Under review as a conference paper at ICLR 2026

SKARL: PROVABLY SCALABLE KERNEL MEAN FIELD
REINFORCEMENT LEARNING FOR VARIABLE-SIZE
MULTI-AGENT SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Scaling multi-agent reinforcement learning (MARL) requires both scalability to
large swarms and flexibility across varying population sizes. A promising ap-
proach is mean-field reinforcement learning (MFRL), which approximates agent
interactions via population averages to mitigate state-action explosion. However,
this approximation has limited representational capacity, restricting its effective-
ness in truly large-scale settings. In this work, we introduce Scalable Kernel
MeAn-Field Multi-Agent Reinforcement Learning (SKARL), which lifts this bot-
tleneck by embedding agent interactions into a reproducing kernel Hilbert space
(RKHS). This kernel mean embedding provides a richer, size-agnostic represen-
tation that enables scaling across swarm sizes without retraining or architectural
changes. For efficiency, we design an implementation based on functional gra-
dient updates with Nystrom approximations, which makes kernelized mean-field
learning computationally trac .From the theoretical side, we establish convergence
guarantees for both the kernel functionals and the overall SKARL algorithm. Em-
pirically, SKARL trained with 64 agents generalizes seamlessly to deployments
ranging from 4 to 256 agents, outperforming MARL baselines.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) has achieved remarkable progress in domains such
as multi-robot coordination (Vinyals et al., |2019; Berner et al., [2019). However, scaling MARL
to large populations remains a fundamental challenge (Du et al., [2023)). As the number of agents
increases, the joint state—action space grows exponentially, and interaction dynamics become in-
creasingly complex. This induces a curse of dimensionality that makes conventional learning uns
and inefficient (Tan, [1993; [Tampuu et al.l 2015). Moreover, most existing MARL methods lack
population scalability: policies trained with one swarm size often fail to generalize to other scales in
zero-shot. These limitations naturally raise the question: How can we design MARL algorithms that
scale efficiently to hundreds of agents while generalizing seamlessly to unseen population sizes?

A promising direction is the use of mean-field approximations (Caines et al.| 2006} |Lasry & Lions,
2007). By summarizing agent interactions through a population distribution, mean-field MARL
(MFRL) (Yang et al., 2018) avoids exponential complexity growth and exploits the permutation in-
variance of homogeneous swarms. Prior work has demonstrated the feasibility of mean-field meth-
ods in large-scale settings (Angiuli et al., 2021 |Gu et al., 2025)). However, most existing approaches
rely on first-order moment statistics, which provide only coarse summaries of the population. This
simplification limits expressiveness and hinders adaptation across swarm sizes, since higher-order
structural differences between distributions are ignored. Extensions that incorporate higher-order
moments (Pham & Warin, 2023)) improve representation, but moments remain insufficient as they
may conflate distinct distributions and fail to capture richer structural information. As a result, As a
result, current mean-field approaches still struggle to achieve scalability when applied to sufficiently
large populations.

In this work, we introduce Scalable Kernel MeAn-Field Multi-Agent Reinforcement Learning
(SKARL): a novel approach that integrates mean-field learning with reproducing kernel Hilbert
space (RKHS) representations to achieve both scalability and flexibility. By embedding the popula-

Under review as a conference paper at ICLR 2026

tion distribution into the RKHS via kernel mean embeddings, each agent conditions its policy and
value functions on high-dimensional kernel features. We model the agent’s Q-function as a cylin-
drical kernel functional, inspired by |Guo et al.[(2023)), and derive functional gradient updates under
a dual time-scale learning scheme. To ensure computational efficiency in large populations, we em-
ploy Nystr”om approximations to project functional updates onto low-dimensional subspaces. Our
framework offers both theoretical and empirical benefits. We prove that cylindrical kernel function-
als form a universal approximator over distribution spaces, ensuring expressiveness, and establish
that the resulting value functions are Wasserstein-Lipschitz continuous, providing robustness to dis-
tributional shifts. Crucially, by representing the swarm as a distribution rather than a fixed-size
set, our method naturally supports population flexibility: a policy trained with 64 agents can be
deployed zero-shot in environments with 4-256 agents, without retraining. Empirically, SKARL
achieves superior performance on large-scale cooperative tasks, consistently outperforming strong
MARL baselines in cumulative reward and training stability.

In summary, our contributions are as follows:

* We propose SKARL, a novel MARL framework that combines mean-field approximations
with RKHS representations, avoiding exponential complexity growth and enabling scala-
bility to large agent populations.

* We develop a functional gradient algorithm for cylindrical kernel functionals, along with a
dual time-scale learning rule and Nystrom approximations for efficiency. Theoretically, we
prove universal approximation and establish Wasserstein-Lipschitz continuity of the value
functions.

* Through extensive experiments on large-scale benchmarks, we demonstrate that SKARL
generalizes seamlessly across population sizes and achieves significant improvements over
MARL baselines in both performance and stability.

2 PRELIMINARIES

2.1 MULTI-AGENT STOCHASTIC GAME

We consider an episodic mean-field reinforcement learning game with a fixed number of agents
N € N. Such a game is defined by the tuple (SV, AN, P, (r'),, ~), where S¥ = &y x -+ x Sy

denotes the joint state space: a vector s = (s, ..., s™V) collects the local state s* € S; of each agent.
Similarly, the joint action space is AN = A; x --- x Ay, where a joint action a = (a!,...,a")
consists of local actions a’ € A;. In the homogeneous setting, agents share the same state and action
spaces, i.e., S =8 =---=Syand A = A; = --- = Ay. System dynamics are governed by a

stochastic kernel P : SN x AN — P(SY), where P(S™) denotes the set of probability measures
over SV, Each agent receives an instantaneous reward (s, a) = 7(s*, a*), which couples individual
behavior with the global population. Finally, 0 < < 1 is the discount factor weighting future

returns. The objective is to learn a joint policy m = (7!, ..., 7"), where each 7’ : S — P(A), that
maximizes for every agent ¢ the expected discounted return
T-1

']l(ﬂ-) = ESUNd07P77T {Z ’Vt Ti(sta at)}v
t=0

with the expectation taken over the initial state distribution dy, the transition kernel P, and the
stochastic choices of the joint policy 7.

2.2 MEAN FIELD REINFORCEMENT LEARNING

In multi-agent reinforcement learning with N agents, the Q-function of agent ¢ depends on the
joint action @ = (a',...,a"), where each a’ is represented by a one-hot vector. This leads to
an exponential blow-up of the action space, a manifestation of the curse of dimensionality. Mean-
field reinforcement learning (MFRL) (Yang et al., 2018) addresses this by approximating pairwise

interactions through a mean-field term. Specifically, the Q-function of agent ¢ is written as

Qs.0) = 3 Y Qsaa) 2@ (s,a'a).
JjEN

Under review as a conference paper at ICLR 2026

where a =% := NL > JEN a’ denotes the empirical mean action of agent i’s neighbors A/ with size
N;. This induces a dynamical system in which each agent responds to the mean-field action via a
softmax policy as 7; (- | s) = softmax(—BQj(s,-,a; ")), where the softmax is taken over all a € A.

For continuous action spaces, the mean-field action is modeled as a distribution on the 2-Wasserstein
space Pa(A) (Guo & Xu,[2019):
Nv
i 1 &
I
j=1

where d,; is the Dirac measure at action a’. If the pairwise Q-function is twice Lions-differentiable
with respect to the mean-field action p,,, the Lions-Taylor expansion yields

. o 1 oo o
Q'(s,a) = Q'(s,a',p") + N; Zla”Qz(S,aﬁMﬂ)[aJ] -(a" —d’), ¢))
iz

where Q' (s, a’,d,;) is the Q-function lifted to the Wasserstein space, @’ = Ni > y a’ is the mean

neighbor action, and 9,Q(s, a’, n*)[] : A — A is the Lions derivative (Tang et al.l 2024). The
residual term R is bounded by the action space size.

2.3 REPRODUCING KERNEL HILBERT SPACE AND KERNEL MEAN EMBEDDING

A reproducing kernel Hilbert space (RKHS) #; over domain X is a Hilbert space of functions
g : X — R associated with a symmetric positive-definite kernel k£ : X x X — R. The defining
property is the reproducing identity (Muandet et al., 2017): for all x € X,

mmz@ua»m=/y@MQMMﬂ @

The RKHS is the closure of finite linear combinations of kernel functions,, =
span{k(z,)|z € X'}. Any g € Hy, admits a representation

M
g() = Z amk(xma ')a

for some M € N, coefficients a,,, € R, and locations z,, € X. This form, together with the
reproducing property, enables the kernel trick: computations in high-dimensional feature spaces
reduce to inner products in Hj. The kernel mean embedding (KME) extends this idea from points
to distributions, providing a nonparametric embedding of a probability law into H; (Muandet et al.,
2017). For any distribution P on &', its embedding is

AMFﬂmWWW:LMMWM- 3

This embedding preserves expectations: for all g € H, Ex~p[g(X)] = (g, pr)2, . Given samples
{zn}2_, ~ P, the empirical KME is fip(-) = + Zgil k (2, -), which converges to up as N — co.

3 THE SKARL FRAMEWORK

This section presents the derivation of SKARL within the Reproducing Kernel Hilbert Space
(RKHS), as is shown in Figure.

3.1 KERNEL MEAN EMBEDDING REPRESENTATION OF MEAN-FIELD Q-FUNCTIONS

Mean-Field Embedding via KME The mean-field measure is embedded via empirical KME:

1 &
d _ d j
Hy—i = N’L ;:1 k (J’Ja ')a

where 27 is the latent embedding of neighbor (s7, a’).

Under review as a conference paper at ICLR 2026

.
[P, v, Pgoa]

Si:

1Qi(s' a,)

Kernel Cylindrical Function
hat,ai (670 pr=i)s - (9P 1))
hgiqi = h(s’,a’,-) Polynomial Function

Kernel Functions

’z; = [P;y ’U;7p::§0al,j7 typej]l)

KernelMean Embedding for Mean Field Q Function

D
Q'(s,0) = Q(s',a", ™) + > Oahat o1 (Vg™ () - Az, v ™)
d=1

e A
(Environment \/ KernelMean Embedding for Single Agent (Training h
4 . i [P bt N —
@— --< . // Neighbor Agents Info | Kernel Mean Embedding : f Optimization Objective: TD Loss :
EN) SN ' 18 || Beare [(BQu(s,0) - Quals @)1
N | pd, — de(z]) A
’ Sensing A I I VTN, 4 b 1 I VDN Composition of Q Value !
/ Range -~ \ 4 [= I Qs =%, Qsae)

1 Dual Layer Update
| Outer Layer
' o Qo

Qe 0Q
t 0[. 8Qtot
Q¢

Lhepr = hy —), Vi QF

: Inner Layer

id ivd
L9 =9¢° =1

Ve

Nystrom Approximation :

(For Efficient Storage) |

| min 1
1

1 id (o
in 5 2156 - gl @I + A
et oo J

Figure 1: Overview of the SKARL framework. Agent interactions are embedded into RKHS via
kernel mean embeddings and evaluated through kernel cylindrical functions to approximate mean-
field Q-values. Updates are performed with temporal-difference learning and Nystrom projection
for scalability and efficiency.

Kernel Cylindrical Representation of Pairwise Interactions. Mean-field Q-functions are func-
tionals of probability measures over neighbor actions. To approximate such distributional func-
tionals in a principled and expressive way, we introduce kernel cylindrical functions, inspired by
work of |Guo et al.|(2023)), which provide universal approximations within RKHS. Formally, for any
continuous functional f : P(M) — R with bounded Lions derivatives, we approximate it by

h(y):h(<glaulll>7'lk7"'7<gD7/’(’I?>’Hk)? (4)

where each g¢(-) = k(x%,-) is a kernel anchored at 2¢ € M, ud denotes the empirical KME, and
h : RP — R is a polynomial. The inner products (g%, u)3, = [, 9%(x) dv(z) serve as kernel-
based summaries of v. Base on this function type, we develop the following theorem, implying
that any smooth mean-field Q-function can be approximated arbitrarily well by such cylindrical
representations.

Theorem 3.1 (Density of Kernel Cylindrical Functions). Let P (M) be the space of Borel probabil-
ity measures over a compact manifold M C R®. Define

Gp(M) := {h(,u) = h((gl,myk, A (gD,myk) | h (polynomial), {g?}1_, kernels}. (5)

Let CHY (M) denote the space of Fréchet differentiable functions with Lipschitz derivatives. Then,
forany f € CHY(M) and any € > 0, there exists h € Gp(M) such that |f(p) — h(u)| < € for all
w € P(M), provided D is sufficiently large.

This directly yields a representation of the pairwise interaction in agent ’s Q-function:
o , D
Ql(sz’a’L?V 71) :]'I/Si,(],i(<,gZ717/'[/l/_i>7'"7<.g1‘7 7/"I’V_i>))

where hgi g0 = h(s', a,") RP — R is differentiable with parameters 6}, and g*¢ =
M ad k4(z™,), with anchor points {2 }M_, in latent space X and learnable weights {a%, }.

The gradient of g*? is Vg"4(z) = 3, ad 0,k%(z™, z). To guaranty continuity, we assume Lips-
chitz continuity and boundedness of kernels.
Assumption 3.1 (Lipschitz Continuity and Boundedness). Each kernel g is Lg-Lipschitz:

l9(2) = g'(W)| < Lyllz —yll2, Va,y € X,

and uniformly bounded: |k(z,y)| < oo, Va,y € X. Without loss of generality, assume

Sup e [k(z,2)| < 1.

The Lions derivative of a cylindrical function h(v) is (Guo et al., 2023):

D
Ouh(w)(x) = duh(v) Vg'(z),
d=1

where J,h denotes the derivative with respect to the d-th argument.

Under review as a conference paper at ICLR 2026

Local Value Function Approximation. Combining state-action embeddings, cylindrical func-
tionals, and mean-field embeddings yields a computational representation of the local Q-function.
Analogous to Eq. (I), we approximate

D

Qi(sa a’) = hsi,ai ((giJa Mu*i>a sy <gi7Da ,u/y*i>) + Z 6dhsi,ai <vgz,d(x) . A.’E, V_i>7 (6)
d=1

where Az := 2’ — z and 7' = - >_, /. The first term captures mean-field interactions, while the
second encodes gradient corrections.

This representation integrates seamlessly with standard multi-agent value-decomposition methods
such as VDN (Sunehag et al., 2017), QMIX (Rashid et al.,|2018)), and QPLEX (Wang et al., 2020).
Analogous constructions apply to the state-value function V*(s) and advantage function A*(s, a).

3.2 VALUE FUNCTION UPDATE WITH STORAGE EFFICIENCY

Updating Cylindrical Kernel Functions. The total value function @ is decomposed into agent-
wise functions Q° under the Individual Global Max (IGM) principle (Rashid et al., [2018) (See
Appendlx@) To update °, we optimize the temporal-difference (TD) loss (Sutton, |1988)

2
K(BQIOH Qlot) = IEs,a,,r,s’ [(BQtOt(sa CL) - Qlot(87 a)) :| 5
where B denotes the Bellman operator (Puterman, [1994), i.e.,
(BQu)(5, @) = Eo |1(s,a) + 7 max Quu(s', a')|.
Parameters are updated by gradient descent in two spaces. For the outer function h and RKHS
components {g"“}, with learning rate 7, 7f.

I 0Qu
h =h ¢
T 50w Q!

where {g"9} are updated via the Fréchet derivative.

7 % 7 af aQo
Vthgt’Jﬂ*gfd t =

" 30e aqi Vo@D

Proposition 3.2 (Fréchet Derivative Form). The Fréchet derivative of Q° with respect to g“% de-
composes as

VyiaQ' = <6dh +) ggh (Vg? - Az, y—i>> i —O0gh'V - (V' Ax), 8)
N———

’
d Divergence term

Mean interaction term

where Ax := T' — x. See Remark in the Appendix for the explicit form with N; neighbors.

Nystrom Approximation for Efficient Storage. The direct updates in Eq. face two key
challenges: (i) the divergence term lies outside the RKHS (Remark [D.3), and (ii) naive imple-
mentation requires storing O(N;T) kernels per agent after 7" iterations, which is infeasible for
large swarms and long horizons. To address this, we apply the Nystrém approximation, prOJect—

ing updated functions onto a low-dimensional kernel subspace. Let the anchor set for g;’ +1 be
{gry i {xj} LU {z™}M_ where {™} are anchor points from g% and {7} are in-
puts from v. We select a subset of landmark points {z'}L, C {2"}, spanning an L-dimensional
subspace H C H. The projection of gt +1 onto Hy, via Tikhonov regularization is:

Ni+M
~%,d : n t,d (.n
gty = arg min ~—— n; 17 (") = gy (™3 + AlFIRe- ©)

By the representer theorem (Scholkopf & Smolal [2002), the solution takes the form
gl = Yl ofkd(zl). Let K& o= [k)hcw<r and K&, =

Under review as a conference paper at ICLR 2026

[k(2™, 291 <n<n,+m1<i<r. Then coefficients a? = [af,...,a?]T admit the closed-form so-

lution (Rudi et al., 2015):
d T i \' e
o = (KNi+M,LKNi+]W,L + AV, + M)KLL> Ky, 1m,b,
where b € RY:*M with entries b,, = (k(2","), ng1>’}-[k. Here 1 denotes the Moore—Penrose
pseudoinverse. This reduces kernel storage from O(N;T) to O(L) with L < N;T. In our experi-

ments we use uniform sampling for landmark points {z'}; other selection strategies are discussed in
Remark [D.3]

3.3 PROPOSED ALGORITHM

With the components mentioned above, the final proposed algorithm is summarized in Algorithm [I]

Algorithm 1 Mean-Field Cylindrical Kernel Method

Input: Agent swarm size IV, number of iterations M, trajectory batch size B, anchor points number
L, learning rate (1, 14)

1: Initialize local @ function Q° with kernel functions {g*¢}2_| < 0 and outer function h® for
each agent; initialize trajectory set 7.
2: form=1,...,M do
3: while Sampling phase do
4 Sample trajectories using the current policy {7*}}¥ ; with environment, store in 7.
5: end while
6: Sample B trajectories from 7 with length T for each trajectory.
7: Update the outer function / and {g"*} with Eq. .
8: Select new anchor points {z;}%, via methods in Remarks
9: Projection updated {g"*} to {g"*} via Eq. (@) and update Q* with {g;"}.
10: end for
11: return final local Q function Q°.

4 ANALYSIS OF PROPOSED SKARL

4.1 COMPUTATIONAL COMPLEXITY, SCALABILITY, AND FLEXIBILITY

We compare the computational complexity of SKARL with value decomposition methods (e.g.,
QMIX (Rashid et al.l [2018)) and mean-field reinforcement learning (MFRL) (Yang et al., 2018)).
Table[I] summarizes the results.

Table 1: Comparison of computational complexity and key metrics. B: batch size; N: number of
agents; L: landmark points; D: number of kernel features.

Metric SKARL QMIX MFRL

Q Function Input Size O(|S|+ |A|+D) O(N|S|+NJA]) O(S|+|A])
Computation Complexity O(B(L?N + L?)D) O(BN?) O(B)
Memory Usage O(DL) O(N) o(1)
Scalability in N Linear Exponential Linear

Q Function Input size. SKARL avoids the N|.4| blow-up in QMIX by using kernel-based embed-
dings (Eq.[6), with L < N and D < N. MFRL is even simpler, but lacks multi-scale coordination.

Computation. Complexity is dominated by kernel projections (Eq. [0), scaling with B, N, and
L. QMIX suffers O(N?) due to its mixing network, while MFRL requires only O(1) per agent.
When L grows with N (e.g., L ~ v/N), SKARL’s complexity approaches QMIX—this is the main
computational drawback.

Under review as a conference paper at ICLR 2026

Scalability. SKARL maintains linear dependence on N, unlike QMIX’s exponential scaling.

Flexibility. SKARL generalizes across swarm sizes. If trained with N agents and deployed with
M, the approximation error is bounded by O(N /¢ 4 M ~1/4) where d is the dimension of the
state-action space.

Theorem 4.1 (Flexibility of Kernel Cylindrical Functions). Let vy, vy denote the empirical mean-
field distributions of swarms with N and M agents, sampled from the same distribution v. Under
Assumption for a cylindrical function h there exist constants C,Cy > 0 such that

E[|h(vn) — h(var)]] < CiN~Y4 4 Com=1/2,

4.2 CONVERGENCE AND SUBOPTIMALITY
Convergence of Cylindrical Functions. The density result in Theorem[3.1]implies approximation
power. We now establish convergence rate with respect to the kernel number D.

Theorem 4.2 (Convergence Rate). Under Assumption E let f u,,) = f(v) be a functional de-
pending on the KME p,, (Eq.[3). Then with probability at least 1 —

|5 /57)

Convergence of Updates. For the update rules in Eq. equation[7] convergence follows under Rob-
bins—Monro step-size conditions and two-time-scale separation (Borkar, [2008)).

[h(v) = f(W)] < sup

5,uy

Thus h converges to f at rate O(D~1/2).

Assumption 4.1 (Robbins—-Monro). Step sizes 1y, and 1y satisfy >, n = oo, >, n? < oo, and
limyy o0 "79/77h =0

Theorem 4.3 (Convergence). Under Assumptions|3.1|and4. 1| the updates converge to (h*, {g»**})
minimizing the Bellman TD loss.

4.3 ERROR OF NYSTROM APPROXIMATION

Although the Nystrom method substantially reduces storage and computational cost, this method in-
evitably introduces approximation error. To ensure the reliability of SKARL, it is therefore essential
to quantify error of Nystrom approximation. We measure the error of projection as

EF) =If = gt e

for f € H, where Ly, f(z) = (f, k(x,-))2, is the kernel integral operator (Eq. [2). Intuitively, £(f)
captures the deviation between the projected function and the ideal update.

To analyze this error, we introduce two standard conditions from statistical learning theory:

Assumption 4.2. Define the effective dimension N'(\) = tr((A + Ly)~ Ly). Assume there exists
a constant Cy > 0 independent of \ such that for any A > 0, N'(\) < CoA™7, for some 0 < v < 1.

Assumption 4.3. There exists s > 0, 1 < R < oo, such that |L,° fullx < R, where fy =
argminy E(f).

Combining the Lipschitz continuity of kernel cylindrical functions (Assumption[3.1)) with the above
spectral assumptions, we obtain the following finite-sample error bound.

Theorem 4.4 (Nystrom Error Bound). Under Assumptions[3.1} 4.2} and[.3] let § € (0, 1) and suffi-

ciently large N; + M. With probability at least 1 — 0, the excess error of the Nystrom approximation

satisfies
2v+4+1

~i . 6\ > __2vtl
S(Qtfﬁ*%l}_[lg(f) < Ciq <log 6) (N; + M)~ 2vHr+1

1
where v = min(s,1/2), A = ||L||(N; + M)~ 2v+7+1, and L > C)log 32. Constants Cj, ,C»
depend only on the kernel family.

Under review as a conference paper at ICLR 2026

16 agent 64 agent
8000

6000
4000

Y

MFRL o 5K
QPLEX — QMiX
— wmappo

oo 03 06 09 12 15 oo 03 o6 o5 12 15 oo 03 o5 05 12 15
eeeeeee ps 18 Timesteps 168 Timesteps 1e8

Figure 2: Training results of SKARL and baselines across three environments (5 random seeds).

Theorem [4.4] shows that the Nystrom approximation converges to the optimal RKHS projection
at a rate depending on both the eigenvalue decay ~ and the smoothness parameter s. In practice,
this means that as the number of anchor points (N; + M) grows, the approximation error shrinks
polynomially fast, and only a logarithmic number of landmark points L (relative to the effective

dimension) is needed to achieve near-optimal accuracy. This justifies the use of Nystrom projection
in SKARL.

5 EXPERIMENTS AND RESULTS

5.1 EXPERIMENTAL SETUP

We evaluate our method following the work of [Nayak et al.| (2023)), with four environments: (i)
Move: Each agent tries to move as fast as possible and avoid collisions. (ii) Target: Each agent tries
to reach the assigned goal and avoid collisions. (iii) Coverage: Each agent tries to go to a goal and
avoid collisions, and ensure no more than one agent reaching the same goal. (iv) Line: There are
two landmarks, and the agents try to position themselves equally spread out in a line between the
two. For detailed observation, reward and action design, please refer to the Appendix Environments.
We compare SKARL against several standard MARL algorithms: (i) QMIX (Rashid et al.| 2018)),
(i) QPLEX (Wang et al., |2020), (iii)) MAPPO (Yu et al.,[2022), and (iv) MFRL (Yang et al.,[2018).
For detailed implementation of SKARL and baselines, please refer to Appendix [El We report the
test results with 100 max stepsﬂ

Table 2: Performance Comparison between SKARL and Baselines in Move Environment

N =4 N =16 N =64
R(P) #col()) S | RM # col({) S | RM # col(d) S
MAPPO | 947.6 0.56+0174 0.16+ 000779 | 3360.2 2.6+ 112 0.14+ 00562 | 14284.8 9.6+ 6.98 0.154+ 00450
MFRL 734.6 0+o0 0.12+ 00247 | 3083.69 38.4+ 6.9 0.12+ 0040 | 11411.1 20424208 0.14+ 0.0451
QMIX 8354 4941490 0.15+00431 | 2845.4 21.9+127 0.13+ 008517 | 10446.2 2.8+100 0.11+00732
QPLEX 9114 0.56+0194 0.14100213 | 3625.8 20.5+ 102 0.17+£00622 | 14073.8 22.5+9055 0.15+0.0404

SKARL ‘ 902.8 0+o0 0.15+ 00192 ‘ 37559 123245847 0.17+ 00500 ‘ 14423.8 7.9+ 537 0.15+ 00334

Algorithm

Table 3: Performance Comparison between SKARL and Baselines in Target Environment

Algorithm N=4 N =16 N =64
R T() #coll) S%(M) | R T() #col)) S%M) | R(H T #col()) S%(T)
MAPPO | 3273 0.14 2.6+14s 100 12 0.56 8.93+ 587 40.6 0 1.00 0 0
QPLEX | 3303 0.18 1.3+09% 100 -3.1e4 1.00 492+ 255 0 -1.9e5 1.00 19.8+124 0
QMIX 337.0 0.14 0.67+o035 100 -5.1e4 1.00 6.6+ 428 0 -6.4e5 1.00 41.6+1s1 0
MFRL 330.8 0.14 6.4133s 100 1.1 0.81 14.375+1028 31.2 | -57e5 1.00 35.8+1s51 0

SKARL ‘329.3 0.18 7.2+315 100 ‘ 5.6 0.96 23.2+20s 100 ‘44.75 098 44.3+106 31

5.2 MAIN RESULTS

We report the experiment of main experiments on Move and Target environment with 5 random
seeds. For other experiments and ablation study, please refer to Appendix [F|

!Code at https://anonymous.4open.science/r/SKARL-050D, based on JaxMARL (Rutherford et al. 2023)

Under review as a conference paper at ICLR 2026

Table 4: Zero-Shot Flexibility Performance of SKARL in Move Environment

Training Metric ‘ M =4 M=28 M =16 M =32 M=64 M=128 M =256
R/N 225.7 168.5 177.8 155.2 166.9 168.5 173.9
N =4 (#col)/N O+o0 222+ 118 1.36+0794 0.62+0419 0.25+0146 0.12+0075 0.22+ 00762
S 0.15+00190 0.12+ 0082 0.13x0085 0.12+006s 0.11x£00657 0.11x£00698 0.1240.0680
R/N 236.9 235.2 234.7 235.2 2254 205.6 202.6
N =16 (#col)/N O+o0 0.98+0437 0.77x036s 0.57x0207 0.17x0115 0.12+00652 0.04+ 00221
S 0.16+000434 0.17x00612 0.17+00500 0.17+00460 0.15+00323 0.14+00521 0.14+ 00542
R/N 231.5 221.3 227.3 224 2232 221.6 218.7
N =64 (#col)/N O+o0 0.45+0408 0.28+0257 044410275 0.15+0100 0.11x00866 0.09+ 0.0476
S 0.15+00126 0.15+00406 0.15+00237 0.16+00501 0.15£00459 0.15x 00401 0.1540.0436
Table 5: Flexibility Performance of SKARL in Target Environment
Training Metric ‘ M=4 M =38 M =16 M =32 M=64 M =128 M =256
R/N 82.3 -36.25 -444.0 -2.8e3 -9.0e3 -1.8e4 -3.7e4
N =4 T (step) 18 95 96.5 100 100 100 100
(#col)/N | 0.5+04 23+ 140 37.6+29 34.875+1134 46+151 138+ 189 342+ 38
S% 100 37.5 6.25 0 0 0 0
R/N 85.3 7.5 0.35 -2.4e3 -8.3e3 -1.7¢3 -2.6e4
N =16 T (step) 17.4 13.8 96.3 98.5 99.4 100 100
(#col)/N | 04x013 19.25£130 23.2+205 34.875+1134 46+151 75.5+ 146 116+211
S% 100 100 100 75 6.25 0 0
R/N 84.0 77.3 69.8 10.8 0.70 -0.25 -10.5
N =64 T(step) 18.7 27.8 30.6 67.2 98.1 100 100
(#col)/N | 0.5+ 0342 31235 6.7+ 645 16.1+533 4431106 66.3+152 96.8+ 17
S% 100 100 93.75 75 12.5 0 0

Scale up to large-scale swarms Figure [2} Table [2| and Table |3| demonstrates SKARL’s effective-
ness across swarm sizes N = 4,16,64. We select three metrics: (i) R: global reward. (ii) # col:
total collisions. (iii) S: average speed of each agent. For small swarms, SKARL achieves near-
optimal reward while entirely eliminating collisions. As the swarm scales to large scale, SKARL
outperforms all baselines, achieving the highest reward and fastest speed, with low reduction rate
of collision. Notably, SKARL balances safety and efficiency, collisions decrease without sacrificing
speed, matching top baselines. These results highlight SKARL’s scalability, particularly excelling
in mid-to-large swarms where coordination complexity increases.

Generalize to different swarm sizes Table] and Table [5 reveals SKARL’s zero-shot flexibility
when tested on varying swarm sizes M. When trained on small swarm size, SKARL fails to maintain
reasonable performance up to M = 256. However, training on larger swarms (N = 16/64) enables
robust generalization. Most impressively, N = 64-trained SKARL achieves near-optimal reward
per agent at M = 256, while collisions remain the lowest. This flexibility stems from SKARL’s
distribution-driven policy as is in Theorem enabling deployment in real-world scenarios where
swarm sizes are dynamic.

6 CONCLUSION

We propose SKARL, a scalable framework for large-scale multi-agent reinforcement learning.
SKARL resolves the scalability and flexibility bottlenecks of multi-agent reinforcement learning by
enabling linear complexity in swarm size and zero-shot transfer across populations. It ensures con-
vergence with efficient updates and drastically reduces training overhead, allowing effective learning
in large swarms. Experiments confirm that SKARL outperforms state-of-the-art baselines in both
performance and generalization.

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

This work introduces SKARL, a scalable kernel mean-field reinforcement learning framework for
large-scale multi-agent systems. Our contributions are primarily theoretical and methodological,
with empirical validation performed in simulated multi-agent environments such as swarm naviga-
tion, coordination, and collision avoidance benchmarks. These environments are widely used in
the MARL community and do not involve human subjects, sensitive personal data, or proprietary
datasets.

We acknowledge that advances in multi-agent reinforcement learning (MARL) may have dual-use
implications. While our experiments are limited to academic and open-source benchmarks, similar
techniques could be applied in high-stakes domains such as autonomous vehicle fleets, aerial drone
swarms, or defense systems. In such settings, ethical concerns may include safety, accountability,
and fairness. To mitigate potential risks, our work remains focused on theoretical scalability and
generalization, and we refrain from proposing or testing direct real-world deployment scenarios.

From a fairness perspective, the algorithms studied here are agnostic to sensitive human attributes
and do not incorporate demographic information. From a privacy and security perspective, no per-
sonal or confidential information is processed. From a research integrity perspective, we strictly
adhere to reproducible and transparent reporting, with proofs, assumptions, and algorithms explic-
itly documented. Finally, we affirm that we have read and adhered to the ICLR Code of Ethics, and
have conducted this research in alignment with its principles.

8 REPRODUCIBILITY STATEMENT

We have undertaken comprehensive steps to ensure that the theoretical and empirical results reported
in this paper are reproducible. For the theoretical contributions, all assumptions are explicitly stated,
and full mathematical proofs are provided either in the main text or in the appendix. These proofs
establish the universal approximation property of kernel cylindrical functions and the convergence
of the dual time-scale learning rule.

For the empirical results, all experiments are conducted on widely used benchmark environments
for multi-agent reinforcement learning, such as large-scale swarm coordination tasks. We describe
the experimental setup, training protocols, and hyperparameter configurations in detail within the
paper and provide additional clarifications in the appendix. Random seeds are fixed across runs, and
ablation studies are reported to verify stability.

To further facilitate reproducibility, we release anonymous source code, including implementations
of SKARL, training scripts, and environment configuration files, as part of the supplementary mate-
rials. This enables other researchers to directly reproduce the results presented in this paper, adapt
the framework to new environments, or verify the theoretical guarantees with empirical evidence.
Together, these measures ensure that the community can reliably replicate and build upon our con-
tributions.

REFERENCES

Andrea Angiuli, Jean-Pierre Fouque, and Mathieu Lauriere. Reinforcement learning for mean field
games, with applications to economics. arXiv preprint arXiv:2106.13755, 2021.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christopher Hesse, Rafal J6zefowicz,
Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto,
Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya
Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement
learning. CoRR, abs/1912.06680, 2019. URL http://arxiv.org/abs/1912.06680.

Patrick Billingsley. Convergence of probability measures. John Wiley & Sons, 2013.

Vivek S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Springer, 2008.

10

http://arxiv.org/abs/1912.06680

Under review as a conference paper at ICLR 2026

Peter E Caines, Minyi Huang, and Roland P Malhamé. Large population stochastic dynamic games:
closed-loop mckean-vlasov systems and the nash certainty equivalence principle. Communica-
tions in Information and Systems, 6(3):221-252, 2006.

Ruan de Kock, Omayma Mahjoub, Sasha Abramowitz, Wiem Khlifi, Callum Rhys Tilbury, Claude
Formanek, Andries P. Smit, and Arnu Pretorius. Mava: a research library for distributed multi-
agent reinforcement learning in jax. arXiv preprint arXiv:2107.01460, 2023. URL https:
//arxiv.orqg/pdf/2107.01460.pdf.

Yali Du, Joel Z Leibo, Usman Islam, Richard Willis, and Peter Sunehag. A review of cooperation
in multi-agent learning. arXiv preprint arXiv:2312.05162, 2023.

Richard Mansfield Dudley. The speed of mean glivenko-cantelli convergence. The Annals of Math-
ematical Statistics, 40(1):40-50, 1969.

Haotian Gu, Xin Guo, Xiaoli Wei, and Renyuan Xu. Mean-field multiagent reinforcement learning:
A decentralized network approach. Mathematics of Operations Research, 50(1):506-536, 2025.

Xin Guo and Renyuan Xu. Stochastic games for fuel follower problem: N versus mean field game.
SIAM Journal on Control and Optimization, 57(1):659—692, 2019.

Xin Guo, Huyén Pham, and Xiaoli Wei. It6’s formula for flows of measures on semimartingales.
Stochastic Processes and their applications, 159:350-390, 2023.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Jean-Michel Lasry and Pierre-Louis Lions. Mean field games. Japanese journal of mathematics, 2
(1):229-260, 2007.

Michael L. Littman. Markov games as a framework for multi-agent reinforcement learning. /CML,
1994.

Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur, Bernhard Schoélkopf, et al. Kernel
mean embedding of distributions: A review and beyond. Foundations and Trends® in Machine
Learning, 10(1-2):1-141, 2017.

Siddharth Nayak, Kenneth Choi, Wenqi Ding, Sydney Dolan, Karthik Gopalakrishnan, and Hamsa
Balakrishnan. Scalable multi-agent reinforcement learning through intelligent information aggre-
gation. In International Conference on Machine Learning, pp. 25817-25833. PMLR, 2023.

Victor M Panaretos and Yoav Zemel. Statistical aspects of wasserstein distances. Annual review of
statistics and its application, 6(1):405-431, 2019.

Huyén Pham and Xavier Warin. Mean-field neural networks: learning mappings on wasserstein
space. Neural Networks, 168:380-393, 2023.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 1994.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and
Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent reinforce-
ment learning. ICML, 2018.

Alessandro Rudi, Raffaello Camoriano, and Lorenzo Rosasco. Less is more: Nystrom computational
regularization. Advances in neural information processing systems, 28, 2015.

Alexander Rutherford, Benjamin Ellis, Matteo Gallici, Jonathan Cook, Andrei Lupu, Gardar Ing-
varsson, Timon Willi, Akbir Khan, Christian Schroeder de Witt, Alexandra Souly, Saptarashmi
Bandyopadhyay, Mikayel Samvelyan, Minqi Jiang, Robert Tjarko Lange, Shimon Whiteson,
Bruno Lacerda, Nick Hawes, Tim Rocktaschel, Chris Lu, and Jakob Nicolaus Foerster. Jaxmarl:
Multi-agent rl environments in jax. arXiv preprint arXiv:2311.10090, 2023.

Bernhard Scholkopf and Alexander J Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press, 2002.

11

https://arxiv.org/pdf/2107.01460.pdf
https://arxiv.org/pdf/2107.01460.pdf

Under review as a conference paper at ICLR 2026

Friedhelm Schwenker, Hans A Kestler, and Giinther Palm. Three learning phases for radial-basis-
function networks. Neural networks, 14(4-5):439-458, 2001.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Flores Zam-
baldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl Tuyls, and Thore Grae-
pel. Value-decomposition networks for cooperative multi-agent learning. CoRR, abs/1706.05296,
2017. URL http://arxiv.org/abs/1706.05296.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine Learning,
3(1):9-44, 1988.

Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus, Juhan Aru, Jaan
Aru, and Raul Vicente. Multiagent cooperation and competition with deep reinforcement learning.
CoRR, abs/1511.08779, 2015. URL http://arxiv.org/abs/1511.087709.

Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In In Proceed-
ings of the Tenth International Conference on Machine Learning, pp. 330-337. Morgan Kauf-
mann, 1993.

Huaze Tang, Yuanquan Hu, Fanfan Zhao, Junji Yan, Ting Dong, and Wenbo Ding. M?3arl:
Moment-embedded mean-field multi-agent reinforcement learning for continuous action space.
In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pp. 7250-7254. IEEE, 2024.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double g-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Daniele Venturi and Alec Dektor. Spectral methods for nonlinear functionals and functional differ-
ential equations. Research in the Mathematical Sciences, 8(2):27, 2021.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Micha¢l Mathieu, Andrew Dudzik, Juny-
oung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan
Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, L. Sifre, Trevor Cai, John P. Agapiou, Max
Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David
Budden, Yury Sulsky, James Molloy, Tom Le Paine, Caglar Gulcehre, Ziyun Wang, Tobias Pfaff,
Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wiinsch, Katrina McKinney, Oliver Smith, Tom
Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver.
Grandmaster level in starcraft II using multi-agent reinforcement learning. Nature, pp. 1-5, 2019.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent g-learning. arXiv preprint arXiv:2008.01062, 2020.

Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang. Mean field multi-
agent reinforcement learning. ICML, 2018.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in neural information
processing systems, 35:24611-24624, 2022.

A THE USE OF LLM

In the preparation of this paper, we employed large language models (LLMs) strictly as assistive
tools. Their role was confined to three aspects: (i) improving the clarity and readability of the
manuscript by suggesting stylistic refinements and alternative phrasings; (ii) assisting with the orga-
nization and presentation of mathematical proofs, including the checking of algebraic manipulations
and the polishing of logical exposition; and (iii) serving as a coding assistant for routine program-
ming tasks such as code completion, debugging, and documentation generation.

Importantly, LLMs were not involved in the generation of research ideas, the design of the SKARL
framework, or the conceptual development of the theoretical results. All scientific insights, algo-
rithmic designs, and experimental implementations originate from the authors. The LLM usage

12

http://arxiv.org/abs/1706.05296
http://arxiv.org/abs/1511.08779

Under review as a conference paper at ICLR 2026

did not extend to generating novel theorems, creating data, or drawing conclusions. Instead, the
models functioned in a supportive capacity, comparable to grammar-checking or code editor auto-
completion, with the final responsibility for correctness, originality, and integrity resting solely on
the authors.

We disclose this usage in alignment with ICLR policy. By transparently reporting the scope of
assistance, we affirm that the LLMs were used responsibly and ethically, and that the intellectual
contributions of this work are entirely attributable to the authors.

B PROOFS OF THEOREMS, LEMMAS AND PROPOSITIONS

B.1 PROOF OF THEOREM [3.1]

Proof. We establish the density of proposed Gp(M). To this end, we first need:

Lemma B.1 (Stone-Weierstrass). Take a compact Hausdorff space H, and let C(H) be the algebra
of real-valued continuous functions on H, with the topology of uniform convergence. Let A be a

subalgebra of C(H). If A separates points on H and vanishes at no point on H, then A is dense in
C(H).

Then, following the proof of Lemma 3.12 in |Guo et al.| (2023, we prove that with appropriate
choices of norms, Gp (M) is dense in C** (M).

Lemma B.2. G (M) is dense in C1'1 (M) with the supremum norm of derivatives of all orders: for
® e CHI(M),

[@la = swp (190)]+ [0,@(0)(@)] + 0,0, 2 (1)))
(v,z)EP(M) XM

We prove this with two steps:

Step 1: take ® € C1'1 (M), then GM‘;% (u,) is a continuous function on P(M) x M by definition,

namely, 896;6‘;—3(;1, x) € C(P(M) x M). Define the algebraic space that contains Gp (M) for some

n €lmathbbN as
HPM) x M) i= { @) = 3 (g5 m)n* (@),
k=1

monomials f* h* : RP — R, kernels ¢* : M — /\/l}

We can see the Gp (M) can be viewed as a subalgebra of H(P(M) x M). Additionally, we can
also see that

* H(P(M) x M) separates points on P(M) x M. To check this, take (p, z) # (¢', ") €
P(M) x M, with either u # u' or x # 2’ If 4/ # p, from Theorem 30.1 by Billingsley
(2013), there exists a kernel function k(zg,-) such that [, k(y,z)(u — p')(dz) # 0,
otherwise, p = . In this case, define p(, x) = (k(zo,2)) € H(P(M) x M). If p/ = p,
x' # x,let p(p,) = z, then p(u, x) # p(', x’'). In either case, H (P (M) x M) separates
points on P(M) x M.

* H(P(M)x M) vanishes at no point on P (M) x M. It can be checked to choose a nonzero
constant function as fx and hy.

Therefore, it follows from the Stone-Weierstrass lemma that (P (M) x M) is dense in C(P (M) x
M) with the topology of uniform convergence. Hence, there exists a sequence of functions p,,, p,, €
H(P(M) x M) such that for any € > 0, there exists N € N that forn > N,

0P
sup pn(:u’a ZL’) - 81157(“7 SIJ) é €, (10)
(n,z)eP(M)xM 1%

13

Under review as a conference paper at ICLR 2026

and
s[5 =)| < e
Step 2: Let
Py (ps) = pn(/ / P, 2)d2dy,
and

1
Bu() = @(00) + [[Pl (1= N, a)(s — o))
0o JM
It can be checked that ®,, € Gp (M) with polynomial kernels. Now we have

Po(urz) — ‘”’(z)

= Pnl(/ / Pn(p, 2)dzdy—
<I>
(5 +/0 /; awwéu(uaz)dZdy>

=) = S0+ [[(pn(u,)2 = e o z)) dzdy.

Thus, by Eq. (T0),
sup |02 P (pt,) — 9, @(p, 7)| < K,
P(M)xM
o 9
sup | Pp(p, @) — @(ws) <(1+K%)e
Moreover,
(I)n(.u) - (I)(:u)

_ (q>(50) 4 /01 /M PO+ (1 — Ao, 2) (st — 60)(d:c)d)\)

_<q>(50)+/ / ?I)()\u—i—(1—A)6O,x)(u—6o)(dx)d)\>
// (O+ (1—)60,x)—(;;I:()\;H—(l—A)&o,x)>(u—5o)(das)d>\.

Hence,
sup |, (1) — P(p)] < 2(1+ K?)e.
P(M)

Therefore,
@, — @|lam < (14 K +2(1 + K?))e,

with ®,, € Gp(M), which is shown to be dense in C1:1(M).

B.2 STATEMENT AND PROOF OF WASSERSTEIN LIPSCHITZ CONTINUOUS

(an

Lemma B.3 (Wasserstein Lipschitz Continuous). If Assumption[3.1|holds, then cylindrical function
h(p) € Gp(M) is C-Lipschitz continuous according to p € P(M), i.e., for any measure ji,v €

Pa(M), there holds
|h(vo) — h(v1)| < CWa(vo, 1),

where C' is a constant.

14

12)

Under review as a conference paper at ICLR 2026

Proof. Since the kernels ¢ are unformly bounded, the input space for outer function h are actu-
ally is compact. Therefore, outer function : R” — R (a polynomial function) is Lj,-Lipschitz
continuous:

|h(21) — h(22)| < Lp|lz1 — 22ll2, V21,22 €3G, (13)

where G C RP is a compact subspace. Let 7 be the optimal coupling between v and v;. Then:

D 1/2
|h(VO) - h(Vl)‘ < Lh (Z |<gda,uug - ,U'V1>7'lk ’2>

d=1

< Lh\/ﬁlg}iagXD |<gdvﬂuo - P’V1>Hk|'

Therefore, we have that

h(v0) = hun) P < 2D max {9 i, = s
/ (9%(2))*(dvo — dun) ()
X

< L} Dinf max/ (gd(z))Qdﬂ(z,y)
T od Jaxx

< L,QLD mgx

< Iiprint [o= yldr(ay)

XX
=CW, (:uv V)27
where the last inequality follows from the Kantorovich-Rubinstein duality. Therefore, we have that
|h(vo) — h(11)| < LaV'DL,Wa(,v). (14)
O

B.3 PROOF OF PROPOSITION[3.2]

Proof. We provide derivation of Proposition From Eq. (@) we have the form of Q°. Then, the
functional gradient in the form of Fréchet derivative is

O o XD: 5(Barhat i (Vg (&) - A, 1))

Vgi,in =
og = o9
2 6(0urhgial) o 4
= adhsf,,ai,ul,_i + Z %<vgz,d (z) - Az, v™")
d'=1 g
YL LR Vel

To calculate the last term in V gi.a Q?, we apply the fundamental lemma of calculus of variations.
Define function f(z, g, Vg) = g"(z) - (z° — 2)v~%(z), then, (Vg"4(x) - (' — x),v~*(x)) can be
written as

(Vgi(a) - (@' —z),v7"(x))
= / Vghi(z) - (7" — z)v " (z)dx
M

= /M f(z,9,Vg)dz.

Therefore, we have that

(Vg i) (@' —x) v () _Of o Of _

= =50~V g = V(@ @),

15

Under review as a conference paper at ICLR 2026

Hence, we have the form in Proposition [3.2]

D % i gt
i r0stat id (g =1 j
Vgi,dQ = adhsi,ai/,él,—i + Z ddT ng d (.23]) . (Z‘ - a?j),u,,—i
d'=1 ’

+ 8dhsi}aiv . (l/iz(ili)(l‘ — 9_31))

Jj=1

B.4 PROOF OF THEOREM [4.]]

Proof. Under Assumption we know that the cylindrical function h(u) is Wasserstein continuous
by Lemma[B.3] Therefore, we have that

[h(vn) = h(var)| < CWa (v, var)-

Since Wassserstein distance meets the triangle inequality (Panaretos & Zemel, 2019), we have that

Wa(vn,vam) < Wa(vn,v) + Wa(va, v).

Since the convergence rate of empirical distribution v to v under measure of Wasserstein distance
is O(Nfl/d) (Dudley} |[1969), namely,

]E[WQ(I/N, l/)] < CN_I/d.
Therefore, we have that
E[|h(vn) — h(var)]] < CEWa(vn, v)] + CEWa (var, v)]
< ON~Ya 4 coM1/4,

B.5 PROOF OF THEOREM[4.2]

Proof. First, we prove that the convergence rate of cylindrical function is controlled by the conver-
gence rate of empirical kernel mean embedding.

Lemma B.4 (Convergence Rate Bound of Kernel Cylindrical Functions (Lemma 5.2, (Venturi &
Dektor, 2021))). Denote the projection of measure v on RKHS embedding space Hyr as Ppyv =
S qcak(x?,-), where [c1,...,cp]T =i ¢ = (Kpp)~*band by = (k(z%,-),v). We have that h
defined in Eq. (E]) with one type of kernel converges to f for all v € Py(M) with the same rate

as Ppv convergences to the kernel mean embedding (1,,. Formally, with f : u, — f(v), it can be
expressed as

|h(v) = f(v)| < sup 111 — Ppvls, (15)

St

where & f /O, is the Fréchet derivative of function f and i, is the kernel mean embedding defined
in Eq. (3).
From Lemma[B.4] the convergence rate of the cylindrical function is controlled by the convergence

rate of the empirical kernel mean embedding.

Lemma B.5 (Convergence Rate of Empirical Kernel Mean Embedding (Theorem 3.4, (Muandet
et al., 2017))). Assume the boundedness for kernel k in Assumption holds. Then for any § €
(0, 1) with probability at least 1 — 6,

1 21 1/6
i — Pov|ln < \[ﬁ \/#. (16)

Combining the results from Lemme we have that the convergence rate of & to f is the multiple
of Fréchet derivative and O(D~'/2), which proves our results. O

16

Under review as a conference paper at ICLR 2026

B.6 PROOF OF THEOREM [4.3]

Proof. First, we introduce the non-linear two-time-scale stochastic approximation.

Lemma B.6 (Nonlinear Two-Time-Scale Stochastic Approximation (Borkar, 2008))). Consider two
coupled stochastic approximation processes:

Tuit = o+ a(n) [f@nyyn) + M) a7)

Ynt1 = Yo+ () 9@, ya) + M) as)
where x,, € R? (slow process) and y,, € R¥ (fast process), with step sizes a(n),b(n) > 0.
Assume that
(i) f: RY x R¥ — R? and g : RY x R¥ — RF are Lipschitz continuous,

(ii) For each fixed x, the ODE §(t) = g(z,y(t)) has a globally asymptotically s equilibrium y*(x).
The ODE &(t) = f(x(t),y*(x(t))) has a globally asymptotically s equilibrium x*

(iii) the sequences {a(n)} and {b(n)} satisfy Robbins-Monro conditions in Assumption and
(iv) {M,(zl)}, {M7(12)} are martingale differences w.r.t. F,, = 0 (T, Ym, M,%), M,S?)7 m < n), with
E [IM02 | Fo] < OO+ lanl® + llgall®), i =1,2.

Then, the iterates (T, yn) converge almost surely to (x*,y*), where y* = y*(x*).

Base on the Lemma[B.6] we rewrite updates of Eq. [7]as stochastic approximation processes:

hast = he -+ (Fulhe, o) + ML), (19)
guir = g0+ 1y (Fylha, g0) + ML), (19b)
where F}, = —E { 50 %%‘;‘VhQi} and F} is defined analogously. Mj,, M, are martingale differ-

ence noise terms.

By the SA theory (Borkar, 2008), the updates approximate:
(Fast) ¢ = Fy(h,g9), (20a)
(Slow) h = Fj(h,g*(h)), (20b)
where g*(h) is the equilibrium of Eq. for fixed h.

Since the Bellman operator is a contraction mapping (Littman, [1994), we have that there exists a
globally asymptotically s equilibrium g* and ~* to minimize ¢. Therefore, by the Lemma[B.6] we
have that:

* The fast process Eq. (19b) tracks Eq. (20a)), converging to g*(h;) for any slow h;.

* The slow process Eq. (19a) converges to h*, which induces g* = ¢g*(h*).
Thus, (h, g¢) — (h*, g*) almost surely. O

B.7 PROOF OF THEOREM [4.4]

Proof. Theorem[f.4]is the same with Theorem 1 in (Rudi et all 2015). Define the integral operator
Ly, for kernel function k£ by
Lyf(x / f(s

For A > 0, define the random variable N, (\) = (K, (Lx + M) K,) with z € X. The efficient

dimension is
NA) =ENZ(N), No(A) = sup Nz(N).

zeX

17

Under review as a conference paper at ICLR 2026

Theorem B.7 (Error Analysis of Nystrom Approximation, Theorem 1 (Rudi et al., 2015)). Under
Assumption3.1| 4.2l and[.3) let 6 € (0,1), v = min(s, 1/2), p =14 1/(2v + 7) and assume

6 /38p 1l4p \”
N; + M > 1655 + 2231og ~ +< log) 1)
IZell L]
Then, the following inequality holds with probability at least 1 — 6 for,
—id i 9 _ _2vil
E(Gyi) < 5@;{15@) +q°(N; + M)~ 2571 (22)
with
a = 6R(2]Le| + log
Vi ||Lk HLk”7 6’
C4, Cy are constants, and \ = ||Ly||(N; + M)~ 57T and L > max(67, 5N a0 (A)) log 2.
O

In our scenario, for a large swarm with batch size, the INV; + M will easy meet the assumption in
Theorem For example, if a swarm of N = 32 with batch size B = 128, along with kernel
number M = 64, N, + M = B - N + M will be 4160, which may statisfy the assumption with
certain d.

C APPENDED REMARKS

C.1 REMARKS ON KERNEL CYLINDRICAL FUNCTIONS AND MEAN FIELD EMBEDDING

Remarks C.1 (Requirements on kernel by Lipschitz continuity). The Lipschitz continuity require-
ment limits the choice of kernel functions. Such as

* Polynomial kernels: k(y,r) = (ax - y + c)? violates the condition when input space X is
unbounded, as the gradients grow polynomially with ||z ||2.

o Sigmoid kernels: k(y,x) = tanh(ax-y+c) could fail to satisfy global Lipschitz continuity
due to saturation effects in nonlinear regions.

* Gaussian kernels: k(y, x) = exp(—v||x — y||3) generally meet the requirement with L, =
vsup, ||zfl2/2.

Remarks C.2 (Inner Product between mean-field measure and component functions). The inner
product between mean field measure and component function g% evaluates to:

M Ni T prd ~d
. . 1TK
(g™ i) = E > gk (@™ al) = = (23)

N;
ml_]l

where K@ € RN*M s the Gram matrix with K'J‘-im = k%(z7,2™) and 1 € RN is an all-ones
vector.

D REMARKS ON KERNEL FUNCTIONS

We list several kernels frequently appearing in the literature.

In our work, in consideration of Lipischitz continuity, representation capability and easy to calculate,
we adopt polynomial and Gaussian kernels.

18

Under review as a conference paper at ICLR 2026

Table 6: Kernel Functions and Corresponding Partial Derivative

Kernel Type Kernel k(y,) Gradient of kernel 0,k (y, x)
Linear T-y+c Y
Polynomial (az -y +c)? ad(azx -y + c)?1
Gaussian exp(—7llz —y[|*) —2v(z —y) exp(—v[z — yl]?)
Laplacian exp(—/[z —yll) —sign(z —y) exp(—ryljz = y1)
Sigmoid tanh(azx -y + ¢) ay(1 — tanh?(az -y + ¢))

D.1 REMARKS ON MEAN-FIELD REPRESENTATION OF VALUE FUNCTIONS

Remarks D.1 (Expansion of Eq. (6)). Eg. [6]is expanded as:

) 1TK1 1 1TKD D
Ql(saa) = hsi,ai (2 2)

N, sy N,
1 D M N;

o d d(,.m i\ (g

P, 2 e 2 2 Ok) ()
= m=1jy=

Remarks D.2 (Mean field representation of state value function and advantage funcion). Similarly,
we can present the state value function V*(s) and advantage function A*(s, a) with the mean field
representation in Eq. (6) as

D
VZ(S) = hgf (<g1i;17 ,ul/*'i>7 R <gqi;7Da UV*1>) + Z 6dh:1 <vgz,d(x) : AJZ, V7i>7

d=1
and

() = 1 (Gl s (G 1)) + 7 *Zadh‘;‘f”az Vi (2) - Az, v,

where h?; and h‘,’s‘f‘al are the cylindrical kernel functions, with kernel functions {g5*} and { gad‘ } for

value functzon V' and advantage function A, respectively. In this paper, we focus on the Q) function,
while we think it is also interesting to expand our conclusions to value and advantage functions.

Remarks D.3 (Explicit form of Fréchet derivative). In discrete particle approximation with N;
neighbors, Eq. (8) is:

Ni NZ

VyaQ =D |5 Oah Z d’th DAz | k(- th — Vi - Ax].

=1 j=1

D.2 REMARKS ON NYSTROM APPROXIMATION
Remarks D.4. The gradient inner product admits explicit computation:

(k(z™,), Vgi,in> Z |:23dh Z add/h Z Vg d’ a:j ij’] k‘d(g;",xj)

=1
8dh

(2", 27) - Aa? (24)
=1
Remarks D.5 (Anchor Point Selection). There are several principled ways to choose anchor points
(Y
* Random Subsampling: Select L points uniformly from RKHS anchor points {x"}N My

i,d
9tk

2L~ Uniform({z"}NiMy 1 =1, L.
Pros: O(1) computational cost. Cons: May miss important regions.

19

Under review as a conference paper at ICLR 2026

e k-means Centers: Solve

o Z 2
{z'} = arg win }lgllglL [— el
Im

Pros: Captures data geometry. Cons: O(NiLT) computation complexity for T iterations.

* Kernel Herding: Select points maximizing the minimum kernel similarity:
l
Z41 = arg max k(x,zp) ——Zk‘xﬂc]
velem} 2

Pros: Constructs maximally representative points. Cons: O(NiLT) computation complex-
ity for T iterations.

* Leverage Score Sampling: Sample with probability proportional to diagonal entries of the
kernel matrix: (K)
MM)jj
by = ——— , 2! ~ Pj-
l‘r(KM]\/[)

Pros: Preserves spectral structure of the RKHS.

In this paper, we apply the random subsampling method for simplicity.

E IMPLEMENTATION DETAILS OF SKARL AND BASELINES

E.1 IMPLEMENTATION DETAILS OF SKARL

Base Algorithm of Credit Assignment for SKARL We apply VDN (Sunehag et al.,|2017) as the
basic credit assignment algorithm for SKARL. N amely, the total Q¢ value is calculated by

Qtotsa Zlea

Kernel Cylindrical Function Implementation We adopt a hypernetwork (Ha et al., 2016) for
kernel cylindrical function network. Namely, the ego state and action (s*, a*) are used to generate
the parameters of a network for processing f, -

Tricks We apply several tricks to help stabilize and fasten training.

* Dual Network Update: To avoid over-estimation of () value, we apply double Q learning
framework (Van Hasselt et al., [2016).

* Entropy Regularization: To avoid the performance drops in the last epochs during train-
ing, we apply entropy regularization on the actor policy.

Codebase We apply SKARL and baselines with Jax. We organize the code in JaxMARL (Ruther-
ford et al.| 2023)) for better organization and class inheritance. We plan to release full codes after-
wards. For now, the code for important implementation can be found via anonymous Github link:
https://anonymous.4open.science/r/SKARL-050D.

Hyperparameters In this paragraph, we list the hyperparameters in[7]and [§]
E.2 COMMON SETTINGS FOR ENVIRONMENT
For learning stability and environment consistency, we conduct following tricks:

Re-scale of Environment To make environment scalable, we conduct re-scale of world size of
environment according to the agents as below:

world size = 2 % min(vVN —1,1),

where world size serves as the boundary value of environment as [—world size, world size] x
[—world size, world size] and N denotes the number of agents.

20

Under review as a conference paper at ICLR 2026

Table 7: Environment & Training Configuration

Environment Training Optimizer

Hyperparameter Value | Hyperparameter Value | Hyperparameter Value
Agent Number 4/16/64 Total Time Steps 2M Learning Rate Te-4

Environments Number 128 Update Steps Number 50 Max Grad Norm 10

Test Environment Number 8 Target Update Interval 8 Optimizer ADAM

Max Train Env Timesteps 50 Test Interval 50k EPS le-5

Max Test Env Timesteps 100 Weight Decay 0

Buffer Exploration Learning rate Decay
Hyperparameter Value | Hyperparameter Value | Hyperparameter Value
Buffer Size 8192 Epsilon 1.0 — 0.05 i 1/t9-6
Buffer Batch Size 32 Epsilon Anneal Time 50k g 1/t0-8
Buffer Sample Uniform Anneal Method Linear Basic LR Te-5

Table 8: Network & Algorithm Architecture

Network Algorithm
Hyperparameter Value \ Hyperparameter Value
Embedding Net Layer 3 TD Lambda 0.95
Agent Hidden Dim 16 Gamma 0.99
Mixer Embedding Dim 256 Entropy Rate 0.5
Mixer Hypernet Hidden Dim 256 | Anchor Points Number L =64
Attention Dim 64 Tikhonov Coefficient 0.5
Activation ReLU Polynomial Kernel (a,d,0)=(1,2,1),(1,3,1)
FC Init Scale 2.0 Gaussian Kernel v=0.5,1.0

Reset of Agents and Landmarks We generate the new agents and landmark uniformly in the
world of environment, namely, p* ~ Uniform([—world size, world size] x [~world size, world size])
fori € {1,...,N}. In some implementations, a reject sampling is adopted to avoid collision
between generated agents and landmarks (such as codebase of InforMARL (Nayak et al., 2023)),
JaxMARL (Rutherford et al., [2023)), Mava (de Kock et al.l [2023) and so on). However, we do
not adopt such rejection, due to the consideration of time consumption. Instead, we separate the
environment world into grids and sample among grids to avoid collision.

During both training and evaluation phases in the Target and Coverage environments, the episode
terminates and resets automatically once all agents successfully reach their assigned goals (or all
landmarks are uniquely covered for the Coverage task). This design ensures episodic training and
prevents infinite loops. However, since agents are able to receive one-time rewards for several
times, the total episodic reward may temporarily exceed the theoretical maximum (e.g., N x 10 for
N agents) during resets due to reward accumulation in the final timestep.

Size and Velocity Settings of Agents and Landmarks The settings for agents and landmarks are
listed as below in[9]

Table 9: Environment Setup

Hyperparameter Value
Agent Size 0.15
Landmark Size 0.225
. 0.65 (Move)
Agent Maximum Speed N/A (Target/Coverage)
5 (Move)

Agent Acceleration 2 (Target/Coverage)

21

Under review as a conference paper at ICLR 2026

F ADDITIONAL EXPERIMENTS

F.1 EXPERIMENTS IN TARGET ENVIRONMENT

In this section, we provide the analysis of results for task Target. The experimental results in the
Target environment demonstrate SKARL’s ability to maintain task performance while balancing
safety and scalability across different swarm sizes.

For small swarms (/N = 4), SKARL achieves near-optimal performance with a global reward of
329.3, comparable to QMIX (337.0) and QPLEX (330.3), while ensuring a 100% success rate.
However, it exhibits a higher collision count (7.2 & 3.15) compared to QMIX (0.67 £ 0.35) and
QPLEX (1.3 £ 0.982), suggesting a trade-off between task completion and collision avoidance in
simpler settings.

As the swarm scales to N = 16, SKARL significantly outperforms value-based methods (QMIX,
QPLEX, MFRL), which suffer from catastrophic reward degradation (e.g., QPLEX: —3.1 x 10%).
Although MAPPO achieves a higher reward (12.0), its success rate drops to 40.6%, whereas SKARL
maintains a 100% success rate despite increased collisions (23.2 4 20.5). Additionally, SKARL
reduces collisions by 32% compared to MFRL, indicating its robustness in mid-scale coordination,
which aligns with findings from the Move environment in 2}

In large-scale swarms (N = 64), SKARL demonstrates superior scalability, achieving a positive
reward (44.75) while all baselines fail (rewards < 0). Notably, while the collision count remains
high (44.3 £ 10.6), the drastic improvement in reward over MFRL (—5.7 x 10°) and QMIX (—6.4 x
10°) suggests that SKARL effectively prevents catastrophic failures in complex scenarios. The low
success rate (3.1%) implies that further optimization is needed for very large swarms, but the results
highlight SKARL'’s ability to maintain functional performance where other methods collapse.

Overall, SKARL exhibits strong scalability in the Target environment, particularly excelling in main-
taining task success and reward stability as swarm size increases, with a trade-off in collision avoid-
ance at larger scales. This aligns with its performance in the Move environment, where it achieves
a 96% collision reduction at N = 64, reinforcing its effectiveness in large-scale multi-agent coor-
dination. However, the problem of scaling up in Target environment remains to be solved, which
require further works.

F.2 EXPERIMENTS IN COVERAGE ENVIRONMENT

Table 10: Performance Comparison between SKARL and Baselines in Coverage Environment

N=4 N =16 N =064
R(H) T #col) S | R T #col)) S | R Td) #eoll) S
MAPPO | 339.6 0.40 0.26+0s56 1.00+£00 | 167.6 057 53+272 0.13x0se2 | 97.3 0.87 18.4+s83 0.05+0009
MFRL 396.6 0.52 0.03:00 1.00+00 | 187.0 0.62 2.5+165 0.12+04s6 | 216.2 0.86 15.1+232 0.04+ 0871
QMIX 2754 039 4941246 1.00+00 | 259.5 0.52 19.5+s53 0.19+07 | 3242 092 11.8+413 0.10+05
QPLEX 318.5 0.38 0.56+0194 1.00+00 | 298.7 0.61 7.3+622 0210512 | 8345 0.85 21.5+365 0.14+0290

SKARL ‘387‘2 0.51 0.15+080 1.00+00 ‘ 320.8 0.61 242+167 0221034 ‘ 907.3 0.76 153+53 0.17+0s32

Algorithm ‘

F.3 EXPERIMENTS IN LINE ENVIRONMENT
F.4 ABLATION STUDY

Is it necessary to apply gradient in RKHS? There is another way to conduct gradient for cylin-
drical function: directly update in the Euclidean space (Schwenker et al.,[2001)). Here we provide a
comparison with this method with NV = 4 and kernel number is 64 in Move environment in Figure
The result indicates that with RKHS gradient, both the training stability and final performance
are improved.

How number of anchors affect the result? We compare the performance of different anchor
points number L = 1, 2,8, 32 under Move task with agent number N = 4. As is demonstrated
in Figure 4] more anchor points only help to stabilize the training process (as the performance of

22

Under review as a conference paper at ICLR 2026

Table 11: Flexibility Performance of SKARL in Coverage Environment

Training Metric | M =4 M=16 M =64 M=128 M =256

R/N 96.8 23.7 0.3 -1.2 -9.2

N =4 T (step) 51 74 92 100 100
(#col)/N | 0.0375 0.76 6.932 324 78.9

S% 100 72 4 0 0
R/N 97.5 24.05 223 4.3 0.82
N =16 T (step) 43 61 67 94 100
(#col)/N | 0.0457 0.19 0.203 2.54 5.21

S% 100 79 6 6.25 0
R/N 96.2 25.8 14.2 9.3 3.52

N =64 T (step) 41 56 76 89 92
(#col)/N | 0.0557 0.285 0.239 0 9.68

S% 100 84 13 75 5

Table 12: Performance Comparison between SKARL and Baselines in Line Environment

Algorithm ‘ N =4 N =16 N =64
R Td) #cold) S | R TH) #col(l) S | R Td) #col(l) S
MAPPO | 4223 031 0.10+020 1.00+000 | 563.4 0.43 1.50£090 0.30+020 | 1462.7 0.72 8.00+300 0.22+008
MFRL 444.8 025 0.05+010 1.00+000 | 591.2 043 0.90+060 0.36+018 | 16043 0.68 6.00+250 0.27+0.09
QMIX 421.6 025 0.12+025 1.00+000 | 572.1 049 1.80+110 0.32+019 | 15104 0.64 7.20+280 0.24+009
QPLEX | 449.7 0.27 0.07+015 1.00£o000 | 608.0 0.42 1.20+070 0.38+017 | 16249 0.67 6.50+260 0.26+0.00

SKARL | 4189 023 0.03z00: 1.00:000 | 6156 041 0.70t05 0.40=016 | 17658 0.66 5.50:220 0.30-0.10

L = 32 achieves the most stale training curve), while the convergence speed and final performance
is scarcely affected. Furthermore, since full performance can be achieved with anchor points number
1, it is indicated that SKARL can apply at least one kernel number L with L < v/N to achieve lower
computation complexity compared with value decompostion algorithms e.g. QMIX (as discussed in
Section[d).

How types of kernels affect the result? We compare specific choices of different kernels under
Move task with agent number N = 4. Specificly, we compare the choice of Gaussian kernel and
polynomial kernel. For the Gaussian kernel, we adopt y as (0.5, 1.0, 2.0) and for polynomial kernel,
we set parameters as («,d, c) = (1,2,1),(1,3,1), (1,4, 1). The results are demonstrated in Figure

600 —— Euclidean Gradient —— RKHS Gradient
500 - (nww\-
= 400
<
2 300 4
&
200
100
0 T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2
Training Steps le6

Figure 3: Comparison between gradient in RKHS space and Euclidean space.

23

Under review as a conference paper at ICLR 2026

Table 13: Flexibility Performance of SKARL in Line Environment

Training Metric | M =4 M=16 M =64 M=128 M =256

R/N 104.7 32.2 -4.3 -10.5 -36.4
N =4 T (step) 23 54 87 100 100
(# col)/ N | 0.0075 0.076 0.950 4.1 12.1
S% 100 72 8 0 0
R/N 117.5 38.5 20.4 6.3 0.72
N =16 T (step) 32 41 84 91 100
(# col)/ N | 0.0005 0.044 0.103 0.874 1.54
S% 100 40 24 3.25 0
R/N 123.2 534 27.58 18.9 2.31
N =64 T (step) 21 31 66 77 82
(# col)/ N | 0.0002 0.029 0.085 0.376 0.985
S% 100 84 30 27 18
—— 1 Anchors —— 8 Anchors
—— 2 Anchors 32 Anchors

T T T

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Training Steps le6

Figure 4: Comparison between different number of anchor points.

Bl We conclude that the choice of kernels may not affect the final performance, as long as the
representation capability of this kernel is strong enough.

How does anchor points distribute? We plot the distribution of anchor points with UMAP in
Figure [6| with N = 4. We can see the anchor points of Gaussian kernel follows nearly a uniform
distribution, while anchor points of polynomial kernel follows certain pattern.

— Gaussian Kernel —— Polynomial Kernel
600
g 400
2
Q
& 200
0 T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2
Training Steps le6

Figure 5: Comparison between different number of kernel types.

24

Under review as a conference paper at ICLR 2026

UMAP Projection of 64 Points (16D - 2D)

1 3%@
0.5 1 39
3
& 0o 285 4 o :s
20543 3B 530
é.l.o--hlﬁzb b:i 2B %
2 15 55‘ » 2 13559 1&
3 2.0 3%45 L 2§3b5¥ j:
50, 34 n Y
22 ®
2.5 53 U1 . ®
th| %

UMAP Dimension 1

(a) Gaussian Kernel v = 0.5

13.0 A

)
12.5 1555@53 60 155s5:& 5o

12.0
115
11.0

UMAP Dimension 2

10.5
10.0
9.5

UMAP Projection of 64 Points (16D - 2D)
5

73, 63

52 22 53) 355

.3? 20 27, 43
269 10
N

)
i 38 594y 22 a4
8) 132 ki

39 »
14% 16 4
17 zg 23D b
4 *® 6k >

7 8 9 10

UMAP Dimension 1

(b) Gaussian Kernel v = 1.0

Figure 6: Gaussian kernel anchor points distribution.

UMAP Projection of 64 Points (16D - 2D)

&)
‘9
: T R
5 ® 5 02880
@ 3 L B 33, 5% 5
£ 5 ® 10' 43"029 3B 39
Sy S0 B0
N > DM
S 1 225 1%
2%p 2 13
0 42 6t
3 a 5 s

UMAP Dimension 1

(a) Polynomial Kernel (o, d, ¢) =

(1,2,1)

6.5
6.0
5.5 1
5.0
4.5
4.0 1

MAP Dimension 2

u
w
o

3.0 1
2.5 1

(b) Polynomial Kernel (o, d, ¢) =

UMAP Projection of 64 Points (16D - 2D)

36 0%

5B 5 zh 45

e
1363y, th 2 J

22, 3
bﬁ% ® 55,0
53;

bsx

® 6329 shlD 33

4t 1956 3}

29 11 43
39 5$ 33

5 6 7 8 9
UMAP Dimension 1

Figure 7: Polynomial kernel anchor points distribution.

25

(1,3,1)

	Introduction
	Preliminaries
	Multi-Agent Stochastic Game
	Mean Field Reinforcement Learning
	Reproducing Kernel Hilbert Space and Kernel Mean Embedding

	The SKARL Framework
	Kernel Mean Embedding Representation of Mean-Field Q-Functions
	Value Function Update with Storage Efficiency
	Proposed Algorithm

	Analysis of Proposed SKARL
	Computational Complexity, Scalability, and Flexibility
	Convergence and Suboptimality
	Error of Nyström Approximation

	Experiments and Results
	Experimental Setup
	Main Results

	Conclusion
	Ethics Statement
	Reproducibility Statement
	The Use of LLM
	Proofs of Theorems, Lemmas and Propositions
	Proof of Theorem 3.1
	Statement and Proof of Wasserstein Lipschitz Continuous
	Proof of Proposition 3.2
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Proof of Theorem 4.4

	Appended Remarks
	Remarks on Kernel Cylindrical Functions and Mean Field Embedding

	Remarks on Kernel Functions
	Remarks on Mean-Field Representation of Value Functions
	Remarks on Nyström Approximation

	Implementation Details of SKARL and Baselines
	Implementation Details of SKARL
	Common Settings for Environment

	Additional Experiments
	Experiments in Target Environment
	Experiments in Coverage Environment
	Experiments in Line Environment
	Ablation Study

