiency in large populations, we employ Nyström approximations to project functional
updates onto low-dimensional subspaces (Williams & Seeger, 2000). Our framework offers both
theoretical and empirical benefits. We prove that cylindrical kernel functionals form a universal ap-
proximator over distribution spaces, ensuring expressiveness, and establish that the resulting value
functions are Wasserstein-Lipschitz continuous, providing robustness to distributional shifts. Cru-
cially, by representing the swarm as a distribution rather than a fixed-size set, our method naturally
supports population flexibility to 4 times larger agent size in deployment compared with training
phase. Empirically, SKARL achieves superior performance on large-scale cooperative tasks, consis-
tently outperforming MARL baselines with and without mean-field techniques in cumulative reward
and training stability.

In summary, our contributions are as follows:

• We propose the SKARL, a novel MARL framework that integrates RKHS distribution
embedding with mean-field multi-agent reinforcement learning, providing a size-agnostic,
distribution-level representation beyond moments and fixed kernel embedding representa-
tions.

• We model individual Q-functions as cylindrical kernel functionals over the embedded pop-
ulation distribution, significantly enhancing expressive capacity compared with traditional
parametric critics.

• We develop a functional gradient algorithm for cylindrical kernel functionals, along with a
dual time-scale learning rule and Nyström approximations for efficiency. Theoretically, we
prove universal approximation and establish Wasserstein-Lipschitz continuity of the value
functions.

• Through extensive experiments on large-scale benchmarks, we demonstrate that SKARL
generalizes seamlessly across population sizes and achieves significant improvements over
MARL baselines in both performance and stability.

2 PRELIMINARIES

2.1 MULTI-AGENT STOCHASTIC GAME

We consider an episodic mean-field reinforcement learning game with a fixed number of agents
N ∈ N. Such a game is defined by the tuple

〈
SN ,AN , P, (ri)Ni=1, γ

〉
, where SN = S1× · · · × SN

denotes the joint state space: a vector s = (s1, . . . , sN ) collects the local state si ∈ Si of each agent.
Similarly, the joint action space is AN = A1 × · · · × AN , where a joint action a = (a1, . . . , aN )
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consists of local actions ai ∈ Ai. In the homogeneous setting, agents share the same state and action
spaces, i.e., S = S1 = · · · = SN and A = A1 = · · · = AN . System dynamics are governed by a
stochastic kernel P : SN × AN → P(SN ), where P(SN ) denotes the set of probability measures
over SN . Each agent receives an instantaneous reward ri(s, a) = r(si, ai), which couples individual
behavior with the global population. Finally, 0 < γ < 1 is the discount factor weighting future
returns. The objective is to learn a joint policy π = (π1, . . . , πN ), where each πi : S → P(A), that
maximizes for every agent i the expected discounted return

J i(π) = Es0∼d0, P, π

[T−1∑
t=0

γt ri(st, at)
]
,

with the expectation taken over the initial state distribution d0, the transition kernel P , and the
stochastic choices of the joint policy π.

2.2 MEAN FIELD REINFORCEMENT LEARNING

In multi-agent reinforcement learning with N agents, the Q-function of agent i depends on the
joint action a = (a1, . . . , aN ), where each aj is represented by a one-hot vector. This leads to
an exponential blow-up of the action space, a manifestation of the curse of dimensionality. Mean-
field reinforcement learning (MFRL) (Yang et al., 2018) addresses this by approximating pairwise
interactions through a mean-field term. Specifically, the Q-function of agent i is written as

Qi(s,a) =
1

Ni

∑
j∈N i

Qi(s, ai, aj) ≈ Qi
(
s, ai, ā−i

)
,

where ā−i := 1
Ni

∑
j∈N i aj denotes the empirical mean action of agent i’s neighbors N i with size

Ni. This induces a dynamical system in which each agent responds to the mean-field action via a
softmax policy as πi

t(· | s) = softmax
(
−βQi

t(s, ·, ā−i
t )
)
, where the softmax is taken over all a ∈ A.

For continuous action spaces, the mean-field action is modeled as a distribution on the 2-Wasserstein
space P2(A) (Guo & Xu, 2019):

ν−i =
1

Ni

Ni∑
j=1

δaj ,

where δaj is the Dirac measure at action aj . If the pairwise Q-function is twice Lions-differentiable
with respect to the mean-field action µaj

, the Lions–Taylor expansion yields (Tang et al., 2024)

Qi(s,a) ≈ Q̄i(s, ai, µ−i) +
1

Ni

Ni∑
j=1

∂νQ̄
i(s, ai, µ−i)[aj ] · (āi − aj), (1)

where Q̄i(s, ai, δaj ) is the Q-function lifted to the Wasserstein space, āi = 1
Ni

∑
j a

j is the mean
neighbor action, and ∂νQ̄

i(s, ai, µ−i)[·] : A → A is the Lions derivative such that for any sequence
{νn} ⊂ P(A) with the norm-2 Wasserstein distance converges to 0, when n → 0, it always hold
that

Q(s, ai, νn)−Q(s, ai, ν)−
∫
A2 ∂νQ(s, ai, ν)(x) · (y − x)π(dx, dy)

W2
2 (νn, ν)

→ 0,

where πn ⊂ P2(A×A) denotes the optimal plan between νn and ν.

2.3 RKHS AND KERNEL MEAN EMBEDDING IN MFRL

In recent years, kernel-based methods have been successfully integrated into MFRL to enhance the
expressiveness and scalability of value functions and policies. A key tool for this integration is the
RKHS, which provides a nonparametric framework for representing distributions over agent states
(). An RKHS (Hk) over the domain (X ) is a Hilbert space of functions (g : X → R) associated with
a symmetric positive-definite kernel (k : X × X → R). The defining property of an RKHS is the
reproducing identity (Muandet et al., 2017):

g(x) = ⟨g, k(x, ·)⟩Hk
=

∫
X
g(x′)k(x, x′), dx′. (2)

3
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Figure 1: Overview of the SKARL framework. Agent interactions are embedded into RKHS via
kernel mean embeddings and evaluated through kernel cylindrical functions to approximate mean-
field Q-values. Updates are performed with temporal-difference learning and Nyström projection
for scalability and efficiency.

In the context of MFRL, the kernel mean embedding (KME) method is used to represent the distri-
bution of agents in a high-dimensional feature space. For any distribution P over (X ), its embedding
is defined as:

µP(·) := EX∼P[k(·, X)] =

∫
X
k(·, x), dP(x), (3)

which is a mapping from the distribution to an element of the RKHS. This embedding preserves
expectations, such that for any function g ∈ Hk, the expected value of g(X) under the distribution
P is given by the inner product in Hk as EX∼P[g(X)] = ⟨g, µP⟩Hk

. This allows the representation
of the entire mean-field distribution of agents as a single element in the RKHS, facilitating efficient
computation and flexible modeling of the agent population’s behavior.

3 THE SKARL FRAMEWORK

This section presents the derivation of SKARL within the Reproducing Kernel Hilbert Space
(RKHS), as is shown in Figure. 1. In this work, we aim to design a population representation for
MFRL that is both expressive and scalable. Classical spatial discretization methods provide theoret-
ical guarantees but suffer from the curse of dimensionality, as the number of cells explodes with the
state dimension, making them unsuitable for large-scale RL (Carmona et al., 2019; Gu et al., 2021)
Moment-based approaches alleviate this by summarizing populations via first-order means (Yang
et al., 2018) or a few higher-order statistics Pham & Warin (2023), yet they fundamentally discard
fine-grained distributional structure and struggle to capture complex agent interactions. More recent
kernel-based methods strike a middle ground between these two extremes, but typically rely on fixed
kernels or rigid feature parameterizations, which do not guarantee that all relevant population dis-
tributions can be well approximated (Cui et al., 2023) Motivated by these limitations, we build our
framework on KME to represent populations in a high-dimensional RKHS, and further introduce a
cylindrical kernel functional that endows the representation with global approximation capabilities
over the space of mean-field distributions.

3.1 KERNEL MEAN EMBEDDING REPRESENTATION OF MEAN-FIELD Q-FUNCTIONS

Mean-Field Embedding via KME The mean-field measure is embedded via empirical KME:

µd
ν−i =

1

Ni

Ni∑
j=1

kd(xj , ·),

where xj is the latent embedding of neighbor (sj , aj).

4
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Kernel Cylindrical Representation of Pairwise Interactions. Mean-field Q-functions are func-
tionals of probability measures over neighbor actions. To approximate such distributional function-
als in a principled and expressive way, we introduce kernel cylindrical functions, inspired by work
of Guo et al. (2023), which provide universal approximations within RKHS. Formally, for any con-
tinuous functional f : P(M)→ R with bounded Lions derivatives, we approximate it by h(ν) with
definition as

h(ν) := h
(
⟨g1, µ1

ν⟩Hk
, . . . , ⟨gD, µD

ν ⟩Hk

)
, (4)

where each gd(·) = k(xd, ·) is a kernel anchored at xd ∈ M, µd
ν denotes the empirical KME, and

h : RD → R is a polynomialfunction with parameters θh, with D denotes the number of used ker-
nels and d denotes the index of kernel. The inner products ⟨gd, µd

ν⟩Hk
=
∫
M gd(x) dν(x) serve as

kernel-based summaries of ν. Base on this function type, we develop the following theorem, imply-
ing that any smooth mean-field Q-function can be approximated arbitrarily well by such cylindrical
representations.

Theorem 3.1 (Density of Kernel Cylindrical Functions). Let P(M) be the space of Borel probabil-
ity measures over a compact manifoldM⊂ Rd. Define

GD(M) :=
{
h(µ) = h

(
⟨g1, µ⟩Hk

, . . . , ⟨gD, µ⟩Hk

) ∣∣h (polynomial), {gd}Dd=1 kernels
}
. (5)

Let C1,1(M) denote the space of Fréchet differentiable functions with Lipschitz derivatives. Then,
for any f ∈ C1,1(M) and any ϵ > 0, there exists h ∈ GD(M) such that |f(µ) − h(µ)| < ϵ for all
µ ∈ P(M), provided D is sufficiently large.

This directly yields a representation of the pairwise interaction in agent i’s Q-function:

Qi(si, ai, ν−i) = hsi,ai

(
⟨gi,1, µν−i⟩, . . . , ⟨gi,D, µν−i⟩

)
,

where hsi,ai(·) = h(si, ai, ·) : RD → R is differentiable with its parameters, and gi,d =∑M
m=1 α

d
mkd(xm, ·), with anchor points {xm}Mm=1 in latent space X and learnable weights {αd

m}.
The gradient of gi,d is ∇gi,d(x) =

∑
m αd

m∂xk
d(xm, x). To guaranty continuity, we assume Lips-

chitz continuity and boundedness of kernels.

Assumption 3.1 (Lipschitz Continuity and Boundedness). Each kernel gi,d is Lg-Lipschitz:

|gd(x)− gd(y)| ≤ Lg∥x− y∥2, ∀x, y ∈ X ,

and uniformly bounded: |k(x, y)| < ∞, ∀x, y ∈ X . Without loss of generality, assume
supx∈X |k(x, x)| ≤ 1.

The Lions derivative of a cylindrical function h(ν) is (Guo et al., 2023):

∂νh(ν)(x) =
D∑

d=1

∂dh(ν)∇gd(x),

where ∂dh denotes the derivative with respect to the d-th argument.

Local Value Function Approximation. Combining state-action embeddings, cylindrical func-
tionals, and mean-field embeddings yields a computational representation of the local Q-function.
Analogous to Eq. (1), we approximate

Qi(s,a) = hsi,ai

(
⟨gi,1, µν−i⟩, . . . , ⟨gi,D, µν−i⟩

)
+

D∑
d=1

∂dhsi,ai ⟨∇gi,d(x) ·∆x, ν−i⟩, (6)

where ∆x := x̄i − x and x̄i = 1
Ni

∑
j x

j . The first term captures mean-field interactions, while the
second encodes gradient corrections.

This representation integrates seamlessly with standard multi-agent value-decomposition methods
such as VDN (Sunehag et al., 2017), QMIX (Rashid et al., 2018), and QPLEX (Wang et al., 2020a).
Analogous constructions apply to the state-value function V i(s) and advantage function Ai(s,a).
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3.2 VALUE FUNCTION UPDATE WITH STORAGE EFFICIENCY

Updating Cylindrical Kernel Functions. The total value function Qtot is decomposed into agent-
wise functions Qi under the Individual Global Max (IGM) principle (Rashid et al., 2018) (See
Appendix E). To update Qi, we optimize the temporal-difference (TD) loss (Sutton, 1988)

ℓ(BQtot, Qtot) = Es,a,r,s′

[(
BQtot(s,a)−Qtot(s,a)

)2]
,

where B denotes the Bellman operator (Puterman, 1994), i.e.,

(BQtot)(s,a) = Es′

[
r(s,a) + γmax

a′
Qtot(s

′,a′)
]
.

Parameters are updated by gradient descent in two spaces. For the outer function h and RKHS
components {gi,d}, with learning rate ηth, η

t
g .

θt+1
h = θth − ηth

∂ℓ

∂Qtot
· ∂Qtot

∂Qi
· ∇hQ

i, gi,dt+1 = gi,dt − ηtg
∂ℓ

∂Qtot
· ∂Qtot

∂Qi
· ∇gi,dQi, (7)

where {gi,d} are updated via the Fréchet derivative.

Proposition 3.2 (Fréchet Derivative Form). The Fréchet derivative of Qi with respect to gi,d de-
composes as

∇gi,dQi =

(
∂dh+

∑
d′

∂2
dd′h ⟨∇gd

′
·∆x, ν−i⟩

)
µν−i︸ ︷︷ ︸

Mean interaction term

− ∂dh∇ · (ν−i∆x)︸ ︷︷ ︸
Divergence term

, (8)

where ∆x := x̄i − x. See Remark D.3 in the Appendix for the explicit form with Ni neighbors.

Nyström Approximation for Efficient Storage. The direct updates in Eq. (7) face two key
challenges: (i) the divergence term lies outside the RKHS (Remark D.3), and (ii) naive imple-
mentation requires storing O(NiT ) kernels per agent after T iterations, which is infeasible for
large swarms and long horizons. To address this, we apply the Nyström approximation, project-
ing updated functions onto a low-dimensional kernel subspace. Let the anchor set for gi,dt+1 be
{xn}Ni+M

n=1 := {xj}Ni
j=1 ∪ {xm}Mm=1, where {xm} are anchor points from gi,dt and {xj} are in-

puts from ν. We select a subset of landmark points {zl}Ll=1 ⊂ {xn}, spanning an L-dimensional
subspaceHL ⊂ H. The projection of gi,dt+1 ontoHL via Tikhonov regularization is:

g̃i,dt+1 = arg min
f∈HL

1

Ni +M

Ni+M∑
n=1

∥f(xn)− gi,dt+1(x
n)∥22 + λ∥f∥2H. (9)

By the representer theorem (Schölkopf & Smola, 2002), the solution takes the form
g̃i,dt+1 =

∑L
l=1 α

d
l k

d(zl, ·). Let Kd
LL := [kd(zl, zl

′
)]1≤l,l′≤L and Kd

Ni+M,L :=

[kd(xn, zl)]1≤n≤Ni+M,1≤l≤L. Then coefficients αd = [αd
1, . . . , α

d
L]

⊤ admit the closed-form so-
lution (Rudi et al., 2015):

αd =
(
K⊤

Ni+M,LKNi+M,L + λ(Ni +M)Kd
LL

)†
K⊤

Ni+M,Lb,

where b ∈ RNi+M with entries bn = ⟨k(xn, ·), gi,dt+1⟩Hk
. Here † denotes the Moore–Penrose

pseudoinverse. This reduces kernel storage from O(NiT ) to O(L) with L ≪ NiT . In our experi-
ments we use uniform sampling for landmark points {zl}; other selection strategies are discussed in
Remark D.5.

3.3 PROPOSED ALGORITHM

With the components mentioned above, the final proposed algorithm is summarized in Algorithm 1.

6
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Algorithm 1 Mean-Field Cylindrical Kernel Method
Input: Agent swarm size N , number of iterations M , trajectory batch size B, anchor points number
L, learning rate (ηh, ηg)

1: Initialize local Q function Qi with kernel functions {gi,d}Dd=1 ← 0 and outer function hi for
each agent; initialize trajectory set T .

2: for m = 1, . . . ,M do
3: while Sampling phase do
4: Sample trajectories using the current policy {πi}Ni=1 with environment, store in T .
5: end while
6: Sample B trajectories from T with length T for each trajectory.
7: Update the outer function h and {gi,dt } with Eq. (7).
8: Select new anchor points {xl}Ll=1 via methods in Remarks D.5.
9: Projection updated {gi,dt } to {g̃i,dt } via Eq. (9) and update Qi with {g̃i,dt }.

10: end for
11: return final local Q function Qi.

4 ANALYSIS OF PROPOSED SKARL

4.1 COMPUTATIONAL COMPLEXITY, SCALABILITY, AND FLEXIBILITY

We compare the computational complexity of SKARL with value decomposition methods (e.g.,
QMIX (Rashid et al., 2018)) and mean-field reinforcement learning (MFRL) (Yang et al., 2018)).
Table 1 summarizes the results.

Table 1: Comparison of computational complexity and key metrics. B: batch size; N : number of
agents; L: landmark points; D: number of kernel features.

Metric SKARL QMIX MFRL
Q Function Input Size O(|S|+ |A|+D) O(N |S|+N |A|) O(|S|+ |A|)
Computation Complexity O(B(L2N + L3)D) O(BN2) O(B)
Memory Usage O(DL) O(N) O(1)
Scalability in N Linear Exponential Linear

Q Function Input size. SKARL avoids the N |A| blow-up in QMIX by using kernel-based embed-
dings (Eq. 6), with L≪ N and D ≪ N . MFRL is even simpler, but lacks multi-scale coordination.

Computation. Complexity is dominated by kernel projections (Eq. 9), scaling with B, N , and
L. QMIX suffers O(N2) due to its mixing network, while MFRL requires only O(1) per agent.
When L grows with N (e.g., L ≈

√
N ), SKARL’s complexity approaches QMIX—this is the main

computational drawback.

Scalability. SKARL maintains linear dependence on N , unlike QMIX’s exponential scaling.

Flexibility. SKARL generalizes across swarm sizes. If trained with N agents and deployed with
M , the approximation error is bounded by O(N−1/d + M−1/d), where d is the dimension of the
state-action space.

Theorem 4.1 (Flexibility of Kernel Cylindrical Functions). Let νN , νM denote the empirical mean-
field distributions of swarms with N and M agents, sampled from the same distribution ν. Under
Assumption 3.1, for a cylindrical function h there exist constants C1, C2 > 0 such that

E
[
|h(νN )− h(νM )|

]
≤ C1N

−1/d + C2M
−1/d.

4.2 CONVERGENCE AND SUBOPTIMALITY

Convergence of Cylindrical Functions. The density result in Theorem 3.1 implies approximation
power. We now establish convergence rate with respect to the kernel number D.

7
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Theorem 4.2 (Convergence Rate). Under Assumption 3.1, let f̃(µν) = f(ν) be a functional de-
pending on the KME µν (Eq. 3). Then with probability at least 1− δ,

|h(ν)− f(ν)| ≤ sup
ν

∥∥∥∥∥ δf̃

δµν

∥∥∥∥∥
(√

1

D
+

√
2 log(1/δ)

D

)
.

Thus h converges to f at rate O(D−1/2).

Convergence of Updates. For the update rules in Eq. equation 7, convergence follows under Rob-
bins–Monro step-size conditions and two-time-scale separation (Borkar, 2008).
Assumption 4.1 (Robbins–Monro). Step sizes ηh and ηg satisfy

∑
t η = ∞,

∑
t η

2 < ∞, and
limt→∞ ηg/ηh = 0.

Theorem 4.3 (Convergence). Under Assumptions 3.1 and 4.1, the updates converge to (h∗, {gi,d,∗})
minimizing the Bellman TD loss.

4.3 ERROR OF NYSTRÖM APPROXIMATION

Although the Nyström method substantially reduces storage and computational cost, this method in-
evitably introduces approximation error. To ensure the reliability of SKARL, it is therefore essential
to quantify error of Nyström approximation. We measure the error of projection as

E(f) = ∥f − gi,dt+1∥L2 ,

for f ∈ H, where Lkf(x) = ⟨f, k(x, ·)⟩Hk
is the kernel integral operator (Eq. 2). Intuitively, E(f)

captures the deviation between the projected function and the ideal update.

To analyze this error, we introduce two standard conditions from statistical learning theory:
Assumption 4.2. Define the effective dimension N (λ) = tr((λI + Lk)

−1Lk). Assume there exists
a constant C0 > 0 independent of λ such that for any λ > 0, N (λ) ≤ C0λ

−γ , for some 0 < γ ≤ 1.

Assumption 4.3. There exists s ≥ 0, 1 ≤ R < ∞, such that ∥L−s
k fH∥H < R, where fH :=

argminf E(f).

Combining the Lipschitz continuity of kernel cylindrical functions (Assumption 3.1) with the above
spectral assumptions, we obtain the following finite-sample error bound.
Theorem 4.4 (Nyström Error Bound). Under Assumptions 3.1, 4.2, and 4.3, let δ ∈ (0, 1) and suffi-
ciently large Ni+M . With probability at least 1− δ, the excess error of the Nyström approximation
satisfies

E(g̃i,dt+1)−min
f∈H
E(f) ≤ Ck,γ

(
log

6

δ

)2

(Ni +M)
− 2v+1

2v+γ+1 ,

where v = min(s, 1/2), λ = ∥Lk∥(Ni + M)
− 1

2v+γ+1 , and L ≥ Cλ log
12
λδ . Constants Ck,γ , Cλ

depend only on the kernel family.

Theorem 4.4 shows that the Nyström approximation converges to the optimal RKHS projection
at a rate depending on both the eigenvalue decay γ and the smoothness parameter s. In practice,
this means that as the number of anchor points (Ni + M) grows, the approximation error shrinks
polynomially fast, and only a logarithmic number of landmark points L (relative to the effective
dimension) is needed to achieve near-optimal accuracy. This justifies the use of Nyström projection
in SKARL.

5 EXPERIMENTS AND RESULTS

5.1 EXPERIMENTAL SETUP

We evaluate our method following the work of Nayak et al. (2023), with four environments: (i)
Move: Each agent tries to move as fast as possible and avoid collisions. (ii) Target: Each agent tries
to reach the assigned goal and avoid collisions. (iii) Coverage: Each agent tries to go to a goal and

8
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Figure 2: Training results of SKARL and baselines across three environments (5 random seeds).

avoid collisions, and ensure no more than one agent reaching the same goal. (iv) Line: There are
two landmarks, and the agents try to position themselves equally spread out in a line between the
two. For detailed observation, reward and action design, please refer to the Appendix Environments.
We compare SKARL against several standard MARL algorithms: (i) QMIX (Rashid et al., 2018),
(ii) QPLEX (Wang et al., 2020a), (iii) MAPPO (Yu et al., 2022), (iv) MFRL (Yang et al., 2018),
and Fixed-Kernel MFRL (Cui et al., 2023). For detailed implementation of SKARL and baselines,
please refer to Appendix E. We report the test results with 100 max steps.1.

Table 2: Performance Comparison between SKARL and Baselines in Move Environment

Algorithm N = 4 N = 16 N = 64
R(↑) # col(↓) S(↑) R(↑) # col(↓) S(↑) R(↑) # col(↓) S(↑)

MAPPO 947.6 0.56± 0.174 0.16± 0.00779 3360.2 2.6± 1.12 0.14± 0.0562 14284.8 9.6± 6.98 0.15± 0.0459

QMIX 835.4 4.94± 4.94 0.15± 0.0431 2845.4 21.9± 12.7 0.13± 0.08517 10446.2 2.8± 1.00 0.11± 0.0732

QPLEX 911.4 0.56± 0.194 0.14± 0.0213 3625.8 20.5± 10.2 0.17± 0.0622 14073.8 22.5± 9.55 0.15± 0.0404

MFRL 734.6 0± 0 0.12± 0.0247 3083.69 38.4± 6.99 0.12± 0.0440 11411.1 204.2± 22.8 0.14± 0.0451

Fixed-Kernel 838.3 0± 0 0.14± 0.0143 3578.13 26.5± 3.52 0.15± 0.0172 13021.5 23.1± 10.8 0.15± 0.0722

SKARL 902.8 0± 0 0.15± 0.0192 3755.9 12.32± 5.847 0.17± 0.0500 14423.8 7.9± 5.37 0.15± 0.0334

Table 3: Performance Comparison between SKARL and Baselines in Target Environment

Algorithm N = 4 N = 16 N = 64
R(↑) T(↓) # col(↓) S%(↑) R(↑) T(↓) # col(↓) S%(↑) R(↑) T(↓) # col(↓) S%(↑)

MAPPO 327.3 0.14 2.6± 1.45 100 12 0.56 8.93± 5.87 40.6 0 1.00 0 0
QPLEX 330.3 0.18 1.3± 0.982 100 -3.1e4 1.00 4.92± 2.55 0 -1.9e5 1.00 19.8± 12.42 0
QMIX 337.0 0.14 0.67± 0.35 100 -5.1e4 1.00 6.6± 4.28 0 -6.4e5 1.00 41.6± 18.1 0

MFRL 330.8 0.14 6.4± 3.38 100 1.1 0.81 14.375± 10.28 31.2 -5.7e5 1.00 35.8± 15.1 0
Fixed-Kernel 350.8 0.14 5.6± 2.54 100 4.2 0.18 11.23± 8.12 80.2 10.2 0.97 26.7± 8.2 1.2

SKARL 329.3 0.18 7.2± 3.15 100 5.6 0.96 23.2± 20.5 100 44.75 0.98 44.3± 10.6 3.1

5.2 MAIN RESULTS

We report the experiment of main experiments on Move and Target environment with 5 random
seeds. For other experiments and ablation study, please refer to Appendix F.

Scale up to large-scale swarms Figure 2, Table 2 and Table 3 demonstrates SKARL’s effective-
ness across swarm sizes N = 4, 16, 64. We select three metrics: (i) R: global reward. (ii) # col:
total collisions. (iii) S: average speed of each agent. For small swarms, SKARL achieves near-
optimal reward while entirely eliminating collisions. As the swarm scales to large scale, SKARL
outperforms all baselines, achieving the highest reward and fastest speed, with low reduction rate
of collision. Notably, SKARL balances safety and efficiency, collisions decrease without sacrificing
speed, matching top baselines. These results highlight SKARL’s scalability, particularly excelling
in mid-to-large swarms where coordination complexity increases.

Generalize to different swarm sizes Table 4 and Table 5 reveals SKARL’s zero-shot flexibility
when tested on varying swarm sizes M . When trained on small swarm size, SKARL fails to maintain
reasonable performance up to M = 256. However, training on larger swarms (N = 16/64) enables
robust generalization. Most impressively, N = 64-trained SKARL achieves near-optimal reward

1Code at https://anonymous.4open.science/r/SKARL-050D, based on JaxMARL (Rutherford et al., 2023)
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Table 4: Zero-Shot Flexibility Performance of SKARL in Move Environment

Training Metric M = 4 M = 8 M = 16 M = 32 M = 64 M = 128 M = 256

N = 4
R/N 225.7 168.5 177.8 155.2 166.9 168.5 173.9

(# col)/N 0± 0 2.22± 1.18 1.36± 0.794 0.62± 0.419 0.25± 0.146 0.12± 0.0745 0.22± 0.0762

S 0.15± 0.0190 0.12± 0.0842 0.13± 0.085 0.12± 0.065 0.11± 0.0657 0.11± 0.0698 0.12± 0.0680

N = 16
R/N 236.9 235.2 234.7 235.2 225.4 205.6 202.6

(# col)/N 0± 0 0.98± 0.437 0.77± 0.365 0.57± 0.207 0.17± 0.115 0.12± 0.0652 0.04± 0.0221

S 0.16± 0.00434 0.17± 0.0612 0.17± 0.0500 0.17± 0.0469 0.15± 0.0323 0.14± 0.0521 0.14± 0.0542

N = 64
R/N 231.5 221.3 227.3 224 223.2 221.6 218.7

(# col)/N 0± 0 0.45± 0.408 0.28± 0.257 0.44± 0.275 0.15± 0.109 0.11± 0.0866 0.09± 0.0476

S 0.15± 0.0126 0.15± 0.0406 0.15± 0.0237 0.16± 0.0591 0.15± 0.0459 0.15± 0.0401 0.15± 0.0436

N = 256
R/N 279.1 278.2 263.2 261.5 252.4 237.4 220.8

(# col)/N 0± 0 0± 0 0.14± 0.235 0.28± 0.254 0.17± 0.315 0.13± 0.312 0.10± 0.451

S 0.17± 0.0723 0.17± 0.109 0.16± 0.124 0.16± 0.273 0.16± 0.301 0.16± 0.334 0.15± 0.356

Table 5: Flexibility Performance of SKARL in Target Environment

Training Metric M = 4 M = 8 M = 16 M = 32 M = 64 M = 128 M = 256

N = 4

R/N 82.3 -36.25 -444.0 -2.8e3 -9.0e3 -1.8e4 -3.7e4
T (step) 18 95 96.5 100 100 100 100

(# col)/N 0.5± 0.42 23± 14.0 37.6± 26.9 34.875± 11.34 46± 15.1 138± 18.9 342± 32.8

S% 100 37.5 6.25 0 0 0 0

N = 16

R/N 85.3 7.5 0.35 -2.4e3 -8.3e3 -1.7e3 -2.6e4
T (step) 17.4 13.8 96.3 98.5 99.4 100 100

(# col)/N 0.4± 0.13 19.25± 13.0 23.2± 20.5 34.875± 11.34 46± 15.1 75.5± 14.6 116± 21.1

S% 100 100 100 75 6.25 0 0

N = 64

R/N 84.0 77.3 69.8 10.8 0.70 -0.25 -10.5
T (step) 18.7 27.8 30.6 67.2 98.1 100 100

(# col)/N 0.5± 0.342 3± 2.35 6.7± 6.45 16.1± 5.83 44.3± 10.6 66.3± 15.2 96.8± 17

S% 100 100 93.75 75 12.5 0 0

N = 256

R/N 87.2 80.5 78.6 22.9 20.8 15.4 12.1
T (step) 18.6 22.2 28.5 30.4 32.8 45.1 60.2

(# col)/N 0± 0 0.5± 0.412 1.4± 0.24 5.7± 1.32 11.2± 5.2 12.1± 9.4 14.2± 10.5

S% 100 100 100 100 100 98.71 95.21

per agent at M = 256, while collisions remain the lowest. This flexibility stems from SKARL’s
distribution-driven policy as is in Theorem 4.1, enabling deployment in real-world scenarios where
swarm sizes are dynamic.

6 CONCLUSION

We propose SKARL, a scalable framework for large-scale multi-agent reinforcement learning.
SKARL resolves the scalability and flexibility bottlenecks of multi-agent reinforcement learning by
enabling linear complexity in swarm size and zero-shot transfer across populations. It ensures con-
vergence with efficient updates and drastically reduces training overhead, allowing effective learning
in large swarms. Experiments confirm that SKARL outperforms state-of-the-art baselines in both
performance and generalization. While our methods offers valuable insights into the representation
of mean-field, there are several limitations to consider. Our methods relies on the homogeneous
assumption, which limits the application to heterogeneous groups. In the future, we aim to improve
the design and extend to heterogeneous MARL problems.

7 ETHICS STATEMENT

This work introduces SKARL, a scalable kernel mean-field reinforcement learning framework for
large-scale multi-agent systems. Our contributions are primarily theoretical and methodological,
with empirical validation performed in simulated multi-agent environments such as swarm naviga-
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tion, coordination, and collision avoidance benchmarks. These environments are widely used in
the MARL community and do not involve human subjects, sensitive personal data, or proprietary
datasets.

We acknowledge that advances in multi-agent reinforcement learning (MARL) may have dual-use
implications. While our experiments are limited to academic and open-source benchmarks, similar
techniques could be applied in high-stakes domains such as autonomous vehicle fleets, aerial drone
swarms, or defense systems. In such settings, ethical concerns may include safety, accountability,
and fairness. To mitigate potential risks, our work remains focused on theoretical scalability and
generalization, and we refrain from proposing or testing direct real-world deployment scenarios.

From a fairness perspective, the algorithms studied here are agnostic to sensitive human attributes
and do not incorporate demographic information. From a privacy and security perspective, no per-
sonal or confidential information is processed. From a research integrity perspective, we strictly
adhere to reproducible and transparent reporting, with proofs, assumptions, and algorithms explic-
itly documented. Finally, we affirm that we have read and adhered to the ICLR Code of Ethics, and
have conducted this research in alignment with its principles.

8 REPRODUCIBILITY STATEMENT

We have undertaken comprehensive steps to ensure that the theoretical and empirical results reported
in this paper are reproducible. For the theoretical contributions, all assumptions are explicitly stated,
and full mathematical proofs are provided either in the main text or in the appendix. These proofs
establish the universal approximation property of kernel cylindrical functions and the convergence
of the dual time-scale learning rule.

For the empirical results, all experiments are conducted on widely used benchmark environments
for multi-agent reinforcement learning, such as large-scale swarm coordination tasks. We describe
the experimental setup, training protocols, and hyperparameter configurations in detail within the
paper and provide additional clarifications in the appendix. Random seeds are fixed across runs, and
ablation studies are reported to verify stability.

To further facilitate reproducibility, we release anonymous source code, including implementations
of SKARL, training scripts, and environment configuration files, as part of the supplementary mate-
rials. This enables other researchers to directly reproduce the results presented in this paper, adapt
the framework to new environments, or verify the theoretical guarantees with empirical evidence.
Together, these measures ensure that the community can reliably replicate and build upon our con-
tributions.
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Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto,
Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya
Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement
learning. CoRR, abs/1912.06680, 2019. URL http://arxiv.org/abs/1912.06680.

Patrick Billingsley. Convergence of probability measures. John Wiley & Sons, 2013.

Vivek S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Springer, 2008.

Peter E Caines, Minyi Huang, and Roland P Malhamé. Large population stochastic dynamic games:
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A THE USE OF LLM

In the preparation of this paper, we employed large language models (LLMs) strictly as assistive
tools. Their role was confined to three aspects: (i) improving the clarity and readability of the
manuscript by suggesting stylistic refinements and alternative phrasings; (ii) assisting with the orga-
nization and presentation of mathematical proofs, including the checking of algebraic manipulations
and the polishing of logical exposition; and (iii) serving as a coding assistant for routine program-
ming tasks such as code completion, debugging, and documentation generation.

Importantly, LLMs were not involved in the generation of research ideas, the design of the SKARL
framework, or the conceptual development of the theoretical results. All scientific insights, algo-
rithmic designs, and experimental implementations originate from the authors. The LLM usage
did not extend to generating novel theorems, creating data, or drawing conclusions. Instead, the
models functioned in a supportive capacity, comparable to grammar-checking or code editor auto-
completion, with the final responsibility for correctness, originality, and integrity resting solely on
the authors.

We disclose this usage in alignment with ICLR policy. By transparently reporting the scope of
assistance, we affirm that the LLMs were used responsibly and ethically, and that the intellectual
contributions of this work are entirely attributable to the authors.

B PROOFS OF THEOREMS, LEMMAS AND PROPOSITIONS

B.1 PROOF OF THEOREM 3.1

Proof. We establish the density of proposed GD(M). To this end, we first need:

Lemma B.1 (Stone–Weierstrass). Take a compact Hausdorff space H , and let C(H) be the algebra
of real-valued continuous functions on H , with the topology of uniform convergence. Let A be a
subalgebra of C(H). If A separates points on H and vanishes at no point on H , then A is dense in
C(H).

Then, following the proof of Lemma 3.12 in Guo et al. (2023), we prove that with appropriate
choices of norms, GD(M) is dense in C1,1(M).

Lemma B.2. GD(M) is dense in C1,1(M) with the supremum norm of derivatives of all orders: for
Φ ∈ C1,1(M),

∥Φ∥M := sup
(ν,x)∈P(M)×M

(
|Φ(ν)|+ |∂µΦ(µ)(x)|+ ∥∂x∂µΦ(µ)(x)∥

)
We prove this with two steps:

Step 1: take Φ ∈ C1,1(M), then ∂xx
δΦ
δµ (µ, x) is a continuous function on P(M)×M by definition,

namely, ∂xx δΦ
δµ (µ, x) ∈ C(P(M)×M). Define the algebraic space that contains GD(M) for some

n ∈]mathbbN as

H(P(M)×M) :=
{
Φ(µ, x) =

n∑
k=1

fk(⟨gk, µ⟩)hk(x),

monomials fk, hk : RD → R, kernels gk :M→M
}
.

We can see the GD(M) can be viewed as a subalgebra of H(P(M) ×M). Additionally, we can
also see that
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• H(P(M)×M) separates points on P(M)×M. To check this, take (µ, x) ̸= (µ′, x′) ∈
P(M) ×M, with either µ ̸= µ′ or x ̸= x′. If µ′ ̸= µ, from Theorem 30.1 by Billingsley
(2013), there exists a kernel function k(x0, ·) such that

∫
M k(y, x)(µ − µ′)(dx) ̸= 0,

otherwise, µ = µ′. In this case, define p(µ, x) = ⟨k(x0, x)⟩ ∈ H(P(M)×M). If µ′ = µ,
x′ ̸= x, let p(µ, x) = x, then p(µ, x) ̸= p(µ′, x′). In either case,H(P(M)×M) separates
points on P(M)×M.

• H(P(M)×M) vanishes at no point onP(M)×M. It can be checked to choose a nonzero
constant function as fk and hk.

Therefore, it follows from the Stone-Weierstrass lemma thatH(P(M)×M) is dense in C(P(M)×
M) with the topology of uniform convergence. Hence, there exists a sequence of functions pn, p̃n ∈
H(P(M)×M) such that for any ϵ > 0, there exists N ∈ N that for n ≥ N ,

sup
(µ,x)∈P(M)×M

∣∣∣∣pn(µ, x)− ∂xx
δΦ

δµ
(µ, x)

∣∣∣∣ ≤ ϵ, (10)

and

sup
µ∈P(M)

∣∣∣∣p̃n(µ)− δΦ

δµ
(µ, 0)

∣∣∣∣ ≤ ϵ. (11)

Step 2: Let

Pn(µ, x) := p̃n(µ) +

∫ x

0

∫ y

0

pn(µ, z)dzdy,

and

Φn(µ) := Φ(δ0) +

∫ 1

0

∫
M

Pn(λµ+ (1− λ)δ0, x)(µ− δ0)(dx)dλ.

It can be checked that Φn ∈ GD(M) with polynomial kernels. Now we have

Pn(µ, x)−
δΦ

δµ
(µ, x)

= p̃n(µ) +

∫ x

0

∫ y

0

pn(µ, z)dzdy−(
δΦ

δµ
(µ, 0) +

∫ x

0

∫ y

o

∂xx
δΦ

δµ
(µ, z)dzdy

)
= p̃n(µ)−

δΦ

δµ
(µ, 0) +

∫ x

0

∫ y

0

(
pn(µ, z)dz − ∂xx

δΦ

δµ
(µ, z)

)
dzdy.

Thus, by Eq. (10),
sup

P(M)×M
|∂xPn(µ, x)− ∂µΦ(µ, x)| ≤ Kϵ,

sup
P(M)×M

∣∣∣∣Pn(µ, x)−
δΦ

δµ
(µ, x)

∣∣∣∣ ≤ (1 +K2)ϵ.

Moreover,

Φn(µ)− Φ(µ)

=

(
Φ(δ0) +

∫ 1

0

∫
M

Pn(λµ+ (1− λ)δ0, x)(µ− δ0)(dx)dλ

)
−
(
Φ(δ0) +

∫ 1

0

∫
M

δΦ

δµ
(λµ+ (1− λ)δ0, x)(µ− δ0)(dx)dλ

)
=

∫ 1

0

∫
M

(
Pn(λµ+ (1− λ)δ0, x)−

δΦ

δµ
(λµ+ (1− λ)δ0, x)

)
(µ− δ0)(dx)dλ.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Hence,
sup
P(M)

|Φn(µ)− Φ(µ)| ≤ 2(1 +K2)ϵ.

Therefore,
∥Φn − Φ∥M ≤ (1 +K + 2(1 +K2))ϵ,

with Φn ∈ GD(M), which is shown to be dense in C1,1(M).

B.2 STATEMENT AND PROOF OF WASSERSTEIN LIPSCHITZ CONTINUOUS

Lemma B.3 (Wasserstein Lipschitz Continuous). If Assumption 3.1 holds, then cylindrical function
h(µ) ∈ GD(M) is C-Lipschitz continuous according to µ ∈ P(M), i.e., for any measure µ, ν ∈
P2(M), there holds

|h(ν0)− h(ν1)| ≤ CW2(ν0, ν1), (12)
where C is a constant.

Proof. Since the kernels gd are unformly bounded, the input space for outer function h are actu-
ally is compact. Therefore, outer function h : RD → R (a polynomial function) is Lh-Lipschitz
continuous:

|h(z1)− h(z2)| ≤ Lh∥z1 − z2∥2, ∀z1, z2 ∈ G, (13)
where G ⊂ RD is a compact subspace. Let π be the optimal coupling between ν0 and ν1. Then:

|h(ν0)− h(ν1)| ≤ Lh

(
D∑

d=1

∣∣⟨gd, µν0 − µν1⟩Hk

∣∣2)1/2

≤ Lh

√
D max

1≤d≤D
|⟨gd, µν0

− µν1
⟩Hk
|.

Therefore, we have that
|h(ν0)− h(ν1)|2 ≤ L2

hD max
1≤d≤D

|⟨gd, µν0
− µν1

⟩Hk
|2

≤ L2
hDmax

d

∣∣∣∣∫
X

(
gd(x)

)2
(dν0 − dν1)(x)

∣∣∣∣
≤ L2

hD inf
π

max
d

∫
X×X

(
gd(x)

)2
dπ(x, y)

≤ L2
hDL2

g inf
π

∫
X×X

∥x− y∥22dπ(x, y)

= CW2(µ, ν)
2,

where the last inequality follows from the Kantorovich-Rubinstein duality. Therefore, we have that

|h(ν0)− h(ν1)| ≤ Ld

√
DLgW2(µ, ν). (14)

B.3 PROOF OF PROPOSITION 3.2

Proof. We provide derivation of Proposition 3.2. From Eq. (6), we have the form of Qi. Then, the
functional gradient in the form of Fréchet derivative is

∇gi,dQi =
δhsi,ai

δg
+

D∑
d′=1

δ(∂d′hsi,ai⟨∇gi,d′
(x) ·∆x, ν−i⟩)

δg

= ∂dhsi,aiµν−i +

D∑
d′=1

δ(∂d′hsi,ai)

δg
⟨∇gi,d

′
(x) ·∆x, ν−i⟩

+ ∂dhsi,ai

δ⟨∇gi,d(x) · (x̄i − x), ν−i(x)⟩
δg

.
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To calculate the last term in ∇gi,dQi, we apply the fundamental lemma of calculus of variations.
Define function f(x, g,∇g) = gi,d(x) · (x̄i − x)ν−i(x), then, ⟨∇gi,d(x) · (x̄i − x), ν−i(x)⟩ can be
written as

⟨∇gi,d(x) · (x̄i − x), ν−i(x)⟩

=

∫
M
∇gi,d(x) · (x̄i − x)ν−i(x)dx

=

∫
M

f(x, g,∇g)dx.

Therefore, we have that
δ⟨∇gi,d(x) · (x̄i − x), ν−i(x)⟩

δg
=

∂f

∂g
−∇ · ∂f

∂∇g
= −∇ · ((x̄i − x)ν−i(x)).

Hence, we have the form in Proposition 3.2.

∇gi,dQi = ∂dhsi,aiµν−i +

D∑
d′=1

∂2
dd′hsi,ai

Ni

Ni∑
j=1

∇gi,d
′
(xj) · (x̄i − xj)µν−i

+ ∂dhsi,ai∇ · (ν−i(x)(x− x̄i))

B.4 PROOF OF THEOREM 4.1

Proof. Under Assumption 3.1, we know that the cylindrical function h(µ) is Wasserstein continuous
by Lemma B.3. Therefore, we have that

|h(νn)− h(νM )| ≤ CW2(νN , νM ).

Since Wassserstein distance meets the triangle inequality (Panaretos & Zemel, 2019), we have that
W2(νN , νM ) ≤ W2(νN , ν) +W2(νM , ν).

Since the convergence rate of empirical distribution νN to ν under measure of Wasserstein distance
is O(N−1/d) (Dudley, 1969), namely,

E[W2(νN , ν)] ≤ CN−1/d.

Therefore, we have that
E[|h(νn)− h(νM )|] ≤ CE[W2(νN , ν)] + CE[W2(νM , ν)]

≤ C1N
−1/d + C2M

−1/d.

B.5 PROOF OF THEOREM 4.2

Proof. First, we prove that the convergence rate of cylindrical function is controlled by the conver-
gence rate of empirical kernel mean embedding.

Lemma B.4 (Convergence Rate Bound of Kernel Cylindrical Functions (Lemma 5.2, (Venturi &
Dektor, 2021))). Denote the projection of measure ν on RKHS embedding space HM as PDν =∑

d cdk(x
d, ·), where [c1, . . . , cD]⊤ =: c = (KDD)−1b and bd = ⟨k(xd, ·), ν⟩. We have that h

defined in Eq. (4) with one type of kernel converges to f for all ν ∈ P2(M) with the same rate
as PDν convergences to the kernel mean embedding µν . Formally, with f̃ : µν 7→ f(ν), it can be
expressed as

|h(ν)− f(ν)| ≤ sup
ν

∥∥∥∥∥ δf̃

δµν

∥∥∥∥∥ ∥µν − PDν∥H, (15)

where δf̃/δµν is the Fréchet derivative of function f̃ and µν is the kernel mean embedding defined
in Eq. (3).
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From Lemma B.4, the convergence rate of the cylindrical function is controlled by the convergence
rate of the empirical kernel mean embedding.

Lemma B.5 (Convergence Rate of Empirical Kernel Mean Embedding (Theorem 3.4, (Muandet
et al., 2017))). Assume the boundedness for kernel k in Assumption 3.1 holds. Then for any δ ∈
(0, 1) with probability at least 1− δ,

∥µν − PDν∥H ≤
√

1

D
+

√
2 log(1/δ)

D
. (16)

Combining the results from Lemme B.5, we have that the convergence rate of h to f is the multiple
of Fréchet derivative and O(D−1/2), which proves our results.

B.6 PROOF OF THEOREM 4.3

Proof. First, we introduce the non-linear two-time-scale stochastic approximation.

Lemma B.6 (Nonlinear Two-Time-Scale Stochastic Approximation (Borkar, 2008)). Consider two
coupled stochastic approximation processes:

xn+1 = xn + a(n)
[
f(xn, yn) +M (1)

n

]
, (17)

yn+1 = yn + b(n)
[
g(xn, yn) +M (2)

n

]
, (18)

where xn ∈ Rd (slow process) and yn ∈ Rk (fast process), with step sizes a(n), b(n) > 0.

Assume that

(i) f : Rd × Rk → Rd and g : Rd × Rk → Rk are Lipschitz continuous,

(ii) For each fixed x, the ODE ẏ(t) = g(x, y(t)) has a globally asymptotically s equilibrium y∗(x).
The ODE ẋ(t) = f(x(t), y∗(x(t))) has a globally asymptotically s equilibrium x∗,

(iii) the sequences {a(n)} and {b(n)} satisfy Robbins-Monro conditions in Assumption 4.1, and

(iv) {M (1)
n }, {M (2)

n } are martingale differences w.r.t. Fn = σ(xm, ym,M
(1)
m ,M

(2)
m ,m ≤ n), with

E
[
∥M (i)

n ∥2 | Fn

]
≤ C(1 + ∥xn∥2 + ∥yn∥2), i = 1, 2.

Then, the iterates (xn, yn) converge almost surely to (x∗, y∗), where y∗ = y∗(x∗).

Base on the Lemma B.6, we rewrite updates of Eq. 7 as stochastic approximation processes:

ht+1 = ht + ηh

(
Fh(ht, gt) +M t+1

h

)
, (19a)

gt+1 = gt + ηg

(
Fg(ht, gt) +M t+1

g

)
, (19b)

where Fh = −E
[

∂ℓ
∂Qtot

· ∂Qtot
∂Qi ∇hQ

i
]

and Fg is defined analogously. Mh,Mg are martingale differ-
ence noise terms.

By the SA theory (Borkar, 2008), the updates approximate:
(Fast) ġ = Fg(h, g), (20a)

(Slow) ḣ = Fh(h, g
∗(h)), (20b)

where g∗(h) is the equilibrium of Eq. (20a) for fixed h.

Since the Bellman operator is a contraction mapping (Littman, 1994), we have that there exists a
globally asymptotically s equilibrium g∗ and h∗ to minimize ℓ. Therefore, by the Lemma B.6, we
have that:

• The fast process Eq. (19b) tracks Eq. (20a), converging to g∗(ht) for any slow ht.

• The slow process Eq. (19a) converges to h∗, which induces g∗ = g∗(h∗).

Thus, (ht, gt)→ (h∗, g∗) almost surely.
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B.7 PROOF OF THEOREM 4.4

Proof. Theorem 4.4 is the same with Theorem 1 in (Rudi et al., 2015). Define the integral operator
Lk for kernel function k by

Lkf(x) =

∫
X
f(s)k(x, s)ds.

For λ > 0, define the random variable Nx(λ) = ⟨Kx, (Lk + λI)−1Kx⟩ with x ∈ X . The efficient
dimension is

N (λ) = ENx(λ), N∞(λ) = sup
x∈X
Nx(λ).

Theorem B.7 (Error Analysis of Nyström Approximation, Theorem 1 (Rudi et al., 2015)). Under
Assumption3.1, 4.2 and 4.3, let δ ∈ (0, 1), v = min(s, 1/2), p = 1 + 1/(2v + γ) and assume

Ni +M ≥ 1655 + 223 log
6

δ
+

(
38p

∥Lk∥
log

114p

∥Lk∥δ

)p

(21)

Then, the following inequality holds with probability at least 1− δ for ,

E(g̃i,dt+1) ≤ min
f∈H
E(f) + q2(Ni +M)

− 2v+1
2v+γ+1 , (22)

with

q = 6R
(
2∥Lk∥+

C1√
∥Lk∥

+

√
C2

∥Lk∥γ
)
log

6

δ
,

C1, C2 are constants, and λ = ∥Lk∥(Ni +M)−
1

2v+γ+1 and L ≥ max(67, 5N∞(λ)) log 12
λδ .

In our scenario, for a large swarm with batch size, the Ni + M will easy meet the assumption in
Theorem B.7. For example, if a swarm of N = 32 with batch size B = 128, along with kernel
number M = 64, Ni + M = B · N + M will be 4160, which may statisfy the assumption with
certain δ.

C APPENDED REMARKS

C.1 REMARKS ON KERNEL CYLINDRICAL FUNCTIONS AND MEAN FIELD EMBEDDING

Remarks C.1 (Requirements on kernel by Lipschitz continuity). The Lipschitz continuity require-
ment limits the choice of kernel functions. Such as

• Polynomial kernels: k(y, x) = (αx · y + c)d violates the condition when input space X is
unbounded, as the gradients grow polynomially with ∥x∥2.

• Sigmoid kernels: k(y, x) = tanh(αx·y+c) could fail to satisfy global Lipschitz continuity
due to saturation effects in nonlinear regions.

• Gaussian kernels: k(y, x) = exp(−γ∥x− y∥22) generally meet the requirement with Lg =
γ supx ∥x∥2/2.

Remarks C.2 (Inner Product between mean-field measure and component functions). The inner
product between mean field measure and component function gi,d evaluates to:

⟨gi,d, µd
ν−i⟩ =

1

Ni

M∑
m=1

Ni∑
j=1

αd
mkd(xm, xj) =

1⊤Kdαd

Ni
, (23)

where Kd ∈ RNi×M is the Gram matrix with Kd
jm = kd(xj , xm) and 1 ∈ RNi is an all-ones

vector.
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Table 6: Kernel Functions and Corresponding Partial Derivative

Kernel Type Kernel k(y, x) Gradient of kernel ∂xk(y, x)

Linear x · y + c y
Polynomial (αx · y + c)d αd(αx · y + c)d−1y
Gaussian exp(−γ∥x− y∥2) −2γ(x− y) exp(−γ∥x− y∥2)
Laplacian exp(−γ∥x− y∥1) −γsign(x− y) exp(−γ∥x− y∥1)
Sigmoid tanh(αx · y + c) αy(1− tanh2(αx · y + c))

D REMARKS ON KERNEL FUNCTIONS

We list several kernels frequently appearing in the literature.

In our work, in consideration of Lipischitz continuity, representation capability and easy to calculate,
we adopt polynomial and Gaussian kernels.

D.1 REMARKS ON MEAN-FIELD REPRESENTATION OF VALUE FUNCTIONS

Remarks D.1 (Expansion of Eq. (6)). Eq. 6 is expanded as:

Qi(s,a) = hsi,ai

(
1⊤K1α1

Ni
, . . . ,

1⊤KDαD

Ni

)
+

1

Ni

D∑
d=1

∂dhsi,ai

M∑
m=1

Ni∑
j=1

αd
m∂xk

d(xm, xj) · (x̄i − xj).

Remarks D.2 (Mean field representation of state value function and advantage funcion). Similarly,
we can present the state value function V i(s) and advantage function Ai(s,a) with the mean field
representation in Eq. (6) as

V i(s) = hv
si

(
⟨gi,1v , µν−i⟩, . . . , ⟨gi,Dv , µν−i⟩

)
+

D∑
d=1

∂dh
v
si⟨∇g

i,d
v (x) ·∆x, ν−i⟩,

and

Ai(s) = hadv
si,ai

(
⟨gi,1adv, µν−i⟩, . . . , ⟨gi,Dadv , µν−i⟩

)
+

1

Ni

D∑
d=1

∂dh
adv
si,ai⟨∇gi,dadv(x) ·∆x, ν−i⟩,

where hv
si and hadv

si,ai are the cylindrical kernel functions, with kernel functions {gi,dv } and {gi,dadv} for
value function V and advantage function A, respectively. In this paper, we focus on the Q function,
while we think it is also interesting to expand our conclusions to value and advantage functions.
Remarks D.3 (Explicit form of Fréchet derivative). In discrete particle approximation with Ni

neighbors, Eq. (8) is:

∇gi,dQi =

Ni∑
j=1

∂dh
Ni

+
∑
d′

∂2
dd′h

N2
i

∑
j′

∇gd
′
(xj′)∆xj′

 kd(xj , ·) + ∂dh

Ni

Ni∑
j=1

[
δxj −∇δxj ·∆xj

]
.

D.2 REMARKS ON NYSTRÖM APPROXIMATION

Remarks D.4. The gradient inner product admits explicit computation:

⟨k(xn, ·),∇gi,dQi⟩ =
Ni∑
j=1

[
2∂dh

Ni
+
∑
d′

∂2
dd′h

N2
i

∑
j′

∇gd
′
(xj′) ·∆xj′

]
kd(xn, xj)

− ∂dh

Ni

Ni∑
j=1

∇xk
d(xn, xj) ·∆xj (24)
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Remarks D.5 (Anchor Point Selection). There are several principled ways to choose anchor points
{zl}Ll=1:

• Random Subsampling: Select L points uniformly from RKHS anchor points {xn}Ni+M
n=1 in

gi,dt+1.
zl ∼ Uniform({xn}Ni+M

n=1 ), l = 1, ..., L.

Pros: O(1) computational cost. Cons: May miss important regions.

• k-means Centers: Solve

{zl} = argmin
{cl}

∑
x∈{xm}

min
1≤l≤L

∥x− cl∥2.

Pros: Captures data geometry. Cons: O(NiLT ) computation complexity for T iterations.

• Kernel Herding: Select points maximizing the minimum kernel similarity:

zl+1 = arg max
x∈{xm}

l∑
l′=1

k(x, zl′)−
2

Ni

Ni∑
j=1

k(x, xj).

Pros: Constructs maximally representative points. Cons: O(NiLT ) computation complex-
ity for T iterations.

• Leverage Score Sampling: Sample with probability proportional to diagonal entries of the
kernel matrix:

pj =
(KMM )jj
tr(KMM )

, zl ∼ pj .

Pros: Preserves spectral structure of the RKHS.

In this paper, we apply the random subsampling method for simplicity.

E IMPLEMENTATION DETAILS OF SKARL AND BASELINES

E.1 IMPLEMENTATION DETAILS OF SKARL

Base Algorithm of Credit Assignment for SKARL We apply VDN (Sunehag et al., 2017) as the
basic credit assignment algorithm for SKARL. Namely, the total Qtot value is calculated by

Qtot(s,a) =
N∑
i=1

Qi(s,a).

Kernel Cylindrical Function Implementation We adopt a hypernetwork (Ha et al., 2016) for
kernel cylindrical function network. Namely, the ego state and action (si, ai) are used to generate
the parameters of a network for processing µνNi

.

Tricks We apply several tricks to help stabilize and fasten training.

• Dual Network Update: To avoid over-estimation of Q value, we apply double Q learning
framework (Van Hasselt et al., 2016).

• Entropy Regularization: To avoid the performance drops in the last epochs during train-
ing, we apply entropy regularization on the actor policy.

Codebase We apply SKARL and baselines with Jax. We organize the code in JaxMARL (Ruther-
ford et al., 2023) for better organization and class inheritance. We plan to release full codes after-
wards. For now, the code for important implementation can be found via anonymous Github link:
https://anonymous.4open.science/r/SKARL-050D.

Hyperparameters In this paragraph, we list the hyperparameters in 7 and 8.
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Table 7: Environment & Training Configuration

Environment Training Optimizer

Hyperparameter Value Hyperparameter Value Hyperparameter Value

Agent Number 4 / 16 / 64 Total Time Steps 2M Learning Rate 7e-4
Environments Number 128 Update Steps Number 50 Max Grad Norm 10

Test Environment Number 8 Target Update Interval 8 Optimizer ADAM
Max Train Env Timesteps 50 Test Interval 50k EPS 1e-5
Max Test Env Timesteps 100 Weight Decay 0

Buffer Exploration Learning rate Decay

Hyperparameter Value Hyperparameter Value Hyperparameter Value

Buffer Size 8192 Epsilon 1.0→ 0.05 ηh 1/t0.6

Buffer Batch Size 32 Epsilon Anneal Time 50k ηg 1/t0.8

Buffer Sample Uniform Anneal Method Linear Basic LR 7e-5

Table 8: Network & Algorithm Architecture

Network Algorithm

Hyperparameter Value Hyperparameter Value

Embedding Net Layer 3 TD Lambda 0.95
Agent Hidden Dim 16 Gamma 0.99

Mixer Embedding Dim 256 Entropy Rate 0.5
Mixer Hypernet Hidden Dim 256 Anchor Points Number L = 64

Attention Dim 64 Tikhonov Coefficient 0.5
Activation ReLU Polynomial Kernel (α,d,c)=(1,2,1),(1,3,1)

FC Init Scale 2.0 Gaussian Kernel γ = 0.5, 1.0

E.2 COMMON SETTINGS FOR ENVIRONMENT

For learning stability and environment consistency, we conduct following tricks:

Re-scale of Environment To make environment scalable, we conduct re-scale of world size of
environment according to the agents as below:

world size = 2 ∗min(
√
N − 1, 1),

where world size serves as the boundary value of environment as [−world size,world size] ×
[−world size,world size] and N denotes the number of agents.

Reset of Agents and Landmarks We generate the new agents and landmark uniformly in the
world of environment, namely, pi ∼ Uniform([−world size,world size]×[−world size,world size])
for i ∈ {1, . . . , N}. In some implementations, a reject sampling is adopted to avoid collision
between generated agents and landmarks (such as codebase of InforMARL (Nayak et al., 2023),
JaxMARL (Rutherford et al., 2023), Mava (de Kock et al., 2023) and so on). However, we do
not adopt such rejection, due to the consideration of time consumption. Instead, we separate the
environment world into grids and sample among grids to avoid collision.

During both training and evaluation phases in the Target and Coverage environments, the episode
terminates and resets automatically once all agents successfully reach their assigned goals (or all
landmarks are uniquely covered for the Coverage task). This design ensures episodic training and
prevents infinite loops. However, since agents are able to receive one-time rewards for several
times, the total episodic reward may temporarily exceed the theoretical maximum (e.g., N × 10 for
N agents) during resets due to reward accumulation in the final timestep.

Size and Velocity Settings of Agents and Landmarks The settings for agents and landmarks are
listed as below in 9.
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Table 9: Environment Setup

Hyperparameter Value

Agent Size 0.15
Landmark Size 0.225

Agent Maximum Speed 0.65 (Move)
N/A (Target/Coverage)

Agent Acceleration 5 (Move)
2 (Target/Coverage)

F ADDITIONAL EXPERIMENTS

F.1 EXPERIMENTS IN TARGET ENVIRONMENT

In this section, we provide the analysis of results for task Target. The experimental results in the
Target environment demonstrate SKARL’s ability to maintain task performance while balancing
safety and scalability across different swarm sizes.

For small swarms (N = 4), SKARL achieves near-optimal performance with a global reward of
329.3, comparable to QMIX (337.0) and QPLEX (330.3), while ensuring a 100% success rate.
However, it exhibits a higher collision count (7.2 ± 3.15) compared to QMIX (0.67 ± 0.35) and
QPLEX (1.3 ± 0.982), suggesting a trade-off between task completion and collision avoidance in
simpler settings.

As the swarm scales to N = 16, SKARL significantly outperforms value-based methods (QMIX,
QPLEX, MFRL), which suffer from catastrophic reward degradation (e.g., QPLEX: −3.1 × 104).
Although MAPPO achieves a higher reward (12.0), its success rate drops to 40.6%, whereas SKARL
maintains a 100% success rate despite increased collisions (23.2 ± 20.5). Additionally, SKARL
reduces collisions by 32% compared to MFRL, indicating its robustness in mid-scale coordination,
which aligns with findings from the Move environment in 2.

In large-scale swarms (N = 64), SKARL demonstrates superior scalability, achieving a positive
reward (44.75) while all baselines fail (rewards ≤ 0). Notably, while the collision count remains
high (44.3± 10.6), the drastic improvement in reward over MFRL (−5.7×105) and QMIX (−6.4×
105) suggests that SKARL effectively prevents catastrophic failures in complex scenarios. The low
success rate (3.1%) implies that further optimization is needed for very large swarms, but the results
highlight SKARL’s ability to maintain functional performance where other methods collapse.

Overall, SKARL exhibits strong scalability in the Target environment, particularly excelling in main-
taining task success and reward stability as swarm size increases, with a trade-off in collision avoid-
ance at larger scales. This aligns with its performance in the Move environment, where it achieves
a 96% collision reduction at N = 64, reinforcing its effectiveness in large-scale multi-agent coor-
dination. However, the problem of scaling up in Target environment remains to be solved, which
require further works.

F.2 EXPERIMENTS IN COVERAGE ENVIRONMENT

Table 10: Performance Comparison between SKARL and Baselines in Coverage Environment

Algorithm N = 4 N = 16 N = 64
R(↑) T(↓) # col(↓) S(↑) R(↑) T(↓) # col(↓) S(↑) R(↑) T(↓) # col(↓) S(↑)

MAPPO 339.6 0.40 0.26± 0.561 1.00± 0.0 167.6 0.57 5.3± 2.72 0.13± 0.562 97.3 0.87 18.4± 8.35 0.05± 0.009

MFRL 396.6 0.52 0.03± 0.0 1.00± 0.0 187.0 0.62 2.5± 1.65 0.12± 0.456 216.2 0.86 15.1± 2.32 0.04± 0.871

QMIX 275.4 0.39 4.94± 2.46 1.00± 0.0 259.5 0.52 19.5± 5.3 0.19± 0.76 324.2 0.92 11.8± 4.13 0.10± 0.526

QPLEX 318.5 0.38 0.56± 0.194 1.00± 0.0 298.7 0.61 7.3± 6.22 0.21± 0.512 834.5 0.85 21.5± 3.65 0.14± 0.290

SKARL 387.2 0.51 0.15± 0.870 1.00± 0.0 320.8 0.61 2.42± 1.67 0.22± 0.342 907.3 0.76 15.3± 5.37 0.17± 0832
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Table 11: Flexibility Performance of SKARL in Coverage Environment

Training Metric M = 4 M = 16 M = 64 M = 128 M = 256

N = 4
R/N 96.8 23.7 0.3 -1.2 -9.2

T (step) 51 74 92 100 100
(# col)/N 0.0375 0.76 6.932 32.4 78.9

S% 100 72 4 0 0

N = 16
R/N 97.5 24.05 22.3 4.3 0.82

T (step) 43 61 67 94 100
(# col)/N 0.0457 0.19 0.203 2.54 5.21

S% 100 79 6 6.25 0

N = 64
R/N 96.2 25.8 14.2 9.3 3.52

T (step) 41 56 76 89 92
(# col)/N 0.0557 0.285 0.239 0 9.68

S% 100 84 13 75 5

Table 12: Performance Comparison between SKARL and Baselines in Line Environment

Algorithm N = 4 N = 16 N = 64
R(↑) T(↓) # col(↓) S(↑) R(↑) T(↓) # col(↓) S(↑) R(↑) T(↓) # col(↓) S(↑)

MAPPO 422.3 0.31 0.10± 0.20 1.00± 0.00 563.4 0.43 1.50± 0.90 0.30± 0.20 1462.7 0.72 8.00± 3.00 0.22± 0.08

MFRL 444.8 0.25 0.05± 0.10 1.00± 0.00 591.2 0.43 0.90± 0.60 0.36± 0.18 1604.3 0.68 6.00± 2.50 0.27± 0.09

QMIX 421.6 0.25 0.12± 0.25 1.00± 0.00 572.1 0.49 1.80± 1.10 0.32± 0.19 1510.4 0.64 7.20± 2.80 0.24± 0.09

QPLEX 449.7 0.27 0.07± 0.15 1.00± 0.00 608.0 0.42 1.20± 0.70 0.38± 0.17 1624.9 0.67 6.50± 2.60 0.26± 0.09

SKARL 418.9 0.23 0.03± 0.08 1.00± 0.00 615.6 0.41 0.70± 0.50 0.40± 0.16 1765.8 0.66 5.50± 2.20 0.30± 0.10

F.3 EXPERIMENTS IN LINE ENVIRONMENT

F.4 ABLATION STUDY

Is it necessary to apply gradient in RKHS? There is another way to conduct gradient for cylin-
drical function: directly update in the Euclidean space (Schwenker et al., 2001). Here we provide a
comparison with this method with N = 4 and kernel number is 64 in Move environment in Figure
3. The result indicates that with RKHS gradient, both the training stability and final performance
are improved.

How number of anchors affect the result? We compare the performance of different anchor
points number L = 1, 2, 8, 32 under Move task with agent number N = 4. As is demonstrated
in Figure 4, more anchor points only help to stabilize the training process (as the performance of
L = 32 achieves the most stale training curve), while the convergence speed and final performance
is scarcely affected. Furthermore, since full performance can be achieved with anchor points number
1, it is indicated that SKARL can apply at least one kernel number L with L ≤

√
N to achieve lower

computation complexity compared with value decompostion algorithms e.g. QMIX (as discussed in
Section 4).

How types of kernels affect the result? We compare specific choices of different kernels under
Move task with agent number N = 4. Specificly, we compare the choice of Gaussian kernel and
polynomial kernel. For the Gaussian kernel, we adopt γ as (0.5, 1.0, 2.0) and for polynomial kernel,
we set parameters as (α, d, c) = (1, 2, 1), (1, 3, 1), (1, 4, 1). The results are demonstrated in Figure
5. We conclude that the choice of kernels may not affect the final performance, as long as the
representation capability of this kernel is strong enough.
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Figure 3: Comparison between gradient in RKHS space and Euclidean space.
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Figure 4: Comparison between different number of anchor points.
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Figure 5: Comparison between different number of kernel types.
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Table 13: Flexibility Performance of SKARL in Line Environment

Training Metric M = 4 M = 16 M = 64 M = 128 M = 256

N = 4
R/N 104.7 32.2 -4.3 -10.5 -36.4

T (step) 23 54 87 100 100
(# col)/N 0.0075 0.076 0.950 4.1 12.1

S% 100 72 8 0 0

N = 16
R/N 117.5 38.5 20.4 6.3 0.72

T (step) 32 41 84 91 100
(# col)/N 0.0005 0.044 0.103 0.874 1.54

S% 100 40 24 3.25 0

N = 64
R/N 123.2 53.4 27.58 18.9 2.31

T (step) 21 31 66 77 82
(# col)/N 0.0002 0.029 0.085 0.376 0.985

S% 100 84 30 27 18

Table 14: Performance Comparison between different value decomposition methods.

Algorithm N = 4 N = 16 N = 64
R(↑) # col(↓) S(↑) R(↑) # col(↓) S(↑) R(↑) # col(↓) S(↑)

SKARL 902.8 0± 0 0.15± 0.0192 3755.9 12.32± 5.847 0.17± 0.0500 14423.8 7.9± 5.37 0.15± 0.0334

SKARL-QMIX 921.2 0± 0 0.15± 0.0102 3857.2 10.23± 8.421 0.18± 0.0431 14512.3 6.2± 4.32 0.15± 0.781

SKARL-QPLEX 922.7 0± 0 0.15± 0.0021 3920.1 9.42± 3.412 0.18± 0.0622 14589.1 7.9± 2.98 0.16± 0.676

How does anchor points distribute? We plot the distribution of anchor points with UMAP in
Figure 6 with N = 4. We can see the anchor points of Gaussian kernel follows nearly a uniform
distribution, while anchor points of polynomial kernel follows certain pattern.
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(b) Gaussian Kernel γ = 1.0

Figure 6: Gaussian kernel anchor points distribution.
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(a) Polynomial Kernel (α, d, c) = (1, 2, 1)
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Figure 7: Polynomial kernel anchor points distribution.
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