SKARL: PROVABLY SCALABLE KERNEL MEAN FIELD REINFORCEMENT LEARNING FOR VARIABLE-SIZE MULTI-AGENT SYSTEMS

Anonymous authorsPaper under double-blind review

ABSTRACT

Scaling multi-agent reinforcement learning (MARL) requires both scalability to large swarms and flexibility across varying population sizes. A promising approach is mean-field reinforcement learning (MFRL), which approximates agent interactions via population averages to mitigate state-action explosion. However, this approximation has limited representational capacity, restricting its effectiveness in truly large-scale settings. In this work, we introduce Scalable Kernel MeAn-Field Multi-Agent Reinforcement Learning (SKARL), which lifts this bottleneck by embedding agent interactions into a reproducing kernel Hilbert space (RKHS). This kernel mean embedding provides a richer, size-agnostic representation that enables scaling across swarm sizes without retraining or architectural changes. For efficiency, we design an implementation based on functional gradient updates with Nyström approximations, which makes kernelized mean-field learning computationally trac .From the theoretical side, we establish convergence guarantees for both the kernel functionals and the overall SKARL algorithm. Empirically, SKARL trained with 64 agents generalizes seamlessly to deployments ranging from 4 to 256 agents, outperforming MARL baselines.

1 Introduction

Multi-agent reinforcement learning (MARL) has achieved remarkable progress in domains such as multi-robot coordination (Vinyals et al., 2019; Berner et al., 2019). However, scaling MARL to large populations remains a fundamental challenge (Du et al., 2023). As the number of agents increases, the joint state–action space grows exponentially, and interaction dynamics become increasingly complex. This induces a curse of dimensionality that makes conventional learning uns and inefficient (Tan, 1993; Tampuu et al., 2015). Moreover, most existing MARL methods lack population scalability: policies trained with one swarm size often fail to generalize to other scales in zero-shot. These limitations naturally raise the question: How can we design MARL algorithms that scale efficiently to hundreds of agents while generalizing seamlessly to unseen population sizes?

A promising direction is the use of mean-field approximations (Caines et al., 2006; Lasry & Lions, 2007). By summarizing agent interactions through a population distribution, mean-field MARL (MFRL) (Yang et al., 2018) avoids exponential complexity growth and exploits the permutation invariance of homogeneous swarms. Prior work has demonstrated the feasibility of mean-field methods in large-scale settings (Angiuli et al., 2021; Gu et al., 2025). However, most existing approaches rely on first-order moment statistics, which provide only coarse summaries of the population. This simplification limits expressiveness and hinders adaptation across swarm sizes, since higher-order structural differences between distributions are ignored. Extensions that incorporate higher-order moments (Pham & Warin, 2023) improve representation, but moments remain insufficient as they may conflate distinct distributions and fail to capture richer structural information. As a result, As a result, current mean-field approaches still struggle to achieve scalability when applied to sufficiently large populations.

In this work, we introduce <u>S</u>calable <u>K</u>ernel Me<u>A</u>n-Field Multi-Agent <u>R</u>einforcement <u>L</u>earning (SKARL): a novel approach that integrates mean-field learning with reproducing kernel Hilbert space (RKHS) representations to achieve both scalability and flexibility. By embedding the popula-

tion distribution into the RKHS via kernel mean embeddings, each agent conditions its policy and value functions on high-dimensional kernel features. We model the agent's Q-function as a cylindrical kernel functional, inspired by Guo et al. (2023), and derive functional gradient updates under a dual time-scale learning scheme. To ensure computational efficiency in large populations, we employ Nystr"om approximations to project functional updates onto low-dimensional subspaces. Our framework offers both theoretical and empirical benefits. We prove that cylindrical kernel functionals form a universal approximator over distribution spaces, ensuring expressiveness, and establish that the resulting value functions are Wasserstein-Lipschitz continuous, providing robustness to distributional shifts. Crucially, by representing the swarm as a distribution rather than a fixed-size set, our method naturally supports population flexibility: a policy trained with 64 agents can be deployed zero-shot in environments with 4–256 agents, without retraining. Empirically, SKARL achieves superior performance on large-scale cooperative tasks, consistently outperforming strong MARL baselines in cumulative reward and training stability.

In summary, our contributions are as follows:

- We propose SKARL, a novel MARL framework that combines mean-field approximations
 with RKHS representations, avoiding exponential complexity growth and enabling scalability to large agent populations.
- We develop a functional gradient algorithm for cylindrical kernel functionals, along with a
 dual time-scale learning rule and Nyström approximations for efficiency. Theoretically, we
 prove universal approximation and establish Wasserstein-Lipschitz continuity of the value
 functions.
- Through extensive experiments on large-scale benchmarks, we demonstrate that SKARL generalizes seamlessly across population sizes and achieves significant improvements over MARL baselines in both performance and stability.

2 Preliminaries

2.1 MULTI-AGENT STOCHASTIC GAME

We consider an episodic mean-field reinforcement learning game with a fixed number of agents $N \in \mathbb{N}$. Such a game is defined by the tuple $\left\langle \mathcal{S}^N, \mathcal{A}^N, P, (r^i)_{i=1}^N, \gamma \right\rangle$, where $\mathcal{S}^N = \mathcal{S}_1 \times \cdots \times \mathcal{S}_N$ denotes the joint state space: a vector $s = (s^1, \dots, s^N)$ collects the local state $s^i \in \mathcal{S}_i$ of each agent. Similarly, the joint action space is $\mathcal{A}^N = \mathcal{A}_1 \times \cdots \times \mathcal{A}_N$, where a joint action $a = (a^1, \dots, a^N)$ consists of local actions $a^i \in \mathcal{A}_i$. In the homogeneous setting, agents share the same state and action spaces, i.e., $\mathcal{S} = \mathcal{S}_1 = \cdots = \mathcal{S}_N$ and $\mathcal{A} = \mathcal{A}_1 = \cdots = \mathcal{A}_N$. System dynamics are governed by a stochastic kernel $P: \mathcal{S}^N \times \mathcal{A}^N \to \mathcal{P}(\mathcal{S}^N)$, where $\mathcal{P}(\mathcal{S}^N)$ denotes the set of probability measures over \mathcal{S}^N . Each agent receives an instantaneous reward $r^i(s,a) = r(s^i,a^i)$, which couples individual behavior with the global population. Finally, $0 < \gamma < 1$ is the discount factor weighting future returns. The objective is to learn a joint policy $\pi = (\pi^1, \dots, \pi^N)$, where each $\pi^i: \mathcal{S} \to \mathcal{P}(\mathcal{A})$, that maximizes for every agent i the expected discounted return

$$J^{i}(\pi) = \mathbb{E}_{s_{0} \sim d_{0}, P, \pi} \Big[\sum_{t=0}^{T-1} \gamma^{t} r^{i}(s_{t}, a_{t}) \Big],$$

with the expectation taken over the initial state distribution d_0 , the transition kernel P, and the stochastic choices of the joint policy π .

2.2 MEAN FIELD REINFORCEMENT LEARNING

In multi-agent reinforcement learning with N agents, the Q-function of agent i depends on the joint action $\mathbf{a}=(a^1,\ldots,a^N)$, where each a^j is represented by a one-hot vector. This leads to an exponential blow-up of the action space, a manifestation of the curse of dimensionality. Meanfield reinforcement learning (MFRL) (Yang et al., 2018) addresses this by approximating pairwise interactions through a mean-field term. Specifically, the Q-function of agent i is written as

$$Q^{i}(s, \boldsymbol{a}) = \frac{1}{N_{i}} \sum_{j \in \mathcal{N}^{i}} Q^{i}(s, a^{i}, a^{j}) \approx Q^{i}\left(s, a^{i}, \bar{a}^{-i}\right),$$

where $\bar{a}^{-i} := \frac{1}{N_i} \sum_{j \in \mathcal{N}^i} a^j$ denotes the empirical mean action of agent i's neighbors \mathcal{N}^i with size N_i . This induces a dynamical system in which each agent responds to the mean-field action via a softmax policy as $\pi_t^i(\cdot \mid s) = \operatorname{softmax}(-\beta Q_t^i(s, \cdot, \bar{a}_t^{-i}))$, where the softmax is taken over all $a \in \mathcal{A}$.

For continuous action spaces, the mean-field action is modeled as a distribution on the 2-Wasserstein space $\mathcal{P}_2(\mathcal{A})$ (Guo & Xu, 2019):

$$\nu^{-i} = \frac{1}{N_i} \sum_{j=1}^{N_i} \delta_{a^j},$$

where δ_{a^j} is the Dirac measure at action a^j . If the pairwise Q-function is twice Lions-differentiable with respect to the mean-field action μ_{a_j} , the Lions–Taylor expansion yields

$$Q^{i}(s, \boldsymbol{a}) \approx \bar{Q}^{i}(s, a^{i}, \mu^{-i}) + \frac{1}{N_{i}} \sum_{i=1}^{N_{i}} \partial_{\nu} \bar{Q}^{i}(s, a^{i}, \mu^{-i}) [a^{j}] \cdot (\bar{a}^{i} - a^{j}), \tag{1}$$

where $\bar{Q}^i(s,a^i,\delta_{a^j})$ is the Q-function lifted to the Wasserstein space, $\bar{a}^i=\frac{1}{N_i}\sum_j a^j$ is the mean neighbor action, and $\partial_{\nu}\bar{Q}^i(s,a^i,\mu^{-i})[\cdot]:\mathcal{A}\to\mathcal{A}$ is the Lions derivative (Tang et al., 2024). The residual term R_f^i is bounded by the action space size.

2.3 REPRODUCING KERNEL HILBERT SPACE AND KERNEL MEAN EMBEDDING

A reproducing kernel Hilbert space (RKHS) \mathcal{H}_k over domain \mathcal{X} is a Hilbert space of functions $g: \mathcal{X} \to \mathbb{R}$ associated with a symmetric positive-definite kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$. The defining property is the reproducing identity (Muandet et al., 2017): for all $x \in \mathcal{X}$,

$$g(x) = \langle g, k(x, \cdot) \rangle_{\mathcal{H}_k} = \int_{\mathcal{X}} g(x')k(x, x') dx'.$$
 (2)

The RKHS is the closure of finite linear combinations of kernel functions, $\mathcal{H}_k = \frac{\text{Span}\{k(x,\cdot) \mid x \in \mathcal{X}\}}{\text{Span}\{k(x,\cdot) \mid x \in \mathcal{X}\}}$. Any $g \in \mathcal{H}_k$ admits a representation

$$g(\cdot) = \sum_{m=1}^{M} \alpha_m k(x_m, \cdot),$$

for some $M \in \mathbb{N}$, coefficients $\alpha_m \in \mathbb{R}$, and locations $x_m \in \mathcal{X}$. This form, together with the reproducing property, enables the *kernel trick*: computations in high-dimensional feature spaces reduce to inner products in \mathcal{H}_k . The kernel mean embedding (KME) extends this idea from points to distributions, providing a nonparametric embedding of a probability law into \mathcal{H}_k (Muandet et al., 2017). For any distribution \mathbb{P} on \mathcal{X} , its embedding is

$$\mu_{\mathbb{P}}(\cdot) := \mathbb{E}_{X \sim \mathbb{P}}[k(\cdot, X)] = \int_{\mathcal{X}} k(\cdot, x) \, d\mathbb{P}(x). \tag{3}$$

This embedding preserves expectations: for all $g \in \mathcal{H}_k$, $\mathbb{E}_{X \sim \mathbb{P}}[g(X)] = \langle g, \mu_{\mathbb{P}} \rangle_{\mathcal{H}_k}$. Given samples $\{x_n\}_{n=1}^N \sim \mathbb{P}$, the empirical KME is $\hat{\mu}_{\mathbb{P}}(\cdot) = \frac{1}{N} \sum_{n=1}^N k(x_n, \cdot)$, which converges to $\mu_{\mathbb{P}}$ as $N \to \infty$.

3 THE SKARL FRAMEWORK

This section presents the derivation of SKARL within the Reproducing Kernel Hilbert Space (RKHS), as is shown in Figure. 1.

3.1 Kernel Mean Embedding Representation of Mean-Field Q-Functions

Mean-Field Embedding via KME The mean-field measure is embedded via empirical KME:

$$\mu_{\nu^{-i}}^d = \frac{1}{N_i} \sum_{j=1}^{N_i} k^d(x^j, \cdot),$$

where x^j is the latent embedding of neighbor (s^j, a^j) .

Figure 1: Overview of the SKARL framework. Agent interactions are embedded into RKHS via kernel mean embeddings and evaluated through kernel cylindrical functions to approximate mean-field Q-values. Updates are performed with temporal-difference learning and Nyström projection for scalability and efficiency.

Kernel Cylindrical Representation of Pairwise Interactions. Mean-field Q-functions are functionals of probability measures over neighbor actions. To approximate such distributional functionals in a principled and expressive way, we introduce *kernel cylindrical functions*, inspired by work of Guo et al. (2023), which provide universal approximations within RKHS. Formally, for any continuous functional $f: \mathcal{P}(\mathcal{M}) \to \mathbb{R}$ with bounded Lions derivatives, we approximate it by

$$h(\nu) = h(\langle g^1, \mu_{\nu}^1 \rangle_{\mathcal{H}_k}, \dots, \langle g^D, \mu_{\nu}^D \rangle_{\mathcal{H}_k}), \tag{4}$$

where each $g^d(\cdot)=k(x^d,\cdot)$ is a kernel anchored at $x^d\in\mathcal{M},\,\mu_{\nu}^d$ denotes the empirical KME, and $h:\mathbb{R}^D\to\mathbb{R}$ is a polynomial. The inner products $\langle g^d,\mu_{\nu}^d\rangle_{\mathcal{H}_k}=\int_{\mathcal{M}}g^d(x)\,\mathrm{d}\nu(x)$ serve as kernel-based summaries of ν . Base on this function type, we develop the following theorem, implying that any smooth mean-field Q-function can be approximated arbitrarily well by such cylindrical representations.

Theorem 3.1 (Density of Kernel Cylindrical Functions). Let $\mathcal{P}(\mathcal{M})$ be the space of Borel probability measures over a compact manifold $\mathcal{M} \subset \mathbb{R}^d$. Define

$$\mathcal{G}_D(\mathcal{M}) := \left\{ h(\mu) = h\left(\langle g^1, \mu \rangle_{\mathcal{H}_k}, \dots, \langle g^D, \mu \rangle_{\mathcal{H}_k}\right) \mid h \text{ (polynomial)}, \{g^d\}_{d=1}^D \text{ kernels} \right\}.$$
 (5)

Let $C^{1,1}(\mathcal{M})$ denote the space of Fréchet differentiable functions with Lipschitz derivatives. Then, for any $f \in C^{1,1}(\mathcal{M})$ and any $\epsilon > 0$, there exists $h \in \mathcal{G}_D(\mathcal{M})$ such that $|f(\mu) - h(\mu)| < \epsilon$ for all $\mu \in \mathcal{P}(\mathcal{M})$, provided D is sufficiently large.

This directly yields a representation of the pairwise interaction in agent i's Q-function:

$$Q^i(s^i,a^i,\nu^{-i}) = h_{s^i,a^i} \left(\langle g^{i,1},\mu_{\nu^{-i}} \rangle, \dots, \langle g^{i,D},\mu_{\nu^{-i}} \rangle \right),$$

where $h_{s^i,a^i} = h(s^i,a^i,\cdot): \mathbb{R}^D \to \mathbb{R}$ is differentiable with parameters θ_h , and $g^{i,d} = \sum_{m=1}^M \alpha_m^d k^d(x^m,\cdot)$, with anchor points $\{x^m\}_{m=1}^M$ in latent space \mathcal{X} and learnable weights $\{\alpha_m^d\}$. The gradient of $g^{i,d}$ is $\nabla g^{i,d}(x) = \sum_m \alpha_m^d \partial_x k^d(x^m,x)$. To guaranty continuity, we assume Lipschitz continuity and boundedness of kernels.

Assumption 3.1 (Lipschitz Continuity and Boundedness). Each kernel $q^{i,d}$ is L_a -Lipschitz:

$$|g^d(x) - g^d(y)| \le L_q ||x - y||_2, \quad \forall x, y \in \mathcal{X},$$

and uniformly bounded: $|k(x,y)| < \infty$, $\forall x,y \in \mathcal{X}$. Without loss of generality, assume $\sup_{x \in \mathcal{X}} |k(x,x)| \leq 1$.

The Lions derivative of a cylindrical function $h(\nu)$ is (Guo et al., 2023):

$$\partial_{\nu}h(\nu)(x) = \sum_{d=1}^{D} \partial_{d}h(\nu) \nabla g^{d}(x),$$

where $\partial_d h$ denotes the derivative with respect to the d-th argument.

Local Value Function Approximation. Combining state-action embeddings, cylindrical functionals, and mean-field embeddings yields a computational representation of the local Q-function. Analogous to Eq. (1), we approximate

$$Q^i(oldsymbol{s},oldsymbol{a}$$

 $Q^{i}(\boldsymbol{s},\boldsymbol{a}) = h_{s^{i},a^{i}}(\langle g^{i,1}, \mu_{\nu^{-i}} \rangle, \dots, \langle g^{i,D}, \mu_{\nu^{-i}} \rangle) + \sum_{i=1}^{D} \partial_{d}h_{s^{i},a^{i}} \langle \nabla g^{i,d}(x) \cdot \Delta x, \nu^{-i} \rangle,$

second encodes gradient corrections.

where $\Delta x := \bar{x}^i - x$ and $\bar{x}^i = \frac{1}{N_i} \sum_j x^j$. The first term captures mean-field interactions, while the

This representation integrates seamlessly with standard multi-agent value-decomposition methods

such as VDN (Sunehag et al., 2017), QMIX (Rashid et al., 2018), and QPLEX (Wang et al., 2020). Analogous constructions apply to the state-value function $V^i(s)$ and advantage function $A^i(s, a)$.

3.2 VALUE FUNCTION UPDATE WITH STORAGE EFFICIENCY

Updating Cylindrical Kernel Functions. The total value function Q_{tot} is decomposed into agentwise functions Q^i under the Individual Global Max (IGM) principle (Rashid et al., 2018) (See Appendix E). To update Q^i , we optimize the temporal-difference (TD) loss (Sutton, 1988)

$$\ell(\mathcal{B}Q_{\text{tot}},Q_{\text{tot}}) = \mathbb{E}_{\boldsymbol{s},\boldsymbol{a},r,\boldsymbol{s}'} \Big[\big(\mathcal{B}Q_{\text{tot}}(\boldsymbol{s},\boldsymbol{a}) - Q_{\text{tot}}(\boldsymbol{s},\boldsymbol{a}) \big)^2 \Big],$$

where \mathcal{B} denotes the Bellman operator (Puterman, 1994), i.e.,

$$(\mathcal{B}Q_{\mathsf{tot}})(oldsymbol{s},oldsymbol{a}) = \mathbb{E}_{oldsymbol{s}'}\Big[r(oldsymbol{s},oldsymbol{a}) + \gamma \max_{oldsymbol{a}'} Q_{\mathsf{tot}}(oldsymbol{s}',oldsymbol{a}')\Big].$$

Parameters are updated by gradient descent in two spaces. For the outer function h and RKHS components $\{g^{i,d}\}$, with learning rate η_h^t, η_a^t .

$$h_{t+1} = h_t - \eta_h^t \frac{\partial \ell}{\partial Q_{\text{tot}}} \cdot \frac{\partial Q_{\text{tot}}}{\partial Q^i} \cdot \nabla_h Q^i, \ g_{t+1}^{i,d} = g_t^{i,d} - \eta_g^t \frac{\partial \ell}{\partial Q_{\text{tot}}} \cdot \frac{\partial Q_{\text{tot}}}{\partial Q^i} \cdot \nabla_{g^{i,d}} Q^i, \tag{7}$$

where $\{g^{i,d}\}$ are updated via the Fréchet derivative.

Proposition 3.2 (Fréchet Derivative Form). The Fréchet derivative of Q^i with respect to $g^{i,d}$ decomposes as

$$\nabla_{g^{i,d}} Q^{i} = \underbrace{\left(\partial_{d} h + \sum_{d'} \partial_{dd'}^{2} h \left\langle \nabla g^{d'} \cdot \Delta x, \nu^{-i} \right\rangle \right) \mu_{\nu^{-i}}}_{Mean \ interaction \ term} - \underbrace{\partial_{d} h \nabla \cdot \left(\nu^{-i} \Delta x\right)}_{Divergence \ term}, \tag{8}$$

where $\Delta x := \bar{x}^i - x$. See Remark D.3 in the Appendix for the explicit form with N_i neighbors.

Nyström Approximation for Efficient Storage. The direct updates in Eq. (7) face two key challenges: (i) the divergence term lies outside the RKHS (Remark D.3), and (ii) naive implementation requires storing $O(N_iT)$ kernels per agent after T iterations, which is infeasible for large swarms and long horizons. To address this, we apply the Nyström approximation, projecting updated functions onto a low-dimensional kernel subspace. Let the anchor set for $g_{t+1}^{i,d}$ be $\{x^n\}_{n=1}^{N_i+M}:=\{x^j\}_{j=1}^{N_i}\cup\{x^m\}_{m=1}^{M}$, where $\{x^m\}$ are anchor points from $g_t^{i,d}$ and $\{x^j\}$ are inputs from ν . We select a subset of landmark points $\{z^l\}_{l=1}^L \subset \{x^n\}$, spanning an L-dimensional subspace $\mathcal{H}_L \subset \mathcal{H}$. The projection of $g_{t+1}^{i,d}$ onto \mathcal{H}_L via Tikhonov regularization is:

$$\tilde{g}_{t+1}^{i,d} = \arg\min_{f \in \mathcal{H}_L} \frac{1}{N_i + M} \sum_{r=1}^{N_i + M} \|f(x^r) - g_{t+1}^{i,d}(x^r)\|_2^2 + \lambda \|f\|_{\mathcal{H}}^2. \tag{9}$$

By the representer theorem (Schölkopf & Smola, 2002), the solution takes the form $\tilde{g}_{t+1}^{i,d} = \sum_{l=1}^L \alpha_l^d k^d(z^l,\cdot)$. Let $\boldsymbol{K}_{LL}^d := [k^d(z^l,z^{l'})]_{1 \leq l,l' \leq L}$ and $\boldsymbol{K}_{N_i+M,L}^d := [k^d(z^l,z^{l'})]_{1 \leq l,l' \leq L}$

 $[k^d(x^n,z^l)]_{1\leq n\leq N_i+M, 1\leq l\leq L}.$ Then coefficients $\pmb{\alpha}^d=[\alpha_1^d,\dots,\alpha_L^d]^{ op}$ admit the closed-form solution (Rudi et al., 2015):

$$\boldsymbol{\alpha}^d = \left(\boldsymbol{K}_{N_i+M,L}^{\top} \boldsymbol{K}_{N_i+M,L} + \lambda (N_i + M) \boldsymbol{K}_{LL}^d \right)^{\dagger} \boldsymbol{K}_{N_i+M,L}^{\top} \mathbf{b},$$

where $\mathbf{b} \in \mathbb{R}^{N_i+M}$ with entries $\mathbf{b}_n = \langle k(x^n,\cdot), g_{t+1}^{i,d} \rangle_{\mathcal{H}_k}$. Here \dagger denotes the Moore–Penrose pseudoinverse. This reduces kernel storage from $O(N_iT)$ to O(L) with $L \ll N_iT$. In our experiments we use uniform sampling for landmark points $\{z^l\}$; other selection strategies are discussed in Remark D.5.

3.3 PROPOSED ALGORITHM

270

271

272

273 274

275 276

277 278

279

280 281

282 283 284

285

287

288

289

290

291

292

293

294

295 296

297

298

299 300 301

302 303

304 305

306

307

308

319

320

321

322

323

With the components mentioned above, the final proposed algorithm is summarized in Algorithm 1.

Algorithm 1 Mean-Field Cylindrical Kernel Method

Input: Agent swarm size N, number of iterations M, trajectory batch size B, anchor points number L, learning rate (η_h, η_g)

- 1: Initialize local Q function Q^i with kernel functions $\{g^{i,d}\}_{d=1}^D \leftarrow 0$ and outer function h^i for each agent; initialize trajectory set \mathcal{T} .
- 2: **for** m = 1, ..., M **do**
- while Sampling phase do
- Sample trajectories using the current policy $\{\pi^i\}_{i=1}^N$ with environment, store in \mathcal{T} . 4:
- 5:
- Sample B trajectories from \mathcal{T} with length T for each trajectory. 6:
- 7:
- Update the outer function h and $\{g_t^{i,d}\}$ with Eq. (7). Select new anchor points $\{x_l\}_{l=1}^L$ via methods in Remarks D.5. Projection updated $\{g_t^{i,d}\}$ to $\{\tilde{g}_t^{i,d}\}$ via Eq. (9) and update Q^i with $\{\tilde{g}_t^{i,d}\}$. 9:
- 10: **end for**
- 11: **return** final local Q function Q^i .

ANALYSIS OF PROPOSED SKARL

COMPUTATIONAL COMPLEXITY, SCALABILITY, AND FLEXIBILITY

We compare the computational complexity of SKARL with value decomposition methods (e.g., QMIX (Rashid et al., 2018)) and mean-field reinforcement learning (MFRL) (Yang et al., 2018)). Table 1 summarizes the results.

Table 1: Comparison of computational complexity and key metrics. B: batch size; N: number of agents; L: landmark points; D: number of kernel features.

Metric	SKARL	QMIX	MFRL
Q Function Input Size	$O(\mathcal{S} + \mathcal{A} + D)$	$O(N \mathcal{S} + N \mathcal{A})$	$O(\mathcal{S} + \mathcal{A})$
Computation Complexity	$O(B(L^2N + L^3)D)$	$O(BN^2)$	O(B)
Memory Usage	O(DL)	O(N)	O(1)
Scalability in N	Linear	Exponential	Linear

Q Function Input size. SKARL avoids the $N|\mathcal{A}|$ blow-up in QMIX by using kernel-based embeddings (Eq. 6), with $L \ll N$ and $D \ll N$. MFRL is even simpler, but lacks multi-scale coordination.

Computation. Complexity is dominated by kernel projections (Eq. 9), scaling with B, N, and L. QMIX suffers $O(N^2)$ due to its mixing network, while MFRL requires only O(1) per agent. When L grows with N (e.g., $L \approx \sqrt{N}$), SKARL's complexity approaches QMIX—this is the main computational drawback.

Scalability. SKARL maintains linear dependence on N, unlike QMIX's exponential scaling.

Flexibility. SKARL generalizes across swarm sizes. If trained with N agents and deployed with M, the approximation error is bounded by $O(N^{-1/d} + M^{-1/d})$, where d is the dimension of the state-action space.

Theorem 4.1 (Flexibility of Kernel Cylindrical Functions). Let ν_N , ν_M denote the empirical meanfield distributions of swarms with N and M agents, sampled from the same distribution ν . Under Assumption 3.1, for a cylindrical function h there exist constants C_1 , $C_2 > 0$ such that

$$\mathbb{E}[|h(\nu_N) - h(\nu_M)|] \le C_1 N^{-1/d} + C_2 M^{-1/d}.$$

4.2 Convergence and Suboptimality

Convergence of Cylindrical Functions. The density result in Theorem 3.1 implies approximation power. We now establish convergence rate with respect to the kernel number D.

Theorem 4.2 (Convergence Rate). Under Assumption 3.1, let $\hat{f}(\mu_{\nu}) = f(\nu)$ be a functional depending on the KME μ_{ν} (Eq. 3). Then with probability at least $1 - \delta$,

$$|h(\nu) - f(\nu)| \le \sup_{\nu} \left\| \frac{\delta \tilde{f}}{\delta \mu_{\nu}} \right\| \left(\sqrt{\frac{1}{D}} + \sqrt{\frac{2 \log(1/\delta)}{D}} \right).$$

Thus h converges to f at rate $O(D^{-1/2})$.

Convergence of Updates. For the update rules in Eq. equation 7, convergence follows under Robbins–Monro step-size conditions and two-time-scale separation (Borkar, 2008).

Assumption 4.1 (Robbins–Monro). Step sizes η_h and η_g satisfy $\sum_t \eta = \infty$, $\sum_t \eta^2 < \infty$, and $\lim_{t\to\infty} \eta_g/\eta_h = 0$.

Theorem 4.3 (Convergence). *Under Assumptions 3.1 and 4.1, the updates converge to* $(h^*, \{g^{i,d,*}\})$ *minimizing the Bellman TD loss.*

4.3 ERROR OF NYSTRÖM APPROXIMATION

Although the Nyström method substantially reduces storage and computational cost, this method inevitably introduces approximation error. To ensure the reliability of SKARL, it is therefore essential to quantify error of Nyström approximation. We measure the error of projection as

$$\mathcal{E}(f) = \|f - g_{t+1}^{i,d}\|_{L^2},$$

for $f \in \mathcal{H}$, where $L_k f(x) = \langle f, k(x, \cdot) \rangle_{\mathcal{H}_k}$ is the kernel integral operator (Eq. 2). Intuitively, $\mathcal{E}(f)$ captures the deviation between the projected function and the ideal update.

To analyze this error, we introduce two standard conditions from statistical learning theory:

Assumption 4.2. Define the effective dimension $\mathcal{N}(\lambda) = tr((\lambda I + L_k)^{-1}L_k)$. Assume there exists a constant $C_0 > 0$ independent of λ such that for any $\lambda > 0$, $\mathcal{N}(\lambda) \leq C_0 \lambda^{-\gamma}$, for some $0 < \gamma \leq 1$.

Assumption 4.3. There exists $s \ge 0$, $1 \le R < \infty$, such that $||L_k^{-s} f_{\mathcal{H}}||_{\mathcal{H}} < R$, where $f_{\mathcal{H}} := \arg\min_{f} \mathcal{E}(f)$.

Combining the Lipschitz continuity of kernel cylindrical functions (Assumption 3.1) with the above spectral assumptions, we obtain the following finite-sample error bound.

Theorem 4.4 (Nyström Error Bound). Under Assumptions 3.1, 4.2, and 4.3, let $\delta \in (0,1)$ and sufficiently large $N_i + M$. With probability at least $1 - \delta$, the excess error of the Nyström approximation satisfies

$$\mathcal{E}(\tilde{g}_{t+1}^{i,d}) - \min_{f \in \mathcal{H}} \mathcal{E}(f) \leq C_{k,\gamma} \left(\log \frac{6}{\delta}\right)^2 (N_i + M)^{-\frac{2v+1}{2v+\gamma+1}},$$

where $v = \min(s, 1/2)$, $\lambda = ||L_k||(N_i + M)^{-\frac{1}{2v + \gamma + 1}}$, and $L \ge C_\lambda \log \frac{12}{\lambda \delta}$. Constants $C_{k,\gamma}, C_\lambda$ depend only on the kernel family.

Figure 2: Training results of SKARL and baselines across three environments (5 random seeds).

Theorem 4.4 shows that the Nyström approximation converges to the optimal RKHS projection at a rate depending on both the eigenvalue decay γ and the smoothness parameter s. In practice, this means that as the number of anchor points (N_i+M) grows, the approximation error shrinks polynomially fast, and only a logarithmic number of landmark points L (relative to the effective dimension) is needed to achieve near-optimal accuracy. This justifies the use of Nyström projection in SKARL.

5 EXPERIMENTS AND RESULTS

5.1 EXPERIMENTAL SETUP

We evaluate our method following the work of Nayak et al. (2023), with four environments: (i) **Move**: Each agent tries to move as fast as possible and avoid collisions. (ii) **Target**: Each agent tries to reach the assigned goal and avoid collisions. (iii) **Coverage**: Each agent tries to go to a goal and avoid collisions, and ensure no more than one agent reaching the same goal. (iv) **Line**: There are two landmarks, and the agents try to position themselves equally spread out in a line between the two. For detailed observation, reward and action design, please refer to the Appendix Environments. We compare SKARL against several standard MARL algorithms: (i) **QMIX** (Rashid et al., 2018), (ii) **QPLEX** (Wang et al., 2020), (iii) **MAPPO** (Yu et al., 2022), and (iv) **MFRL** (Yang et al., 2018). For detailed implementation of SKARL and baselines, please refer to Appendix E. We report the test results with 100 max steps. ¹

Table 2: Performance Comparison between SKARL and Baselines in Move Environment

A.1. 1:1		N=4			N = 16		N = 64		
Algorithm	R (↑)	# col(↓)	S (↑)	R(↑)	# col(↓)	$S(\uparrow)$	R(↑)	# col(↓)	S (↑)
MAPPO	947.6	0.56 ± 0.174	0.16 ± 0.00779	3360.2	2.6± 1.12	$0.14 \scriptstyle{\pm 0.0562}$	14284.8	9.6± 6.98	0.15 ± 0.0459
MFRL	734.6	0 ± 0	0.12 ± 0.0247	3083.69	38.4 ± 6.99	0.12 ± 0.0440	11411.1	204.2 ± 22.8	$0.14 \pm {\scriptstyle 0.0451}$
QMIX	835.4	$4.94 \scriptstyle{\pm 4.94}$	0.15 ± 0.0431	2845.4	21.9 ± 12.7	0.13 ± 0.08517	10446.2	2.8 ± 1.00	0.11 ± 0.0732
QPLEX	911.4	0.56 ± 0.194	$0.14 \scriptstyle{\pm0.0213}$	3625.8	$20.5 \pm {\scriptstyle 10.2}$	$\boldsymbol{0.17} \pm 0.0622$	14073.8	22.5 ± 9.55	$\textbf{0.15} \pm 0.0404$
SKARL	902.8	0 ± 0	$0.15 {\scriptstyle\pm 0.0192}$	3755.9	12.32± 5.847	0.17 ± 0.0500	14423.8	$7.9 \scriptstyle{\pm}~5.37$	0.15 ± 0.0334

Table 3: Performance Comparison between SKARL and Baselines in Target Environment

Algorithm		N = 4				N = 16				N = 64		
Algorumii	R (↑)	$T(\downarrow)$	# col(↓)	S%(↑)	R(↑)	$T(\downarrow)$	# col(↓)	S%(↑)	R(↑)	$T(\downarrow)$	# col(↓)	S%(†)
MAPPO	327.3	0.14	2.6 ± 1.45	100	12	0.56	$8.93 {\scriptstyle\pm} 5.87$	40.6	0	1.00	0	0
QPLEX	330.3	0.18	1.3 ± 0.982	100	-3.1e4	1.00	4.92 ± 2.55	0	-1.9e5	1.00	$19.8 \scriptstyle{\pm}~12.42$	0
QMIX	337.0	0.14	0.67 ± 0.35	100	-5.1e4	1.00	$6.6 \pm$ 4.28	0	-6.4e5	1.00	41.6 ± 18.1	0
MFRL	330.8	0.14	$6.4 \scriptstyle{\pm}3.38$	100	1.1	0.81	14.375 ± 10.28	31.2	-5.7e5	1.00	$35.8 \pm {\scriptstyle 15.1}$	0
SKARL	329.3	0.18	7.2± 3.15	100	5.6	0.96	23.2± 20.5	100	44.75	0.98	44.3± 10.6	3.1

5.2 MAIN RESULTS

We report the experiment of main experiments on Move and Target environment with 5 random seeds. For other experiments and ablation study, please refer to Appendix F.

¹Code at https://anonymous.4open.science/r/SKARL-050D, based on JaxMARL (Rutherford et al., 2023)

Table 4: Zero-Shot Flexibility Performance of SKARL in Move Environment

Training	Metric	M=4	M = 8	M = 16	M = 32	M = 64	M = 128	M = 256
N=4	R/N (# col)/N S	$\begin{array}{ c c c c }\hline & 225.7 \\ & 0 \pm \text{ 0} \\ & 0.15 \pm \text{ 0.0190} \\ \end{array}$	$\begin{array}{c} 168.5 \\ 2.22 \pm {\scriptstyle 1.18} \\ 0.12 \pm {\scriptstyle 0.0842} \end{array}$	$\begin{array}{c} 177.8 \\ 1.36 \pm 0.794 \\ 0.13 \pm 0.085 \end{array}$	$\begin{array}{c} 155.2 \\ 0.62 \pm 0.419 \\ 0.12 \pm 0.065 \end{array}$	$\begin{array}{c} 166.9 \\ 0.25 \pm 0.146 \\ 0.11 \pm 0.0657 \end{array}$	$\begin{array}{c} 168.5 \\ 0.12 \pm 0.0745 \\ 0.11 \pm 0.0698 \end{array}$	$\begin{array}{c} 173.9 \\ 0.22 \pm 0.0762 \\ 0.12 \pm 0.0680 \end{array}$
N = 16	R/N (# col)/N S	$\begin{array}{c c} \textbf{236.9} \\ 0 \pm 0 \\ 0.16 \pm 0.00434 \end{array}$	$\begin{array}{c} \textbf{235.2} \\ \textbf{0.98} \!\pm\! \textbf{0.437} \\ \textbf{0.17} \!\pm\! \textbf{0.0612} \end{array}$	$\begin{array}{c} \textbf{234.7} \\ \textbf{0.77} \pm \textbf{0.365} \\ \textbf{0.17} \pm \textbf{0.0500} \end{array}$	$\begin{array}{c} \textbf{235.2} \\ \textbf{0.57} \pm \textbf{0.207} \\ \textbf{0.17} \pm \textbf{0.0469} \end{array}$	$\begin{array}{c} \textbf{225.4} \\ \textbf{0.17} \pm \textbf{0.115} \\ \textbf{0.15} \pm \textbf{0.0323} \end{array}$	$\begin{array}{c} \textbf{205.6} \\ \textbf{0.12} \pm 0.0652 \\ \textbf{0.14} \pm 0.0521 \end{array}$	$\begin{array}{c} \textbf{202.6} \\ \textbf{0.04} \!\pm \textbf{0.0221} \\ \textbf{0.14} \!\pm \textbf{0.0542} \end{array}$
N = 64	R/N (# col)/N S	$\begin{array}{c c} & \textbf{231.5} \\ & 0 \pm \text{0} \\ & 0.15 \pm \text{0.0126} \end{array}$	$\begin{array}{c} \textbf{221.3} \\ \textbf{0.45} \pm \textbf{0.408} \\ \textbf{0.15} \pm \textbf{0.0406} \end{array}$	$\begin{array}{c} \textbf{227.3} \\ \textbf{0.28} \!\pm\! 0.257 \\ \textbf{0.15} \!\pm\! 0.0237 \end{array}$	$\begin{array}{c} \textbf{224} \\ \textbf{0.44} \pm \textbf{0.275} \\ \textbf{0.16} \pm \textbf{0.0591} \end{array}$	$\begin{array}{c} \textbf{223.2} \\ \textbf{0.15} \!\pm \textbf{0.109} \\ \textbf{0.15} \!\pm \textbf{0.0459} \end{array}$	$\begin{array}{c} \textbf{221.6} \\ \textbf{0.11} \pm \textbf{0.0866} \\ \textbf{0.15} \pm \textbf{0.0401} \end{array}$	$\begin{array}{c} 218.7 \\ 0.09 \pm 0.0476 \\ 0.15 \pm 0.0436 \end{array}$

Table 5: Flexibility Performance of SKARL in Target Environment

Training	Metric	M=4	M = 8	M = 16	M = 32	M = 64	M = 128	M = 256
N=4	R/N T (step) (# col)/N S%	82.3 18 0.5± 0.42 100	-36.25 95 23 ± 14.0 37.5	-444.0 96.5 37.6± 26.9 6.25	$\begin{array}{c} -2.8e3 \\ 100 \\ 34.875 \pm {}_{11.34} \\ 0 \end{array}$	-9.0e3 100 46± 15.1 0	$^{-1.8e4}_{100}_{138^{18.9}}_{0}$	$ \begin{array}{r} -3.7e4 \\ 100 \\ 342 \pm 32.8 \\ 0 \end{array} $
N = 16	R/N T (step) (# col)/N S%	85.3 17.4 0.4± 0.13 100	$7.5 \\ 13.8 \\ 19.25 \pm {}_{13.0} \\ 100$	$0.35 \\ 96.3 \\ 23.2 \pm 20.5 \\ 100$	$\begin{array}{c} -2.4e3 \\ 98.5 \\ 34.875 \pm 11.34 \\ 75 \end{array}$	-8.3e3 99.4 46±15.1 6.25	-1.7e3 100 75.5± 14.6 0	-2.6e4 100 116± 21.1
N = 64	R/N T (step) (# col)/N S%	$ \begin{vmatrix} 84.0 \\ 18.7 \\ 0.5 \pm 0.342 \\ 100 \end{vmatrix} $	77.3 27.8 3 ± 2.35 100	69.8 30.6 6.7±6.45 93.75	$ \begin{array}{c} 10.8 \\ 67.2 \\ 16.1 \pm 5.83 \\ 75 \end{array} $	$0.70 \\ 98.1 \\ 44.3 \pm 10.6 \\ 12.5$	-0.25 100 66.3± 15.2 0	-10.5 100 96.8± 17

Scale up to large-scale swarms Figure 2, Table 2 and Table 3 demonstrates SKARL's effectiveness across swarm sizes N=4,16,64. We select three metrics: (i) R: global reward. (ii) # col: total collisions. (iii) S: average speed of each agent. For small swarms, SKARL achieves near-optimal reward while entirely eliminating collisions. As the swarm scales to large scale, SKARL outperforms all baselines, achieving the highest reward and fastest speed, with low reduction rate of collision. Notably, SKARL balances safety and efficiency, collisions decrease without sacrificing speed, matching top baselines. These results highlight SKARL's scalability, particularly excelling in mid-to-large swarms where coordination complexity increases.

Generalize to different swarm sizes Table 4 and Table 5 reveals SKARL's zero-shot flexibility when tested on varying swarm sizes M. When trained on small swarm size, SKARL fails to maintain reasonable performance up to M=256. However, training on larger swarms (N=16/64) enables robust generalization. Most impressively, N=64-trained SKARL achieves near-optimal reward per agent at M=256, while collisions remain the lowest. This flexibility stems from SKARL's distribution-driven policy as is in Theorem 4.1, enabling deployment in real-world scenarios where swarm sizes are dynamic.

6 Conclusion

We propose **SKARL**, a scalable framework for large-scale multi-agent reinforcement learning. **SKARL** resolves the scalability and flexibility bottlenecks of multi-agent reinforcement learning by enabling linear complexity in swarm size and zero-shot transfer across populations. It ensures convergence with efficient updates and drastically reduces training overhead, allowing effective learning in large swarms. Experiments confirm that SKARL outperforms state-of-the-art baselines in both performance and generalization.

7 ETHICS STATEMENT

This work introduces SKARL, a scalable kernel mean-field reinforcement learning framework for large-scale multi-agent systems. Our contributions are primarily theoretical and methodological, with empirical validation performed in simulated multi-agent environments such as swarm navigation, coordination, and collision avoidance benchmarks. These environments are widely used in the MARL community and do not involve human subjects, sensitive personal data, or proprietary datasets.

We acknowledge that advances in multi-agent reinforcement learning (MARL) may have dual-use implications. While our experiments are limited to academic and open-source benchmarks, similar techniques could be applied in high-stakes domains such as autonomous vehicle fleets, aerial drone swarms, or defense systems. In such settings, ethical concerns may include safety, accountability, and fairness. To mitigate potential risks, our work remains focused on theoretical scalability and generalization, and we refrain from proposing or testing direct real-world deployment scenarios.

From a fairness perspective, the algorithms studied here are agnostic to sensitive human attributes and do not incorporate demographic information. From a privacy and security perspective, no personal or confidential information is processed. From a research integrity perspective, we strictly adhere to reproducible and transparent reporting, with proofs, assumptions, and algorithms explicitly documented. Finally, we affirm that we have read and adhered to the ICLR Code of Ethics, and have conducted this research in alignment with its principles.

8 REPRODUCIBILITY STATEMENT

We have undertaken comprehensive steps to ensure that the theoretical and empirical results reported in this paper are reproducible. For the theoretical contributions, all assumptions are explicitly stated, and full mathematical proofs are provided either in the main text or in the appendix. These proofs establish the universal approximation property of kernel cylindrical functions and the convergence of the dual time-scale learning rule.

For the empirical results, all experiments are conducted on widely used benchmark environments for multi-agent reinforcement learning, such as large-scale swarm coordination tasks. We describe the experimental setup, training protocols, and hyperparameter configurations in detail within the paper and provide additional clarifications in the appendix. Random seeds are fixed across runs, and ablation studies are reported to verify stability.

To further facilitate reproducibility, we release anonymous source code, including implementations of SKARL, training scripts, and environment configuration files, as part of the supplementary materials. This enables other researchers to directly reproduce the results presented in this paper, adapt the framework to new environments, or verify the theoretical guarantees with empirical evidence. Together, these measures ensure that the community can reliably replicate and build upon our contributions.

REFERENCES

Andrea Angiuli, Jean-Pierre Fouque, and Mathieu Lauriere. Reinforcement learning for mean field games, with applications to economics. *arXiv* preprint arXiv:2106.13755, 2021.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christopher Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto, Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement learning. *CoRR*, abs/1912.06680, 2019. URL http://arxiv.org/abs/1912.06680.

Patrick Billingsley. Convergence of probability measures. John Wiley & Sons, 2013.

Vivek S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Springer, 2008.

- Peter E Caines, Minyi Huang, and Roland P Malhamé. Large population stochastic dynamic games: closed-loop mckean-vlasov systems and the nash certainty equivalence principle. *Communications in Information and Systems*, 6(3):221–252, 2006.
 - Ruan de Kock, Omayma Mahjoub, Sasha Abramowitz, Wiem Khlifi, Callum Rhys Tilbury, Claude Formanek, Andries P. Smit, and Arnu Pretorius. Mava: a research library for distributed multiagent reinforcement learning in jax. *arXiv preprint arXiv:2107.01460*, 2023. URL https://arxiv.org/pdf/2107.01460.pdf.
 - Yali Du, Joel Z Leibo, Usman Islam, Richard Willis, and Peter Sunehag. A review of cooperation in multi-agent learning. *arXiv preprint arXiv:2312.05162*, 2023.
 - Richard Mansfield Dudley. The speed of mean glivenko-cantelli convergence. *The Annals of Mathematical Statistics*, 40(1):40–50, 1969.
 - Haotian Gu, Xin Guo, Xiaoli Wei, and Renyuan Xu. Mean-field multiagent reinforcement learning: A decentralized network approach. *Mathematics of Operations Research*, 50(1):506–536, 2025.
 - Xin Guo and Renyuan Xu. Stochastic games for fuel follower problem: N versus mean field game. *SIAM Journal on Control and Optimization*, 57(1):659–692, 2019.
 - Xin Guo, Huyên Pham, and Xiaoli Wei. Itô's formula for flows of measures on semimartingales. *Stochastic Processes and their applications*, 159:350–390, 2023.
 - David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.
 - Jean-Michel Lasry and Pierre-Louis Lions. Mean field games. *Japanese journal of mathematics*, 2 (1):229–260, 2007.
 - Michael L. Littman. Markov games as a framework for multi-agent reinforcement learning. *ICML*, 1994.
 - Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur, Bernhard Schölkopf, et al. Kernel mean embedding of distributions: A review and beyond. *Foundations and Trends® in Machine Learning*, 10(1-2):1–141, 2017.
 - Siddharth Nayak, Kenneth Choi, Wenqi Ding, Sydney Dolan, Karthik Gopalakrishnan, and Hamsa Balakrishnan. Scalable multi-agent reinforcement learning through intelligent information aggregation. In *International Conference on Machine Learning*, pp. 25817–25833. PMLR, 2023.
 - Victor M Panaretos and Yoav Zemel. Statistical aspects of wasserstein distances. *Annual review of statistics and its application*, 6(1):405–431, 2019.
 - Huyên Pham and Xavier Warin. Mean-field neural networks: learning mappings on wasserstein space. *Neural Networks*, 168:380–393, 2023.
 - Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons, 1994.
 - Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent reinforcement learning. ICML, 2018.
 - Alessandro Rudi, Raffaello Camoriano, and Lorenzo Rosasco. Less is more: Nyström computational regularization. *Advances in neural information processing systems*, 28, 2015.
- Alexander Rutherford, Benjamin Ellis, Matteo Gallici, Jonathan Cook, Andrei Lupu, Gardar Ingvarsson, Timon Willi, Akbir Khan, Christian Schroeder de Witt, Alexandra Souly, Saptarashmi Bandyopadhyay, Mikayel Samvelyan, Minqi Jiang, Robert Tjarko Lange, Shimon Whiteson, Bruno Lacerda, Nick Hawes, Tim Rocktaschel, Chris Lu, and Jakob Nicolaus Foerster. Jaxmarl: Multi-agent rl environments in jax. *arXiv preprint arXiv:2311.10090*, 2023.
 - Bernhard Schölkopf and Alexander J Smola. *Learning with kernels: support vector machines, regularization, optimization, and beyond.* MIT press, 2002.

- Friedhelm Schwenker, Hans A Kestler, and Günther Palm. Three learning phases for radial-basis-function networks. *Neural networks*, 14(4-5):439–458, 2001.
- Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinícius Flores Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl Tuyls, and Thore Graepel. Value-decomposition networks for cooperative multi-agent learning. *CoRR*, abs/1706.05296, 2017. URL http://arxiv.org/abs/1706.05296.
- Richard S Sutton. Learning to predict by the methods of temporal differences. *Machine Learning*, 3(1):9–44, 1988.
- Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus, Juhan Aru, Jaan Aru, and Raul Vicente. Multiagent cooperation and competition with deep reinforcement learning. *CoRR*, abs/1511.08779, 2015. URL http://arxiv.org/abs/1511.08779.
- Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In *In Proceedings of the Tenth International Conference on Machine Learning*, pp. 330–337. Morgan Kaufmann, 1993.
- Huaze Tang, Yuanquan Hu, Fanfan Zhao, Junji Yan, Ting Dong, and Wenbo Ding. M³arl: Moment-embedded mean-field multi-agent reinforcement learning for continuous action space. In *ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 7250–7254. IEEE, 2024.
- Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 30, 2016.
- Daniele Venturi and Alec Dektor. Spectral methods for nonlinear functionals and functional differential equations. *Research in the Mathematical Sciences*, 8(2):27, 2021.
- Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, L. Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James Molloy, Tom Le Paine, Caglar Gulcehre, Ziyun Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver. Grandmaster level in starcraft II using multi-agent reinforcement learning. *Nature*, pp. 1–5, 2019.
- Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling multi-agent q-learning. *arXiv preprint arXiv:2008.01062*, 2020.
- Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang. Mean field multi-agent reinforcement learning. ICML, 2018.
- Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising effectiveness of ppo in cooperative multi-agent games. *Advances in neural information processing systems*, 35:24611–24624, 2022.

A THE USE OF LLM

In the preparation of this paper, we employed large language models (LLMs) strictly as assistive tools. Their role was confined to three aspects: (i) improving the clarity and readability of the manuscript by suggesting stylistic refinements and alternative phrasings; (ii) assisting with the organization and presentation of mathematical proofs, including the checking of algebraic manipulations and the polishing of logical exposition; and (iii) serving as a coding assistant for routine programming tasks such as code completion, debugging, and documentation generation.

Importantly, LLMs were not involved in the generation of research ideas, the design of the SKARL framework, or the conceptual development of the theoretical results. All scientific insights, algorithmic designs, and experimental implementations originate from the authors. The LLM usage

did not extend to generating novel theorems, creating data, or drawing conclusions. Instead, the models functioned in a supportive capacity, comparable to grammar-checking or code editor auto-completion, with the final responsibility for correctness, originality, and integrity resting solely on the authors.

We disclose this usage in alignment with ICLR policy. By transparently reporting the scope of assistance, we affirm that the LLMs were used responsibly and ethically, and that the intellectual contributions of this work are entirely attributable to the authors.

B PROOFS OF THEOREMS, LEMMAS AND PROPOSITIONS

B.1 Proof of Theorem 3.1

Proof. We establish the density of proposed $\mathcal{G}_D(\mathcal{M})$. To this end, we first need:

Lemma B.1 (Stone–Weierstrass). Take a compact Hausdorff space H, and let C(H) be the algebra of real-valued continuous functions on H, with the topology of uniform convergence. Let A be a subalgebra of C(H). If A separates points on H and vanishes at no point on H, then A is dense in C(H).

Then, following the proof of Lemma 3.12 in Guo et al. (2023), we prove that with appropriate choices of norms, $\mathcal{G}_D(\mathcal{M})$ is dense in $\mathcal{C}^{1,1}(\mathcal{M})$.

Lemma B.2. $\mathcal{G}_D(\mathcal{M})$ is dense in $\mathcal{C}^{1,1}(\mathcal{M})$ with the supremum norm of derivatives of all orders: for $\Phi \in \mathcal{C}^{1,1}(\mathcal{M})$,

$$\|\Phi\|_{\mathcal{M}} := \sup_{(\nu, x) \in \mathcal{P}(\mathcal{M}) \times \mathcal{M}} \left(|\Phi(\nu)| + |\partial_{\mu}\Phi(\mu)(x)| + \|\partial_{x}\partial_{\mu}\Phi(\mu)(x)\| \right)$$

We prove this with two steps:

Step 1: take $\Phi \in \mathcal{C}^{1,1}(\mathcal{M})$, then $\partial_{xx} \frac{\delta \Phi}{\delta \mu}(\mu, x)$ is a continuous function on $\mathcal{P}(\mathcal{M}) \times \mathcal{M}$ by definition, namely, $\partial_{xx} \frac{\delta \Phi}{\delta \mu}(\mu, x) \in \mathcal{C}(\mathcal{P}(\mathcal{M}) \times \mathcal{M})$. Define the algebraic space that contains $\mathcal{G}_D(\mathcal{M})$ for some $n \in]mathbb{N}$ as

$$\mathcal{H}(\mathcal{P}(\mathcal{M})\times\mathcal{M}):=\Big\{\Phi(\mu,x)=\sum_{k=1}^n f^k(\langle g^k,\mu\rangle)h^k(x),$$
 monomials $f^k,h^k:\mathbb{R}^D\to\mathbb{R},$ kernels $g^k:\mathcal{M}\to\mathcal{M}\Big\}.$

We can see the $\mathcal{G}_D(\mathcal{M})$ can be viewed as a subalgebra of $\mathcal{H}(\mathcal{P}(\mathcal{M}) \times \mathcal{M})$. Additionally, we can also see that

- $\mathcal{H}(\mathcal{P}(\mathcal{M}) \times \mathcal{M})$ separates points on $\mathcal{P}(\mathcal{M}) \times \mathcal{M}$. To check this, take $(\mu, x) \neq (\mu', x') \in \mathcal{P}(\mathcal{M}) \times \mathcal{M}$, with either $\mu \neq \mu'$ or $x \neq x'$. If $\mu' \neq \mu$, from Theorem 30.1 by Billingsley (2013), there exists a kernel function $k(x_0, \cdot)$ such that $\int_{\mathcal{M}} k(y, x)(\mu \mu')(\mathrm{d}x) \neq 0$, otherwise, $\mu = \mu'$. In this case, define $p(\mu, x) = \langle k(x_0, x) \rangle \in \mathcal{H}(\mathcal{P}(\mathcal{M}) \times \mathcal{M})$. If $\mu' = \mu$, $x' \neq x$, let $p(\mu, x) = x$, then $p(\mu, x) \neq p(\mu', x')$. In either case, $\mathcal{H}(\mathcal{P}(\mathcal{M}) \times \mathcal{M})$ separates points on $\mathcal{P}(\mathcal{M}) \times \mathcal{M}$.
- \$\mathcal{H}(\mathcal{P}(\mathcal{M}) \times \mathcal{M})\$ vanishes at no point on \$\mathcal{P}(\mathcal{M}) \times \mathcal{M}\$. It can be checked to choose a nonzero constant function as \$f_k\$ and \$h_k\$.

Therefore, it follows from the Stone-Weierstrass lemma that $\mathcal{H}(\mathcal{P}(\mathcal{M}) \times \mathcal{M})$ is dense in $\mathcal{C}(\mathcal{P}(\mathcal{M}) \times \mathcal{M})$ with the topology of uniform convergence. Hence, there exists a sequence of functions $p_n, \tilde{p}_n \in \mathcal{H}(\mathcal{P}(\mathcal{M}) \times \mathcal{M})$ such that for any $\epsilon > 0$, there exists $N \in \mathbb{N}$ that for $n \geq N$,

$$\sup_{(\mu,x)\in\mathcal{P}(\mathcal{M})\times\mathcal{M}} \left| p_n(\mu,x) - \partial_{xx} \frac{\delta\Phi}{\delta\mu}(\mu,x) \right| \le \epsilon, \tag{10}$$

and

$$\sup_{\mu \in \mathcal{P}(\mathcal{M})} \left| \tilde{p}_n(\mu) - \frac{\delta \Phi}{\delta \mu}(\mu, 0) \right| \le \epsilon. \tag{11}$$

Step 2: Let

$$P_n(\mu, x) := \tilde{p}_n(\mu) + \int_0^x \int_0^y p_n(\mu, z) dz dy,$$

and

$$\Phi_n(\mu) := \Phi(\delta_0) + \int_0^1 \int_{\mathcal{M}} P_n(\lambda \mu + (1 - \lambda)\delta_0, x)(\mu - \delta_0)(\mathrm{d}x)\mathrm{d}\lambda.$$

It can be checked that $\Phi_n \in \mathcal{G}_D(\mathcal{M})$ with polynomial kernels. Now we have

$$\begin{split} &P_n(\mu,x) - \frac{\delta\Phi}{\delta\mu}(\mu,x) \\ &= \tilde{p}_n(\mu) + \int_0^x \int_0^y p_n(\mu,z) \mathrm{d}z \mathrm{d}y - \\ & \left(\frac{\delta\Phi}{\delta\mu}(\mu,0) + \int_0^x \int_o^y \partial_{xx} \frac{\delta\Phi}{\delta\mu}(\mu,z) \mathrm{d}z \mathrm{d}y \right) \\ &= \tilde{p}_n(\mu) - \frac{\delta\Phi}{\delta\mu}(\mu,0) + \int_0^x \int_0^y \left(p_n(\mu,z) \mathrm{d}z - \partial_{xx} \frac{\delta\Phi}{\delta\mu}(\mu,z) \right) \mathrm{d}z \mathrm{d}y. \end{split}$$

Thus, by Eq. (10),

$$\sup_{\mathcal{P}(\mathcal{M})\times\mathcal{M}} |\partial_x P_n(\mu, x) - \partial_\mu \Phi(\mu, x)| \le K\epsilon,$$

$$\sup_{\mathcal{P}(\mathcal{M})\times\mathcal{M}} |P_n(\mu, x) - \frac{\delta \Phi}{\delta \Phi}(\mu, x)| \le (1 + K^2)\epsilon$$

$$\sup_{\mathcal{P}(\mathcal{M})\times\mathcal{M}} \left| P_n(\mu, x) - \frac{\delta\Phi}{\delta\mu}(\mu, x) \right| \le (1 + K^2)\epsilon.$$

Moreover,

$$\begin{split} &\Phi_n(\mu) - \Phi(\mu) \\ &= \left(\Phi(\delta_0) + \int_0^1 \int_{\mathcal{M}} P_n(\lambda \mu + (1 - \lambda)\delta_0, x)(\mu - \delta_0)(\mathrm{d}x)\mathrm{d}\lambda\right) \\ &- \left(\Phi(\delta_0) + \int_0^1 \int_{\mathcal{M}} \frac{\delta \Phi}{\delta \mu}(\lambda \mu + (1 - \lambda)\delta_0, x)(\mu - \delta_0)(\mathrm{d}x)\mathrm{d}\lambda\right) \\ &= \int_0^1 \int_{\mathcal{M}} \left(P_n(\lambda \mu + (1 - \lambda)\delta_0, x) - \frac{\delta \Phi}{\delta \mu}(\lambda \mu + (1 - \lambda)\delta_0, x)\right)(\mu - \delta_0)(\mathrm{d}x)\mathrm{d}\lambda. \end{split}$$

Hence,

$$\sup_{\mathcal{P}(\mathcal{M})} |\Phi_n(\mu) - \Phi(\mu)| \le 2(1 + K^2)\epsilon.$$

Therefore,

$$\|\Phi_n - \Phi\|_{\mathcal{M}} \le (1 + K + 2(1 + K^2))\epsilon$$

with $\Phi_n \in \mathcal{G}_D(\mathcal{M})$, which is shown to be dense in $C^{1,1}(\mathcal{M})$.

STATEMENT AND PROOF OF WASSERSTEIN LIPSCHITZ CONTINUOUS

Lemma B.3 (Wasserstein Lipschitz Continuous). If Assumption 3.1 holds, then cylindrical function $h(\mu) \in \mathcal{G}_D(\mathcal{M})$ is C-Lipschitz continuous according to $\mu \in \mathcal{P}(\mathcal{M})$, i.e., for any measure $\mu, \nu \in \mathcal{P}(\mathcal{M})$ $\mathcal{P}_2(\mathcal{M})$, there holds

$$|h(\nu_0) - h(\nu_1)| \le CW_2(\nu_0, \nu_1),$$
 (12)

where C is a constant.

Proof. Since the kernels g^d are unformly bounded, the input space for outer function h are actually is compact. Therefore, outer function $h: \mathbb{R}^D \to \mathbb{R}$ (a polynomial function) is L_h -Lipschitz continuous:

$$|h(z_1) - h(z_2)| \le L_h ||z_1 - z_2||_2, \quad \forall z_1, z_2 \in \mathcal{G}, \tag{13}$$

where $\mathcal{G} \subset \mathbb{R}^D$ is a compact subspace. Let π be the optimal coupling between ν_0 and ν_1 . Then:

$$|h(\nu_0) - h(\nu_1)| \le L_h \left(\sum_{d=1}^D \left| \langle g^d, \mu_{\nu_0} - \mu_{\nu_1} \rangle_{\mathcal{H}_k} \right|^2 \right)^{1/2}$$

$$\le L_h \sqrt{D} \max_{1 < d < D} |\langle g^d, \mu_{\nu_0} - \mu_{\nu_1} \rangle_{\mathcal{H}_k}|.$$

Therefore, we have that

$$|h(\nu_0) - h(\nu_1)|^2 \le L_h^2 D \max_{1 \le d \le D} |\langle g^d, \mu_{\nu_0} - \mu_{\nu_1} \rangle_{\mathcal{H}_k}|^2$$

$$\le L_h^2 D \max_d \left| \int_{\mathcal{X}} \left(g^d(x) \right)^2 (\mathrm{d}\nu_0 - \mathrm{d}\nu_1)(x) \right|$$

$$\le L_h^2 D \inf_{\pi} \max_d \int_{\mathcal{X} \times \mathcal{X}} \left(g^d(x) \right)^2 \mathrm{d}\pi(x, y)$$

$$\le L_h^2 D L_g^2 \inf_{\pi} \int_{\mathcal{X} \times \mathcal{X}} ||x - y||_2^2 \mathrm{d}\pi(x, y)$$

$$= C \mathcal{W}_2(\mu, \nu)^2,$$

where the last inequality follows from the Kantorovich-Rubinstein duality. Therefore, we have that

$$|h(\nu_0) - h(\nu_1)| \le L_d \sqrt{D} L_g \mathcal{W}_2(\mu, \nu). \tag{14}$$

B.3 Proof of Proposition 3.2

Proof. We provide derivation of Proposition 3.2. From Eq. (6), we have the form of Q^i . Then, the functional gradient in the form of Fréchet derivative is

$$\nabla_{g^{i,d}}Q^{i} = \frac{\delta h_{s^{i},a^{i}}}{\delta g} + \sum_{d'=1}^{D} \frac{\delta(\partial_{d'}h_{s^{i},a^{i}}\langle\nabla g^{i,d'}(x)\cdot\Delta x,\nu^{-i}\rangle)}{\delta g}$$

$$= \partial_{d}h_{s^{i},a^{i}}\mu_{\nu^{-i}} + \sum_{d'=1}^{D} \frac{\delta(\partial_{d'}h_{s^{i},a^{i}})}{\delta g}\langle\nabla g^{i,d'}(x)\cdot\Delta x,\nu^{-i}\rangle$$

$$+ \partial_{d}h_{s^{i},a^{i}} \frac{\delta\langle\nabla g^{i,d}(x)\cdot(\bar{x}^{i}-x),\nu^{-i}(x)\rangle}{\delta g}.$$

To calculate the last term in $\nabla_{g^{i,d}}Q^i$, we apply the fundamental lemma of calculus of variations. Define function $f(x,g,\nabla g)=g^{i,d}(x)\cdot(\bar x^i-x)\nu^{-i}(x)$, then, $\langle\nabla g^{i,d}(x)\cdot(\bar x^i-x),\nu^{-i}(x)\rangle$ can be written as

$$\langle \nabla g^{i,d}(x) \cdot (\bar{x}^i - x), \nu^{-i}(x) \rangle$$

$$= \int_{\mathcal{M}} \nabla g^{i,d}(x) \cdot (\bar{x}^i - x) \nu^{-i}(x) dx$$

$$= \int_{\mathcal{M}} f(x, g, \nabla g) dx.$$

Therefore, we have that

$$\frac{\delta \langle \nabla g^{i,d}(x) \cdot (\bar{x}^i - x), \nu^{-i}(x) \rangle}{\delta g} = \frac{\partial f}{\partial g} - \nabla \cdot \frac{\partial f}{\partial \nabla g} = -\nabla \cdot ((\bar{x}^i - x) \nu^{-i}(x)).$$

Hence, we have the form in Proposition 3.2.

$$\nabla_{g^{i,d}}Q^{i} = \partial_{d}h_{s^{i},a^{i}}\mu_{\nu^{-i}} + \sum_{d'=1}^{D} \frac{\partial_{dd'}^{2}h_{s^{i},a^{i}}}{N_{i}} \sum_{j=1}^{N_{i}} \nabla g^{i,d'}(x^{j}) \cdot (\bar{x}^{i} - x^{j})\mu_{\nu^{-i}} + \partial_{d}h_{s^{i},a^{i}}\nabla \cdot (\nu^{-i}(x)(x - \bar{x}^{i}))$$

B.4 Proof of Theorem 4.1

Proof. Under Assumption 3.1, we know that the cylindrical function $h(\mu)$ is Wasserstein continuous by Lemma B.3. Therefore, we have that

$$|h(\nu_n) - h(\nu_M)| \le C \mathcal{W}_2(\nu_N, \nu_M).$$

Since Wassserstein distance meets the triangle inequality (Panaretos & Zemel, 2019), we have that

$$W_2(\nu_N, \nu_M) \leq W_2(\nu_N, \nu) + W_2(\nu_M, \nu).$$

Since the convergence rate of empirical distribution ν_N to ν under measure of Wasserstein distance is $O(N^{-1/d})$ (Dudley, 1969), namely,

$$\mathbb{E}[\mathcal{W}_2(\nu_N, \nu)] \le CN^{-1/d}.$$

Therefore, we have that

$$\mathbb{E}[|h(\nu_n) - h(\nu_M)|] \le C\mathbb{E}[\mathcal{W}_2(\nu_N, \nu)] + C\mathbb{E}[\mathcal{W}_2(\nu_M, \nu)]$$
$$\le C_1 N^{-1/d} + C_2 M^{-1/d}.$$

B.5 Proof of Theorem 4.2

Proof. First, we prove that the convergence rate of cylindrical function is controlled by the convergence rate of empirical kernel mean embedding.

Lemma B.4 (Convergence Rate Bound of Kernel Cylindrical Functions (Lemma 5.2, (Venturi & Dektor, 2021))). Denote the projection of measure ν on RKHS embedding space \mathcal{H}_M as $\mathcal{P}_D\nu = \sum_d c_d k(x^d, \cdot)$, where $[c_1, \ldots, c_D]^\top =: \mathbf{c} = (\mathbf{K}_{DD})^{-1}\mathbf{b}$ and $b_d = \langle k(x^d, \cdot), \nu \rangle$. We have that h defined in Eq. (4) with one type of kernel converges to f for all $\nu \in \mathcal{P}_2(\mathcal{M})$ with the same rate as $\mathcal{P}_D\nu$ convergences to the kernel mean embedding μ_{ν} . Formally, with $\tilde{f}: \mu_{\nu} \mapsto f(\nu)$, it can be expressed as

$$|h(\nu) - f(\nu)| \le \sup_{\nu} \left\| \frac{\delta \tilde{f}}{\delta \mu_{\nu}} \right\| \|\mu_{\nu} - \mathcal{P}_{D}\nu\|_{\mathcal{H}}, \tag{15}$$

where $\delta \tilde{f}/\delta \mu_{\nu}$ is the Fréchet derivative of function \tilde{f} and μ_{ν} is the kernel mean embedding defined in Eq. (3).

From Lemma B.4, the convergence rate of the cylindrical function is controlled by the convergence rate of the empirical kernel mean embedding.

Lemma B.5 (Convergence Rate of Empirical Kernel Mean Embedding (Theorem 3.4, (Muandet et al., 2017))). Assume the boundedness for kernel k in Assumption 3.1 holds. Then for any $\delta \in (0,1)$ with probability at least $1-\delta$,

$$\|\mu_{\nu} - \mathcal{P}_{D}\nu\|_{\mathcal{H}} \le \sqrt{\frac{1}{D}} + \sqrt{\frac{2\log(1/\delta)}{D}}.$$
 (16)

Combining the results from Lemme B.5, we have that the convergence rate of h to f is the multiple of Fréchet derivative and $O(D^{-1/2})$, which proves our results.

B.6 PROOF OF THEOREM 4.3

Proof. First, we introduce the non-linear two-time-scale stochastic approximation.

Lemma B.6 (Nonlinear Two-Time-Scale Stochastic Approximation (Borkar, 2008)). *Consider two coupled stochastic approximation processes:*

$$x_{n+1} = x_n + a(n) \left[f(x_n, y_n) + M_n^{(1)} \right], \tag{17}$$

$$y_{n+1} = y_n + b(n) \left[g(x_n, y_n) + M_n^{(2)} \right], \tag{18}$$

where $x_n \in \mathbb{R}^d$ (slow process) and $y_n \in \mathbb{R}^k$ (fast process), with step sizes a(n), b(n) > 0.

Assume that

- (i) $f: \mathbb{R}^d \times \mathbb{R}^k \to \mathbb{R}^d$ and $g: \mathbb{R}^d \times \mathbb{R}^k \to \mathbb{R}^k$ are Lipschitz continuous,
- (ii) For each fixed x, the ODE $\dot{y}(t) = g(x, y(t))$ has a globally asymptotically s equilibrium $y^*(x)$. The ODE $\dot{x}(t) = f(x(t), y^*(x(t)))$ has a globally asymptotically s equilibrium x^* ,
- (iii) the sequences $\{a(n)\}$ and $\{b(n)\}$ satisfy Robbins-Monro conditions in Assumption 4.1, and

(iv)
$$\{M_n^{(1)}\}, \{M_n^{(2)}\}\$$
 are martingale differences w.r.t. $\mathcal{F}_n = \sigma(x_m, y_m, M_m^{(1)}, M_m^{(2)}, m \leq n)$, with
$$\mathbb{E}\left[\|M_n^{(i)}\|^2 \mid \mathcal{F}_n\right] \leq C(1 + \|x_n\|^2 + \|y_n\|^2), \quad i = 1, 2.$$

Then, the iterates (x_n, y_n) converge almost surely to (x^*, y^*) , where $y^* = y^*(x^*)$.

Base on the Lemma B.6, we rewrite updates of Eq. 7 as stochastic approximation processes:

$$h_{t+1} = h_t + \eta_h \Big(F_h(h_t, g_t) + M_h^{t+1} \Big),$$
 (19a)

$$g_{t+1} = g_t + \eta_g \Big(F_g(h_t, g_t) + M_g^{t+1} \Big),$$
 (19b)

where $F_h = -\mathbb{E}\left[\frac{\partial \ell}{\partial Q_{\text{tot}}} \cdot \frac{\partial Q_{\text{tot}}}{\partial Q^i} \nabla_h Q^i\right]$ and F_g is defined analogously. M_h, M_g are martingale difference noise terms.

By the SA theory (Borkar, 2008), the updates approximate:

(Fast)
$$\dot{g} = F_q(h, g),$$
 (20a)

(Slow)
$$\dot{h} = F_h(h, g^*(h)),$$
 (20b)

where $q^*(h)$ is the equilibrium of Eq. (20a) for fixed h.

Since the Bellman operator is a contraction mapping (Littman, 1994), we have that there exists a globally asymptotically s equilibrium g^* and h^* to minimize ℓ . Therefore, by the Lemma B.6, we have that:

- The fast process Eq. (19b) tracks Eq. (20a), converging to $g^*(h_t)$ for any slow h_t .
- The slow process Eq. (19a) converges to h^* , which induces $g^* = g^*(h^*)$.

Thus,
$$(h_t, q_t) \to (h^*, q^*)$$
 almost surely.

B.7 PROOF OF THEOREM 4.4

Proof. Theorem 4.4 is the same with Theorem 1 in (Rudi et al., 2015). Define the integral operator L_k for kernel function k by

$$L_k f(x) = \int_{\mathcal{X}} f(s)k(x,s)\mathrm{d}s.$$

For $\lambda > 0$, define the random variable $\mathcal{N}_x(\lambda) = \langle K_x, (L_k + \lambda I)^{-1} K_x \rangle$ with $x \in \mathcal{X}$. The efficient dimension is

$$\mathcal{N}(\lambda) = \mathbb{E}\mathcal{N}_x(\lambda), \quad \mathcal{N}_{\infty}(\lambda) = \sup_{x \in \mathcal{X}} \mathcal{N}_x(\lambda).$$

Theorem B.7 (Error Analysis of Nyström Approximation, Theorem 1 (Rudi et al., 2015)). *Under Assumption3.1, 4.2 and 4.3, let* $\delta \in (0,1)$, $v = \min(s,1/2)$, $p = 1 + 1/(2v + \gamma)$ and assume

$$N_i + M \ge 1655 + 223 \log \frac{6}{\delta} + \left(\frac{38p}{\|L_k\|} \log \frac{114p}{\|L_k\|\delta}\right)^p$$
 (21)

Then, the following inequality holds with probability at least $1 - \delta$ *for* ,

$$\mathcal{E}(\tilde{g}_{t+1}^{i,d}) \le \min_{f \in \mathcal{H}} \mathcal{E}(f) + q^2 (N_i + M)^{-\frac{2v+1}{2v+\gamma+1}},\tag{22}$$

with

$$q = 6R \left(2\|L_k\| + \frac{C_1}{\sqrt{\|L_k\|}} + \sqrt{\frac{C_2}{\|L_k\|^{\gamma}}} \right) \log \frac{6}{\delta},$$

 C_1, C_2 are constants, and $\lambda = \|L_k\|(N_i + M)^{-\frac{1}{2v + \gamma + 1}}$ and $L \ge \max(67, 5\mathcal{N}_{\infty}(\lambda))\log \frac{12}{13}$.

In our scenario, for a large swarm with batch size, the $N_i + M$ will easy meet the assumption in Theorem B.7. For example, if a swarm of N=32 with batch size B=128, along with kernel number M=64, $N_i + M = B \cdot N + M$ will be 4160, which may statisfy the assumption with certain δ .

C APPENDED REMARKS

C.1 REMARKS ON KERNEL CYLINDRICAL FUNCTIONS AND MEAN FIELD EMBEDDING

 Remarks C.1 (Requirements on kernel by Lipschitz continuity). *The Lipschitz continuity requirement limits the choice of kernel functions. Such as*

 • Polynomial kernels: $k(y,x) = (\alpha x \cdot y + c)^d$ violates the condition when input space \mathcal{X} is unbounded, as the gradients grow polynomially with $\|x\|_2$.

• Sigmoid kernels: $k(y,x) = \tanh(\alpha x \cdot y + c)$ could fail to satisfy global Lipschitz continuity due to saturation effects in nonlinear regions.

• Gaussian kernels: $k(y,x) = \exp(-\gamma ||x-y||_2^2)$ generally meet the requirement with $L_g = \gamma \sup_x ||x||_2/2$.

Remarks C.2 (Inner Product between mean-field measure and component functions). The inner product between mean field measure and component function $g^{i,d}$ evaluates to:

$$\langle g^{i,d}, \mu_{\nu^{-i}}^d \rangle = \frac{1}{N_i} \sum_{m=1}^M \sum_{j=1}^{N_i} \alpha_m^d k^d(x^m, x^j) = \frac{\mathbf{1}^\top \mathbf{K}^d \alpha^d}{N_i},$$
 (23)

where $\mathbf{K}^d \in \mathbb{R}^{N_i \times M}$ is the Gram matrix with $\mathbf{K}^d_{jm} = k^d(x^j, x^m)$ and $\mathbf{1} \in \mathbb{R}^{N_i}$ is an all-ones vector.

D REMARKS ON KERNEL FUNCTIONS

We list several kernels frequently appearing in the literature.

In our work, in consideration of Lipischitz continuity, representation capability and easy to calculate, we adopt polynomial and Gaussian kernels.

Kernel Type

Linear

Polynomial Gaussian

Laplacian

Sigmoid

Table 6: Kernel Functions and Corresponding Partial Derivative

Gradient of kernel $\partial_x k(y,x)$

 $\alpha d(\alpha x \cdot y + c)^{d-1} y$ $-2\gamma(x - y) \exp(-\gamma ||x - y||^2)$

 $-\gamma \operatorname{sign}(x-y) \exp(-\gamma ||x-y||_1)$

 $\alpha y(1 - \tanh^2(\alpha x \cdot y + c))$

J	1	U
9	7	4
9	7	5
9	7	6
9	7	7

D.1	KEMARKS	ON MEA	N-FIE	LD K	EPRE	ESENTA	ATION	OF	VALUE	FUNC	OIT
_				(-) >	_						

Kernel k(y, x)

 $(\alpha x \cdot y + c)^d$ $\exp(-\gamma ||x - y||^2)$ $\exp(-\gamma ||x - y||_1)$

 $\tanh(\alpha x \cdot y + c)$

Remarks D.1 (Expansion of Eq. (6)). Eq. 6 is expanded as:

$$\begin{split} Q^i(\boldsymbol{s}, \boldsymbol{a}) &= h_{s^i, a^i} \left(\frac{\mathbf{1}^\top \boldsymbol{K}^1 \boldsymbol{\alpha}^1}{N_i}, \dots, \frac{\mathbf{1}^\top \boldsymbol{K}^D \boldsymbol{\alpha}^D}{N_i} \right) \\ &+ \frac{1}{N_i} \sum_{d=1}^D \partial_d h_{s^i, a^i} \sum_{m=1}^M \sum_{j=1}^{N_i} \alpha_m^d \partial_x k^d(x^m, x^j) \cdot (\bar{x}^i - x^j). \end{split}$$

Remarks D.2 (Mean field representation of state value function and advantage function). *Similarly*, we can present the state value function $V^i(s)$ and advantage function $A^i(s,a)$ with the mean field representation in Eq. (6) as

$$V^{i}(\boldsymbol{s}) = h^{v}_{s^{i}}\left(\langle g^{i,1}_{v}, \mu_{\nu^{-i}} \rangle, \dots, \langle g^{i,D}_{v}, \mu_{\nu^{-i}} \rangle\right) + \sum_{l=1}^{D} \partial_{d} h^{v}_{s^{i}} \langle \nabla g^{i,d}_{v}(x) \cdot \Delta x, \nu^{-i} \rangle,$$

and

$$A^{i}(s) = h_{s^{i},a^{i}}^{adv} \left(\langle g_{adv}^{i,1}, \mu_{\nu^{-i}} \rangle, \dots, \langle g_{adv}^{i,D}, \mu_{\nu^{-i}} \rangle \right) + \frac{1}{N_{i}} \sum_{d=1}^{D} \partial_{d} h_{s^{i},a^{i}}^{adv} \langle \nabla g_{adv}^{i,d}(x) \cdot \Delta x, \nu^{-i} \rangle,$$

where $h^v_{s^i}$ and $h^{adv}_{s^i,a^i}$ are the cylindrical kernel functions, with kernel functions $\{g^{i,d}_v\}$ and $\{g^{i,d}_{adv}\}$ for value function V and advantage function A, respectively. In this paper, we focus on the Q function, while we think it is also interesting to expand our conclusions to value and advantage functions.

Remarks D.3 (Explicit form of Fréchet derivative). In discrete particle approximation with N_i

$$\nabla_{g^{i,d}}Q^i = \sum_{i=1}^{N_i} \left[\frac{\partial_d h}{N_i} + \sum_{d'} \frac{\partial_{dd'}^2 h}{N_i^2} \sum_{j'} \nabla g^{d'}(x^{j'}) \Delta x^{j'} \right] k^d(x^j, \cdot) + \frac{\partial_d h}{N_i} \sum_{j=1}^{N_i} \left[\delta_{x^j} - \nabla \delta_{x^j} \cdot \Delta x^j \right].$$

D.2 REMARKS ON NYSTRÖM APPROXIMATION

Remarks D.4. *The gradient inner product admits explicit computation:*

$$\langle k(x^n, \cdot), \nabla_{g^{i,d}} Q^i \rangle = \sum_{j=1}^{N_i} \left[\frac{2\partial_d h}{N_i} + \sum_{d'} \frac{\partial_{dd'}^2 h}{N_i^2} \sum_{j'} \nabla g^{d'}(x^{j'}) \cdot \Delta x^{j'} \right] k^d(x^n, x^j)$$

$$- \frac{\partial_d h}{N_i} \sum_{j=1}^{N_i} \nabla_x k^d(x^n, x^j) \cdot \Delta x^j$$
(24)

Remarks D.5 (Anchor Point Selection). There are several principled ways to choose anchor points $\{z^l\}_{l=1}^L$:

• Random Subsampling: Select L points uniformly from RKHS anchor points $\{x^n\}_{n=1}^{N_i+M}$ in $g_{t+1}^{i,d}$.

$$z^{l} \sim \textit{Uniform}(\{x^{n}\}_{n=1}^{N_{i}+M}), \quad l = 1, ..., L.$$

Pros: O(1) *computational cost. Cons: May miss important regions.*

• k-means Centers: Solve

$$\{z^l\} = \arg\min_{\{c_l\}} \sum_{x \in \{x_m\}} \min_{1 \le l \le L} \|x - c_l\|^2.$$

Pros: Captures data geometry. Cons: $O(N_iLT)$ *computation complexity for* T *iterations.*

• Kernel Herding: Select points maximizing the minimum kernel similarity:

$$z_{l+1} = \arg\max_{x \in \{x_m\}} \sum_{l'=1}^{l} k(x, z_{l'}) - \frac{2}{N_i} \sum_{j=1}^{N_i} k(x, x^j).$$

Pros: Constructs maximally representative points. Cons: $O(N_iLT)$ *computation complexity for* T *iterations.*

 Leverage Score Sampling: Sample with probability proportional to diagonal entries of the kernel matrix:

$$p_j = \frac{(K_{MM})_{jj}}{tr(K_{MM})}, \quad z^l \sim p_j.$$

Pros: Preserves spectral structure of the RKHS.

In this paper, we apply the random subsampling method for simplicity.

E IMPLEMENTATION DETAILS OF SKARL AND BASELINES

E.1 IMPLEMENTATION DETAILS OF SKARL

Base Algorithm of Credit Assignment for SKARL We apply VDN (Sunehag et al., 2017) as the basic credit assignment algorithm for SKARL. Namely, the total Q_{tot} value is calculated by

$$Q_{\mathsf{tot}}(oldsymbol{s},oldsymbol{a}) = \sum_{i=1}^N Q^i(oldsymbol{s},oldsymbol{a}).$$

Kernel Cylindrical Function Implementation We adopt a hypernetwork (Ha et al., 2016) for kernel cylindrical function network. Namely, the ego state and action (s^i, a^i) are used to generate the parameters of a network for processing $\mu_{\nu_{N_i}}$.

Tricks We apply several tricks to help stabilize and fasten training.

- **Dual Network Update**: To avoid over-estimation of Q value, we apply double Q learning framework (Van Hasselt et al., 2016).
- Entropy Regularization: To avoid the performance drops in the last epochs during training, we apply entropy regularization on the actor policy.

Codebase We apply SKARL and baselines with Jax. We organize the code in JaxMARL (Rutherford et al., 2023) for better organization and class inheritance. We plan to release full codes afterwards. For now, the code for important implementation can be found via anonymous Github link: https://anonymous.4open.science/r/SKARL-050D.

Hyperparameters In this paragraph, we list the hyperparameters in 7 and 8.

E.2 COMMON SETTINGS FOR ENVIRONMENT

For learning stability and environment consistency, we conduct following tricks:

Re-scale of Environment To make environment scalable, we conduct re-scale of world size of environment according to the agents as below:

world size =
$$2 * \min(\sqrt{N} - 1, 1)$$
,

where world size serves as the boundary value of environment as $[-\text{world size}, \text{world size}] \times [-\text{world size}, \text{world size}]$ and N denotes the number of agents.

Table 7: Environment & Training Configuration

Environment		Training		Optimize	r
Hyperparameter	Value	Hyperparameter	Value	Hyperparameter	Value
Agent Number Environments Number Test Environment Number Max Train Env Timesteps Max Test Env Timesteps	4 / 16 / 64 128 8 50 100	Total Time Steps Update Steps Number Target Update Interval Test Interval	2M 50 8 50k	Learning Rate Max Grad Norm Optimizer EPS Weight Decay	7e-4 10 ADAM 1e-5 0
Buffer		Exploration	l	Learning rate l	Decay
Hyperparameter	Value	Hyperparameter	Value	Hyperparameter	Value
Buffer Size Buffer Batch Size Buffer Sample	8192 32 Uniform	Epsilon Epsilon Anneal Time Anneal Method	$1.0 \rightarrow 0.05$ $50k$ Linear	$\eta_h \ \eta_g \ ext{Basic LR}$	$1/t^{0.6}$ $1/t^{0.8}$ 7e-5

Table 8: Network & Algorithm Architecture

Network		Algorithm			
Hyperparameter	Value	Hyperparameter	Value		
Embedding Net Layer	3	TD Lambda	0.95		
Agent Hidden Dim	16	Gamma	0.99		
Mixer Embedding Dim	256	Entropy Rate	0.5		
Mixer Hypernet Hidden Dim	256	Anchor Points Number	L = 64		
Attention Dim	64	Tikhonov Coefficient	0.5		
Activation	ReLU	Polynomial Kernel	$(\alpha, d, c) = (1, 2, 1), (1, 3, 1)$		
FC Init Scale	2.0	Gaussian Kernel	$\gamma = 0.5, 1.0$		

Reset of Agents and Landmarks We generate the new agents and landmark uniformly in the world of environment, namely, $p^i \sim \text{Uniform}([-\text{world size}, \text{world size}] \times [-\text{world size}, \text{world size}])$ for $i \in \{1, \dots, N\}$. In some implementations, a reject sampling is adopted to avoid collision between generated agents and landmarks (such as codebase of InforMARL (Nayak et al., 2023), JaxMARL (Rutherford et al., 2023), Mava (de Kock et al., 2023) and so on). However, we do not adopt such rejection, due to the consideration of time consumption. Instead, we separate the environment world into grids and sample among grids to avoid collision.

During both training and evaluation phases in the **Target** and **Coverage** environments, the episode terminates and resets automatically once all agents successfully reach their assigned goals (or all landmarks are uniquely covered for the Coverage task). This design ensures episodic training and prevents infinite loops. However, since agents are able to receive one-time rewards for several times, the total episodic reward may temporarily exceed the theoretical maximum (e.g., $N \times 10$ for N agents) during resets due to reward accumulation in the final timestep.

Size and Velocity Settings of Agents and Landmarks The settings for agents and landmarks are listed as below in 9.

Table 9: Environment Setup

Hyperparameter	Value
Agent Size	0.15
Landmark Size	0.225
Agent Maximum Speed	0.65 (Move)
Agent Maximum Speed	N/A (Target/Coverage)
Agent Acceleration	5 (Move)
Agent Acceleration	2 (Target/Coverage)

F ADDITIONAL EXPERIMENTS

F.1 EXPERIMENTS IN TARGET ENVIRONMENT

In this section, we provide the analysis of results for task **Target**. The experimental results in the Target environment demonstrate SKARL's ability to maintain task performance while balancing safety and scalability across different swarm sizes.

For small swarms (N=4), SKARL achieves near-optimal performance with a global reward of 329.3, comparable to QMIX (337.0) and QPLEX (330.3), while ensuring a 100% success rate. However, it exhibits a higher collision count (7.2 \pm 3.15) compared to QMIX (0.67 \pm 0.35) and QPLEX (1.3 \pm 0.982), suggesting a trade-off between task completion and collision avoidance in simpler settings.

As the swarm scales to N=16, SKARL significantly outperforms value-based methods (QMIX, QPLEX, MFRL), which suffer from catastrophic reward degradation (e.g., QPLEX: -3.1×10^4). Although MAPPO achieves a higher reward (12.0), its success rate drops to 40.6%, whereas SKARL maintains a 100% success rate despite increased collisions (23.2 \pm 20.5). Additionally, SKARL reduces collisions by 32% compared to MFRL, indicating its robustness in mid-scale coordination, which aligns with findings from the Move environment in 2.

In large-scale swarms (N=64), SKARL demonstrates superior scalability, achieving a positive reward (44.75) while all baselines fail (rewards ≤ 0). Notably, while the collision count remains high (44.3 \pm 10.6), the drastic improvement in reward over MFRL (-5.7×10^5) and QMIX (-6.4×10^5) suggests that SKARL effectively prevents catastrophic failures in complex scenarios. The low success rate (3.1%) implies that further optimization is needed for very large swarms, but the results highlight SKARL's ability to maintain functional performance where other methods collapse.

Overall, SKARL exhibits strong scalability in the Target environment, particularly excelling in maintaining task success and reward stability as swarm size increases, with a trade-off in collision avoidance at larger scales. This aligns with its performance in the Move environment, where it achieves a 96% collision reduction at N=64, reinforcing its effectiveness in large-scale multi-agent coordination. However, the problem of scaling up in Target environment remains to be solved, which require further works.

F.2 EXPERIMENTS IN COVERAGE ENVIRONMENT

Table 10: Performance Comparison between SKARL and Baselines in Coverage Environment

A1 24	Algorithm $\begin{vmatrix} N=4 \\ R(\uparrow) & T(\downarrow) & \# \operatorname{col}(\downarrow) & S(\uparrow) \end{vmatrix}$				N = 16					N = 64		
Algorithm	R (↑)	$T(\downarrow)$	# col(↓)	S (↑)	R (↑)	$T(\downarrow)$	# col(↓)	S (↑)	R (↑)	$T(\downarrow)$	# col(↓)	S (↑)
MAPPO	339.6	0.40	0.26 ± 0.561	1.00 ± 0.0	167.6	0.57	5.3± 2.72	0.13 ± 0.562	97.3	0.87	18.4± 8.35	0.05 ± 0.009
MFRL	396.6	0.52	0.03 ± 0.0	1.00 ± 0.0	187.0	0.62	2.5 ± 1.65	0.12 ± 0.456	216.2	0.86	15.1 ± 2.32	0.04 ± 0.871
QMIX	275.4	0.39	4.94 ± 2.46	1.00 ± 0.0	259.5	0.52	19.5 ± 5.3	0.19 ± 0.76	324.2	0.92	11.8 ± 4.13	0.10 ± 0.526
QPLEX	318.5	0.38	0.56 ± 0.194	$\boldsymbol{1.00} \pm 0.0$	298.7	0.61	$7.3 {\scriptstyle\pm} \scriptstyle\pm 6.22$	$0.21 \pm \scriptstyle{0.512}$	834.5	0.85	$21.5 {\scriptstyle\pm} \scriptstyle\pm3.65$	0.14 ± 0.290
SKARL	387.2	0.51	0.15 ± 0.870	1.00± 0.0	320.8	0.61	2.42± 1.67	0.22 ± 0.342	907.3	0.76	15.3± 5.37	0.17 ± 0832

F.3 EXPERIMENTS IN LINE ENVIRONMENT

F.4 ABLATION STUDY

Is it necessary to apply gradient in RKHS? There is another way to conduct gradient for cylindrical function: directly update in the Euclidean space (Schwenker et al., 2001). Here we provide a comparison with this method with N=4 and kernel number is 64 in Move environment in Figure 3. The result indicates that with RKHS gradient, both the training stability and final performance are improved.

How number of anchors affect the result? We compare the performance of different anchor points number L=1,2,8,32 under Move task with agent number N=4. As is demonstrated in Figure 4, more anchor points only help to stabilize the training process (as the performance of

Table 11: Flexibility Performance of SKARL in Coverage Environment

Training	Metric	M=4	M = 16	M = 64	M = 128	M = 256
	R/N	96.8	23.7	0.3	-1.2	-9.2
N = 4	T (step)	51	74	92	100	100
	$(\# \operatorname{col})/N$	0.0375	0.76	6.932	32.4	78.9
	S%	100	72	4	0	0
	R/N	97.5	24.05	22.3	4.3	0.82
N = 16	T (step)	43	61	67	94	100
	(# col)/N	0.0457	0.19	0.203	2.54	5.21
	S%	100	79	6	6.25	0
	R/N	96.2	25.8	14.2	9.3	3.52
N = 64	T (step)	41	56	76	89	92
	$(\# \operatorname{col})/N$	0.0557	0.285	0.239	0	9.68
	S%	100	84	13	75	5

Table 12: Performance Comparison between SKARL and Baselines in Line Environment

Algorithm						N = 16		N = 64		
	R (↑)	$T(\downarrow)$	# col(↓)	$S(\uparrow) \mid R(\uparrow)$	$T(\downarrow)$	# col(↓)	$S(\uparrow) \mid R(\uparrow)$	$T(\downarrow)$	# col(↓)	S (↑)
MAPPO	422.3	0.31	$0.10 {\scriptstyle \pm 0.20}$	1.00± 0.00 563.4	0.43	1.50 ± 0.90	0.30± 0.20 1462.7	0.72	$8.00\pm$ 3.00	0.22 ± 0.08
MFRL	444.8	0.25	0.05 ± 0.10	1.00± 0.00 591.2	0.43	0.90 ± 0.60	0.36± 0.18 1604.3	0.68	6.00 ± 2.50	0.27 ± 0.09
QMIX	421.6	0.25	0.12 ± 0.25	1.00± 0.00 572.1	0.49	1.80 ± 1.10	0.32 ± 0.19 1510.4	0.64	7.20 ± 2.80	0.24 ± 0.09
QPLEX	449.7	0.27	0.07 ± 0.15	1.00± 0.00 608.0	0.42	1.20 ± 0.70	0.38± 0.17 1624.9	0.67	6.50 ± 2.60	$0.26 \pm \scriptstyle{0.09}$
SKARL	418.9	0.23	$\textbf{0.03} \pm 0.08$	1.00± 0.00 615.6	0.41	0.70 ± 0.50	0.40± 0.16 1765.8	0.66	5.50 ± 2.20	0.30 ± 0.10

L=32 achieves the most stale training curve), while the convergence speed and final performance is scarcely affected. Furthermore, since full performance can be achieved with anchor points number 1, it is indicated that SKARL can apply at least one kernel number L with $L \le \sqrt{N}$ to achieve lower computation complexity compared with value decompostion algorithms e.g. QMIX (as discussed in Section 4).

How types of kernels affect the result? We compare specific choices of different kernels under Move task with agent number N=4. Specificly, we compare the choice of Gaussian kernel and polynomial kernel. For the Gaussian kernel, we adopt γ as (0.5, 1.0, 2.0) and for polynomial kernel, we set parameters as $(\alpha, d, c) = (1, 2, 1), (1, 3, 1), (1, 4, 1)$. The results are demonstrated in Figure

Figure 3: Comparison between gradient in RKHS space and Euclidean space.

Table 13: Flexibility Performance of SKARL in Line Environment

Training	Metric	M=4	M = 16	M = 64	M = 128	M = 256
	R/N	104.7	32.2	-4.3	-10.5	-36.4
N = 4	T (step)	23	54	87	100	100
	$(\# \operatorname{col})/N$	0.0075	0.076	0.950	4.1	12.1
	S%	100	72	8	0	0
	R/N	117.5	38.5	20.4	6.3	0.72
N = 16	T (step)	32	41	84	91	100
	$(\# \operatorname{col})/N$	0.0005	0.044	0.103	0.874	1.54
	S%	100	40	24	3.25	0
	R/N	123.2	53.4	27.58	18.9	2.31
N = 64	T (step)	21	31	66	77	82
	$(\# \operatorname{col})/N$	0.0002	0.029	0.085	0.376	0.985
	S%	100	84	30	27	18

Figure 4: Comparison between different number of anchor points.

5. We conclude that the choice of kernels may not affect the final performance, as long as the representation capability of this kernel is strong enough.

How does anchor points distribute? We plot the distribution of anchor points with UMAP in Figure 6 with N=4. We can see the anchor points of Gaussian kernel follows nearly a uniform distribution, while anchor points of polynomial kernel follows certain pattern.

Figure 5: Comparison between different number of kernel types.

Figure 6: Gaussian kernel anchor points distribution.

Figure 7: Polynomial kernel anchor points distribution.