
Continual Robot Learning via Language-Guided Skill Acquisition

Shuo Cheng*1, Zhaoyi Li*1, Kelin Yu*2, Danfei Xu1

Abstract— To support daily human tasks, robots need to
tackle complex, long-horizon tasks and continuously acquire
new skills to handle new problems. Deep reinforcement learning
(DRL) offers the potential to learn fine-grained skills, but is
based heavily on human-defined rewards and faces challenges
with long-term goals. Task and Motion Planning (TAMP) is
adept at handling long-horizon tasks but often needs tailored
domain-specific skills, resulting in practical limitations and
inefficiencies. To address these challenges, we propose LG-
SAIL (Language Models Guided Sequential, Adaptive, and
Incremental Skill Learning), a framework that leverages Large
Language Models (LLMs) to synergistically integrate TAMP
and DRL for continuous skill learning in long-horizon tasks.
Our framework achieves automatic task decomposition, skill
creation, and dense reward generation to efficiently acquire the
desired skills. To facilitate new skill learning, our framework
maintains a symbolic skill library and utilizes the existing
model from semantic-related skills to warm start the training.
LG-SAIL demonstrates superior performance compared to
baselines across six challenging simulated task domains across
two benchmarks. Furthermore, we demonstrate the ability to
reuse learned skills to expedite learning in new task domains,
and deploy the system on a physical robot platform.

I. INTRODUCTION

For robots to aid in daily human tasks, they need to
tackle intricate long-term challenges and adapt to unfamiliar
situations. While deep reinforcement learning (DRL) tech-
niques are promising for acquiring fine-grained manipulation
skills [1, 2], they require carefully designed reward functions
and often fail to achieve long-term goals in complex environ-
ments. Conversely, Task and Motion Planning (TAMP) [3]
are adept at addressing and adapting to long-term tasks due
to their robust state and action abstracts. However, their
dependence on expertise to construct the planning domain
restricts their practical use in real-world scenarios.

In an effort to overcome the constraints of both TAMP
and skill learning, researchers have proposed the concept of
learning skill policies within TAMP systems [4–6]. While
these approaches have shown promise in enabling skill
acquisition for long-horizon tasks efficiently, they still rely on
expert knowledge to define planning domains (e.g., symbolic
operators with conditions and effects) and dense reward
functions. These assumptions limit the scalability of skill
learning, especially in real-world contexts where robots
frequently confront novel challenges where the planning
domains cannot be defined beforehand.

In this work, we introduce LG-SAIL (shown in Fig.
1), a continuous learning paradigm for robot manipulation

*Equally Contributed
1Georgia Institute of Technology
2University of Maryland, College Park

that leverages large language models (LLMs) for integrating
TAMP and DRL. Our key insight is that LLMs, trained on
web-scale data, provide common sense knowledge for task
decomposition and skill creation, while TAMP’s structured
state representations (e.g., predicates) serve as strong priors
to guide LLM reasoning, structuring task decomposition and
mitigating hallucinations.

To summarize, our key contributions include: 1) Employ-
ing LLMs to facilitate continual skill learning through auto-
matic task decomposition, skills creation, and dense reward
generation; 2) Instead of free form code generation, we
leverage structural state representation to ease and regularize
LLMs content generation; 3) Improving the acquisition of
new skills by maintaining a skill library to reuse learned
skills during training; 4) By conducting comprehensive eval-
uation on six challenging simulated task domains from two
benchmarks, we analyze the efficacy of our design and
demonstrate the framework’s superior performance, which
opens the potential for lifelong robot learning in complex
environments. We also show that the learned skills can be
readily deployed on real world robot.

II. METHOD

We seek to achieve automatic skill abstraction and contin-
ual learning in long-horizon tasks by leveraging the strong
priors in LLMs. Our primary contribution is a integrated
pipeline (Fig. 1) that uses LLMs for task decomposition and
planning (Sec. II-A), and constructs dense rewards for skill
learning (Sec. II-B). We describe how to accelerate learning
of new skills in lifelong learning scenario in Sec. II-C. Back-
ground and problem formulation are shown in Appendix. IV-I

A. Task Decomposition and Skill Creation

To reduce the domain knowledge needed for designing
valid skills in TAMP, we propose leveraging the rich seman-
tic knowledge of LLMs to decompose tasks into reusable,
elementary skills. To address the hallucination issue—where
generated task plans may overlook constraints between ad-
jacent skills and “hallucinate” impossible effects—we incor-
porate structural information from TAMP system, including
available predicates and the task goal description, as prompts
to regularize the outputs. An example of operator generation
is shown in Appendix IV-B.
Plan verification and error feedback. Although the avail-
ability of predicates simplifies the skill creation process,
the generated operators may occasionally contain irrelevant
preconditions and effects. To enhance the accuracy of task
decomposition, we validate the generated symbolic operators
using A∗ algorithm to produce the symbolic task plan via



GPT-4
dis_to_obj

…

perp_dis

On
Predicates & Metric Functions

Holding In

…

State Descriptions

Goal: In(peg1,hole1) 
∧ In(peg2,hole2)

Init: On(peg1,table) ∧
 On(peg2,table) ∧ 

HandEmpty() 

Reward Generation Skill Learning

Skill Creation & Planning Skill Execution

Extend

Warm-start 

Feedback curriculum

Pick (peg2)
PRE: {P4(peg2), …}
EFF+: {P2(peg2), …}
…

Insert (peg1, hole1)
PRE: {P1(peg1), …}
EFF+: {P3(hole1), …}
…

Skill Library

Pick reward: {
perp_dis: 0.2,
dis_to_obj: 0.7,
…
}

Pick InsertPlace
…

Skill Info Instantiate

Fig. 1: Framework Overview. Our framework automates task decomposition, skill creation, and dense reward generation by
creating a virtuous cycle between planning and skill learning. Execution failures reveal skills needing improvement, while
a symbolic skill library enables warm-starting new skills using semantically related models.

deterministic search. To plan for a task goal g, we first
evaluate the predicates on the current environment state
x, yielding the corresponding symbolic state xΨ. We then
ground each lifted operator ω̄ ∈ Ω̄ by substituting object
entities in the environment in preconditions and effects,
leading to ground operators ω ≜ ⟨Pre,Eff−,Eff+⟩ that
support operating with symbolic states. A ground operator
is considered executable only when its preconditions are
satisfied: Pre ⊆ xΨ. The operators induce an abstract
transition model T (xΨ, ω) that allows planning in symbolic
space: x′Ψ = T (xΨ, ω) ≜ (xΨ \ Eff−) ∪ Eff+.

Compared to directly using LLMs for task plan generation,
an A∗ planner can provide feedback by evaluating generated
plan and generate usable operators with fewer attempts.
Additionally, this approach verifies whether the current set
of symbolic skills is sufficient to achieve the task goal. If
verification fails, error information from the planner will
be incorporated into the LLM prompt to regenerate the
necessary skill operators.

B. Reward Generation and Skill Learning

Once the planning domain is established, and symbolic
skills can be planned for specific task goals, we can proceed
to learn the corresponding low-level skill policies via deep
reinforcement learning. Dense rewards are crucial for rein-
forcement learning, but human-crafted dense rewards require
considerable effort. It presents challenges for long-horizon
tasks with various skills and lifelong learning scenarios
where agents are exposed to diverse new tasks. We therefore
consider using LLMs for automating reward generation.
Reward construction with metric functions. LLM-
generated reward functions often contain imprecise code or
syntax errors [7–9], which LLMs or human feedback for tun-
ing. Our key insight is that predicate-derived metric functions
in TAMP encode object relationships, providing structural
regularization on the generated content. Each metric function
f ∈ F defines a quantitative spatial relationship between
objects with normalization: f : X × Om → [0, 1]. For
example, dis to obj(peg1) defines the distance between
the robot’s gripper and the peg1 object. Instead of gener-

ating code from scratch, we simplify the problem by using
LLMs with extracted skills definition from structural skill
operators to select metric functions and their corresponding
weights to construct dense rewards. This strategy improves
the success rate of generating usable reward functions by
constraining the LLM solution space, thus reducing irrelevant
or erroneous outputs. Additionally, the semantic information
embedded in the metric functions aids the LLMs in compos-
ing reward functions that better align with task objectives.

To better harness the LLMs’ proficiency in code interpre-
tation and task comprehension, for each skill operator ω, we
provide the LLM with the definitions of metric functions
along with generated skill operators in the form of source
code. In this work we use GPT-4 [10]. An examplar prompt
for reward generation can be found in Appendix IV-C.

To ensure the learned policy achieves the desired out-
comes specified by the skill operators, we incorporate
sparse rewards derived from predicates. The agent receives
a maximal reward when all predicates that define the de-
sired effect of the skill operator ω are met: RS

ω(x
(t)) ={

1 if
∧
cψ(x

(t)) for ψ ∈ Eff+

0 otherwise
. This complements the

dense rewards constructed by the LLM, promoting the de-
velopment of more robust skills for long-horizon tasks and
ensuring the expected outcomes are met to seamlessly tran-
sition to the next skill. Finally, the skill reward is constructed
as: Rω(x

(t)) = max(RD
ω (x

(t)),RS
ω(x

(t))).
Skill learning with state abstraction. With the LLM
constructed dense rewards, we can then train the policy
corresponding to each symbolic skill with RL. Since
the precondition and effect of a ground operator ω
induce an effective abstraction of the environment,
we can define a skill-relevant state space to prevent
the learned policy from being influenced by task-
irrelevant objects, thus enhancing its learning efficiency
and generalization [4]: x̂ = {x(o) : o ∈ Oω}. The
training objective for RL is therefore formulated as: J =
Ex(0),x(1),...,x(H)∼π,p(x(0))

[∑
t γ

tRω(x
(t)) + αH(π(·|x̂(t)))

]
.

We adopt Soft Actor-Critic (SAC) [11] to optimize the skill



policy, where H is the entropy term.
Despite the use of dense rewards, RL exploration can

be inefficient for learning complex motions [4]. Conversely,
while motion planning from TAMP systems struggles with
contact-rich manipulation, it is well-suited for handling free-
space motions [6]. Building on this, we propose augmenting
our policy with motion planner-based transition primitives.
The key idea is to first use an off-the-shelf motion planner
to approach the skill-relevant object (as specified by the
skill operator) before initiating RL-based skill learning. For
the motion planning target, we set the goal position 0.04m
above the object or placement position identified by the
task planner. This approach accelerates exploration while
maintaining the ability to learn closed-loop, contact-rich
manipulation skills.

C. Continual Skill Acquisition through Integrated Planning
and Skill Learning

So far, we have described how to leverage the rich se-
mantic knowledge from LLMs to guide task decomposition,
skill operators creation, and reward generation for continual
skill learning. In this section, we describe how to learn skills
within the context of a task planning system. This integrated
planning and learning approach to ensure that the learned
skills are compatible with the planner, while continuously
expanding the system’s capability to solve more tasks.
Task planning and skill execution. For any given task goal
g, we use A∗ planner with the generated operators to search
a task plan, as described in Sec. II-A. With the generated
task plan, we sequentially invoke the corresponding skill
π∗ to reach the subgoal that complies with the effects of
each skill operator ω in the plan. We roll out each skill
until it fulfills the effects of the operator or a maximum
skill horizon H is reached. To verify whether the l-th
skill is executed successfully, we obtain the corresponding
symbolic state xlΨ by parsing the ending environment state
x∗. Then, the execution is considered successful only when
the environment state x∗ conforms to the expected effects:
T (xl−1Ψ , ωl) ⊆ xlΨ. We keep track of the failed skills and the
starting simulator info s∗ to inform the learning curriculum.
Automated Curriculum. To efficiently acquire the neces-
sary skills for a multi-step task, we utilize the task planner
as an automated curriculum, which enables progressive skill
learning. The core idea is to use already proficient skills
to achieve the preconditions of those skills which are still
required further learning. At a high level, we iteratively
alternate between task planning and skill learning until con-
vergence. We track skill failures during executions and apply
strict scheduling criteria: a skill is prioritized for further
learning (Sec. II-B) whenever it fails during rollouts. The
algorithm is sketched in Alg. 1. Notably, we share the replay
buffers across different skill instances (e.g., Pick(peg1)
and Pick(peg2)) that correspond to the same lifted op-
erator. This allows relevant trajectories to be reused, which
enhances both learning efficiency and generalization.
Accelerate learning with skill library. Efficient learning
of complex tasks requires the continual adaptation of ac-

quired skills to new tasks, even across different domains.
Our insight is that semantically similar skill operators often
share underlying low-level behaviors. For instance, opening
a refrigerator and opening a door may involve similar actions
and interactions. As a result, policy models from previously
learned skills can serve as effective initializations, providing
a warm start for learning new skills in novel situations.

Based on this, we propose to maintain a semantic skill
library, where each element is a key-value pair. The key
represents the semantic embedding of the skill’s symbolic
definition, which are extracted by a pre-trained LLM en-
coder (specifically, OpenAI’s text-embedding-3-large): z =
Φ(ω) ≜ Φ(⟨Pre,Eff−,Eff+⟩). The value corresponds to
the neural network weights of the associated policy.

To leverage the models stored in this library, for any new
skill that needs to be acquired, we first extract its feature
embedding z′. We then identify the most similar skill in
the library using cosine similarity and use the corresponding
weights to initialize the new skill’s policy, which provides a
warm start for continual training. Each newly learned skill
is subsequently added to the library, expanding it to speed
up the learning of future tasks.

III. EXPERIMENT

In this section, we demonstrate that LG-SAIL can au-
tonomously learn long-horizon tasks and outperforms prior
state-of-the-art methods. We showcase LG-SAIL’s ability to
adapt skills to novel tasks and domains, a critical aspect
for continual and lifelong robot learning. Additionally, we
validate our task planning and reward generation designs
through ablation studies. Finally, we present quantitative and
qualitative results for real-world tasks.

Details on evaluating the system’s continual skill learning
capability are provided in Appendix IV-E, along with abla-
tion studies on our hybrid LLM-TAMP planning system and
reward generation in Appendix IV-F.

A. Experimental Setup

We conduct experiments in six simulated domains.
The domain “StackAtTarget”, “StowHammer”,
“PegInHole”, and “MakeCoffee” are from
LEAGUE [4], which involve long-horizon reasoning and
contact-rich manipulation. The task setups and predicates are
shown in Fig. 3. To further evaluate the framework’s ability
to efficiently adapt learned skills to novel tasks, we include
the LIBERO benchmark [12], a benchmark in lifelong robot
learning that features diverse objects and long-horizon tasks.
We test our framework on both “LIBERO-Spatial”
and “LIBERO-Object”. The “LIBERO-Spatial” set
comprises 10 tasks with varying scene configurations,
where the robot must pick up a target bowl and place it on
the goal plate. The “LIBERO-Object” set includes 10
tasks involving different objects with diverse shapes, which
requires the robot to grasp the target object and place it in
a basket. The setups are shown in Fig. 4.

All environments are built on MuJoCo engine [13]. We use
a Franka robotic arm, controlled at 20Hz with an operational



Fig. 2: Baseline comparison. We compare our framework with other baselines across three task domains. The plot illustrates
the average task progress during evaluation over the training phase, measured as the sum of rewards for each successfully
executed skill in the task plan, normalized to 1. The shaded area represents the standard deviation for 5 random seeds.

cube0
cube1

target0

cabinet1 cabinet0

hammer1

hammer0
hole1

peg2peg1

hole2 holder

lid pod

cabinet

Predicates

In(hammer0,cabinet0) ∧
In(hammer1,cabinet1) ∧

IsCabinetClose(cabinet0) ∧
IsCabinetClose(cabinet1)

On(cube1,cube0) ∧
On(cube0,target0)

In(peg1,hole1) ∧
 In(peg2,hole2)

In(pod,holder) ∧ IsLidClose(lid) 
∧ IsCabinetClose(cabinet)

Training goal

HandEmpty, Holding, In, On, IsEmpty, IsTopClear, HasFreeSpace, InCabinet, IsCabinetClose, IsCabinetOpen, IsLidClose, IsLidOpen
Metric Functions

Is_grasped, dis_to_obj, xy_dis, z_dis, get_pos, get_quat, get_joint_qpos, parallel_dis, perpendicular_dis, norm_angle

Fig. 3: LEAGUE [4] Tasks. Illustration of task setups
for “StackAtTarget”, “StowHammer”, “PegInHole”,
and “MakeCoffee”.

cube0
cube1

target0

cabinet1 cabinet0

hammer1

hammer0
hole1

peg2peg1

hole2 holder

lid pod

cabinet

Predicates

In(hammer0,cabinet0) ∧
In(hammer1,cabinet1) ∧

IsCabinetClose(cabinet0) ∧
IsCabinetClose(cabinet1)

On(cube1,cube0) ∧
On(cube0,target0)

In(peg1,hole1) ∧
 In(peg2,hole2)

In(pod,holder) ∧ IsLidClose(lid) 
∧ IsCabinetClose(cabinet)

Training goal

HandEmpty, Holding, In, On, IsEmpty, IsTopClear, HasFreeSpace, InCabinet, IsCabinetClose, IsCabinetOpen, IsLidClose, IsLidOpen
Metric Functions

Is_grasped, dis_to_obj, xy_dis, z_dis, get_pos, get_quat, get_joint_qpos, parallel_dis, perpendicular_dis, norm_angle

Predicates
HandEmpty, Holding, In, On

Metric Functions
Is_grasped, dis_to_obj, xy_dis, z_dis, get_pos, get_quat

On(bowl0,plate0)
Training goal

In(object0,basket0)

object0 basket0bowl0 plate0

Fig. 4: LIBERO [12] Tasks. Illustration of task setups for
“LIBERO-Object” and “LIBERO-Spatial”.

space controller (OSC), providing 5 degrees of freedom: end-
effector position, yaw angle, and gripper position.

B. Quantitative Evaluation

To assess performance, we compare LG-SAIL
against strong baselines for learning long-horizon
tasks in “StackAtTarget”, “StowHammer”, and
“PegInHole”, which are RL (SAC), Curriculum RL
(CRL), Hierarchical RL (HRL), and LEAGUE. Details
about them are shown in Appendix IV-D.

To ensure fair comparison, we follow experiment settings
in LEAGUE [4], and we adopt task progress as evaluation
metric, which is defined as the summed reward of all task
stages and normalized to [0, 1]. The results are in Fig. 2.
Our framework efficiently and autonomously learns long-
horizon manipulation tasks. By just providing predicates,
metric functions, and task goals of different domains (shown
in Fig. 3), our framework autonomously achieves task de-
composition, skill creation, reward generation, and integrates
TAMP with skill learning. Additionally, we found that meth-
ods incorporating skill abstraction and planning (i.e., LG-
SAIL and LEAGUE [4]) significantly outperform other base-

Goal: OnTarget(cube1, target0) ⋀ On(cube0, cube1)

Goal: On(bowl0, plate0)

Fig. 5: Real-world results. We demonstrate the deployment
of LG-SAIL for real-world tasks.

lines, underscoring the importance of explicit skill reuse in
multi-step tasks with repeating structures. Notably, LG-SAIL
demonstrates slightly higher learning efficiency compared to
LEAGUE [4], potentially reflecting the advantages of LLM-
generated rewards over handcrafted ones, as supported by
recent literature [8, 14].

C. Real World Results

We demonstrate the transfer of the simulation-trained
policy with our LG-SAIL system to two real-world tasks:
“StackAtTarget”, where the robot stacks two cubes in a
target region in a specified order, and “SortBowl”, which
involves placing a bowl on a target plate.

Our system uses a Franka Emika robotic arm and a
Microsoft Azure Kinect camera for RGBD image capture.
We use AprilTag [15] to detect the 6D poses and perform
state estimation to match relevant objects states in simulated
environment. Skills generated by LG-SAIL in simulation are
executed in the real world via open-loop control.

We conduct 10 trials per task, with key execution frames
in Fig. 5. While occasional failures occur due to occlusion-
induced pose estimation errors and bowl slippage from
insecure grasps, we achieve overall success rates of 80%
and 100%, highlighting the robustness of our system.

IV. CONCLUSIONS

We present LG-SAIL, a framework that integrates LLM-
guided skill generation and learning with TAMP, enhanc-
ing automatic and continuous robot learning across various
tasks. Our results show that LG-SAIL outperforms previous
approaches by reducing human intervention and improving
learning efficiency.



REFERENCES

[1] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-
to-end training of deep visuomotor policies,” JMLR,
2016.

[2] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep
reinforcement learning for robotic manipulation with
asynchronous off-policy updates,” in ICRA, 2017.

[3] C. R. Garrett et al., “Integrated task and motion
planning,” Annu. Rev. Control Robot. Auton. Syst.,
2021.

[4] S. Cheng and D. Xu, “League: Guided skill learning
and abstraction for long-horizon manipulation,” RA-L,
2023.

[5] M. J. McDonald and D. Hadfield-Menell, “Guided
imitation of task and motion planning,” in CoRL,
2022.

[6] A. Mandlekar, C. R. Garrett, D. Xu, and D. Fox,
“Human-in-the-loop task and motion planning for
imitation learning,” in CoRL, 2023.

[7] T. Xie et al., “Text2reward: Automated dense reward
function generation for reinforcement learning,” arXiv,
2023.

[8] Y. J. Ma et al., “Eureka: Human-level reward design
via coding large language models,” arXiv, 2023.

[9] W. Yu et al., “Language to rewards for robotic skill
synthesis,” arXiv, 2023.

[10] J. Achiam et al., “Gpt-4 technical report,” in arXiv,
2023.

[11] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine,
“Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor,” in
ICML, 2018.

[12] B. Liu et al., “Libero: Benchmarking knowledge trans-
fer for lifelong robot learning,” NeurIPS, 2024.

[13] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics
engine for model-based control,” in IROS, 2012.

[14] Y. J. Ma et al., “Dreureka: Language model guided
sim-to-real transfer,” in RSS, 2024.

[15] E. Olson, “Apriltag: A robust and flexible visual
fiducial system,” in ICRA, 2011.

[16] A. Sharma, A. Gupta, S. Levine, K. Hausman, and
C. Finn, “Autonomous reinforcement learning via sub-
goal curricula,” in NeurIPS, 2021.

[17] I. Uchendu et al., “Jump-start reinforcement learning,”
in ICML, 2023.

[18] M. Dalal, D. Pathak, and R. Salakhutdinov, “Acceler-
ating robotic reinforcement learning via parameterized
action primitives,” in NeurIPS, 2021.

[19] S. Nasiriany, H. Liu, and Y. Zhu, “Augmenting re-
inforcement learning with behavior primitives for di-
verse manipulation tasks,” in ICRA, 2022.

[20] Y. Ding, X. Zhang, C. Paxton, and S. Zhang, “Task
and motion planning with large language models for
object rearrangement,” in IROS, 2023.

[21] S. S. Kannan, V. L. Venkatesh, and B.-C. Min, “Smart-
llm: Smart multi-agent robot task planning using large
language models,” in IROS, 2024.

[22] R. S. Sutton, “Reinforcement learning: An introduc-
tion,” A Bradford Book, 2018.

[23] Y. Zeng, Y. Mu, and L. Shao, “Learning reward for
robot skills using large language models via self-
alignment,” arXiv, 2024.

[24] W. Huang et al., “Inner monologue: Embodied reason-
ing through planning with language models,” arXiv,
2022.

[25] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch,
“Language models as zero-shot planners: Extracting
actionable knowledge for embodied agents,” in ICML,
2022.

[26] K. Rana, J. Haviland, S. Garg, J. Abou-Chakra, I.
Reid, and N. Suenderhauf, “Sayplan: Grounding large
language models using 3d scene graphs for scalable
robot task planning,” in CoRL, 2023.

[27] M. Ahn et al., “Do as i can and not as i say: Grounding
language in robotic affordances,” in arXiv, 2022.

[28] B. Liu et al., “Llm+ p: Empowering large language
models with optimal planning proficiency,” in arXiv,
2023.

[29] F. Joublin et al., “Copal: Corrective planning of robot
actions with large language models,” in ICRA, 2024.

[30] I. Singh et al., “Progprompt: Generating situated robot
task plans using large language models,” in ICRA,
2023.

[31] J. Liang et al., “Code as policies: Language model
programs for embodied control,” in arXiv, 2022.

[32] S. Li et al., “Pre-trained language models for interac-
tive decision-making,” NeurIPS, 2022.

[33] T. Silver, S. Dan, K. Srinivas, J. B. Tenenbaum, L.
Kaelbling, and M. Katz, “Generalized planning in pddl
domains with pretrained large language models,” in
AAAI, 2024.

[34] L. P. Kaelbling and T. Lozano-Pérez, “Integrated task
and motion planning in belief space,” IJRR, 2013.

[35] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez,
“From skills to symbols: Learning symbolic represen-
tations for abstract high-level planning,” JAIR, 2018.

[36] T. Silver, A. Athalye, J. B. Tenenbaum, T. Lozano-
Pérez, and L. P. Kaelbling, “Learning neuro-symbolic
skills for bilevel planning,” in CoRL, 2022.

[37] Z. Zhao et al., “A survey of optimization-based task
and motion planning: From classical to learning ap-
proaches,” arXiv, 2024.

[38] M. Fox and D. Long, “Pddl2. 1: An extension to
pddl for expressing temporal planning domains,” JAIR,
2003.

[39] T. Silver et al., “Predicate invention for bilevel plan-
ning,” in AAAI, 2023.

[40] R. Chitnis, T. Silver, J. B. Tenenbaum, T. Lozano-
Perez, and L. P. Kaelbling, “Learning neuro-symbolic
relational transition models for bilevel planning,” in
IROS, 2022.



APPENDIX

A. Pseudocode for Continual Skill Learning

We show the Pseudocode for the overall pipeline:

Algorithm 1 SKILLACQUISITION

input: env (task environment), g (symbolic goal), Ψ̄ (state predicates), Ω̄ (operators
by LLM), R (reward functions by LLM), Π (skill library), Φ (LLM encoder)
start:
O, x(0), s(0) ← env.get_state()
x
(0)
Ψ ← PARSE(x(0),O, Ψ̄) ▷ continuous state to symbolic state

Ω← GROUND(O, Ω̄) ▷ get grounded operators
[ω1, ..., ωL]← SEARCH(x

(0)
Ψ , g,Ω) ▷ found plan with length L

t← 0
while Not Converged do

env.set_state(s(0))
[π

(t)
1 , ..., π

(t)
L ]← RETRIEVE([ω1, ..., ωL],Π) ▷ warm-start initialization

D ← ROLLOUT(env,Ω, [π(t)
1 , ..., π

(t)
L ]) ▷ failed skills and simulator states

if D = ∅ then
break

end if
for s, ω ← D do

env.set_state(s)
π
(t)
i ← Π[Φ(ω)]

π
(t+1)
i ← SAC(env, π(t)

i , ω,Rω) ▷ RL training
Π← Π ∪ {Φ(ω) : π

(t+1)
i }

end for
t← t+ 1

end while
return Π

B. Prompts for Operator Creation

We show a prompt example for operation creation:

Task: Generate preconditions and effects for the "
Pick" action by selecting from the set of all
available predicates. Ensure the output follows
the format [Predicate1, Predicate2, ...].

Important: Each predicate is preceded by crucial
comments in the code - these comments must be
retained and considered carefully while
generating the preconditions and effects.

- Action: "Pick"
- All predicates: {"Holding", "OnTable", "In", ...}
- The code of those predicates are shown below:
...

C. Prompts for Reward Generation

We show a prompt example for reward generation:

Task: Design a reward function for training "Pick"
skill using RL based on the template.

- Skill: "Pick"
- Objects: ["peg", ...]
- Metric functions: ["dis_to_obj", ...]
- The template is defined as:
"""
Reward Template:
{’reward_template’: [[reward score, ’

metric_function(inputs)’], ...]}
Guidelines to complete the reward template:
Select Metric Functions: Choose functions that help

in learning the skill (code provided below).
Assign Reward Scores: Give each chosen function a

score (0.0 to 1.0), with higher scores
indicating greater importance.

"""
- The code of metric functions are shown below:
...

In this example, the metric function dis to obj with
its corresponding code provides semantic information that

helps the LLMs understand its purpose is to move the
gripper closer to an object. Subsequently, the LLM is tasked
with generating dense rewards RD

ω by selecting relevant
metric functions Fω = {f1, f2, ..., fn} ⊆ F and assigning
appropriate weights Vω = {v1, v2, ..., vn}, s.t.

∑n
i=1 vi = 1

to indicate their significance to the reward. The dense reward
is therefore: RD

ω (x
(t)) =

∑
i vi · fi(x(t),Oω), where Oω

defines a group of object entities relevant to operator ω.

D. Baseline Details for LEAGUE Tasks

To assess performance, we compare LG-SAIL against
strong baselines for learning long-horizon tasks in
“StackAtTarget”, “StowHammer”, and “PegInHole”
which are RL(SAC), Curriculum RL (CRL), Hierarchical
RL (HRL), and LEAGUE:
• RL (SAC) - We utilize Soft Actor-Critic (SAC) [11] for

vanilla reinforcement learning baseline;
• Curriculum RL (CRL) - This baseline is adopted

from curriculum RL strategies [16, 17], which starts the
training with near-success initializations and gradually
move the reset states back to the initial task states;

• Hierarchical RL (HRL) - This baseline utilizes recent
HRL frameworks [18, 19], which trains a high-level
meta controller to compose parameterized skill prim-
itives and atomic actions;

• LEAGUE [4] - This baseline reflects the recent trend
of integrating TAMP frameworks with skill learning.
We utilize it for this experiment due to its superior
performance on long-horizon tasks.

E. Validating Skill Generalization and Adaptation

We conduct experiments to validate that our method can
solve novel task goals within the domain and efficiently adapt
existing skills to learn tasks in new domains.
Generalizing to new goals. In addition to training goals for
“PegInHole” and “StowHammer”, we directly evaluate
our framework on new goals. For “StowHammer”, the first
test goal is to swap the hammer-cabinet mapping, while
the second goal is to place hammer1 into cabinet0
while keeping cabinet1 open. For “PegInHole”, the
first test goal is to swap the peg-hole mapping, and the
second goal is to insert peg1 into hole2. The results
are presented in Tab. I. We observe that LG-SAIL exhibits
minimal performance drop when generalizing to new goals
within the domain without additional training, demonstrating
strong compositional generalization capabilities.

TABLE I: Task goal generalization. The results for directly
testing our framework on new task goals in “StowHammer”
and “PegInHole” domains without additional learning.

Training Goal Test Goal1 Test Goal2

“StowHammer” 0.96 ± 0.15 0.91 ± 0.09 0.71 ± 0.28
“PegInHole” 0.92 ± 0.11 0.59 ± 0.14 0.93 ± 0.06

Adapting to new objects and scenes. We aim to
evaluate LG-SAIL’s ability to adapt learned skills to
novel situations using the LIBERO [12] benchmark. The



“LIBERO-Object” set requires the robot to pick up var-
ious target objects and place them into a basket, testing
its ability to adapt to new object shapes and poses. The
“LIBERO-Spatial” set features diverse scene layouts
where the robot must place a target bowl on a plate,
emphasizing generalization to different object poses and
scene configurations. We sequentially test LG-SAIL on tasks
from both “LIBERO-Object” and “LIBERO-Spatial”,
with results shown in Fig. 6. Interestingly, while LG-SAIL
takes some time to learn the initial task, as more skills are
accumulated, the learning of subsequent tasks accelerates
significantly, demonstrating its strong potential for continual
and lifelong learning.

Fig. 6: Continuous skill adaptation and learning. The
learning process is shown for both “LIBERO-Object” and
“LIBERO-Spatial” tasks.
Adapting to new domains. Another advantage of LG-
SAIL is its ability to reuse learned models from other
domains to warm-start the learning of similar skills in
new domains. To validate this, we evaluate LG-SAIL on
“MakeCoffee”. LG-SAIL retrieves skills OpenCabinet
and CloseCabinet from “StowHammer” in the skill li-
brary by using semantic embedding and uses these models to
initialize skill policies. This strategy demonstrates improved
efficiency compared to learning the task from scratch as
shown in Fig. 7.

Fig. 7: Skill adaptation in new domains. For
“MakeCoffee”, we compare learning the task from
scratch and learning by retrieving and adapting the skills
learned from “StowHammer” domain.

TABLE II: Task Planning Comparison. We evaluate the
performance of different designs on “StowHammer”. The
task planning success rate is calculated based on trials where
the skills are correctly generated.

LLM+A∗ LLM LLM 1-shot
Skill Generation 61.0% 59.3% 52%
Task Planning 100% 78.1% 69.2%

Full Design 100% 100% 36%
Average Attempts 1.64 2.16 N/A

F. Ablation Study

We evaluate various design choices for task planning and
reward generation in LG-SAIL.
Task planning. We compare three design choices of using
LLMs for skill generation and planning:

• A∗ Planner (LLM+A∗): This variant is adopted in LG-
SAIL, where LLMs are used for skill generation, and
A∗ search is utilized to find task plan based on the
generated operators. If no valid task plan is found,
the skill generation process is re-invoked to refine the
operators.

• LLM Planner (LLM): Similar to prior works on LLM-
based planning [20, 21], this variant uses LLMs for
both skill operator generation and task planning. If the
generated plan is not executable, the process is re-
invoked to produce a new plan.

• LLM Planner w/o Replanning (LLM 1-shot): This
variant skips task plan validation and invokes skill
generation and task planning only once.

We evaluate “StowHammer” across four aspects: (1)
success rate of generating skill operators with correct pre-
conditions and effects for connecting other skills, (2) success
rate of generating valid plans given correct skills, (3) overall
success rate per design choice, and (4) average number
of attempts. Each variant runs until 25 correct plans are
generated.

Results are in Tab. II. We found that both design choices
with a replanning strategy achieved 100% success rate,
while the LLM 1-shot variant only reached a 36% success
rate. Additionally, the LLM + A∗ approach guarantees a
100% success rate if correct skills are generated, effectively
reducing LLM-based planning hallucinations and minimizing
the number of replanning attempts.
Reward generation. We validate the impact of full metric
functions on reward generation by comparing our approach
(Full MF) to an ablated variant (W/O MI) that provides
only metric function’s header to the LLM. Both are tested
on “StowHammer” over 25 trials, evaluating reward validity
for each skill. Following Xie et al. [7], we classify errors
into four types: (1) Class attribute misuse - incorrect object
selection for metric functions, (2) Attribute hallucination -
referencing non-existent entities, (3) Syntax/format errors
- structural mistakes, and (4) Metric selection errors -
inappropriate function choices for rewards. Success is based



Full MF

W/O MI

0% 25% 50% 75%

Class Attribute Misuse Attribute Hallucination
Syntax/Shape Error Wrong Package Correct

Fig. 8: Error breakdown. We show the error distribution of
reward generation for “StowHammer”.

TABLE III: Reward generation comparison. We compare
reward generation success rates for different skills and the
full task on “StowHammer”.

Full Task Pick Place Open Close

W/O MI 20% 40% 36% 44% 48%
Full MF 92% 96% 96% 100% 100%

on error-free reward generation, not its impact on policy
optimization.

Tab. III presents the reward generation success rates for
“StowHammer”. Our method achieves 92% overall success,
with 96% for Pick and Place, and 100% for Open
and Close. The low error rate underscores its reliability
for long-horizon tasks and potential for lifelong learning.
Fig. 8 illustrates the error distribution across reward gener-
ation strategies. In LG-SAIL, using improved prompts and
detailed metric functions reduces attribute/object selection
errors from 80% to 8%. This emphasizes that structured
information, like quantified object relationships, enhances
LLMs’ scene interpretation and reward accuracy.

RELATED WORK

G. LLMs for Reward Design
Designing effective reward functions has long been a

challenge in reinforcement learning [22]. Recent studies have
investigated using LLMs to generate reward functions [7–9,
14, 23]. While these methods have demonstrated potential
in learning short-horizon skills, their scalability to complex,
long-horizon tasks remains uncertain. Free-form LLM-based
reward generation is prone to hallucinations, often producing
syntax errors and irrelevant content. Moreover, approaches
such as Eureka [8] are time-intensive, requiring multiple
rounds of policy training and evaluation to refine the reward
functions for each individual skill, making them impractical
for long-horizon task learning. Zeng et al. [23] propose a
method that iteratively refines reward functions based on
feedback from the task learning process. However, this trial-
and-error approach can result in delayed convergence and
fluctuating performance, hindering consistent improvements.
We address these limitations by parameterizing object re-
lationships with metric functions, using LLMs to compose
them for efficient, automated dense reward generation.
H. LLMs for Planning and Decision Making

In recent years, LLMs have been widely explored for
robot planning [24–29] and decision-making [30–32]. These
studies demonstrate LLMs’ ability to understand complex

commands, create task plans, and translate natural language
into executable actions. For instance, SayCan [27] uses
LLMs to generate task plans, grounding each skill with
learned control policies, while ProgPrompt [30] prompts
LLMs to generate executable programs that invoke function
calls for robot tasks. Researchers have also explored using
LLMs to solve PDDL planning problems [33], showing that
LLMs can act as generalized planners by generating efficient
programs for tasks within a domain. This finding informs our
approach. Unlike prior methods that generate skill sequences
or programs, we use LLMs’ semantic knowledge to construct
planning domains and guide skill learning in TAMP, enabling
more efficient and robust handling of long-horizon tasks.
I. TAMP and Learning for TAMP

Task and Motion Planning (TAMP) [3, 34] offers a robust
framework for tackling long-horizon tasks in structured en-
vironment settings. In detail, TAMP breaks down complex
planning problems into a sequence of symbolic-continuous
subtasks, which simplifies the optimization for finding so-
lutions. However, the successful deployment of TAMP sys-
tems require well-defined planning domains, which depend
heavily on extensive expert knowledge. To address these
limitations, recent efforts have been made to combine TAMP
with learned models [5, 35–37]. To reduce reliance on
manually engineered low-level skill controllers, researchers
have explored learning low-level skill policies. Mandlekar
et al. [6] proposed a TAMP-gated control mechanism that
selectively transfers control between a human teleoperator
and the robot, using the collected data to train skill poli-
cies and improve the TAMP system. LEAGUE [4] takes
a different approach by leveraging the symbolic interface
of task planners to guide RL-based skill learning, creating
abstract state spaces that enable skill reuse and improve
scalability for long-horizon tasks. However, these approaches
still rely on manually designed symbolic planners for task
decomposition. In this work, we utilize LLMs to integrate
TAMP planning with skill learning, enabling robots to tackle
long-horizon tasks more efficiently and with minimal human
intervention—a step toward continuous and lifelong robot
learning.

BACKGROUND AND PROBLEM SETTING

Planning domain and skill representations. We focus on
deterministic, fully observed tasks that can be described in
PDDL [38], with object-centric states, continuous actions,
and a known transition function. Formally, an environment
can be characterized by a tuple ⟨O,Λ,Ψ,Ω,G⟩. Each ob-
ject entity o ∈ O within the environment (e.g., peg1),
possesses a specific type λ ∈ Λ (such as peg) and a
tuple of dim(λ)-dimensional features containing object state
information such as pose and size. The environment state
x ∈ X is a mapping from object entities to features:
x(o) ∈ Rdim(type(o)). Predicates Ψ̄ describe the relationships
among objects in the environment. Each predicate ψ̄ (e.g.,
Holding(?object:peg)) is characterized by a tuple
of object types (λ1, ..., λm) and a binary classifier that



determines whether the relationship holds: cψ̄ : X ×Om →
{True, False}, where each substitute entity oi ∈ O is
restricted to have type λi ∈ Λ. Each binary classifier is con-
structed through evaluating a set of metric functions Fψ̄ =

{fi} related to this predicate: cψ̄ ≜
∧
fi∈Fψ̄

1[fi ≤ ϵi],
where each metric function fi (e.g., distance) outputs a
real number to quantify the relationships among the query
objects. Evaluating a predicate on the state by substitut-
ing corresponding object entities will result in a ground
atom (e.g., Holding(peg1)). A task goal g ∈ G is
represented as conjunction over a set of ground atoms
(e.g., In(peg1,hole1) ∧ In(peg2,hole2)), where a
symbolic state xΨ can be obtained by evaluating a set of
predicates Ψ̄ and dropping all negative ground atoms.

Each lifted symbolic operator ω̄ ∈ Ω̄ is defined by a tuple
⟨Par,Pre,Eff+,Eff−⟩, where Pre denotes the precon-
dition of the operator, Eff+ and Eff− are lifted atoms that
describe the expected effects (changes in conditions) upon
successful skill execution. Par is an ordered parameter list
that defines all object types used in Pre, Eff+, and Eff−.
An example of Pick operator is defined as:
Pick(?object)
PAR: [?object:peg]
PRE: {HandEmpty(),OnTable(?object)}
EFF−: {HandEmpty(),OnTable(?object)}
EFF+: {Holding(?object)}

A ground skill operator ω substitutes lifted atoms with
object instances: ω = ⟨ω̄, δ⟩ ≜ ⟨Pre,Eff−,Eff+⟩, where
δ : Λ → O. A symbolic task plan is a sequence of
ground operators that, when executed successfully, leads to
an environment state that satisfies the task goal.
MDP. Learning the grounded low-level skills π
for any symbolic operators ω can be formulated
as a Markov Decision Process (MDP) denoted by
⟨X ,A,R(x, a), T (x′|x, a), p(x(0)), γ⟩, with continuous state
space X , continuous action space A, reward function R,
environment transition model T , distribution of initial states
p(x(0)), discount factor γ. The objective for RL training is to
maximize the expected total reward J of the policy π(a|x)
that the agent employs to interact with the environment:
J = Ex(0),x(1),...,x(H)∼π,p(x(0))

[∑
t γ

tR(x(t))
]
.

Problem setting. Our setting is inspired by prior work on op-
erator invention for bi-level planning [39, 40]. However, we
assume only a small set of predefined predicates and metric
functions. For each task goal g, our focus is on automating
operator discovery for long-horizon task decomposition and
learning primitive manipulation skills to accomplish subgoals
induced the corresponding operators. In our setting, each
lifted operator ω̄ will have a corresponding skill policy π
to be learned, while during execution the ground operators
belong to the same lifted operator ω̄ share the same skill
policy.


	Introduction
	Method
	Task Decomposition and Skill Creation
	Reward Generation and Skill Learning
	Continual Skill Acquisition through Integrated Planning and Skill Learning

	Experiment
	Experimental Setup
	Quantitative Evaluation
	Real World Results

	Conclusions
	Pseudocode for Continual Skill Learning
	Prompts for Operator Creation
	Prompts for Reward Generation
	Baseline Details for LEAGUE Tasks
	Validating Skill Generalization and Adaptation
	Ablation Study
	LLMs for Reward Design
	LLMs for Planning and Decision Making
	TAMP and Learning for TAMP


