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Abstract

In this paper we study the problem of lower bound-
ing the minimum eigenvalue of the neural tangent
kernel (NTK) at initialization, an important quan-
tity for the theoretical analysis of training in neu-
ral networks. We consider feedforward neural net-
works with smooth activation functions. Without
any distributional assumptions on the input, we
present a novel result: we show that for suitable
initialization variance, Ω̃(n) width, where n is the
number of training samples, suffices to ensure that
the NTK at initialization is positive definite, im-
proving prior results for smooth activations under
our setting. Prior to our work, the sufficiency of
linear width has only been shown either for net-
works with ReLU activation functions, and sublin-
ear width has been shown for smooth networks but
with additional conditions on the distribution of
the data. The technical challenge in the analysis
stems from the layerwise inhomogeneity of smooth
activation functions and we handle the challenge
using generalized Hermite series expansion of such
activations.

1 INTRODUCTION

Recent years have seen advances in understanding conver-
gence of gradient descent (GD) and variants for the training
of deep learning models (Du et al., 2019; Allen-Zhu et al.,
2019; Zou and Gu, 2019; Zou et al., 2020; Liu et al., 2022;
Ji and Telgarsky, 2019; Oymak and Soltanolkotabi, 2020;
Nguyen, 2021). Despite the fact that such optimization prob-
lems are non-convex, a series of recent results have shown
that GD has geometric convergence and finds near global
solution "near initialization" for wide networks. Such anal-
ysis is typically done based on the Neural Tangent Kernel
(NTK) (Jacot et al., 2018). The NTK is positive definite

"near initialization," the optimization problem then satisfies
a condition closely related to the Polyak-Łojasiewicz (PL)
condition, which in turn implies geometric convergence to
the global minima (Liu et al., 2022; Nguyen, 2021). A very
important step in the analysis is to derive a condition on the
required network’s width to ensure the NTK condition is
satisfied at initialization, i.e., that the minimum eigenvalue
of the NTK is lower bounded at initialization by a positive
constant.

Much of the theoretical convergence analysis of deep mod-
els has focused on ReLU networks (Allen-Zhu et al., 2019;
Nguyen, 2021). While handling the non-smoothness of
ReLU activation presents unique challenges, the homogene-
ity of ReLU helps the analysis (Ji and Telgarsky, 2019; Zou
and Gu, 2019; Zou et al., 2020; Allen-Zhu et al., 2019;
Nguyen and Mondelli, 2020; Nguyen et al., 2021b). On
the other hand, some progress has also been made for deep
models with smooth activations, where such homogeneity
property does not generally hold (Du et al., 2019; Huang
and Yau, 2020). However, many existing results for smooth
networks have a high requirement on the width of the mod-
els; e.g., as polynomial powers of the number of training
samples (Du et al., 2019). Recently Bombari et al. (2022)
have shown sublinear width on the number of training sam-
ples; however, they do require additional assumptions on the
nature of the input data such as (i) scaling on the first two
moments and on a variance-related quantity, as well as a (ii)
Lipschitz concentration assumption on the distribution.

Consider a feedforward neural network model with L hidden
layers of width m, and σ2

0 initialization variance; trained
with n samples. Recent literature indicates that the NTK
condition at initialization for deep networks: (i) requires
m = Ω̃(n) with ReLU activation functions (Nguyen et al.,
2021b); (ii) and for smooth activation functions requires
m = Ω(

√
n) under some distributional assumptions on the

input data (Bombari et al., 2022) and m = Ω(n2) without
such assumptions (Du et al., 2019). Then, the motivating
question for our work is: can we improve the dependence to
linear width for smooth activation functions under different
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or weaker assumptions than distributional ones?

Our main contribution is to illustrate that m = Ω̃(n) suf-
fices for the NTK condition at initialization without strictly
requiring additional assumptions on the distribution of the
input data, such as the data distribution conditions stipu-
lated in (Bombari et al., 2022). Instead, our analysis relies
on a basic data scaling assumption and other algebraic or
geometric conditions present in the existing literature (see
Remark 4.2). However, our work assumes a neural network
where all the layers have the same width, whereas Bom-
bari et al. (2022) consider a challenging pyramidal topology
since they study the question of achieving the minimum
possible over-parameterization in neural networks.

Our analysis builds on prior work on ReLU networks based
on Hermite series expansions (Oymak and Soltanolkotabi,
2020; Nguyen and Mondelli, 2020; Nguyen et al., 2021b),
which however critically relies on the homogeneity of ReLU
activations. We substantially generalize such analysis to han-
dle the inhomogeneity of multiple layers of smooth activa-
tions based on generalized Hermite series expansions, yield-
ing the desired sharper result. To the best of our knowledge,
our work is the first in using this mathematical framework
in the analysis of neural networks. Our analysis extends to
general depth on the network, but does not improve depth
dependence of prior work (Du et al., 2019). We also remark
that our analysis technique is of a different nature than the
one by (Bombari et al., 2022), since they use tools such as
restricted isometry properties for random matrices.

Finally, our analysis also reveals a possible trade-off be-
tween the constants involved in (i) the Hessian spectral
norm bound used in the recently introduced restricted strong
convexity (RSC) based optimization analysis for linear con-
vergence (Banerjee et al., 2023) of gradient descent for
feedforward smooth networks and (ii) the minimum eigen-
value of the NTK as we consider here used in NTK based
optimization analysis. In simple terms, a small variance re-
duces the Hessian bound and benefits convergence using
the RSC condition, but such small variance can adversely
affect (exponentially decrease) the constants in the NTK
minimum eigenvalue lower bound; and vice versa.

The rest of the paper is organized as follows. We present
related work in Section 2. We discuss the problem setup
in Section 3. We analyze the NTK minimum eigenvalue
lower bound in Section 4. We provide a discussion on the
initialization variance in Section 5. We empirically verify
our analysis on the lower bound of NTK minimum eigen-
value in Section 6. Conclusion is in Section 7. Technical
proofs are in the supplementary material.

2 RELATED WORK

The literature on gradient descent and variants for deep
learning optimization typically uses the NTK condition at

initialization or variations of it as an integral part of their
analysis. Basically, the idea is that if the minimum eigen-
value of the NTK is bounded away from zero at initialization,
then under suitable conditions, it is possible to show that this
property also holds during training (in a local neighborhood
around initialization). The literature on deep learning opti-
mization is increasingly large, and we refer the readers to
the following surveys for an overview of the field (Fan et al.,
2021; Bartlett et al., 2021). For example, among the theoret-
ical works on the analysis of multi-layer neural networks,
we refer to the works (Du et al., 2019; Allen-Zhu et al.,
2019; Zou and Gu, 2019; Zou et al., 2020; Liu et al., 2022;
Banerjee et al., 2023). For a literature review on shallow
and/or linear networks, we refer to the recent survey (Fang
et al., 2021). Due to the rapidly growing related literature,
we only mention the most related or recent work.

The works (Zou and Gu, 2019; Zou et al., 2020; Allen-
Zhu et al., 2019; Nguyen and Mondelli, 2020; Nguyen,
2021; Nguyen et al., 2021b) analyzed deep ReLU networks,
whereas (Du et al., 2019; Liu et al., 2022) consider smooth
activation functions. The convergence analysis of the gradi-
ent descent in (Du et al., 2019; Allen-Zhu et al., 2019; Zou
and Gu, 2019; Zou et al., 2020; Liu et al., 2022) relied on
the near constancy of NTK for wide neural networks (Ja-
cot et al., 2018; Lee et al., 2019; Arora et al., 2019b; Liu
et al., 2020), which yield certain desirable properties for
their training using gradient descent based methods. One
such property is related to the PL condition (Karimi et al.,
2016; Nguyen, 2021), formulated as PL∗ condition in (Liu
et al., 2022). For models with L = O(1) layers, existing
results need m = Ω(n4) for smooth activations (Du et al.,
2019) to ensure convergence. The recent work (Banerjee
et al., 2023) uses a different optimization analysis based
on the restricted strong convexity (RSC) condition, which
they relate to a restricted version of the PL condition, and
compare such condition to the widely used NTK one. Fi-
nally, shallow ReLU networks (only one hidden layer) were
studied by Ji and Telgarsky (2019). They showed that a
data separability assumption along with m having a poly-
logarithmic dependence on n allows gradient descent to
provide training and testing guarantees. Interestingly, data
separability assumptions can be incorporated in our results
to establish further lower bounds to the minimum eigenvalue
of the NTK – see Remark 4.2.

We also remark that the smallest eigenvalue of the NTK at
initialization plays a crucial role including fitting capacity,
as well as generalization behavior (Arora et al., 2019a; Mon-
tanari and Zhong, 2020; Liu et al., 2020; Nguyen, 2021;
Nguyen et al., 2021b; Oymak and Soltanolkotabi, 2020).



3 PROBLEM SETUP: DEEP LEARNING
WITH SMOOTH ACTIVATIONS

Consider a training set D = {(xi, yi)}ni=1,xi ∈ X ⊆
Rd, yi ∈ Y ⊆ R. We will denote by X ∈ Rn×d the ma-
trix whose ith row is x⊤

i . In our setting f is a feed-forward
multi-layer (fully-connected) neural network with depth L 1

and widths ml, l ∈ [L] := {1, . . . , L} given by

α(0)(x) = x ,

α(l)(x) = ϕ

(
1

√
ml−1

W (l)α(l−1)(x)

)
, l = 1, . . . , L ,

f(θ;x) = α(L+1)(x) =
1

√
mL

v⊤α(L)(x) ,

(1)

where W (l) ∈ Rml×ml−1 , l ∈ [L] are layer-wise weight ma-
trices, v ∈ RmL is the last layer vector, ϕ(·) is the smooth
(pointwise) activation function, and the total set of parame-
ters is represented by the weight vector

θ := (vec(W (1))⊤, . . . , vec(W (L))⊤,v⊤)⊤

∈ R
∑L

k=1 mkmk−1+mL , (2)

with m0 = d. For simplicity, we consider deep models with
only one output, i.e., f(θ;x) ∈ R as in (Du et al., 2019),
but our results can be extended to multi-dimension outputs
as in (Zou and Gu, 2019), using V ∈ Rk×mL for k outputs
at the last layer. We use the notation α(l)(x) = ϕ(α̃(l)(x)),
with α(l) being the output and α̃(l) the pre-activation at later
l. We also let A(l) ∈ Rn×ml be such that the ith row is
defined as A(l)

i,: := α(l)(xi), i.e., A(l) is the output (matrix)
of layer l ∈ [L] for input dataset xi, i ∈ [n] – the weight
vector θ under which this is evaluated will be understood by
the context. Likewise, we let A(L+1) ∈ Rn be the vector of
outputs for the input dataset. Let 0p be the zero vector of
dimension p and Ip the p× p identity matrix.

We denote the gradient and Hessian of f(·;xi) : Rp → R
as ∇if := ∂f(θ;xi)

∂θ , and ∇2
i f := ∂2f(θ;xi)

∂θ2 . The neural
tangent kernel (NTK) Kntk(·; θ) ∈ Rn×n corresponding to
parameter θ is defined as

Kntk(xi,xj ; θ) = ⟨∇if,∇jf⟩. (3)

We make the following assumption regarding the activation
function ϕ:

Assumption 1 (Activation function). The activation ϕ is
1-Lipschitz, i.e., |ϕ′| ≤ 1, and βϕ-smooth, i.e., |ϕ′′

l | ≤ βϕ.

1The network has L hidden layers, and so has depth L+ 1 if
considering the output layer. However, since the term L appears
more frequently in our results than L+1, L will be referred as the
depth for convenience.

Remark 3.1. Our analysis holds for any ςϕ-Lipchitz smooth
activations, with a dependence on ςϕ on most key results.
The main (qualitative) conclusions stay true if ςϕ ≤ 1+o(1)
or ςϕ = poly(L), which is typically satisfied for commonly
used smooth activations and moderate values of L.

Assumption 2 (Input data scaling). Every input data xi ∈
Rd, i ∈ [n], has norm ∥xi∥22 = d.

The previous assumption is done for convenience. Scal-
ing assumptions are common in the literature (Allen-Zhu
et al., 2019; Oymak and Soltanolkotabi, 2020; Nguyen et al.,
2021b).

4 NEURAL TANGENT KERNEL AT
INITIALIZATION

In this section, we present a sharper analysis showing that
effectively linear width, i.e., m = Ω̃(n), suffices for smooth
activations to ensure the NTK at initialization is positive def-
inite. Our analysis builds on prior work on Hermite series ex-
pansion of activation functions (Oymak and Soltanolkotabi,
2020; Nguyen and Mondelli, 2020; Nguyen et al., 2021b),
which has been however restricted to multi-layer ReLU net-
works using the homogeneity of ReLU activations. Smooth
activations are typically inhomogeneous, so we develop a
related but new analysis based on generalized Hermite poly-
nomials which work for multiple layers of inhomogeneous
activations, yielding Theorem 4.1. All detailed proofs are in
Section A of the supplementary material.

Theorem 4.1 (Linear width on the number of sam-
ples m = Ω̃(n) suffices for the NTK condition at ini-
tialization). Consider Assumptions 1 and 2. Assume that
L = O(1), ϕ(0) = 0, and for l ∈ [L],

ml = m = Ω(n log n log(Ln/δ)) .

Let cϕ,σ0 := Ez∼N (0,σ2
0)
[ϕ2(z)] and ν20 :=

σ2
0

cϕ,σ0
. Then,

assuming w
(l)
0,ij ∼ N (0, ν20), l ∈ [L], with probability at

least 1− δ− 4L
m over the draw of {W (l)

0 }l∈[L], we have that
the minimum eigenvalue of the NTK at initialization satisfies

λmin(Kntk(·; θ0)) ≥ c0λ1 ,

for a suitable constant c0 > 0 and λ1 :=
λmin(Eg∼N (0d,ν2

0 Id)[ϕ(
1√
d
Xg)ϕ( 1√

d
Xg)⊤]).

Remark 4.1 (Extending to general depths). Our results
extend to the case of general depth L with essentially no
changes in the analysis. For general L, the width needs to be
relaxed to ml = m = Ω(nh4

C(L) log n log(n/δ)) where
hC(L) =

∑L
i=1 ν

2i
0 . Choosing L = O(1) gives Theo-

rem 4.1, and choosing L = log log n also yields m = Ω̃(n).
More generally, if ν20 ≤ 1, hC(L) = O(L), and the width



m has poly(L) dependence; otherwise an O(cO(L)) for
some c > 1 dependence on L appears similar to (Du et al.,
2019).

Remark 4.2 (Lower bound for λ1 in Theorem 4.1). There
are existing approaches in the literature for lower bounding
λ1 for specific (smooth) activation functions, using suit-
able (separability) assumptions on the input X (Oymak and
Soltanolkotabi, 2020; Zou et al., 2020; Nguyen et al., 2021b;
Du et al., 2019). To get an informal sense of a couple of
such techniques, let X̄ := 1√

d
X so that rows of X̄ satisfy

∥x̄i∥2 = 1.

(a) If λmin(X̄X̄T ) > 0, then the proof analysis of The-
orem 4.1 can be extended to show λ1 > 0, e.g., see
Section A.6, also (Du et al., 2019).

(b) For any unit vector v, let λ1(v) :=
v⊤Eg[ϕ(X̄g)ϕ(X̄g)⊤]v = Eg[∥ϕ(X̄g)⊤v∥22]. Note
that with g̃ = X̄g, to show that λ1 > 0, it suffices to
show Eg̃[⟨ϕ(g̃), v⟩2] = EZ=⟨ϕ(g̃),v⟩[Z

2] > 0 for any
unit vector v, which is violated only if Z = 0 a.s. This
can be proved by using the fact that g ∼ N (0d, ν

2
0Id),

properties of ϕ, Markov’s inequality, and separability in
X (Du et al., 2019; Oymak and Soltanolkotabi, 2020;
Nguyen et al., 2021b).

We share additional remarks on λ1 in Section A.6. Finally,
we point out that, although our focus is on avoiding distribu-
tional assumptions on the data, it is possible to lower bound
λ1 under such type of assumptions too, e.g., (Nguyen and
Mondelli, 2020, Theorem 3.1).

The proof of Theorem 4.1 shown below is relatively standard
in the existing literature with the particular exception of
the crucial use of a new result we introduce in this paper:
Theorem 4.2.

Proof of Theorem 4.1. Consider that A(l) ∈ Rn×ml with
A

(l)
i,: = α(l)(xi), i ∈ [n], is evaluated at the initialization

vector θ0. The corresponding Jacobian of the neural network
is

J =

[
∂A(L+1)

∂ vec(W (1))
, . . . ,

∂A(L+1)

∂ vec(W (L))
,
∂A(L+1)

∂v

]
,

of dimensions n×
∑L

l=1 ml−1ml +mL+1 where m0 = d.
Then, the kernel at initialization is

Kntk(·; θ0) = JJ⊤

=

L∑
l=1

[
∂A(L+1)

∂ vec(W (1))

] [
∂A(L+1)

∂ vec(W (l))

]⊤

+

[
∂A(L+1)

∂v

] [
∂A(L+1)

∂v

]⊤
.

Note that[
∂A(L+1)

∂v

] [
∂A(L+1)

∂v

]⊤
=

1

mL
A(L)(A(L))⊤ .

By chain rule, it can be shown that, for any l ∈ [L]

∂α(L+1)(xi)

∂ vec(W (l))
=

1
√
ml−1

α(l−1)(xi)Dl

×

(
L∏

l′=l+1

1
√
ml′−1

W (l′)Dl′

)
1

√
mL

v .

where Dl = diag(ϕ′(α̃(l))(xi)) ∈ Rml×ml is a diagonal
matrix whose ith element is the derivative of the activation
function evaluated at the ith preactivation of layer l. Then,
in matrix notation[

∂A(L+1)

∂ vec(W (l))

] [
∂A(L+1)

∂ vec(W (l))

]⊤
=

1

ml−1
A(l−1)(A(l−1))⊤ ⊙BlB

⊤
l

where for l ∈ [L]

Bl = Dl

(
L∏

l′=l+1

1
√
ml′−1

W (l′)Dl′

)
1

√
mL

v , (4)

where ⊙ is the symbol for the Kronecker product operator.
Now, note that in particular, note that BL = 1√

mL
DLv ,

and BL−1 = 1√
mL−1mL

DL−1W
(L)DLv. As a result,

JJ⊤ =

L∑
l=1

1

ml−1
A(l−1)(A(l−1))⊤ ⊙BlB

⊤
l

+
1

mL
A(L)(A(L))⊤ .

From the Schur product theorem (e.g., see (Oymak
and Soltanolkotabi, 2020, Lemma 6.5),(Nguyen et al.,
2021a, Theorem 3.2)), for positive semi-definite (PSD)
matrices P,Q ∈ Rn×n, it holds that λmin(P ⊙ Q) ≥
λmin(P )mini∈[n] Qii. Then,

λmin(JJ
⊤) ≥

L∑
l=1

1

ml−1
λmin

(
A(l−1)(A(l−1))⊤

)
× min

i∈[n]
∥(Bl)i,:∥22 +

1

mL
λmin

(
A(L)(A(L))⊤

)
,

where the first inequality follows from the fact that the
minimum eigenvalue of the sum of PSD matrices is lower
bounded by the sum of the minimum eigenvalues of the
matrices themselves. To lower bound λmin(JJ

⊤), because
A(l)(A(l))⊤, l ∈ [K], are positive semi-definite, it suf-
fices to lower bound λmin

(
A(L)(A(L))⊤

)
. Following The-

orem 4.2 and taking ml = m, l ∈ [L], with probability at



least 1− δ − 4L
m , we have λmin

(
A(L)(A(L))⊤

)
≥ c0mλ1,

where c0 = maxr>1 c
(L−1,r)
0 and c

(l,r)
0 is as in Theorem 4.2.

Plugging this back,

λmin(Kntk(·; θ0)) = λmin(JJ
⊤)

≥ 1

m
λmin

(
A(L)(A(L))⊤

)
≥ c0λ1 ,

with probability at least 1 − δ − 4L
m . This completes the

proof.

Remark 4.3 (About initialiazing the last layer weight).
Notice that the result in Theorem 4.1 is independent
on how we initialize the weights v of the last layer
in the neural network. This follows from the fact that
λmin(Kntk(·; θ0)) ≥ 1

mL
λmin

(
A(L)(A(L))⊤

)
from the

proof of Theorem 4.1.

Next we focus our attention on Theorem 4.2, the main new
result for smooth activations. The proof borrows ideas from
existing related proofs for ReLU networks, however differs
in an important way by handling inhomogeneity of smooth
activations using generalized Hermite series expansions.

Theorem 4.2 (Bound on the minimum eigenvalue of acti-
vation matrices). Consider Assumptions 1 and 2. Assume
that L = O(1), ϕ(0) = 0, and for l ∈ [L], ml = m =
Ω(n log n log(Ln/δ)). Let cϕ,σ0

:= Ez∼N (0,σ2
0)
[ϕ2(z)]

and ν20 :=
σ2
0

cϕ,σ0
. Then, assuming w(l)

0,ij ∼ N (0, ν20), l ∈ [L],

with probability at least 1− δ − 4L
m , uniformly over l ∈ [L]

over the draw of {W (l)
0 }l∈[L], for any integer r > 1 we have

λmin(A
(l)(A(l))⊤) ≥ c

(l−1,r)
0 mlλ1 ,

where c
(l−1,r)
0 is a positive constant and

λ1 = λmin(Eg∼N (0d,ν2
0 Id)[ϕ(

1√
d
Xg)ϕ( 1√

d
Xg)⊤]).

Specifically, letting cl,i = ∥α(l)(xi)∥2√
ml

and

(µ
(l)
r,0)

2 = mini∈[n]

(
µ
[c2l,iσ

2]
r (ϕ)

)2

for any inte-

ger r > 1 and l ∈ {0, 1, . . . , L}, we have that

c
(l,r)
0 =

(
(µ

(l)
r,0)

2

6cϕ,σ0

)l (
σ2
0

2

)3rl
, where µ

[c2l,iσ
2]

r (ϕ) is the

(c2l,iσ
2)-th generalized Hermite coefficient corresponding to

the generalized Hermite series expansion of ϕ.

Remark 4.4 (The use of generalized Hermite polynomi-
als). A key unique feature of our result and proof is the use
of generalized Hermite coefficients, instead of standard Her-
mite coefficients in prior work (Oymak and Soltanolkotabi,
2020; Nguyen and Mondelli, 2020; Nguyen et al., 2021b).
Since smooth activations are typically inhomogeneous, gen-
eralized Hermite coefficients help handle multiple layers
of inhomogeneous activations which seems difficult with
standard Hermite coefficients. Further, our proof technique,

based on Hermite expansions, is different from prior related
work on smooth activations (Du et al., 2019) and leads to a
sharper sample dependence Ω̃(n) instead of Ω̃(n2).

Definition 4.1 (Generalized Hermite series expansion).
For a given positive number a ∈ R++, we define the nor-
malized generalized Hermite polynomials by

H [a]
r (x) =

(−1)r√
r!

e
x2

2a
dr

dxr
e−

x2

2a , r = 0, 1, . . . . (5)

For any function g : R → R such that
∫ +∞
−∞ g2(x) e

−x2

2a√
2πa

<

∞, we define the r-th generalized Hermite coefficient by

µ[a]
r (g) =

∫ +∞

−∞
g(x)H [a]

r (x)dx . (6)

Finally, we define the generalized Hermite series expansion
of g with respect to H

[q]
r by

g(x) =

∞∑
r=0

µ[a]
r (g)H [a]

r (x) . (7)

Remark 4.5. Since they are used in Theorem 4.2, we pro-
vide a self-contained gentle introduction to Hermite Polyno-
mials and Hermite Series Expansions in Section A.4.

We present the proof of Theorem 4.2, all missing proofs of
auxiliary results are in the supplementary material.

Proof of Theorem 4.2. There are three key parts to the proof:

(a) showing that under suitable conditions such as a re-
quirement on the width of the network, the minimum
eigenvalue of A(l)(A(l))⊤ for a model with width
Ω̃(n) can be lower bounded by a constant scaled ver-
sion of the minimum eigenvalue of the expectation
E
W

(l)
0
[A(l)(A(l))⊤] with high-probability, i.e., a matrix

concentration result;

(b) establishing suitable upper and lower bounds for
∥α(l)∥22, in particular ∥α(l)∥22 = Θ(ml) with high prob-
ability, which let us further simplify the sufficient con-
ditions for the matrix concentration result in (a) above.

(c) lower bounding the minimum eigenvalue of the expec-
tation E

W
(l)
0
[A(l)(A(l))⊤] using generalized Hermite

series expansion to handle multiple layers of inhomoge-
nous activations and using the lower bounds on ∥α(l)∥22
as in (b) above.

Next we get into the details of each of these results.

(a) Matrix Concentration. Note that by construction
A(l) = ϕ( 1√

ml−1
A(l−1)(W

(l)
0 )⊤) ∈ Rn×ml , where

W
(l)
0 ∈ Rml×ml−1 , w(l)

0,ij ∼ N (0, ν20) with ν20 =
σ2
0

cϕ,σ0
.



Through a matrix concentration bound, the minimum
eigenvalue of Al(Al)⊤ can be lower bounded by that
of E

W
(l)
0
[A(l)(A(l))⊤] with high probability, as shown in

Lemma 4.1, whose proof is in Section A.1 of the supple-
mentary material.

Lemma 4.1 (Matrix Concentration). Let A(l) =

ϕ( 1√
ml−1

A(l−1)(W
(l)
0 )⊤) ∈ Rn×ml , where W

(l)
0 ∈

Rml×ml−1 and w
(l)
0,ij ∼ N (0, σ2). Let

λl :=

λmin

(
Eg∼N (0ml−1

,σ2Iml−1
)

[
ϕ

(
1

√
ml−1

A(l−1)g

)
×ϕ

(
1

√
ml−1

A(l−1)g

)⊤
])

, (8)

and ml ≥ max(n, c2vmax
(
1, log(15v)

)
log(Ln/δ)),

where v :=
2(

√
logn+1)2σ2∥A(l−1)∥2

F

c3λlml−1
, and c2, c3 are abso-

lute constants. Then, with probability at least (1− δ
L ) over

the draw of W (l)
0 , we have

λmin(A
(l)(A(l))⊤) ≥ mlλl

4
. (9)

Then, in order to choose ml, l ∈ [L], appropriately for (9),
it suffices to upper bound ∥A(l−1)∥2F and lower bound λl

for σ2 = ν20 =
σ2
0

cϕ,σ0
in (8).

(b) Bounding ∥A(l)∥2F . To bound the squared Frobenius
norm ∥A(l)∥2F , we focus on bounding the L2-norm of each
row of A(l) and show that ∥αl(xi)∥22 = Θ(ml), i ∈ [n].
In Lemma 4.2 below, whose proof is in Section A.2 of the
supplementary material, we show that the bound holds uni-
formly over the dataset {xi, i ∈ [n]} with high probability.

Lemma 4.2 (Bounding ∥α(l)∥22). Let {α(l)(xi) ∈ Rml , i ∈
[n]} be the set of outputs at layer l at initialization for the
set of inputs {xi, i ∈ [n]}. Let cϕ,σ0

:= Ez∼N (0,σ2
0)
[ϕ2(z)],

ν20 :=
σ2
0

cϕ,σ0
, and hC(l) :=

∑l
i=0 ν

2i
0 . Let the depth L

be such that max

(
8h2

C(L)

c2ϕ,σ0

, 4hC(L)
cϕ,σ0

)
≤ √

ml, l ∈ [L]. As-

suming the elements of W (l)
0 , l ∈ [L] are drawn i.i.d. from

N (0, ν20), with probability at least 1 − 2n
∑L

l=1
1

m2
l

over

the draw of {W (l′)
0 , l′ ∈ [L]}, uniformly over l ∈ [L] and

i ∈ [n], we have

cϕ,σ0

2
ml ≤ cϕ,σ0

(
1− hC(l)

2hC(L)

)
ml

≤ ∥α(l)(xi)∥22 ≤ cϕ,σ0

(
1 +

hC(l)

2hC(L)

)
ml ≤

3cϕ,σ0

2
ml .

As a result, by union bound, with probability at least (1−
2n
∑L

l=1
1

m2
l
) ≥ (1 − 2

∑L
l=1

1
ml

) for ml ≥ n, uniformly

over l ∈ [L], we have ∥A(l)∥2F =
∑n

i=1 ∥α
(l)
i (xi)∥22 ≤

3cϕ,σ0

2 nml. Then, under the assumption ml = m, taking

σ2 = ν20 =
σ2
0

cϕ,σ0
in Lemma 4.1, we have v ≤ c2

σ2
0n logn

λl
,

for some constant c2 > 0. For L = O(1), h4
C(L) = O(1) ≤

m. As a result, for l ∈ [L], it suffices to have

m ≥ max

(
n , c2

σ2
0n log n

λl

×max

(
1, log

(
c3

σ2
0n log n

λl

))
log

Ln

δ

)
(a)
= Ω̃(n) ,

(10)
where (a) holds as long as λl = Ω(1), which is the case
with high probability as we show next.

(c) Lower Bounding λl. Next, we focus on lower bounding
λl (defined in equation (8)), for which we obtain the lemma
below, whose proof is in Section A.3 of the supplementary
material.

Lemma 4.3. Consider the same setting and assumptions
as in Lemma 4.2. Let µ[q]

r (ϕ), q > 0 be the r-th generalized
Hermite coefficient corresponding to the generalized Her-

mite series expansion of ϕ w.r.t. H [q]
r . Let cl,i =

∥α(l)(xi)∥
2√

ml

and (µ
(l)
r,0)

2 = mini∈[n]

(
µ
[c2l,iν

2
0 ]

r (ϕ)

)2

. For any integer

r > 0, with probability at least 1− 2n
∑L

l=1
1
ml

, uniformly
over l ∈ [L] we have

λl+1 = λmin

(
Eg∼N (0ml

,ν2
0 Iml

)

[
ϕ

(
1

√
ml

A(l)g

)
×ϕ

(
1

√
ml

(A(l)g)⊤
)])

≥

(
(µ

(l)
r,0)

2

6cϕ,σ0

)l(
σ2
0

2

)3rl

λ1 ,

with λ1 = λmin(Eg∼N (0d,ν2
0 Id)[ϕ(

1√
d
Xg)ϕ( 1√

d
Xg)⊤]).

Finally, we have

λmin(A
(l)(A(l))⊤)

(a)

≥ m

4
λl

(b)

≥ c
(l−1,r)
0 mλ1 ,

where (a) follows from Lemma 4.1, (b) from Lemma 4.3

with c
(l,r)
0 =

(
(µ

(l)
r,0)

2

6cϕ,σ0

)l (
σ2
0

2

)3rl
. As a result of a union

bound, this expression, which holds for every l ∈ [L] ac-
cording to Lemma 4.1 and Lemma 4.3, holds with probabil-
ity at least 1 − δ − 4L

m . Lemma 4.3 also implies that (10)
holds. This completes the proof for Theorem 4.2.



Remark 4.6 (Regarding our proof techniques). The proof
technique used for Theorem 4.2 is general and quite differ-
ent from influential prior work on multi-layer feedforward
networks with smooth activations (Du et al., 2019). Indeed,
our approach works for multiple layers of inhomogeneous
smooth activation functions unlike prior work using basic
Hermite expansions for homogenous activations especially
ReLU (Nguyen and Mondelli, 2020; Nguyen et al., 2021b).
To the best of our knowledge, our work represents the first
use of generalized Hermite polynomials in such context. For
the activation function ϕ, we assume ϕ(0) = 0 for simplic-
ity; however, this can be relaxed similar to the analysis done
in (Banerjee et al., 2023, Section 4) for the derivation of the
Hessian bound with an explicit dependence on ϕ(0).

5 THE IMPORTANCE OF
INITIALIZATION VARIANCE

Let us define the following type of ball over parameters.

Definition 5.1 (Spectral ball). Given θ ∈ Rp of the form (2)
with parameters W

(l)
, l ∈ [L],v and with ∥ · ∥2 denoting

spectral norm for matrices and L2-norm for vectors, we
define

BSpec
ρ,ρ1

(θ̄) := {θ ∈ Rp as in (2) | ∥W (ℓ) −W
(ℓ)∥2 ≤ ρ,

ℓ ∈ [L], ∥v − v̄∥2 ≤ ρ1} .

Proposition 5.1 (Hessian Spectral Norm Bound). Con-
sider Assumptions 1 and 2, and that the elements of W (l)

0 ,

l ∈ [L], are drawn i.i.d from N (0, ν20), where ν20 =
σ2
0

cϕ,σ0

with cϕ,σ0 := Ez∼N (0,σ2
0)
[ϕ2(z)] , and v0 is a random unit

vector with ∥v0∥2 = 1. Then, for θ ∈ BSpec
ρ,ρ1

(θ0), with

probability at least 1− 2(L+1)
m , we have

max
i∈[n]

∥∥∇2
θf(θ;xi)

∥∥
2
≤ cH√

m
, (11)

with cH = O(poly(L)(1 + γ2L)(1 + ρ1)) where γ :=
ρ√
m

+ 4ν0.

Proof. The proof follows by a direct extension of (Baner-
jee et al., 2023, Theorem 4.1). Indeed, the original re-
sult in (Banerjee et al., 2023, Theorem 4.1) can be
stated as maxi∈[n]

∥∥∇2
θf(θ;xi)

∥∥
2

≤ c̃H√
m

, with c̃H =

O(poly(L)(1 + γ̃2L)(1 + ρ1)) where γ̃ := ρ√
m

+

2ν0

(
1 +

√
logm√
2m

)
. We obtain (11) by upper bounding γ̃ ≤

ρ√
m

+ 4ν0 due to
√
logm√
2m

≤ 1√
2
≤ 1. Then c̃H ≤ cH since

L ≥ 1.

A trade-off between the Hessian bound and the NTK
condition at initialization. Smaller initial variance σ2

0 ,

based on σ1 ≤ 1 has a desirable effect on the Hessian
bound, e.g., cH in Theorem 5.1 has a poly(L) dependence
(see Theorem 5.1) and thus is beneficial for the restricted
strong convexity condition for geometric convergence in
gradient descent (Banerjee et al., 2023). However σ1 ≤ 1
implies σ2

0 ≤ 1
4 , which may affect (exponentially de-

crease) the constant c(l,r)0 in Theorem 4.2 and thus like-
wise decrease the minimum eigenvalue of the NTK since
c0 = maxr>1 c

(L−1,r)
0 in Theorem 4.1. The subtlety here

is that the dependence of c(l,r)0 on σ2
0 is complex, involving

both cϕ,σ0 and Hermite coefficient terms. This trade-off ef-
fect is not pronounced for small L, e.g., L = O(1) or even
L = O(log n). For general (large) L, the trade-off may be
present since it would take m growing as cO(L), c > 1 to
neutralize it.

The motivation for studying this trade-off is as follows: for
homogeneous activation functions (like ReLU), the effect
of the choice for the initialization variance σ2

0 is well under-
stood (Allen-Zhu et al., 2019); however, such understanding
is currently limited for smooth activation functions. Our
discussion on the trade-off acknowledges the fact that the
choice of the variance may imply whether the NTK based
analysis (Liu et al., 2022) or RSC based analysis (Banerjee
et al., 2023) is more appropriate to understand the optimiza-
tion behavior with smooth activations.

6 NUMERICAL VERIFICATION

In this section, we conduct experiments to verify our theoret-
ical results, i.e., Theorem 4.1. Specifically, we aim to verify
that if the network width grows linearly with the number of
training samples, the minimum eigenvalue of the NTK is
bounded from a positive constant.

Our experimental setup is as follows: we consider a
3-layer (2-hidden layer) fully-connected neural network
with Sigmoid/Tanh activation function, and whose hid-
den layers have the same width m. We consider m ∈
{200, 300, ..., 4000}. We train the network over n data
points, with each data point being drawn i.i.d. from
N (0, I100). We let the number of data points be the same
as the width, i.e., n = m. We report the average of the
minimum eigenvalue of the NTK out of 3 independent runs
(i.e., each run uses the same training data but has different
random initialization of the weights).

From Figure 1 we can see that across all experiments, the
minimum eigenvalue of NTK stays persistently positive.
Furthermore, as m (as well as n) is made sufficiently large,
the minimum eigenvalue of NTK shows only a mild de-
crease in the average value which mostly flattens out as m
(and n) increases. In summary, the minimum eigenvalue of
the NTK can be lower bounded by some constant.
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Figure 1: Positive λmin(K) with linear width. In the exper-
iments, we train a 3-layer fully-connected neural network
with Sigmoid/Tanh activation functions whose width has the
same numerical value as the number of data points. Each
curve is the average of 3 independent runs.

7 CONCLUSIONS

In this paper, we revisit the NTK analysis with smooth ac-
tivations and show that effectively linear width suffices for
the NTK at initialization to be positive definite. Our analysis
makes a novel use of generalized Hermite series expansion
for smooth function activation. Though standard Hermite se-
ries expansion has been used for ReLU activation functions,
such analysis relied heavily on the homogeneous assump-
tion of ReLU functions — a property generally absent in
smooth activation functions. Finally, our work highlights
the importance of initialization variance in determining a
trade-off between tighter Hessian bounds and larger lower
bounds on the NTK condition. Given the growing literature
on optimization of neural networks based on NTK analysis,
we hope our work contributes by providing a better theoreti-
cal understanding on the performance of networks whose
width may beneficially scale with the number of training
samples.
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