
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SKARL: PROVABLY SCALABLE KERNEL MEAN FIELD
REINFORCEMENT LEARNING FOR VARIABLE-SIZE
MULTI-AGENT SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Scaling multi-agent reinforcement learning (MARL) requires both scalability to
large swarms and flexibility across varying population sizes. A promising ap-
proach is mean-field reinforcement learning (MFRL), which approximates agent
interactions via population averages to mitigate state-action explosion. However,
this approximation has limited representational capacity, restricting its effective-
ness in truly large-scale settings. In this work, we introduce Scalable Kernel
MeAn-Field Multi-Agent Reinforcement Learning (SKARL), which lifts this bot-
tleneck by embedding agent interactions into a reproducing kernel Hilbert space
(RKHS). This kernel mean embedding provides a richer, size-agnostic represen-
tation that enables scaling across swarm sizes without retraining or architectural
changes. For efficiency, we design an implementation based on functional gra-
dient updates with Nyström approximations, which makes kernelized mean-field
learning computationally trac .From the theoretical side, we establish convergence
guarantees for both the kernel functionals and the overall SKARL algorithm. Em-
pirically, SKARL trained with 64 agents generalizes seamlessly to deployments
ranging from 4 to 256 agents, outperforming MARL baselines.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) has achieved remarkable progress in domains such
as multi-robot coordination (Vinyals et al., 2019; Berner et al., 2019). However, scaling MARL
to large populations remains a fundamental challenge (Du et al., 2023). As the number of agents
increases, the joint state–action space grows exponentially, and interaction dynamics become in-
creasingly complex. This induces a curse of dimensionality that makes conventional learning uns
and inefficient (Tan, 1993; Tampuu et al., 2015). Moreover, most existing MARL methods lack
population scalability: policies trained with one swarm size often fail to generalize to other scales in
zero-shot. These limitations naturally raise the question: How can we design MARL algorithms that
scale efficiently to hundreds of agents while generalizing seamlessly to unseen population sizes?

A promising direction is the use of mean-field approximations (Caines et al., 2006; Lasry & Lions,
2007). By summarizing agent interactions through a population distribution, mean-field MARL
(MFRL) (Yang et al., 2018) avoids exponential complexity growth and exploits the permutation in-
variance of homogeneous swarms. Prior work has demonstrated the feasibility of mean-field meth-
ods in large-scale settings (Angiuli et al., 2021; Gu et al., 2025). However, most existing approaches
rely on first-order moment statistics, which provide only coarse summaries of the population. This
simplification limits expressiveness and hinders adaptation across swarm sizes, since higher-order
structural differences between distributions are ignored. Extensions that incorporate higher-order
moments (Pham & Warin, 2023) improve representation, but moments remain insufficient as they
may conflate distinct distributions and fail to capture richer structural information. As a result, As a
result, current mean-field approaches still struggle to achieve scalability when applied to sufficiently
large populations.

In this work, we introduce Scalable Kernel MeAn-Field Multi-Agent Reinforcement Learning
(SKARL): a novel approach that integrates mean-field learning with reproducing kernel Hilbert
space (RKHS) representations to achieve both scalability and flexibility. By embedding the popula-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

tion distribution into the RKHS via kernel mean embeddings, each agent conditions its policy and
value functions on high-dimensional kernel features. We model the agent’s Q-function as a cylin-
drical kernel functional, inspired by Guo et al. (2023), and derive functional gradient updates under
a dual time-scale learning scheme. To ensure computational efficiency in large populations, we em-
ploy Nystr”om approximations to project functional updates onto low-dimensional subspaces. Our
framework offers both theoretical and empirical benefits. We prove that cylindrical kernel function-
als form a universal approximator over distribution spaces, ensuring expressiveness, and establish
that the resulting value functions are Wasserstein-Lipschitz continuous, providing robustness to dis-
tributional shifts. Crucially, by representing the swarm as a distribution rather than a fixed-size
set, our method naturally supports population flexibility: a policy trained with 64 agents can be
deployed zero-shot in environments with 4–256 agents, without retraining. Empirically, SKARL
achieves superior performance on large-scale cooperative tasks, consistently outperforming strong
MARL baselines in cumulative reward and training stability.

In summary, our contributions are as follows:

• We propose SKARL, a novel MARL framework that combines mean-field approximations
with RKHS representations, avoiding exponential complexity growth and enabling scala-
bility to large agent populations.

• We develop a functional gradient algorithm for cylindrical kernel functionals, along with a
dual time-scale learning rule and Nyström approximations for efficiency. Theoretically, we
prove universal approximation and establish Wasserstein-Lipschitz continuity of the value
functions.

• Through extensive experiments on large-scale benchmarks, we demonstrate that SKARL
generalizes seamlessly across population sizes and achieves significant improvements over
MARL baselines in both performance and stability.

2 PRELIMINARIES

2.1 MULTI-AGENT STOCHASTIC GAME

We consider an episodic mean-field reinforcement learning game with a fixed number of agents
N ∈ N. Such a game is defined by the tuple

〈
SN ,AN , P, (ri)Ni=1, γ

〉
, where SN = S1× · · · × SN

denotes the joint state space: a vector s = (s1, . . . , sN) collects the local state si ∈ Si of each agent.
Similarly, the joint action space is AN = A1 × · · · × AN , where a joint action a = (a1, . . . , aN)
consists of local actions ai ∈ Ai. In the homogeneous setting, agents share the same state and action
spaces, i.e., S = S1 = · · · = SN and A = A1 = · · · = AN . System dynamics are governed by a
stochastic kernel P : SN × AN → P(SN), where P(SN) denotes the set of probability measures
over SN . Each agent receives an instantaneous reward ri(s, a) = r(si, ai), which couples individual
behavior with the global population. Finally, 0 < γ < 1 is the discount factor weighting future
returns. The objective is to learn a joint policy π = (π1, . . . , πN), where each πi : S → P(A), that
maximizes for every agent i the expected discounted return

J i(π) = Es0∼d0, P, π

[T−1∑
t=0

γt ri(st, at)
]
,

with the expectation taken over the initial state distribution d0, the transition kernel P , and the
stochastic choices of the joint policy π.

2.2 MEAN FIELD REINFORCEMENT LEARNING

In multi-agent reinforcement learning with N agents, the Q-function of agent i depends on the
joint action a = (a1, . . . , aN), where each aj is represented by a one-hot vector. This leads to
an exponential blow-up of the action space, a manifestation of the curse of dimensionality. Mean-
field reinforcement learning (MFRL) (Yang et al., 2018) addresses this by approximating pairwise
interactions through a mean-field term. Specifically, the Q-function of agent i is written as

Qi(s,a) =
1

Ni

∑
j∈N i

Qi(s, ai, aj) ≈ Qi
(
s, ai, ā−i

)
,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where ā−i := 1
Ni

∑
j∈N i aj denotes the empirical mean action of agent i’s neighbors N i with size

Ni. This induces a dynamical system in which each agent responds to the mean-field action via a
softmax policy as πi

t(· | s) = softmax
(
−βQi

t(s, ·, ā−i
t)
)
, where the softmax is taken over all a ∈ A.

For continuous action spaces, the mean-field action is modeled as a distribution on the 2-Wasserstein
space P2(A) (Guo & Xu, 2019):

ν−i =
1

Ni

Ni∑
j=1

δaj ,

where δaj is the Dirac measure at action aj . If the pairwise Q-function is twice Lions-differentiable
with respect to the mean-field action µaj

, the Lions–Taylor expansion yields

Qi(s,a) ≈ Q̄i(s, ai, µ−i) +
1

Ni

Ni∑
j=1

∂νQ̄
i(s, ai, µ−i)[aj] · (āi − aj), (1)

where Q̄i(s, ai, δaj) is the Q-function lifted to the Wasserstein space, āi = 1
Ni

∑
j a

j is the mean
neighbor action, and ∂νQ̄

i(s, ai, µ−i)[·] : A → A is the Lions derivative (Tang et al., 2024). The
residual term Ri

f is bounded by the action space size.

2.3 REPRODUCING KERNEL HILBERT SPACE AND KERNEL MEAN EMBEDDING

A reproducing kernel Hilbert space (RKHS) Hk over domain X is a Hilbert space of functions
g : X → R associated with a symmetric positive-definite kernel k : X × X → R. The defining
property is the reproducing identity (Muandet et al., 2017): for all x ∈ X ,

g(x) = ⟨g, k(x, ·)⟩Hk
=

∫
X
g(x′)k(x, x′)dx′. (2)

The RKHS is the closure of finite linear combinations of kernel functions,Hk =
span{k(x, ·) |x ∈ X}. Any g ∈ Hk admits a representation

g(·) =
M∑

m=1

αmk(xm, ·),

for some M ∈ N, coefficients αm ∈ R, and locations xm ∈ X . This form, together with the
reproducing property, enables the kernel trick: computations in high-dimensional feature spaces
reduce to inner products in Hk. The kernel mean embedding (KME) extends this idea from points
to distributions, providing a nonparametric embedding of a probability law intoHk (Muandet et al.,
2017). For any distribution P on X , its embedding is

µP(·) := EX∼P[k(·, X)] =

∫
X
k(·, x) dP(x). (3)

This embedding preserves expectations: for all g ∈ Hk, EX∼P[g(X)] = ⟨g, µP⟩Hk
. Given samples

{xn}Nn=1 ∼ P, the empirical KME is µ̂P(·) = 1
N

∑N
n=1 k(xn, ·), which converges to µP as N →∞.

3 THE SKARL FRAMEWORK

This section presents the derivation of SKARL within the Reproducing Kernel Hilbert Space
(RKHS), as is shown in Figure. 1.

3.1 KERNEL MEAN EMBEDDING REPRESENTATION OF MEAN-FIELD Q-FUNCTIONS

Mean-Field Embedding via KME The mean-field measure is embedded via empirical KME:

µd
ν−i =

1

Ni

Ni∑
j=1

kd(xj , ·),

where xj is the latent embedding of neighbor (sj , aj).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

x

Environment

Agents

Goals

Obstacles

Sensing
Range

Kernel Mean Embedding for Single Agent

Kernel Mean Embedding

Kernel Cylindrical Function

Polynomial Function
Kernel Functions

Neighbor Agents Info

Kernel Mean Embedding for Mean Field Q Function

x

Training

Dual Layer Update
Outer Layer

Inner Layer

Optimization Objective: TD Loss

VDN Composition of Q Value

Nystrom Approximation
(For Efficient Storage)

Figure 1: Overview of the SKARL framework. Agent interactions are embedded into RKHS via
kernel mean embeddings and evaluated through kernel cylindrical functions to approximate mean-
field Q-values. Updates are performed with temporal-difference learning and Nyström projection
for scalability and efficiency.

Kernel Cylindrical Representation of Pairwise Interactions. Mean-field Q-functions are func-
tionals of probability measures over neighbor actions. To approximate such distributional func-
tionals in a principled and expressive way, we introduce kernel cylindrical functions, inspired by
work of Guo et al. (2023), which provide universal approximations within RKHS. Formally, for any
continuous functional f : P(M)→ R with bounded Lions derivatives, we approximate it by

h(ν) = h
(
⟨g1, µ1

ν⟩Hk
, . . . , ⟨gD, µD

ν ⟩Hk

)
, (4)

where each gd(·) = k(xd, ·) is a kernel anchored at xd ∈ M, µd
ν denotes the empirical KME, and

h : RD → R is a polynomial. The inner products ⟨gd, µd
ν⟩Hk

=
∫
M gd(x) dν(x) serve as kernel-

based summaries of ν. Base on this function type, we develop the following theorem, implying
that any smooth mean-field Q-function can be approximated arbitrarily well by such cylindrical
representations.
Theorem 3.1 (Density of Kernel Cylindrical Functions). Let P(M) be the space of Borel probabil-
ity measures over a compact manifoldM⊂ Rd. Define

GD(M) :=
{
h(µ) = h

(
⟨g1, µ⟩Hk

, . . . , ⟨gD, µ⟩Hk

) ∣∣h (polynomial), {gd}Dd=1 kernels
}
. (5)

Let C1,1(M) denote the space of Fréchet differentiable functions with Lipschitz derivatives. Then,
for any f ∈ C1,1(M) and any ϵ > 0, there exists h ∈ GD(M) such that |f(µ) − h(µ)| < ϵ for all
µ ∈ P(M), provided D is sufficiently large.

This directly yields a representation of the pairwise interaction in agent i’s Q-function:

Qi(si, ai, ν−i) = hsi,ai

(
⟨gi,1, µν−i⟩, . . . , ⟨gi,D, µν−i⟩

)
,

where hsi,ai = h(si, ai, ·) : RD → R is differentiable with parameters θh, and gi,d =∑M
m=1 α

d
mkd(xm, ·), with anchor points {xm}Mm=1 in latent space X and learnable weights {αd

m}.
The gradient of gi,d is ∇gi,d(x) =

∑
m αd

m∂xk
d(xm, x). To guaranty continuity, we assume Lips-

chitz continuity and boundedness of kernels.
Assumption 3.1 (Lipschitz Continuity and Boundedness). Each kernel gi,d is Lg-Lipschitz:

|gd(x)− gd(y)| ≤ Lg∥x− y∥2, ∀x, y ∈ X ,
and uniformly bounded: |k(x, y)| < ∞, ∀x, y ∈ X . Without loss of generality, assume
supx∈X |k(x, x)| ≤ 1.

The Lions derivative of a cylindrical function h(ν) is (Guo et al., 2023):

∂νh(ν)(x) =

D∑
d=1

∂dh(ν)∇gd(x),

where ∂dh denotes the derivative with respect to the d-th argument.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Local Value Function Approximation. Combining state-action embeddings, cylindrical func-
tionals, and mean-field embeddings yields a computational representation of the local Q-function.
Analogous to Eq. (1), we approximate

Qi(s,a) = hsi,ai

(
⟨gi,1, µν−i⟩, . . . , ⟨gi,D, µν−i⟩

)
+

D∑
d=1

∂dhsi,ai ⟨∇gi,d(x) ·∆x, ν−i⟩, (6)

where ∆x := x̄i − x and x̄i = 1
Ni

∑
j x

j . The first term captures mean-field interactions, while the
second encodes gradient corrections.

This representation integrates seamlessly with standard multi-agent value-decomposition methods
such as VDN (Sunehag et al., 2017), QMIX (Rashid et al., 2018), and QPLEX (Wang et al., 2020).
Analogous constructions apply to the state-value function V i(s) and advantage function Ai(s,a).

3.2 VALUE FUNCTION UPDATE WITH STORAGE EFFICIENCY

Updating Cylindrical Kernel Functions. The total value function Qtot is decomposed into agent-
wise functions Qi under the Individual Global Max (IGM) principle (Rashid et al., 2018) (See
Appendix E). To update Qi, we optimize the temporal-difference (TD) loss (Sutton, 1988)

ℓ(BQtot, Qtot) = Es,a,r,s′

[(
BQtot(s,a)−Qtot(s,a)

)2]
,

where B denotes the Bellman operator (Puterman, 1994), i.e.,

(BQtot)(s,a) = Es′

[
r(s,a) + γmax

a′
Qtot(s

′,a′)
]
.

Parameters are updated by gradient descent in two spaces. For the outer function h and RKHS
components {gi,d}, with learning rate ηth, η

t
g .

ht+1 = ht − ηth
∂ℓ

∂Qtot
· ∂Qtot

∂Qi
· ∇hQ

i, gi,dt+1 = gi,dt − ηtg
∂ℓ

∂Qtot
· ∂Qtot

∂Qi
· ∇gi,dQi, (7)

where {gi,d} are updated via the Fréchet derivative.

Proposition 3.2 (Fréchet Derivative Form). The Fréchet derivative of Qi with respect to gi,d de-
composes as

∇gi,dQi =

(
∂dh+

∑
d′

∂2
dd′h ⟨∇gd

′
·∆x, ν−i⟩

)
µν−i︸ ︷︷ ︸

Mean interaction term

− ∂dh∇ · (ν−i∆x)︸ ︷︷ ︸
Divergence term

, (8)

where ∆x := x̄i − x. See Remark D.3 in the Appendix for the explicit form with Ni neighbors.

Nyström Approximation for Efficient Storage. The direct updates in Eq. (7) face two key
challenges: (i) the divergence term lies outside the RKHS (Remark D.3), and (ii) naive imple-
mentation requires storing O(NiT) kernels per agent after T iterations, which is infeasible for
large swarms and long horizons. To address this, we apply the Nyström approximation, project-
ing updated functions onto a low-dimensional kernel subspace. Let the anchor set for gi,dt+1 be
{xn}Ni+M

n=1 := {xj}Ni
j=1 ∪ {xm}Mm=1, where {xm} are anchor points from gi,dt and {xj} are in-

puts from ν. We select a subset of landmark points {zl}Ll=1 ⊂ {xn}, spanning an L-dimensional
subspaceHL ⊂ H. The projection of gi,dt+1 ontoHL via Tikhonov regularization is:

g̃i,dt+1 = arg min
f∈HL

1

Ni +M

Ni+M∑
n=1

∥f(xn)− gi,dt+1(x
n)∥22 + λ∥f∥2H. (9)

By the representer theorem (Schölkopf & Smola, 2002), the solution takes the form
g̃i,dt+1 =

∑L
l=1 α

d
l k

d(zl, ·). Let Kd
LL := [kd(zl, zl

′
)]1≤l,l′≤L and Kd

Ni+M,L :=

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

[kd(xn, zl)]1≤n≤Ni+M,1≤l≤L. Then coefficients αd = [αd
1, . . . , α

d
L]

⊤ admit the closed-form so-
lution (Rudi et al., 2015):

αd =
(
K⊤

Ni+M,LKNi+M,L + λ(Ni +M)Kd
LL

)†
K⊤

Ni+M,Lb,

where b ∈ RNi+M with entries bn = ⟨k(xn, ·), gi,dt+1⟩Hk
. Here † denotes the Moore–Penrose

pseudoinverse. This reduces kernel storage from O(NiT) to O(L) with L ≪ NiT . In our experi-
ments we use uniform sampling for landmark points {zl}; other selection strategies are discussed in
Remark D.5.

3.3 PROPOSED ALGORITHM

With the components mentioned above, the final proposed algorithm is summarized in Algorithm 1.

Algorithm 1 Mean-Field Cylindrical Kernel Method
Input: Agent swarm size N , number of iterations M , trajectory batch size B, anchor points number
L, learning rate (ηh, ηg)

1: Initialize local Q function Qi with kernel functions {gi,d}Dd=1 ← 0 and outer function hi for
each agent; initialize trajectory set T .

2: for m = 1, . . . ,M do
3: while Sampling phase do
4: Sample trajectories using the current policy {πi}Ni=1 with environment, store in T .
5: end while
6: Sample B trajectories from T with length T for each trajectory.
7: Update the outer function h and {gi,dt } with Eq. (7).
8: Select new anchor points {xl}Ll=1 via methods in Remarks D.5.
9: Projection updated {gi,dt } to {g̃i,dt } via Eq. (9) and update Qi with {g̃i,dt }.

10: end for
11: return final local Q function Qi.

4 ANALYSIS OF PROPOSED SKARL

4.1 COMPUTATIONAL COMPLEXITY, SCALABILITY, AND FLEXIBILITY

We compare the computational complexity of SKARL with value decomposition methods (e.g.,
QMIX (Rashid et al., 2018)) and mean-field reinforcement learning (MFRL) (Yang et al., 2018)).
Table 1 summarizes the results.

Table 1: Comparison of computational complexity and key metrics. B: batch size; N : number of
agents; L: landmark points; D: number of kernel features.

Metric SKARL QMIX MFRL
Q Function Input Size O(|S|+ |A|+D) O(N |S|+N |A|) O(|S|+ |A|)
Computation Complexity O(B(L2N + L3)D) O(BN2) O(B)
Memory Usage O(DL) O(N) O(1)
Scalability in N Linear Exponential Linear

Q Function Input size. SKARL avoids the N |A| blow-up in QMIX by using kernel-based embed-
dings (Eq. 6), with L≪ N and D ≪ N . MFRL is even simpler, but lacks multi-scale coordination.

Computation. Complexity is dominated by kernel projections (Eq. 9), scaling with B, N , and
L. QMIX suffers O(N2) due to its mixing network, while MFRL requires only O(1) per agent.
When L grows with N (e.g., L ≈

√
N), SKARL’s complexity approaches QMIX—this is the main

computational drawback.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Scalability. SKARL maintains linear dependence on N , unlike QMIX’s exponential scaling.

Flexibility. SKARL generalizes across swarm sizes. If trained with N agents and deployed with
M , the approximation error is bounded by O(N−1/d + M−1/d), where d is the dimension of the
state-action space.
Theorem 4.1 (Flexibility of Kernel Cylindrical Functions). Let νN , νM denote the empirical mean-
field distributions of swarms with N and M agents, sampled from the same distribution ν. Under
Assumption 3.1, for a cylindrical function h there exist constants C1, C2 > 0 such that

E
[
|h(νN)− h(νM)|

]
≤ C1N

−1/d + C2M
−1/d.

4.2 CONVERGENCE AND SUBOPTIMALITY

Convergence of Cylindrical Functions. The density result in Theorem 3.1 implies approximation
power. We now establish convergence rate with respect to the kernel number D.

Theorem 4.2 (Convergence Rate). Under Assumption 3.1, let f̃(µν) = f(ν) be a functional de-
pending on the KME µν (Eq. 3). Then with probability at least 1− δ,

|h(ν)− f(ν)| ≤ sup
ν

∥∥∥∥∥ δf̃

δµν

∥∥∥∥∥
(√

1

D
+

√
2 log(1/δ)

D

)
.

Thus h converges to f at rate O(D−1/2).

Convergence of Updates. For the update rules in Eq. equation 7, convergence follows under Rob-
bins–Monro step-size conditions and two-time-scale separation (Borkar, 2008).
Assumption 4.1 (Robbins–Monro). Step sizes ηh and ηg satisfy

∑
t η = ∞,

∑
t η

2 < ∞, and
limt→∞ ηg/ηh = 0.

Theorem 4.3 (Convergence). Under Assumptions 3.1 and 4.1, the updates converge to (h∗, {gi,d,∗})
minimizing the Bellman TD loss.

4.3 ERROR OF NYSTRÖM APPROXIMATION

Although the Nyström method substantially reduces storage and computational cost, this method in-
evitably introduces approximation error. To ensure the reliability of SKARL, it is therefore essential
to quantify error of Nyström approximation. We measure the error of projection as

E(f) = ∥f − gi,dt+1∥L2 ,

for f ∈ H, where Lkf(x) = ⟨f, k(x, ·)⟩Hk
is the kernel integral operator (Eq. 2). Intuitively, E(f)

captures the deviation between the projected function and the ideal update.

To analyze this error, we introduce two standard conditions from statistical learning theory:
Assumption 4.2. Define the effective dimension N (λ) = tr((λI + Lk)

−1Lk). Assume there exists
a constant C0 > 0 independent of λ such that for any λ > 0, N (λ) ≤ C0λ

−γ , for some 0 < γ ≤ 1.

Assumption 4.3. There exists s ≥ 0, 1 ≤ R < ∞, such that ∥L−s
k fH∥H < R, where fH :=

argminf E(f).

Combining the Lipschitz continuity of kernel cylindrical functions (Assumption 3.1) with the above
spectral assumptions, we obtain the following finite-sample error bound.
Theorem 4.4 (Nyström Error Bound). Under Assumptions 3.1, 4.2, and 4.3, let δ ∈ (0, 1) and suffi-
ciently large Ni+M . With probability at least 1− δ, the excess error of the Nyström approximation
satisfies

E(g̃i,dt+1)−min
f∈H
E(f) ≤ Ck,γ

(
log

6

δ

)2

(Ni +M)
− 2v+1

2v+γ+1 ,

where v = min(s, 1/2), λ = ∥Lk∥(Ni + M)
− 1

2v+γ+1 , and L ≥ Cλ log
12
λδ . Constants Ck,γ , Cλ

depend only on the kernel family.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 2: Training results of SKARL and baselines across three environments (5 random seeds).

Theorem 4.4 shows that the Nyström approximation converges to the optimal RKHS projection
at a rate depending on both the eigenvalue decay γ and the smoothness parameter s. In practice,
this means that as the number of anchor points (Ni + M) grows, the approximation error shrinks
polynomially fast, and only a logarithmic number of landmark points L (relative to the effective
dimension) is needed to achieve near-optimal accuracy. This justifies the use of Nyström projection
in SKARL.

5 EXPERIMENTS AND RESULTS

5.1 EXPERIMENTAL SETUP

We evaluate our method following the work of Nayak et al. (2023), with four environments: (i)
Move: Each agent tries to move as fast as possible and avoid collisions. (ii) Target: Each agent tries
to reach the assigned goal and avoid collisions. (iii) Coverage: Each agent tries to go to a goal and
avoid collisions, and ensure no more than one agent reaching the same goal. (iv) Line: There are
two landmarks, and the agents try to position themselves equally spread out in a line between the
two. For detailed observation, reward and action design, please refer to the Appendix Environments.
We compare SKARL against several standard MARL algorithms: (i) QMIX (Rashid et al., 2018),
(ii) QPLEX (Wang et al., 2020), (iii) MAPPO (Yu et al., 2022), and (iv) MFRL (Yang et al., 2018).
For detailed implementation of SKARL and baselines, please refer to Appendix E. We report the
test results with 100 max steps.1.

Table 2: Performance Comparison between SKARL and Baselines in Move Environment

Algorithm N = 4 N = 16 N = 64
R(↑) # col(↓) S(↑) R(↑) # col(↓) S(↑) R(↑) # col(↓) S(↑)

MAPPO 947.6 0.56± 0.174 0.16± 0.00779 3360.2 2.6± 1.12 0.14± 0.0562 14284.8 9.6± 6.98 0.15± 0.0459

MFRL 734.6 0± 0 0.12± 0.0247 3083.69 38.4± 6.99 0.12± 0.0440 11411.1 204.2± 22.8 0.14± 0.0451

QMIX 835.4 4.94± 4.94 0.15± 0.0431 2845.4 21.9± 12.7 0.13± 0.08517 10446.2 2.8± 1.00 0.11± 0.0732

QPLEX 911.4 0.56± 0.194 0.14± 0.0213 3625.8 20.5± 10.2 0.17± 0.0622 14073.8 22.5± 9.55 0.15± 0.0404

SKARL 902.8 0± 0 0.15± 0.0192 3755.9 12.32± 5.847 0.17± 0.0500 14423.8 7.9± 5.37 0.15± 0.0334

Table 3: Performance Comparison between SKARL and Baselines in Target Environment

Algorithm N = 4 N = 16 N = 64
R(↑) T(↓) # col(↓) S%(↑) R(↑) T(↓) # col(↓) S%(↑) R(↑) T(↓) # col(↓) S%(↑)

MAPPO 327.3 0.14 2.6± 1.45 100 12 0.56 8.93± 5.87 40.6 0 1.00 0 0
QPLEX 330.3 0.18 1.3± 0.982 100 -3.1e4 1.00 4.92± 2.55 0 -1.9e5 1.00 19.8± 12.42 0
QMIX 337.0 0.14 0.67± 0.35 100 -5.1e4 1.00 6.6± 4.28 0 -6.4e5 1.00 41.6± 18.1 0
MFRL 330.8 0.14 6.4± 3.38 100 1.1 0.81 14.375± 10.28 31.2 -5.7e5 1.00 35.8± 15.1 0

SKARL 329.3 0.18 7.2± 3.15 100 5.6 0.96 23.2± 20.5 100 44.75 0.98 44.3± 10.6 3.1

5.2 MAIN RESULTS

We report the experiment of main experiments on Move and Target environment with 5 random
seeds. For other experiments and ablation study, please refer to Appendix F.

1Code at https://anonymous.4open.science/r/SKARL-050D, based on JaxMARL (Rutherford et al., 2023)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Zero-Shot Flexibility Performance of SKARL in Move Environment

Training Metric M = 4 M = 8 M = 16 M = 32 M = 64 M = 128 M = 256

N = 4
R/N 225.7 168.5 177.8 155.2 166.9 168.5 173.9

(# col)/N 0± 0 2.22± 1.18 1.36± 0.794 0.62± 0.419 0.25± 0.146 0.12± 0.0745 0.22± 0.0762

S 0.15± 0.0190 0.12± 0.0842 0.13± 0.085 0.12± 0.065 0.11± 0.0657 0.11± 0.0698 0.12± 0.0680

N = 16
R/N 236.9 235.2 234.7 235.2 225.4 205.6 202.6

(# col)/N 0± 0 0.98± 0.437 0.77± 0.365 0.57± 0.207 0.17± 0.115 0.12± 0.0652 0.04± 0.0221

S 0.16± 0.00434 0.17± 0.0612 0.17± 0.0500 0.17± 0.0469 0.15± 0.0323 0.14± 0.0521 0.14± 0.0542

N = 64
R/N 231.5 221.3 227.3 224 223.2 221.6 218.7

(# col)/N 0± 0 0.45± 0.408 0.28± 0.257 0.44± 0.275 0.15± 0.109 0.11± 0.0866 0.09± 0.0476

S 0.15± 0.0126 0.15± 0.0406 0.15± 0.0237 0.16± 0.0591 0.15± 0.0459 0.15± 0.0401 0.15± 0.0436

Table 5: Flexibility Performance of SKARL in Target Environment

Training Metric M = 4 M = 8 M = 16 M = 32 M = 64 M = 128 M = 256

N = 4
R/N 82.3 -36.25 -444.0 -2.8e3 -9.0e3 -1.8e4 -3.7e4

T (step) 18 95 96.5 100 100 100 100
(# col)/N 0.5± 0.42 23± 14.0 37.6± 26.9 34.875± 11.34 46± 15.1 138± 18.9 342± 32.8

S% 100 37.5 6.25 0 0 0 0

N = 16
R/N 85.3 7.5 0.35 -2.4e3 -8.3e3 -1.7e3 -2.6e4

T (step) 17.4 13.8 96.3 98.5 99.4 100 100
(# col)/N 0.4± 0.13 19.25± 13.0 23.2± 20.5 34.875± 11.34 46± 15.1 75.5± 14.6 116± 21.1

S% 100 100 100 75 6.25 0 0

N = 64
R/N 84.0 77.3 69.8 10.8 0.70 -0.25 -10.5

T (step) 18.7 27.8 30.6 67.2 98.1 100 100
(# col)/N 0.5± 0.342 3± 2.35 6.7± 6.45 16.1± 5.83 44.3± 10.6 66.3± 15.2 96.8± 17

S% 100 100 93.75 75 12.5 0 0

Scale up to large-scale swarms Figure 2, Table 2 and Table 3 demonstrates SKARL’s effective-
ness across swarm sizes N = 4, 16, 64. We select three metrics: (i) R: global reward. (ii) # col:
total collisions. (iii) S: average speed of each agent. For small swarms, SKARL achieves near-
optimal reward while entirely eliminating collisions. As the swarm scales to large scale, SKARL
outperforms all baselines, achieving the highest reward and fastest speed, with low reduction rate
of collision. Notably, SKARL balances safety and efficiency, collisions decrease without sacrificing
speed, matching top baselines. These results highlight SKARL’s scalability, particularly excelling
in mid-to-large swarms where coordination complexity increases.

Generalize to different swarm sizes Table 4 and Table 5 reveals SKARL’s zero-shot flexibility
when tested on varying swarm sizes M . When trained on small swarm size, SKARL fails to maintain
reasonable performance up to M = 256. However, training on larger swarms (N = 16/64) enables
robust generalization. Most impressively, N = 64-trained SKARL achieves near-optimal reward
per agent at M = 256, while collisions remain the lowest. This flexibility stems from SKARL’s
distribution-driven policy as is in Theorem 4.1, enabling deployment in real-world scenarios where
swarm sizes are dynamic.

6 CONCLUSION

We propose SKARL, a scalable framework for large-scale multi-agent reinforcement learning.
SKARL resolves the scalability and flexibility bottlenecks of multi-agent reinforcement learning by
enabling linear complexity in swarm size and zero-shot transfer across populations. It ensures con-
vergence with efficient updates and drastically reduces training overhead, allowing effective learning
in large swarms. Experiments confirm that SKARL outperforms state-of-the-art baselines in both
performance and generalization.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

This work introduces SKARL, a scalable kernel mean-field reinforcement learning framework for
large-scale multi-agent systems. Our contributions are primarily theoretical and methodological,
with empirical validation performed in simulated multi-agent environments such as swarm naviga-
tion, coordination, and collision avoidance benchmarks. These environments are widely used in
the MARL community and do not involve human subjects, sensitive personal data, or proprietary
datasets.

We acknowledge that advances in multi-agent reinforcement learning (MARL) may have dual-use
implications. While our experiments are limited to academic and open-source benchmarks, similar
techniques could be applied in high-stakes domains such as autonomous vehicle fleets, aerial drone
swarms, or defense systems. In such settings, ethical concerns may include safety, accountability,
and fairness. To mitigate potential risks, our work remains focused on theoretical scalability and
generalization, and we refrain from proposing or testing direct real-world deployment scenarios.

From a fairness perspective, the algorithms studied here are agnostic to sensitive human attributes
and do not incorporate demographic information. From a privacy and security perspective, no per-
sonal or confidential information is processed. From a research integrity perspective, we strictly
adhere to reproducible and transparent reporting, with proofs, assumptions, and algorithms explic-
itly documented. Finally, we affirm that we have read and adhered to the ICLR Code of Ethics, and
have conducted this research in alignment with its principles.

8 REPRODUCIBILITY STATEMENT

We have undertaken comprehensive steps to ensure that the theoretical and empirical results reported
in this paper are reproducible. For the theoretical contributions, all assumptions are explicitly stated,
and full mathematical proofs are provided either in the main text or in the appendix. These proofs
establish the universal approximation property of kernel cylindrical functions and the convergence
of the dual time-scale learning rule.

For the empirical results, all experiments are conducted on widely used benchmark environments
for multi-agent reinforcement learning, such as large-scale swarm coordination tasks. We describe
the experimental setup, training protocols, and hyperparameter configurations in detail within the
paper and provide additional clarifications in the appendix. Random seeds are fixed across runs, and
ablation studies are reported to verify stability.

To further facilitate reproducibility, we release anonymous source code, including implementations
of SKARL, training scripts, and environment configuration files, as part of the supplementary mate-
rials. This enables other researchers to directly reproduce the results presented in this paper, adapt
the framework to new environments, or verify the theoretical guarantees with empirical evidence.
Together, these measures ensure that the community can reliably replicate and build upon our con-
tributions.

REFERENCES

Andrea Angiuli, Jean-Pierre Fouque, and Mathieu Lauriere. Reinforcement learning for mean field
games, with applications to economics. arXiv preprint arXiv:2106.13755, 2021.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christopher Hesse, Rafal Józefowicz,
Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto,
Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya
Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement
learning. CoRR, abs/1912.06680, 2019. URL http://arxiv.org/abs/1912.06680.

Patrick Billingsley. Convergence of probability measures. John Wiley & Sons, 2013.

Vivek S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Springer, 2008.

10

http://arxiv.org/abs/1912.06680

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Peter E Caines, Minyi Huang, and Roland P Malhamé. Large population stochastic dynamic games:
closed-loop mckean-vlasov systems and the nash certainty equivalence principle. Communica-
tions in Information and Systems, 6(3):221–252, 2006.

Ruan de Kock, Omayma Mahjoub, Sasha Abramowitz, Wiem Khlifi, Callum Rhys Tilbury, Claude
Formanek, Andries P. Smit, and Arnu Pretorius. Mava: a research library for distributed multi-
agent reinforcement learning in jax. arXiv preprint arXiv:2107.01460, 2023. URL https:
//arxiv.org/pdf/2107.01460.pdf.

Yali Du, Joel Z Leibo, Usman Islam, Richard Willis, and Peter Sunehag. A review of cooperation
in multi-agent learning. arXiv preprint arXiv:2312.05162, 2023.

Richard Mansfield Dudley. The speed of mean glivenko-cantelli convergence. The Annals of Math-
ematical Statistics, 40(1):40–50, 1969.

Haotian Gu, Xin Guo, Xiaoli Wei, and Renyuan Xu. Mean-field multiagent reinforcement learning:
A decentralized network approach. Mathematics of Operations Research, 50(1):506–536, 2025.

Xin Guo and Renyuan Xu. Stochastic games for fuel follower problem: N versus mean field game.
SIAM Journal on Control and Optimization, 57(1):659–692, 2019.

Xin Guo, Huyên Pham, and Xiaoli Wei. Itô’s formula for flows of measures on semimartingales.
Stochastic Processes and their applications, 159:350–390, 2023.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Jean-Michel Lasry and Pierre-Louis Lions. Mean field games. Japanese journal of mathematics, 2
(1):229–260, 2007.

Michael L. Littman. Markov games as a framework for multi-agent reinforcement learning. ICML,
1994.

Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur, Bernhard Schölkopf, et al. Kernel
mean embedding of distributions: A review and beyond. Foundations and Trends® in Machine
Learning, 10(1-2):1–141, 2017.

Siddharth Nayak, Kenneth Choi, Wenqi Ding, Sydney Dolan, Karthik Gopalakrishnan, and Hamsa
Balakrishnan. Scalable multi-agent reinforcement learning through intelligent information aggre-
gation. In International Conference on Machine Learning, pp. 25817–25833. PMLR, 2023.

Victor M Panaretos and Yoav Zemel. Statistical aspects of wasserstein distances. Annual review of
statistics and its application, 6(1):405–431, 2019.

Huyên Pham and Xavier Warin. Mean-field neural networks: learning mappings on wasserstein
space. Neural Networks, 168:380–393, 2023.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 1994.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and
Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent reinforce-
ment learning. ICML, 2018.

Alessandro Rudi, Raffaello Camoriano, and Lorenzo Rosasco. Less is more: Nyström computational
regularization. Advances in neural information processing systems, 28, 2015.

Alexander Rutherford, Benjamin Ellis, Matteo Gallici, Jonathan Cook, Andrei Lupu, Gardar Ing-
varsson, Timon Willi, Akbir Khan, Christian Schroeder de Witt, Alexandra Souly, Saptarashmi
Bandyopadhyay, Mikayel Samvelyan, Minqi Jiang, Robert Tjarko Lange, Shimon Whiteson,
Bruno Lacerda, Nick Hawes, Tim Rocktaschel, Chris Lu, and Jakob Nicolaus Foerster. Jaxmarl:
Multi-agent rl environments in jax. arXiv preprint arXiv:2311.10090, 2023.

Bernhard Schölkopf and Alexander J Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press, 2002.

11

https://arxiv.org/pdf/2107.01460.pdf
https://arxiv.org/pdf/2107.01460.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Friedhelm Schwenker, Hans A Kestler, and Günther Palm. Three learning phases for radial-basis-
function networks. Neural networks, 14(4-5):439–458, 2001.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinı́cius Flores Zam-
baldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl Tuyls, and Thore Grae-
pel. Value-decomposition networks for cooperative multi-agent learning. CoRR, abs/1706.05296,
2017. URL http://arxiv.org/abs/1706.05296.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine Learning,
3(1):9–44, 1988.

Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus, Juhan Aru, Jaan
Aru, and Raul Vicente. Multiagent cooperation and competition with deep reinforcement learning.
CoRR, abs/1511.08779, 2015. URL http://arxiv.org/abs/1511.08779.

Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In In Proceed-
ings of the Tenth International Conference on Machine Learning, pp. 330–337. Morgan Kauf-
mann, 1993.

Huaze Tang, Yuanquan Hu, Fanfan Zhao, Junji Yan, Ting Dong, and Wenbo Ding. M3arl:
Moment-embedded mean-field multi-agent reinforcement learning for continuous action space.
In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pp. 7250–7254. IEEE, 2024.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Daniele Venturi and Alec Dektor. Spectral methods for nonlinear functionals and functional differ-
ential equations. Research in the Mathematical Sciences, 8(2):27, 2021.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan
Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, L. Sifre, Trevor Cai, John P. Agapiou, Max
Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David
Budden, Yury Sulsky, James Molloy, Tom Le Paine, Caglar Gulcehre, Ziyun Wang, Tobias Pfaff,
Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom
Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver.
Grandmaster level in starcraft II using multi-agent reinforcement learning. Nature, pp. 1–5, 2019.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. arXiv preprint arXiv:2008.01062, 2020.

Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang. Mean field multi-
agent reinforcement learning. ICML, 2018.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in neural information
processing systems, 35:24611–24624, 2022.

A THE USE OF LLM

In the preparation of this paper, we employed large language models (LLMs) strictly as assistive
tools. Their role was confined to three aspects: (i) improving the clarity and readability of the
manuscript by suggesting stylistic refinements and alternative phrasings; (ii) assisting with the orga-
nization and presentation of mathematical proofs, including the checking of algebraic manipulations
and the polishing of logical exposition; and (iii) serving as a coding assistant for routine program-
ming tasks such as code completion, debugging, and documentation generation.

Importantly, LLMs were not involved in the generation of research ideas, the design of the SKARL
framework, or the conceptual development of the theoretical results. All scientific insights, algo-
rithmic designs, and experimental implementations originate from the authors. The LLM usage

12

http://arxiv.org/abs/1706.05296
http://arxiv.org/abs/1511.08779

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

did not extend to generating novel theorems, creating data, or drawing conclusions. Instead, the
models functioned in a supportive capacity, comparable to grammar-checking or code editor auto-
completion, with the final responsibility for correctness, originality, and integrity resting solely on
the authors.

We disclose this usage in alignment with ICLR policy. By transparently reporting the scope of
assistance, we affirm that the LLMs were used responsibly and ethically, and that the intellectual
contributions of this work are entirely attributable to the authors.

B PROOFS OF THEOREMS, LEMMAS AND PROPOSITIONS

B.1 PROOF OF THEOREM 3.1

Proof. We establish the density of proposed GD(M). To this end, we first need:

Lemma B.1 (Stone–Weierstrass). Take a compact Hausdorff space H , and let C(H) be the algebra
of real-valued continuous functions on H , with the topology of uniform convergence. Let A be a
subalgebra of C(H). If A separates points on H and vanishes at no point on H , then A is dense in
C(H).

Then, following the proof of Lemma 3.12 in Guo et al. (2023), we prove that with appropriate
choices of norms, GD(M) is dense in C1,1(M).

Lemma B.2. GD(M) is dense in C1,1(M) with the supremum norm of derivatives of all orders: for
Φ ∈ C1,1(M),

∥Φ∥M := sup
(ν,x)∈P(M)×M

(
|Φ(ν)|+ |∂µΦ(µ)(x)|+ ∥∂x∂µΦ(µ)(x)∥

)
We prove this with two steps:

Step 1: take Φ ∈ C1,1(M), then ∂xx
δΦ
δµ (µ, x) is a continuous function on P(M)×M by definition,

namely, ∂xx δΦ
δµ (µ, x) ∈ C(P(M)×M). Define the algebraic space that contains GD(M) for some

n ∈]mathbbN as

H(P(M)×M) :=
{
Φ(µ, x) =

n∑
k=1

fk(⟨gk, µ⟩)hk(x),

monomials fk, hk : RD → R, kernels gk :M→M
}
.

We can see the GD(M) can be viewed as a subalgebra of H(P(M) ×M). Additionally, we can
also see that

• H(P(M)×M) separates points on P(M)×M. To check this, take (µ, x) ̸= (µ′, x′) ∈
P(M) ×M, with either µ ̸= µ′ or x ̸= x′. If µ′ ̸= µ, from Theorem 30.1 by Billingsley
(2013), there exists a kernel function k(x0, ·) such that

∫
M k(y, x)(µ − µ′)(dx) ̸= 0,

otherwise, µ = µ′. In this case, define p(µ, x) = ⟨k(x0, x)⟩ ∈ H(P(M)×M). If µ′ = µ,
x′ ̸= x, let p(µ, x) = x, then p(µ, x) ̸= p(µ′, x′). In either case,H(P(M)×M) separates
points on P(M)×M.

• H(P(M)×M) vanishes at no point onP(M)×M. It can be checked to choose a nonzero
constant function as fk and hk.

Therefore, it follows from the Stone-Weierstrass lemma thatH(P(M)×M) is dense in C(P(M)×
M) with the topology of uniform convergence. Hence, there exists a sequence of functions pn, p̃n ∈
H(P(M)×M) such that for any ϵ > 0, there exists N ∈ N that for n ≥ N ,

sup
(µ,x)∈P(M)×M

∣∣∣∣pn(µ, x)− ∂xx
δΦ

δµ
(µ, x)

∣∣∣∣ ≤ ϵ, (10)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

and

sup
µ∈P(M)

∣∣∣∣p̃n(µ)− δΦ

δµ
(µ, 0)

∣∣∣∣ ≤ ϵ. (11)

Step 2: Let

Pn(µ, x) := p̃n(µ) +

∫ x

0

∫ y

0

pn(µ, z)dzdy,

and

Φn(µ) := Φ(δ0) +

∫ 1

0

∫
M

Pn(λµ+ (1− λ)δ0, x)(µ− δ0)(dx)dλ.

It can be checked that Φn ∈ GD(M) with polynomial kernels. Now we have

Pn(µ, x)−
δΦ

δµ
(µ, x)

= p̃n(µ) +

∫ x

0

∫ y

0

pn(µ, z)dzdy−(
δΦ

δµ
(µ, 0) +

∫ x

0

∫ y

o

∂xx
δΦ

δµ
(µ, z)dzdy

)
= p̃n(µ)−

δΦ

δµ
(µ, 0) +

∫ x

0

∫ y

0

(
pn(µ, z)dz − ∂xx

δΦ

δµ
(µ, z)

)
dzdy.

Thus, by Eq. (10),
sup

P(M)×M
|∂xPn(µ, x)− ∂µΦ(µ, x)| ≤ Kϵ,

sup
P(M)×M

∣∣∣∣Pn(µ, x)−
δΦ

δµ
(µ, x)

∣∣∣∣ ≤ (1 +K2)ϵ.

Moreover,

Φn(µ)− Φ(µ)

=

(
Φ(δ0) +

∫ 1

0

∫
M

Pn(λµ+ (1− λ)δ0, x)(µ− δ0)(dx)dλ

)
−
(
Φ(δ0) +

∫ 1

0

∫
M

δΦ

δµ
(λµ+ (1− λ)δ0, x)(µ− δ0)(dx)dλ

)
=

∫ 1

0

∫
M

(
Pn(λµ+ (1− λ)δ0, x)−

δΦ

δµ
(λµ+ (1− λ)δ0, x)

)
(µ− δ0)(dx)dλ.

Hence,
sup
P(M)

|Φn(µ)− Φ(µ)| ≤ 2(1 +K2)ϵ.

Therefore,
∥Φn − Φ∥M ≤ (1 +K + 2(1 +K2))ϵ,

with Φn ∈ GD(M), which is shown to be dense in C1,1(M).

B.2 STATEMENT AND PROOF OF WASSERSTEIN LIPSCHITZ CONTINUOUS

Lemma B.3 (Wasserstein Lipschitz Continuous). If Assumption 3.1 holds, then cylindrical function
h(µ) ∈ GD(M) is C-Lipschitz continuous according to µ ∈ P(M), i.e., for any measure µ, ν ∈
P2(M), there holds

|h(ν0)− h(ν1)| ≤ CW2(ν0, ν1), (12)
where C is a constant.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proof. Since the kernels gd are unformly bounded, the input space for outer function h are actu-
ally is compact. Therefore, outer function h : RD → R (a polynomial function) is Lh-Lipschitz
continuous:

|h(z1)− h(z2)| ≤ Lh∥z1 − z2∥2, ∀z1, z2 ∈ G, (13)

where G ⊂ RD is a compact subspace. Let π be the optimal coupling between ν0 and ν1. Then:

|h(ν0)− h(ν1)| ≤ Lh

(
D∑

d=1

∣∣⟨gd, µν0
− µν1

⟩Hk

∣∣2)1/2

≤ Lh

√
D max

1≤d≤D
|⟨gd, µν0 − µν1⟩Hk

|.

Therefore, we have that

|h(ν0)− h(ν1)|2 ≤ L2
hD max

1≤d≤D
|⟨gd, µν0

− µν1
⟩Hk
|2

≤ L2
hDmax

d

∣∣∣∣∫
X

(
gd(x)

)2
(dν0 − dν1)(x)

∣∣∣∣
≤ L2

hD inf
π

max
d

∫
X×X

(
gd(x)

)2
dπ(x, y)

≤ L2
hDL2

g inf
π

∫
X×X

∥x− y∥22dπ(x, y)

= CW2(µ, ν)
2,

where the last inequality follows from the Kantorovich-Rubinstein duality. Therefore, we have that

|h(ν0)− h(ν1)| ≤ Ld

√
DLgW2(µ, ν). (14)

B.3 PROOF OF PROPOSITION 3.2

Proof. We provide derivation of Proposition 3.2. From Eq. (6), we have the form of Qi. Then, the
functional gradient in the form of Fréchet derivative is

∇gi,dQi =
δhsi,ai

δg
+

D∑
d′=1

δ(∂d′hsi,ai⟨∇gi,d′
(x) ·∆x, ν−i⟩)

δg

= ∂dhsi,aiµν−i +

D∑
d′=1

δ(∂d′hsi,ai)

δg
⟨∇gi,d

′
(x) ·∆x, ν−i⟩

+ ∂dhsi,ai

δ⟨∇gi,d(x) · (x̄i − x), ν−i(x)⟩
δg

.

To calculate the last term in ∇gi,dQi, we apply the fundamental lemma of calculus of variations.
Define function f(x, g,∇g) = gi,d(x) · (x̄i − x)ν−i(x), then, ⟨∇gi,d(x) · (x̄i − x), ν−i(x)⟩ can be
written as

⟨∇gi,d(x) · (x̄i − x), ν−i(x)⟩

=

∫
M
∇gi,d(x) · (x̄i − x)ν−i(x)dx

=

∫
M

f(x, g,∇g)dx.

Therefore, we have that

δ⟨∇gi,d(x) · (x̄i − x), ν−i(x)⟩
δg

=
∂f

∂g
−∇ · ∂f

∂∇g
= −∇ · ((x̄i − x)ν−i(x)).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Hence, we have the form in Proposition 3.2.

∇gi,dQi = ∂dhsi,aiµν−i +

D∑
d′=1

∂2
dd′hsi,ai

Ni

Ni∑
j=1

∇gi,d
′
(xj) · (x̄i − xj)µν−i

+ ∂dhsi,ai∇ · (ν−i(x)(x− x̄i))

B.4 PROOF OF THEOREM 4.1

Proof. Under Assumption 3.1, we know that the cylindrical function h(µ) is Wasserstein continuous
by Lemma B.3. Therefore, we have that

|h(νn)− h(νM)| ≤ CW2(νN , νM).

Since Wassserstein distance meets the triangle inequality (Panaretos & Zemel, 2019), we have that

W2(νN , νM) ≤ W2(νN , ν) +W2(νM , ν).

Since the convergence rate of empirical distribution νN to ν under measure of Wasserstein distance
is O(N−1/d) (Dudley, 1969), namely,

E[W2(νN , ν)] ≤ CN−1/d.

Therefore, we have that

E[|h(νn)− h(νM)|] ≤ CE[W2(νN , ν)] + CE[W2(νM , ν)]

≤ C1N
−1/d + C2M

−1/d.

B.5 PROOF OF THEOREM 4.2

Proof. First, we prove that the convergence rate of cylindrical function is controlled by the conver-
gence rate of empirical kernel mean embedding.

Lemma B.4 (Convergence Rate Bound of Kernel Cylindrical Functions (Lemma 5.2, (Venturi &
Dektor, 2021))). Denote the projection of measure ν on RKHS embedding space HM as PDν =∑

d cdk(x
d, ·), where [c1, . . . , cD]⊤ =: c = (KDD)−1b and bd = ⟨k(xd, ·), ν⟩. We have that h

defined in Eq. (4) with one type of kernel converges to f for all ν ∈ P2(M) with the same rate
as PDν convergences to the kernel mean embedding µν . Formally, with f̃ : µν 7→ f(ν), it can be
expressed as

|h(ν)− f(ν)| ≤ sup
ν

∥∥∥∥∥ δf̃

δµν

∥∥∥∥∥ ∥µν − PDν∥H, (15)

where δf̃/δµν is the Fréchet derivative of function f̃ and µν is the kernel mean embedding defined
in Eq. (3).

From Lemma B.4, the convergence rate of the cylindrical function is controlled by the convergence
rate of the empirical kernel mean embedding.

Lemma B.5 (Convergence Rate of Empirical Kernel Mean Embedding (Theorem 3.4, (Muandet
et al., 2017))). Assume the boundedness for kernel k in Assumption 3.1 holds. Then for any δ ∈
(0, 1) with probability at least 1− δ,

∥µν − PDν∥H ≤
√

1

D
+

√
2 log(1/δ)

D
. (16)

Combining the results from Lemme B.5, we have that the convergence rate of h to f is the multiple
of Fréchet derivative and O(D−1/2), which proves our results.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.6 PROOF OF THEOREM 4.3

Proof. First, we introduce the non-linear two-time-scale stochastic approximation.

Lemma B.6 (Nonlinear Two-Time-Scale Stochastic Approximation (Borkar, 2008)). Consider two
coupled stochastic approximation processes:

xn+1 = xn + a(n)
[
f(xn, yn) +M (1)

n

]
, (17)

yn+1 = yn + b(n)
[
g(xn, yn) +M (2)

n

]
, (18)

where xn ∈ Rd (slow process) and yn ∈ Rk (fast process), with step sizes a(n), b(n) > 0.

Assume that

(i) f : Rd × Rk → Rd and g : Rd × Rk → Rk are Lipschitz continuous,

(ii) For each fixed x, the ODE ẏ(t) = g(x, y(t)) has a globally asymptotically s equilibrium y∗(x).
The ODE ẋ(t) = f(x(t), y∗(x(t))) has a globally asymptotically s equilibrium x∗,

(iii) the sequences {a(n)} and {b(n)} satisfy Robbins-Monro conditions in Assumption 4.1, and

(iv) {M (1)
n }, {M (2)

n } are martingale differences w.r.t. Fn = σ(xm, ym,M
(1)
m ,M

(2)
m ,m ≤ n), with

E
[
∥M (i)

n ∥2 | Fn

]
≤ C(1 + ∥xn∥2 + ∥yn∥2), i = 1, 2.

Then, the iterates (xn, yn) converge almost surely to (x∗, y∗), where y∗ = y∗(x∗).

Base on the Lemma B.6, we rewrite updates of Eq. 7 as stochastic approximation processes:

ht+1 = ht + ηh

(
Fh(ht, gt) +M t+1

h

)
, (19a)

gt+1 = gt + ηg

(
Fg(ht, gt) +M t+1

g

)
, (19b)

where Fh = −E
[

∂ℓ
∂Qtot

· ∂Qtot
∂Qi ∇hQ

i
]

and Fg is defined analogously. Mh,Mg are martingale differ-
ence noise terms.

By the SA theory (Borkar, 2008), the updates approximate:
(Fast) ġ = Fg(h, g), (20a)

(Slow) ḣ = Fh(h, g
∗(h)), (20b)

where g∗(h) is the equilibrium of Eq. (20a) for fixed h.

Since the Bellman operator is a contraction mapping (Littman, 1994), we have that there exists a
globally asymptotically s equilibrium g∗ and h∗ to minimize ℓ. Therefore, by the Lemma B.6, we
have that:

• The fast process Eq. (19b) tracks Eq. (20a), converging to g∗(ht) for any slow ht.

• The slow process Eq. (19a) converges to h∗, which induces g∗ = g∗(h∗).

Thus, (ht, gt)→ (h∗, g∗) almost surely.

B.7 PROOF OF THEOREM 4.4

Proof. Theorem 4.4 is the same with Theorem 1 in (Rudi et al., 2015). Define the integral operator
Lk for kernel function k by

Lkf(x) =

∫
X
f(s)k(x, s)ds.

For λ > 0, define the random variable Nx(λ) = ⟨Kx, (Lk + λI)−1Kx⟩ with x ∈ X . The efficient
dimension is

N (λ) = ENx(λ), N∞(λ) = sup
x∈X
Nx(λ).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Theorem B.7 (Error Analysis of Nyström Approximation, Theorem 1 (Rudi et al., 2015)). Under
Assumption3.1, 4.2 and 4.3, let δ ∈ (0, 1), v = min(s, 1/2), p = 1 + 1/(2v + γ) and assume

Ni +M ≥ 1655 + 223 log
6

δ
+

(
38p

∥Lk∥
log

114p

∥Lk∥δ

)p

(21)

Then, the following inequality holds with probability at least 1− δ for ,

E(g̃i,dt+1) ≤ min
f∈H
E(f) + q2(Ni +M)

− 2v+1
2v+γ+1 , (22)

with

q = 6R
(
2∥Lk∥+

C1√
∥Lk∥

+

√
C2

∥Lk∥γ
)
log

6

δ
,

C1, C2 are constants, and λ = ∥Lk∥(Ni +M)−
1

2v+γ+1 and L ≥ max(67, 5N∞(λ)) log 12
λδ .

In our scenario, for a large swarm with batch size, the Ni + M will easy meet the assumption in
Theorem B.7. For example, if a swarm of N = 32 with batch size B = 128, along with kernel
number M = 64, Ni + M = B · N + M will be 4160, which may statisfy the assumption with
certain δ.

C APPENDED REMARKS

C.1 REMARKS ON KERNEL CYLINDRICAL FUNCTIONS AND MEAN FIELD EMBEDDING

Remarks C.1 (Requirements on kernel by Lipschitz continuity). The Lipschitz continuity require-
ment limits the choice of kernel functions. Such as

• Polynomial kernels: k(y, x) = (αx · y + c)d violates the condition when input space X is
unbounded, as the gradients grow polynomially with ∥x∥2.

• Sigmoid kernels: k(y, x) = tanh(αx·y+c) could fail to satisfy global Lipschitz continuity
due to saturation effects in nonlinear regions.

• Gaussian kernels: k(y, x) = exp(−γ∥x− y∥22) generally meet the requirement with Lg =
γ supx ∥x∥2/2.

Remarks C.2 (Inner Product between mean-field measure and component functions). The inner
product between mean field measure and component function gi,d evaluates to:

⟨gi,d, µd
ν−i⟩ =

1

Ni

M∑
m=1

Ni∑
j=1

αd
mkd(xm, xj) =

1⊤Kdαd

Ni
, (23)

where Kd ∈ RNi×M is the Gram matrix with Kd
jm = kd(xj , xm) and 1 ∈ RNi is an all-ones

vector.

D REMARKS ON KERNEL FUNCTIONS

We list several kernels frequently appearing in the literature.

In our work, in consideration of Lipischitz continuity, representation capability and easy to calculate,
we adopt polynomial and Gaussian kernels.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 6: Kernel Functions and Corresponding Partial Derivative

Kernel Type Kernel k(y, x) Gradient of kernel ∂xk(y, x)

Linear x · y + c y
Polynomial (αx · y + c)d αd(αx · y + c)d−1y
Gaussian exp(−γ∥x− y∥2) −2γ(x− y) exp(−γ∥x− y∥2)
Laplacian exp(−γ∥x− y∥1) −γsign(x− y) exp(−γ∥x− y∥1)
Sigmoid tanh(αx · y + c) αy(1− tanh2(αx · y + c))

D.1 REMARKS ON MEAN-FIELD REPRESENTATION OF VALUE FUNCTIONS

Remarks D.1 (Expansion of Eq. (6)). Eq. 6 is expanded as:

Qi(s,a) = hsi,ai

(
1⊤K1α1

Ni
, . . . ,

1⊤KDαD

Ni

)
+

1

Ni

D∑
d=1

∂dhsi,ai

M∑
m=1

Ni∑
j=1

αd
m∂xk

d(xm, xj) · (x̄i − xj).

Remarks D.2 (Mean field representation of state value function and advantage funcion). Similarly,
we can present the state value function V i(s) and advantage function Ai(s,a) with the mean field
representation in Eq. (6) as

V i(s) = hv
si

(
⟨gi,1v , µν−i⟩, . . . , ⟨gi,Dv , µν−i⟩

)
+

D∑
d=1

∂dh
v
si⟨∇g

i,d
v (x) ·∆x, ν−i⟩,

and

Ai(s) = hadv
si,ai

(
⟨gi,1adv, µν−i⟩, . . . , ⟨gi,Dadv , µν−i⟩

)
+

1

Ni

D∑
d=1

∂dh
adv
si,ai⟨∇gi,dadv(x) ·∆x, ν−i⟩,

where hv
si and hadv

si,ai are the cylindrical kernel functions, with kernel functions {gi,dv } and {gi,dadv} for
value function V and advantage function A, respectively. In this paper, we focus on the Q function,
while we think it is also interesting to expand our conclusions to value and advantage functions.
Remarks D.3 (Explicit form of Fréchet derivative). In discrete particle approximation with Ni

neighbors, Eq. (8) is:

∇gi,dQi =

Ni∑
j=1

∂dh
Ni

+
∑
d′

∂2
dd′h

N2
i

∑
j′

∇gd
′
(xj′)∆xj′

 kd(xj , ·) + ∂dh

Ni

Ni∑
j=1

[
δxj −∇δxj ·∆xj

]
.

D.2 REMARKS ON NYSTRÖM APPROXIMATION

Remarks D.4. The gradient inner product admits explicit computation:

⟨k(xn, ·),∇gi,dQi⟩ =
Ni∑
j=1

[
2∂dh

Ni
+
∑
d′

∂2
dd′h

N2
i

∑
j′

∇gd
′
(xj′) ·∆xj′

]
kd(xn, xj)

− ∂dh

Ni

Ni∑
j=1

∇xk
d(xn, xj) ·∆xj (24)

Remarks D.5 (Anchor Point Selection). There are several principled ways to choose anchor points
{zl}Ll=1:

• Random Subsampling: Select L points uniformly from RKHS anchor points {xn}Ni+M
n=1 in

gi,dt+1.
zl ∼ Uniform({xn}Ni+M

n=1), l = 1, ..., L.

Pros: O(1) computational cost. Cons: May miss important regions.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

• k-means Centers: Solve
{zl} = argmin

{cl}

∑
x∈{xm}

min
1≤l≤L

∥x− cl∥2.

Pros: Captures data geometry. Cons: O(NiLT) computation complexity for T iterations.

• Kernel Herding: Select points maximizing the minimum kernel similarity:

zl+1 = arg max
x∈{xm}

l∑
l′=1

k(x, zl′)−
2

Ni

Ni∑
j=1

k(x, xj).

Pros: Constructs maximally representative points. Cons: O(NiLT) computation complex-
ity for T iterations.

• Leverage Score Sampling: Sample with probability proportional to diagonal entries of the
kernel matrix:

pj =
(KMM)jj
tr(KMM)

, zl ∼ pj .

Pros: Preserves spectral structure of the RKHS.

In this paper, we apply the random subsampling method for simplicity.

E IMPLEMENTATION DETAILS OF SKARL AND BASELINES

E.1 IMPLEMENTATION DETAILS OF SKARL

Base Algorithm of Credit Assignment for SKARL We apply VDN (Sunehag et al., 2017) as the
basic credit assignment algorithm for SKARL. Namely, the total Qtot value is calculated by

Qtot(s,a) =

N∑
i=1

Qi(s,a).

Kernel Cylindrical Function Implementation We adopt a hypernetwork (Ha et al., 2016) for
kernel cylindrical function network. Namely, the ego state and action (si, ai) are used to generate
the parameters of a network for processing µνNi

.

Tricks We apply several tricks to help stabilize and fasten training.

• Dual Network Update: To avoid over-estimation of Q value, we apply double Q learning
framework (Van Hasselt et al., 2016).

• Entropy Regularization: To avoid the performance drops in the last epochs during train-
ing, we apply entropy regularization on the actor policy.

Codebase We apply SKARL and baselines with Jax. We organize the code in JaxMARL (Ruther-
ford et al., 2023) for better organization and class inheritance. We plan to release full codes after-
wards. For now, the code for important implementation can be found via anonymous Github link:
https://anonymous.4open.science/r/SKARL-050D.

Hyperparameters In this paragraph, we list the hyperparameters in 7 and 8.

E.2 COMMON SETTINGS FOR ENVIRONMENT

For learning stability and environment consistency, we conduct following tricks:

Re-scale of Environment To make environment scalable, we conduct re-scale of world size of
environment according to the agents as below:

world size = 2 ∗min(
√
N − 1, 1),

where world size serves as the boundary value of environment as [−world size,world size] ×
[−world size,world size] and N denotes the number of agents.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 7: Environment & Training Configuration

Environment Training Optimizer

Hyperparameter Value Hyperparameter Value Hyperparameter Value

Agent Number 4 / 16 / 64 Total Time Steps 2M Learning Rate 7e-4
Environments Number 128 Update Steps Number 50 Max Grad Norm 10

Test Environment Number 8 Target Update Interval 8 Optimizer ADAM
Max Train Env Timesteps 50 Test Interval 50k EPS 1e-5
Max Test Env Timesteps 100 Weight Decay 0

Buffer Exploration Learning rate Decay

Hyperparameter Value Hyperparameter Value Hyperparameter Value

Buffer Size 8192 Epsilon 1.0→ 0.05 ηh 1/t0.6

Buffer Batch Size 32 Epsilon Anneal Time 50k ηg 1/t0.8

Buffer Sample Uniform Anneal Method Linear Basic LR 7e-5

Table 8: Network & Algorithm Architecture

Network Algorithm

Hyperparameter Value Hyperparameter Value

Embedding Net Layer 3 TD Lambda 0.95
Agent Hidden Dim 16 Gamma 0.99

Mixer Embedding Dim 256 Entropy Rate 0.5
Mixer Hypernet Hidden Dim 256 Anchor Points Number L = 64

Attention Dim 64 Tikhonov Coefficient 0.5
Activation ReLU Polynomial Kernel (α,d,c)=(1,2,1),(1,3,1)

FC Init Scale 2.0 Gaussian Kernel γ = 0.5, 1.0

Reset of Agents and Landmarks We generate the new agents and landmark uniformly in the
world of environment, namely, pi ∼ Uniform([−world size,world size]×[−world size,world size])
for i ∈ {1, . . . , N}. In some implementations, a reject sampling is adopted to avoid collision
between generated agents and landmarks (such as codebase of InforMARL (Nayak et al., 2023),
JaxMARL (Rutherford et al., 2023), Mava (de Kock et al., 2023) and so on). However, we do
not adopt such rejection, due to the consideration of time consumption. Instead, we separate the
environment world into grids and sample among grids to avoid collision.

During both training and evaluation phases in the Target and Coverage environments, the episode
terminates and resets automatically once all agents successfully reach their assigned goals (or all
landmarks are uniquely covered for the Coverage task). This design ensures episodic training and
prevents infinite loops. However, since agents are able to receive one-time rewards for several
times, the total episodic reward may temporarily exceed the theoretical maximum (e.g., N × 10 for
N agents) during resets due to reward accumulation in the final timestep.

Size and Velocity Settings of Agents and Landmarks The settings for agents and landmarks are
listed as below in 9.

Table 9: Environment Setup

Hyperparameter Value

Agent Size 0.15
Landmark Size 0.225

Agent Maximum Speed 0.65 (Move)
N/A (Target/Coverage)

Agent Acceleration 5 (Move)
2 (Target/Coverage)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

F ADDITIONAL EXPERIMENTS

F.1 EXPERIMENTS IN TARGET ENVIRONMENT

In this section, we provide the analysis of results for task Target. The experimental results in the
Target environment demonstrate SKARL’s ability to maintain task performance while balancing
safety and scalability across different swarm sizes.

For small swarms (N = 4), SKARL achieves near-optimal performance with a global reward of
329.3, comparable to QMIX (337.0) and QPLEX (330.3), while ensuring a 100% success rate.
However, it exhibits a higher collision count (7.2 ± 3.15) compared to QMIX (0.67 ± 0.35) and
QPLEX (1.3 ± 0.982), suggesting a trade-off between task completion and collision avoidance in
simpler settings.

As the swarm scales to N = 16, SKARL significantly outperforms value-based methods (QMIX,
QPLEX, MFRL), which suffer from catastrophic reward degradation (e.g., QPLEX: −3.1 × 104).
Although MAPPO achieves a higher reward (12.0), its success rate drops to 40.6%, whereas SKARL
maintains a 100% success rate despite increased collisions (23.2 ± 20.5). Additionally, SKARL
reduces collisions by 32% compared to MFRL, indicating its robustness in mid-scale coordination,
which aligns with findings from the Move environment in 2.

In large-scale swarms (N = 64), SKARL demonstrates superior scalability, achieving a positive
reward (44.75) while all baselines fail (rewards ≤ 0). Notably, while the collision count remains
high (44.3± 10.6), the drastic improvement in reward over MFRL (−5.7×105) and QMIX (−6.4×
105) suggests that SKARL effectively prevents catastrophic failures in complex scenarios. The low
success rate (3.1%) implies that further optimization is needed for very large swarms, but the results
highlight SKARL’s ability to maintain functional performance where other methods collapse.

Overall, SKARL exhibits strong scalability in the Target environment, particularly excelling in main-
taining task success and reward stability as swarm size increases, with a trade-off in collision avoid-
ance at larger scales. This aligns with its performance in the Move environment, where it achieves
a 96% collision reduction at N = 64, reinforcing its effectiveness in large-scale multi-agent coor-
dination. However, the problem of scaling up in Target environment remains to be solved, which
require further works.

F.2 EXPERIMENTS IN COVERAGE ENVIRONMENT

Table 10: Performance Comparison between SKARL and Baselines in Coverage Environment

Algorithm N = 4 N = 16 N = 64
R(↑) T(↓) # col(↓) S(↑) R(↑) T(↓) # col(↓) S(↑) R(↑) T(↓) # col(↓) S(↑)

MAPPO 339.6 0.40 0.26± 0.561 1.00± 0.0 167.6 0.57 5.3± 2.72 0.13± 0.562 97.3 0.87 18.4± 8.35 0.05± 0.009

MFRL 396.6 0.52 0.03± 0.0 1.00± 0.0 187.0 0.62 2.5± 1.65 0.12± 0.456 216.2 0.86 15.1± 2.32 0.04± 0.871

QMIX 275.4 0.39 4.94± 2.46 1.00± 0.0 259.5 0.52 19.5± 5.3 0.19± 0.76 324.2 0.92 11.8± 4.13 0.10± 0.526

QPLEX 318.5 0.38 0.56± 0.194 1.00± 0.0 298.7 0.61 7.3± 6.22 0.21± 0.512 834.5 0.85 21.5± 3.65 0.14± 0.290

SKARL 387.2 0.51 0.15± 0.870 1.00± 0.0 320.8 0.61 2.42± 1.67 0.22± 0.342 907.3 0.76 15.3± 5.37 0.17± 0832

F.3 EXPERIMENTS IN LINE ENVIRONMENT

F.4 ABLATION STUDY

Is it necessary to apply gradient in RKHS? There is another way to conduct gradient for cylin-
drical function: directly update in the Euclidean space (Schwenker et al., 2001). Here we provide a
comparison with this method with N = 4 and kernel number is 64 in Move environment in Figure
3. The result indicates that with RKHS gradient, both the training stability and final performance
are improved.

How number of anchors affect the result? We compare the performance of different anchor
points number L = 1, 2, 8, 32 under Move task with agent number N = 4. As is demonstrated
in Figure 4, more anchor points only help to stabilize the training process (as the performance of

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 11: Flexibility Performance of SKARL in Coverage Environment

Training Metric M = 4 M = 16 M = 64 M = 128 M = 256

N = 4
R/N 96.8 23.7 0.3 -1.2 -9.2

T (step) 51 74 92 100 100
(# col)/N 0.0375 0.76 6.932 32.4 78.9

S% 100 72 4 0 0

N = 16
R/N 97.5 24.05 22.3 4.3 0.82

T (step) 43 61 67 94 100
(# col)/N 0.0457 0.19 0.203 2.54 5.21

S% 100 79 6 6.25 0

N = 64
R/N 96.2 25.8 14.2 9.3 3.52

T (step) 41 56 76 89 92
(# col)/N 0.0557 0.285 0.239 0 9.68

S% 100 84 13 75 5

Table 12: Performance Comparison between SKARL and Baselines in Line Environment

Algorithm N = 4 N = 16 N = 64
R(↑) T(↓) # col(↓) S(↑) R(↑) T(↓) # col(↓) S(↑) R(↑) T(↓) # col(↓) S(↑)

MAPPO 422.3 0.31 0.10± 0.20 1.00± 0.00 563.4 0.43 1.50± 0.90 0.30± 0.20 1462.7 0.72 8.00± 3.00 0.22± 0.08

MFRL 444.8 0.25 0.05± 0.10 1.00± 0.00 591.2 0.43 0.90± 0.60 0.36± 0.18 1604.3 0.68 6.00± 2.50 0.27± 0.09

QMIX 421.6 0.25 0.12± 0.25 1.00± 0.00 572.1 0.49 1.80± 1.10 0.32± 0.19 1510.4 0.64 7.20± 2.80 0.24± 0.09

QPLEX 449.7 0.27 0.07± 0.15 1.00± 0.00 608.0 0.42 1.20± 0.70 0.38± 0.17 1624.9 0.67 6.50± 2.60 0.26± 0.09

SKARL 418.9 0.23 0.03± 0.08 1.00± 0.00 615.6 0.41 0.70± 0.50 0.40± 0.16 1765.8 0.66 5.50± 2.20 0.30± 0.10

L = 32 achieves the most stale training curve), while the convergence speed and final performance
is scarcely affected. Furthermore, since full performance can be achieved with anchor points number
1, it is indicated that SKARL can apply at least one kernel number L with L ≤

√
N to achieve lower

computation complexity compared with value decompostion algorithms e.g. QMIX (as discussed in
Section 4).

How types of kernels affect the result? We compare specific choices of different kernels under
Move task with agent number N = 4. Specificly, we compare the choice of Gaussian kernel and
polynomial kernel. For the Gaussian kernel, we adopt γ as (0.5, 1.0, 2.0) and for polynomial kernel,
we set parameters as (α, d, c) = (1, 2, 1), (1, 3, 1), (1, 4, 1). The results are demonstrated in Figure

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Training Steps 1e6

0

100

200

300

400

500

600

R
ew

ar
d

Euclidean Gradient RKHS Gradient

Figure 3: Comparison between gradient in RKHS space and Euclidean space.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 13: Flexibility Performance of SKARL in Line Environment

Training Metric M = 4 M = 16 M = 64 M = 128 M = 256

N = 4
R/N 104.7 32.2 -4.3 -10.5 -36.4

T (step) 23 54 87 100 100
(# col)/N 0.0075 0.076 0.950 4.1 12.1

S% 100 72 8 0 0

N = 16
R/N 117.5 38.5 20.4 6.3 0.72

T (step) 32 41 84 91 100
(# col)/N 0.0005 0.044 0.103 0.874 1.54

S% 100 40 24 3.25 0

N = 64
R/N 123.2 53.4 27.58 18.9 2.31

T (step) 21 31 66 77 82
(# col)/N 0.0002 0.029 0.085 0.376 0.985

S% 100 84 30 27 18

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Training Steps 1e6

0

200

400

600

R
ew

ar
d

1 Anchors
2 Anchors

8 Anchors
32 Anchors

Figure 4: Comparison between different number of anchor points.

5. We conclude that the choice of kernels may not affect the final performance, as long as the
representation capability of this kernel is strong enough.

How does anchor points distribute? We plot the distribution of anchor points with UMAP in
Figure 6 with N = 4. We can see the anchor points of Gaussian kernel follows nearly a uniform
distribution, while anchor points of polynomial kernel follows certain pattern.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Training Steps 1e6

0

200

400

600

R
ew

ar
d

Gaussian Kernel Polynomial Kernel

Figure 5: Comparison between different number of kernel types.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

-5 -4 -3 -2 -1
UMAP Dimension 1

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

UM
AP

 D
im

en
sio

n
2

0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

17

18

19
2021

22

23
24

25

26

27

28

29

30 31

32

33

34
35

36

37
38

39
40

41

42
43

44

45

46

47

48

4950 51

5253

54

55

56

57

58

59

60
61

62

63

UMAP Projection of 64 Points (16D 2D)

(a) Gaussian Kernel γ = 0.5

7 8 9 10
UMAP Dimension 1

9.5

10.0

10.5

11.0

11.5

12.0

12.5

13.0

13.5

UM
AP

 D
im

en
sio

n
2 0

12

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17
18

1920

21

22

23

24

25

26

27

2829

30
31

32
33

34
35

36

37
38

39

40

41

42

43

44

45

46

47

48

49

50
5152

53

54

5556

57 58 5960

61

62

63
UMAP Projection of 64 Points (16D 2D)

(b) Gaussian Kernel γ = 1.0

Figure 6: Gaussian kernel anchor points distribution.

3 4 5 6
UMAP Dimension 1

0

1

2

3

4

UM
AP

 D
im

en
sio

n
2

0

1

2

3

4
5

6

7 8
9

10

11
12

1314

15

16
17

18

19

20

21

22

23

24

25

26

27

28

29
30

31
32

33

34

35

3637

38 39

40

41

42

43

44 45
4647

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

UMAP Projection of 64 Points (16D 2D)

(a) Polynomial Kernel (α, d, c) = (1, 2, 1)

5 6 7 8 9
UMAP Dimension 1

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

UM
AP

 D
im

en
sio

n
2

0

1

2

3

4
5

6
7

8

9 10

11

12

13

14

15
16

17

18

19

20

21
22

23

24

25
26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50 51
52

53

54

55

56
57

58

59

60

61

62

63

UMAP Projection of 64 Points (16D 2D)

(b) Polynomial Kernel (α, d, c) = (1, 3, 1)

Figure 7: Polynomial kernel anchor points distribution.

25

	Introduction
	Preliminaries
	Multi-Agent Stochastic Game
	Mean Field Reinforcement Learning
	Reproducing Kernel Hilbert Space and Kernel Mean Embedding

	The SKARL Framework
	Kernel Mean Embedding Representation of Mean-Field Q-Functions
	Value Function Update with Storage Efficiency
	Proposed Algorithm

	Analysis of Proposed SKARL
	Computational Complexity, Scalability, and Flexibility
	Convergence and Suboptimality
	Error of Nyström Approximation

	Experiments and Results
	Experimental Setup
	Main Results

	Conclusion
	Ethics Statement
	Reproducibility Statement
	The Use of LLM
	Proofs of Theorems, Lemmas and Propositions
	Proof of Theorem 3.1
	Statement and Proof of Wasserstein Lipschitz Continuous
	Proof of Proposition 3.2
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Proof of Theorem 4.4

	Appended Remarks
	Remarks on Kernel Cylindrical Functions and Mean Field Embedding

	Remarks on Kernel Functions
	Remarks on Mean-Field Representation of Value Functions
	Remarks on Nyström Approximation

	Implementation Details of SKARL and Baselines
	Implementation Details of SKARL
	Common Settings for Environment

	Additional Experiments
	Experiments in Target Environment
	Experiments in Coverage Environment
	Experiments in Line Environment
	Ablation Study

