
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OPTIMIZING LATENT GOAL BY LEARNING FROM TRA-
JECTORY PREFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

A glowing body of work has emerged focusing on instruction-following policies
for open-world agents, aiming to better align the agent’s behavior with human
intentions. However, the performance of these policies is highly susceptible to
the initial prompt, which leads to extra efforts in selecting the best instructions.
We propose a framework named Preference Goal Tuning (PGT). PGT allows an
instruction-following policy to interact with the environment to collect several tra-
jectories, which will be categorized into positive and negative samples based on
preference. A preference optimization algorithm is used to fine-tune the initial
goal latent representation using the collected trajectories while keeping the policy
backbone frozen. The experiment result shows that with minimal data and train-
ing, PGT achieves an average relative improvement of 72.0% and 81.6% over
17 tasks in 2 different foundation policies respectively, and outperforms the best
human-selected instructions. Moreover, PGT surpasses full fine-tuning in the out-
of-distribution (OOD) task-execution environments by 13.4%, indicating that our
approach retains strong generalization capabilities. Since our approach stores a
single latent representation for each task independently, it can be viewed as an ef-
ficient method for continual learning, without the risk of catastrophic forgetting or
task interference. In short, PGT enhances the performance of agents across nearly
all tasks in the Minecraft Skillforge benchmark and demonstrates robustness to the
execution environment.

1 INTRODUCTION

Recently, pre-training foundation policies in open-world environments with web-scale unlabeled
datasets have become an increasingly popular trend in the domain of sequential control(Baker et al.,
2022; Zhang et al., 2022; Collaboration et al., 2024; Brohan et al., 2023a; Yang et al., 2023). These
foundation policies possess broad world knowledge, which can be transferred to downstream tasks.
In the realm of foundation policies, there exists a category known as goal-conditioned policies,
which are capable of processing input goals (instructions) and executing the corresponding tasks
(Ding et al., 2019; Chane-Sane et al., 2021). The goal can be in different modalities, such as text
instructions (Lifshitz et al., 2024), video demonstrations (Cai et al., 2023b), or multi-model instruc-
tions (Cai et al., 2024; Brohan et al., 2023b;a)).

However, much like large language models, these instruction-following policies are highly suscep-
tible to the selection of “prompts”(Lifshitz et al., 2024; Wang et al., 2023b; Kim et al., 2024; Wang
et al., 2023a). Researchers rely on trial and error to find the optimal prompt manually, and some-
times the quality of prompts doesn’t align with human judgment. For instance, OpenVLA (Kim
et al., 2024) shows a large performance gap when using “Pepsi can” compared to “Pepsi” as the
prompt; for the same task of collecting wood logs, GROOT’s performance varies significantly de-
pending on the reference video used. Moreover, it is unclear whether an agent’s failure to complete
a task is due to the foundation policy’s inherent limitations or the lack of a suitable prompt.

A common viewpoint from the LLM community thinks that most of the abilities are learned from the
pre-training phase (Ouyang et al., 2022; Zhao et al., 2023a), while post-training is a method to elicit
these abilities for solving tasks with rather small compute (Ziegler et al., 2020; Touvron et al., 2023;
Lin et al., 2024). In this paper, we follow the roadmap of LLMs to consider post-training for the
goal-conditioned foundation policies, hoping to improve downstream task performance efficiently

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

and effectively. On top of that, we identify several desiderata for the post-training for this type of
policy:

• Improved elicitation of pre-trained abilities. This refers to (1) leveraging a broader range
of abilities and (2) making it easier to harness these abilities, which leads to better perfor-
mance on downstream tasks without the need for labor-intensive prompts.

• Task environment generalization. In open-world settings, a single task may be executed
in vastly different contexts, making the policy’s ability to generalize across environments
crucial.

• Efficient data exploitation. As it’s usually hard or expensive to collect training trajectory
data for open-world foundation policy (Villalobos et al., 2024), the post-training is expected
to be data-efficient. Meanwhile, it’s also important to avoid over-fitting on the small amount
of data.

• Continued adaptation of tasks. The ability to continually learn from experiences in open-
world environments is crucial for generalist AI systems, and thus we expect the open-world
foundation policy can continually learn more skills without degrading general ability.

To achieve these desiderata, we propose a framework named Preference Goal-Tuning (PGT). Firstly,
an initial prompt is provided by humans, which may be suboptimal or not carefully refined. This task
prompt is embedded into a goal latent representation, which is typically a high-dimensional vector.
Next, PGT allows the foundation policy to interact with the environment under the guidance of the
goal latent representation, for a small number of episodes (∼ 102 of trajectories in practice). These
trajectories are then categorized into positive and negative samples based on designed rewards or
human preferences. To elicit the ability from the pre-trained foundation policy, the backbone is fixed
and a preference learning algorithm (Rafailov et al., 2024; Azar et al., 2024; Christiano et al., 2017;
Hong et al., 2024) is applied to fine-tune the goal latent representation via collected trajectories.
This training process can be iterative, as the fine-tuned goal latent representation can be used to
recollect data once again.

We validate PGT in the open-ended Minecraft video game environment (Johnson et al., 2016), with
2 foundation policies and 17 tasks, in both in-distribution and out-of-distribution environments,
showing that this framework can enhance performance for foundation policies across almost all
tasks. For in-distribution settings, we achieved an average improvement of 72.0% and 81.6% in
two different policies: GROOT (Cai et al., 2023b) and STEVE-1 (Lifshitz et al., 2024). For out-of-
distribution settings, the figures are 73.8% and 36.9%. We conduct extensive studies on different
initial prompts and discover that PGT surpasses all human-selected prompts. Finally, we explore the
potential of our method as an efficient approach to continual learning (CL). Since we only need to
store a latent goal representation for each task in CL, our method is computationally light, storage-
tight, with no fear of catastrophic forgetting or task interference in sight.

2 PRELIMINARY

2.1 SEQUENTIAL CONTROL

In sequential control settings, the environment is defined as a Markov Decision Process (MDP)
⟨S,A,R,P, d0⟩, where S is the state space, A is the action space, R : S × A → R is the reward
function, P : S ×A → S is the transition dynamics, and d0 is the initial state distribution. A policy
π(a|s) interacts with the environment starting from s0 ∼ d9. At each timestep t ≥ 0, an action
at ∼ π(a|st) is sampled and applied to the environment, after that, the environment transitions
to st+1 ∼ P(st, at) and return reward r0 ∼ R(st, at). The goal of a policy is to maximize the
expected cumulative reward E[

∑∞
t=0 γ

trt], where γ ∈ (0, 1] is a discount factor.

A goal-conditioned policy can be formulated as π(a|s, g), where g ∈ G is a goal from goal space G.
The target of a goal-conditioned policy is to maximize the expected return E[

∑∞
t=0 γ

trgt], where rgt
is the goal-specific reward achieved at time step t.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 GOAL-CONDITIONED POLICY

GROOT GROOT (Cai et al., 2023b) is a goal-conditioned foundation policy trained on video
data through self-supervised learning with a C-VAE(Sohn et al., 2015) framework. GROOT can
follow video instructions in open-world environments. The instruction is encoded into a latent rep-
resentation by the non-causal encoder, and the policy is a decoder module implemented by a causal
transformer, which decodes the goal information in the latent space and translates it into a sequence
of actions in the given environment states in an auto-regressive manner.

STEVE-1 STEVE-1 (Lifshitz et al., 2024) is also a goal-conditioned policy on Minecraft environ-
ment. STEVE-1 utilizes the goal latent representation of MineCLIP(Fan et al., 2022) to embed the
future result video clip in dataset Andrychowicz et al. (2017), and fine-tunes a VPT model (Baker
et al., 2022) as the policy network under the guidance of the MineCLIP embedding. As a C-VAE
(Sohn et al., 2015) model is trained to predict “future video embedding” from text, STEVE-1 sup-
ports both text and video as instructions.

2.3 PREFERENCE LEARNING

While self-supervised learning models trained with large-scale parameters and data are experts in
encoding knowledge, their outputs do not necessarily meet human intention. An effective solution
is learning from preference-labeled data. Direct Preference Optimization(DPO) (Rafailov et al.,
2024), as one method, serves as a way to directly optimize the model’s outputs based on pair-wise
positive-negative data. For a pair of responses (y1, y2) corresponding to a prompt x, human labelers
express their preference and classify them as win(w) and lose(l), denoted as yw ≻ yl | x. Assuming
we have a foundation model πref and a dataset of preference D =

{
x(i), y

(i)
w , y

(i)
l

}N
i=1

, DPO derives
the optimization objective as:

LDPO(πθ;πref) = E(x,yw,yl)∼D

[
− log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]
. (1)

In addition to the DPO algorithm, IPO (Azar et al., 2024) proposed an improvement, enhancing
the linearity of preference prediction and the fidelity to the reference model’s outputs, KTO (Etha-
yarajh et al., 2024) optimized the model’s output with the consideration of a human psychological
effect prospect theory (Tversky & Kahneman, 1992). ORPO (Hong et al., 2024) further developed
an empirical method for preference learning without a reference model. Previous to these works,
SLiC (Zhao et al., 2022; 2023b) proposed calibration losses that also work empirically well and
some of them are reference-model-free.

3 METHODOLOGY

3.1 PREFERENCE GOAL TUNING

In this section, we propose a novel policy post-training framework named Preference Goal-Tuning
(PGT). This approach achieves significant performance improvements for foundation policies with
minimal data and computational resources. Our method consists of two phases: the data collection
phase and the training phase. An illustration of our method is in Figure 1. The details are as follows:

Data Collection Phase We first select an initial prompt, which may be suboptimal or not care-
fully refined. This initial prompt is embedded into a high-dimensional vector by the encoder of the
goal-conditioned policy. We allow the foundation policy to interact with the environment several
times, collect ∼ 300 synthetic trajectories, and divide them into positive trajectories and negative
trajectories based on human preference or reward from environment.

When utilizing human preference, human annotators are required to label each trajectory as either
positive (preferred) or negative (not preferred) based on their judgment. Since around 100 samples
need to be annotated, the human labor cost remains manageable.

On the other hand, we utilize reward from environment for tasks like collect wood(),
tool bow() and explore chest(). As reward information can be obtained from the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

En
co

de
r

La
te

nt

D
ec

od
erInitial prompt

Trajectories

Environment

Positive
trajectories

Negative
trajectories

Preference

PGT

Backpropagation

“Hunt a sheep”

Figure 1: Pipeline of our Preference Goal Tuning (PGT). The process begins by selecting an initial
prompt (can be video or text), encoding it into a latent representation, and allowing the policy to
interact with the environment multiple times to collect trajectories. These trajectories are then clas-
sified as positive or negative based on human preferences or rewards. Then, the model is fine-tuned
using the collected data, with only the latent goal embedding being trainable. Iterative training is
supported.

Figure 2: Improvements with training iterations of our methods.

Minecraft simulator, we can directly use rewards as a supervisory signal for preference learning
by selecting the top-performing trajectories as positive samples and the bottom-performing ones as
negative samples for training.

Training Phase During the training phase, we adopted a learning approach to obtain an optimal
goal latent representation - only the goal latent representation is trainable. Initially, we only lever-
age positive examples with traditional behavior cloning (BC) loss, but it does not yield the expected
results. Recent studies have emphasized the importance of negative samples (Tajwar et al., 2024),
prompting us to incorporate them into the training data. To reduce the agent’s undesired behaviors
and increase desired behaviors, the positive and negative samples are randomly combined into (win,
lose) pairs for preference learning methods. Following the derivation approach of DPO, we obtained
a loss for PGT in formula (2):

LPGT(g, gref) = −E(τ(w),τ(l))∼D

[
log σ

(
β

T∑
t=1

log
π(a

(w)
t | s(w)

t , g)

π(a
(w)
t | s(w)

t , gref)
− log

π(a
(l)
t | s(l)t , g)

π(a
(l)
t | s(l)t , gref)

)]
.

(2)
Details of derivation lies in Appendix A.1. Other preference learning algorithms such as SLiC (Zhao
et al., 2022; 2023b) and IPO (Azar et al., 2024) are also feasible. Given the small amount of data
and the limited number of trainable parameters, the training phase is relatively low-cost. Since the
sample size is small, we use full gradient descent.

Iterative Training Our method supports iterative training. During the first training loop, the initial
prompt is encoded into a goal latent representation, which we denote as g0. According to 2, we set
gref as g0 and initialize g as g0, then fine-tuning g to g1. We then use g1 to recollect trajectories and
repeat the training loop. Our experiments demonstrate that iterative training continues to improve
performance for up to three rounds. See Figure 2 for iterative training details.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 DESIGN CHOICES

In this section, we address the key design choices of our method and provide a comparative analysis
of relevant baselines to justify why we use negative examples for preference learning and why we
use parameter-efficient fine-tuning.

Utilizing negative samples A straightforward approach is to utilize only self-generated positive
samples for behavior cloning (BC), and some studies have proved filtering and cloning is enough in
many settings (Oh et al., 2018; Gulcehre et al., 2023). However, this approach does not explicitly
indicate “which behaviors should be avoided”, which is conducive to policy optimization (Tajwar
et al., 2024). Incorporating negative data helps the policy distinguish between desirable and undesir-
able behaviors. As a comparison, we trained a version of the BC algorithm (with double data size of
the positive samples to control the total amount of data) and conducted experiments with both soft
prompt fine-tuning and full fine-tuning, and the results are listed in Table 1. We notice that when
using BC algorithm, performance even declines in 3 out of 4 tasks in soft prompt fine-tuning.

Table 1: Performance improvements of the PGT-Loss over BC-Loss.

Task
Soft Prompt Full Fine-Tuning

Pretained BC-Loss PGT-Loss Pretained BC-Loss PGT-Loss

collect wood 3.14 3.28 3.62 3.14 3.26 3.46
obsidian 42.0 18.2 57.2 42.0 15.0 62.2

explore mine 4.91 4.76 6.58 4.91 4.80 6.00
tool pumpkin 48.3 45.4 57.8 48.3 48.6 58.4

Tuning goal latent representation only We compare the results of fine-tuning goal latent rep-
resentation only and its counterpart that fine-tuning the entire policy model. There are two main
reasons why we only fine-tune goal latent representation. First, fine-tuning the goal latent offers
strong interpretability. For a goal-conditioned foundation policy trained through supervised learn-
ing with large datasets, the latent goal space usually holds abundant semantic meanings. However,
since the human intention behind the instruction and the embedding in the goal space do not always
align, the instructions selected by humans might not map well to the optimal latent representation
in the goal space. Our method aims to obtain the optimal representation in goal space through a
small amount of training. Second, due to the limited amount of data, full-parameter fine-tuning
is highly prone to overfitting the training execution environment. For example, in Minecraft, task
collect wood() requires the agent to collect logs from trees, regardless of the biome, seed, and
initial location. With a small amount of training data, full-parameter fine-tuning tends to memorize
environment-specific information to minimize the loss, which may result in reduced generalization
ability.

The experimental results are consistent with our expectations. We find that in environments iden-
tical to the data collection phase (in-distribution environments, ID), soft-prompt tuning achieves
comparable results to full fine-tuning. However, when rolling out in a different setting for the same
task (out-of-distribution environments, OOD), the soft prompt method outperformes the full fine-
tuning across all tasks. Detailed results are in Fig 3, and detailed numerical results are provided in
Appendix C.2. The design of OOD settings is in Appendix B.4.

4 EXPERIMENTS

We select open-world Minecraft as the test bed to evaluate our methods (Lin et al., 2023; Fan et al.,
2022). The tasks are selected from Minecraft SkillForge benchmark (Cai et al., 2023b). This bench-
mark covers over 30 diverse and representative tasks from 6 major categories. We put the details
of this benchmark in Appendix B.2. Through our experiments, the following contributions of our
method are verified:

• PGT remarkably improves the performance of two foundation policies, surpassing the best
human-selected prompt.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: Comparison between full finetuning and PGT. Upper: In Distribution(ID). Lower: Out of
Distribution(OOD).

Figure 4: Different initial prompt results. Each line graph represents a different prompt, and the
horizontal line represents the performance of the best human-selected prompt.

• PGT serves as an efficient continual learning method.

• PGT improves long-horizon task performance with a combination of planner and controller.

• PGT elicits skills that were not achievable with traditional prompts.

4.1 BOOSTING PERFORMANCE OVER PROMPT TUNING

Our approach significantly improves the instruction-following capability of the model. By fine-
tuning specific aspects of the model’s behavior, we achieve greater task performance compared to
traditional prompt engineering techniques, which rely on manually crafted inputs. We discard tasks
in Minecraft SkillForge that are too difficult (with zero success rate), or too easy (with a 100%
success rate and the specific value of the reward is meaningless).

We experimented with two foundation policies, GROOT and STEVE-1, in both in-distribution (ID)
and out-of-distribution (OOD) settings. The modifications made to the OOD settings compared to
the ID settings are detailed in Appendix B.4. For in-distribution settings, we achieved an average
improvement of 72.0% and 81.6% in GROOT and STEVE-1 respectively. For out-of-distribution
settings, the growths are 73.8% and 36.9%. Results showed improvements for both models in both
two settings across nearly all 17 tasks, with a particularly significant improvement in tasks like
collect dirt(), craft crafting table(), tool flint (). Detailed results can
be found in Table 2.

Different Initial Prompts To validate the robustness of our method, we chose a representative
task collect wood(), and selected 5 different initial prompts and performed iterative training
on each. We found that, regardless of the initial prompt, the results after iterative training consis-
tently outperformed the best human-selected reference video. This implies that for nearly any initial
prompt, our method consistently surpasses even a carefully selected initial prompt by a human. We
present the result in Figure 4.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Success rates for different methods on tasks in Minecraft SkillForge. ∆ represents the
relative improvements of success rate between policy before and after post-training. GRO and STE
represent the base policy of GROOT and STEVE-1 respectively. For tasks evaluated by success rate,
the percentage sign (%) is omitted; the same applies to other parts of this paper.

In Distribution Out of Distribution
Task

GRO GRO+ ∆ STE STE+ ∆ GRO GRO+ ∆ STE STE+ ∆

wood 3.14 3.62 15.3% 3.73 3.90 4.6% 3.88 4.22 8.8% 4.22 4.29 1.7%
dirt 27.0 62.8 132.6% 16.3 36.4 123.3% 15.4 54.6 254.5% 30.4 48.0 57.9%

wool 30.4 40.8 34.2% 43.3 56.6 30.7% 34.0 41.6 22.4% 45.6 60.2 32.0%
seagrass 20.2 20.8 3.0% 4.2 21.8 419.0% 7.8 9.4 20.5% 41.4 49.0 18.4%

stonecutter 31.0 44.6 43.9% 14.1 19.0 34.8% 20.0 23.4 17.0% 36.2 48.4 33.7%
ladder 5.4 10.4 92.6% 30.9 40.2 30.1% 4.4 9.6 118.2% 29.6 41.2 39.2%

enchant 15.0 18.4 22.7% 0 0 - 19.4 21.8 12.4% 0 0 -
crafting table 5.4 14.6 170.4% 4.0 9.6 140.0% 6.0 18.4 206.7% 2.0 6.4 220.0%

mine 4.91 6.58 34.0% 6.46 7.32 13.3% 3.9 5.38 37.9% 3.49 5.37 53.9%
chest 15.7 21.2 35.0% 3.4 4.2 23.5% 38.4 38.2 -0.5% 0.5 0.6 20.0%
hunt 31.2 39.8 27.6% 2.9 1.0 -65.5% 20.8 21.6 3.8% 1 0.2 -80.0%

combat 31.7 36.6 15.5% 0 0 - 83.4 85.6 2.6% 0 0 -
plant 2.71 3.09 14.0% 1.74 1.81 4.0% 2.85 3.11 9.1% 1.79 1.94 8.4%

pumpkin 48.3 57.8 19.7% 1.3 6.2 376.9% 16.6 25.8 55.4% 7.6 14.0 84.2%
bow 77.4 85.8 10.9% 88.9 97.8 10.0% 77.4 90.6 17.1% 65.2 88.0 35.0%
flint 1.2 7.4 516.7% 73.6 76.6 4.1% 1.2 5.8 383.3% 48.0 52.0 8.3%

obsidian 42.0 57.2 36.2% 0.4 0.7 75.0% 4.2 8.2 95.2% 0 0 -

4.2 EFFICIENT CONTINUAL LEARNING

Our method is an efficient approach to continual learning, as it requires only minimal training for
each task, followed by storing a high-dimensional latent (typically consisting of a few hundred
floating-point values) as a task representation. As a result, our method avoids issues like catastrophic
forgetting and task interference.

We compare PGT with multiple continual learning baselines: multi-task learning (MTL), naive
continual learning(NCL), knowledge distillation (KD) (Hinton et al., 2015), experience replay (ER)
(Lopez-Paz & Ranzato, 2022), elastic weight consolidation (EWC) (Kirkpatrick et al., 2017). It’s
worth mentioning that every continual learning baseline is conducted under full fine-tuning, which
has a parameter size several orders of magnitude times larger than ours. We first implemented the
multi-task learning (MTL) baselines on six representative tasks, with the results presented in Table
3. We find that, similar to the results of full-parameter fine-tuning, our method achieved comparable
performance to MTL in ID settings, while surpassing MTL in OOD settings.

We experiment in the following order: collect obsidian() → tool pumpkin() →
craft crafting table() → explore climb(). The result after continual learning 4
tasks is in Table 4, and we place the detailed result of continual learning after each task in Appendix
C.4. We conduct experiments of naive continual learning (NCL) (Table 10), knowledge distillation
(KD)(Table 11), experience replay (ER)(Table 12), and elastic weight consolidation (EWC) (Table
13).

Experiment results show that in addition to being more efficient in terms of computational resources
and storage, our method excels in handling diverse tasks, demonstrating superior generalization
capabilities. In out-of-distribution settings, we outperform the ensemble in each of the 6 tracks, and
we achieve comparable results to MTL.

4.3 SOLVING LONG-HORIZON CHALLENGES WITH PLANNER

It is a common approach to combine a high-level planner and a low-level controller for functionality
and versatility. We combine the GROOT agent with JARVIS-1 planner (Wang et al., 2023b), trying
to craft items from scratch spawning in a forest with random initial orientation and angle. JARVIS-1
also offers an API script for crafting items. We give the agent 1000 timesteps to run and select five
representative items in the wood-related tech tree. We observe improvements in long-horizon task

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Multitask learning on Minecraft different tasks.

Task
In Distribution(ID) Out of Distribution(OOD)

pretrained ensemble MTL Ours pretrained ensemble MTL Ours

collect wood 3.14 3.46 3.64 3.62 3.88 4.04 4.30 4.22
craft stonecutter 31.0 62.2 66.8 44.6 20.0 21.2 18.6 23.4

explore mine 4.91 6.00 5.98 6.58 3.90 4.77 4.70 5.38
survive hunt 31.2 39.8 44.2 39.8 20.8 21.0 31.4 21.6
tool pumpkin 48.3 58.4 61.4 57.8 16.6 22.2 22.8 25.8

collect obsidian 42.0 62.2 53.2 57.2 4.2 6.0 10.2 8.2

Table 4: Different continue learning baselines.

Task
In Distribution(ID) Out of Distribution(OOD)

ER EWC KD NCL PGT ER EWC KD NCL PGT
collect obsidian 60.2 64.6 66.8 61.2 57.2 6.0 5.4 5.4 6.8 8.2
tool pumpkin 65.4 60.0 60.8 61.4 57.8 25.0 23.8 20.6 20.4 25.8

craft table 8.6 6.8 6.8 7.2 14.6 9.0 7.4 5.8 7.0 18.4

performance compared to the baseline, which is shown in Table 5. This finding demonstrates the
soft prompts trained with PGT have strong robustness and environmental generalization, and have
the potential to serve as a bridge between the planner and the controller in the policy post-training
stage.

4.4 ELICITING NEW SKILLS

For task tool trident(), given standard gameplay videos, the agent was unable to complete
the task. As a result, the standard PGT pipeline cannot collect positive data. Instead, we recorded 20
trajectories by humans and trained with behavior cloning. Even though the success rate was still low,
we found several success examples, meaning that the agent acquired the ability to complete the task.
This implies that during the pretraining phase, the agent already possessed the ability to complete the
task, but lacked the appropriate prompt to elicit this ability. Our method, through minimal training
on the soft prompt, successfully activated this capability.

4.5 ABLATION STUDY ON PEFT METHODS

We compare our method with other parameter-efficient fine-tuning (PEFT) methods: LoRA (Hu
et al., 2021), BitFit (Zaken et al., 2022) and VeRA (Kopiczko et al., 2024). We still utilize P-N sam-
ples for PGT for all of them fine-tuning the entire model. We found that our method performed well
among the four methods. Moreover, in task expore mine() and collect obsidian(),
LoRA fine-tuning also demonstrated promising results. The result is in Figure 5, and the numerical
result is in Appendix C.3.

Table 5: Long Horizon Task: Craft object from scratch. The numbers represent success rate (%)

Task Wooden Stick Wooden Sword Oak Boat Oak Wood Large Chest
Pretrain 99.5 94.0 80.7 60.8 37.8

PGT 100 100 89.5 80.7 64.9

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: Result of different parameter efficient methods. The horizontal line indicates pretraining
performance. Upper: ID. Lower: OOD.

5 RELATED WORK

5.1 FOUNDATION MODELS FOR DECISION-MAKING

Foundation models have gained huge success in the field of language (Brown et al., 2020; OpenAI,
2024) and vision (He et al., 2016; Kirillov et al., 2023), and an increasing number of studies are
exploring the potential of foundation models in sequential control (Yang et al., 2023; Zhang et al.,
2023; Wang et al., 2023a; Cai et al., 2023a; Cheng et al., 2024). VPT (Baker et al., 2022) is a foun-
dation policy pretrained by video data behavior cloning and fine-tuned by reinforcement learning,
which is capable of obtaining diamonds from scratch in Minecraft. Lifshitz et al. (2024) adapted the
VPT model to following human instructions under the guidance of MineCLIP (Fan et al., 2022) and
Cai et al. (2023b) started from scratch to train a Minecraft instruction-following agent controlled by
the CVAE posterior distribution, which solves a variety of tasks in the open-world environment. In
the field of robotics, there are also many foundation policies like BC-Z (Jang et al., 2022), GATO
(Reed et al., 2022), RT-1 (Brohan et al., 2023b), RT-2 (Brohan et al., 2023a) and VQ-BeT (Lee et al.,
2024).

5.2 PREFERENCE LEARNING

Directly obtaining high-quality human annotations, such as expert numerical ratings (Akrour et al.,
2014; Fürnkranz et al., 2012), or expert demonstrations (Silver et al., 2016), is often extremely time-
consuming, labor-intensive, and brain-consuming to annotators (Knox & Stone, 2009). Fortunately,
the cost is greatly reduced by letting them label pairs or groups of data with simply their prefer-
ences Christiano et al. (2017). As a fruitful method to leverage more low-annotation-difficulty data,
preference learning has been studied extensively in recent years. Christiano et al. (2017); Ziegler
et al. (2020); Ouyang et al. (2022) utilized preference data to teach a reward model, and conducted
reinforcement learning on sequential decision-making games or language modeling, demonstrating
the efficiency and wide application of preference learning. These methods rely on another model
for simulating the reward function and on-policy data. Therefore, some simpler alternatives that
do not require reinforcement learning soon emerged (Rafailov et al., 2024; Azar et al., 2024; Meng
et al., 2024) or even without reference model for regularization (Hong et al., 2024). Even though
these methods do not strictly demand on-policy data, researchers (Tajwar et al., 2024) found that
preference pairs generated by the current policy can improve fine-tuning efficiency.

6 LIMITATIONS AND FUTURE WORK

PGT has shown remarkable capability in improving task performance. However, it still has some
limitations and untapped potential awaiting further exploration.

Limitations PGT requires multiple interactions with the environment to obtain positive and neg-
ative samples. While this is feasible in simulated environments like Minecraft, in other domains,
such as robotics, the cost of interacting with the environment can be very high, or opportunities for

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

interaction may be limited (due to the risk of damage to the robots). In such cases, PGT may not be
suitable.

Potentials Our method holds significant potential. First, all of our experiments were conducted in
the Minecraft environment, but there are many instruction-following policies in the robotics domain
as well. We believe that PGT could also achieve promising results in robotics. Second, the current
experiments only cover several simple long-horizon tasks, like building a large chest from scratch.
We are thrilled to explore how PGT can help solve longer and more complex tasks in Minecraft, like
the ultimate goal: killing the ender dragon.

7 CONCLUSION

We have introduced a framework named Preference Goal-Tuning (PGT), which is an efficient post-
training method for foundation policies. It utilizes a small amount of human preference data to
fine-tune goal latent in goal-conditioned policies. PGT significantly enhances the capability of
the foundation policy with minimal data and training, easily surpassing the best human-selected
instructions. Our method also demonstrates the potential for acquiring new skills and serving as an
efficient method for continual learning.

REFERENCES

Riad Akrour, Marc Schoenauer, Michèle Sebag, and Jean-Christophe Souplet. Programming by
feedback. In International Conference on Machine Learning, volume 32, pp. 1503–1511. JMLR.
org, 2014.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. Advances in neural information processing systems, 30, 2017.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland,
Michal Valko, and Daniele Calandriello. A general theoretical paradigm to understand learn-
ing from human preferences. In International Conference on Artificial Intelligence and Statistics,
pp. 4447–4455. PMLR, 2024.

Bowen Baker, Ilge Akkaya, Peter Zhokhov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos, 2022. URL https://arxiv.org/abs/2206.11795.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu,
Montse Gonzalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alexander
Herzog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov,
Yuheng Kuang, Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Hen-
ryk Michalewski, Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista Reymann, Michael Ryoo,
Grecia Salazar, Pannag Sanketi, Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricut,
Huong Tran, Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan Welker, Paul Wohlhart,
Jialin Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich. Rt-
2: Vision-language-action models transfer web knowledge to robotic control, 2023a. URL
https://arxiv.org/abs/2307.15818.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, Julian Ibarz, Brian
Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil J Joshi, Ryan Julian, Dmitry Kalash-
nikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deek-
sha Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez,
Karl Pertsch, Jornell Quiambao, Kanishka Rao, Michael Ryoo, Grecia Salazar, Pannag Sanketi,
Kevin Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan, Huong Tran, Vin-
cent Vanhoucke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu,
and Brianna Zitkovich. Rt-1: Robotics transformer for real-world control at scale, 2023b. URL
https://arxiv.org/abs/2212.06817.

10

https://arxiv.org/abs/2206.11795
https://arxiv.org/abs/2307.15818
https://arxiv.org/abs/2212.06817

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Shaofei Cai, Zihao Wang, Xiaojian Ma, Anji Liu, and Yitao Liang. Open-world multi-task control
through goal-aware representation learning and adaptive horizon prediction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13734–13744, 2023a.

Shaofei Cai, Bowei Zhang, Zihao Wang, Xiaojian Ma, Anji Liu, and Yitao Liang. Groot: Learning
to follow instructions by watching gameplay videos, 2023b.

Shaofei Cai, Bowei Zhang, Zihao Wang, Xiaojian Ma, Anji Liu, and Yitao Liang. GROOT-1.5:
Learning to follow multi-modal instructions from weak supervision. In Multi-modal Foundation
Model meets Embodied AI Workshop @ ICML2024, 2024. URL https://openreview.
net/forum?id=zxdi4Kdfjq.

Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. Goal-conditioned reinforcement learning
with imagined subgoals. In International conference on machine learning, pp. 1430–1440.
PMLR, 2021.

Yuheng Cheng, Ceyao Zhang, Zhengwen Zhang, Xiangrui Meng, Sirui Hong, Wenhao Li, Zihao
Wang, Zekai Wang, Feng Yin, Junhua Zhao, et al. Exploring large language model based intelli-
gent agents: Definitions, methods, and prospects. arXiv preprint arXiv:2401.03428, 2024.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Embodiment Collaboration et al. Open x-embodiment: Robotic learning datasets and rt-x models,
2024. URL https://arxiv.org/abs/2310.08864.

Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-conditioned imitation
learning. Advances in neural information processing systems, 32, 2019.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew
Tang, De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended em-
bodied agents with internet-scale knowledge. In Thirty-sixth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2022. URL https://openreview.
net/forum?id=rc8o_j8I8PX.

Johannes Fürnkranz, Eyke Hüllermeier, Weiwei Cheng, and Sang-Hyeun Park. Preference-based
reinforcement learning: a formal framework and a policy iteration algorithm. Machine learning,
89:123–156, 2012.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced self-training
(rest) for language modeling. arXiv preprint arXiv:2308.08998, 2023.

William H. Guss, Brandon Houghton, Nicholay Topin, Phillip Wang, Cayden Codel, Manuela
Veloso, and Ruslan Salakhutdinov. Minerl: A large-scale dataset of minecraft demonstrations,
2019. URL https://arxiv.org/abs/1907.13440.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

11

https://arxiv.org/abs/2005.14165
https://openreview.net/forum?id=zxdi4Kdfjq
https://openreview.net/forum?id=zxdi4Kdfjq
https://arxiv.org/abs/2310.08864
https://openreview.net/forum?id=rc8o_j8I8PX
https://openreview.net/forum?id=rc8o_j8I8PX
https://arxiv.org/abs/1907.13440

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.
URL https://arxiv.org/abs/1503.02531.

Jiwoo Hong, Noah Lee, and James Thorne. Reference-free monolithic preference optimization with
odds ratio. arXiv preprint arXiv:2403.07691, 2024.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey Levine,
and Chelsea Finn. Bc-z: Zero-shot task generalization with robotic imitation learning, 2022. URL
https://arxiv.org/abs/2202.02005.

Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. The malmo platform for artifi-
cial intelligence experimentation. In Ijcai, volume 16, pp. 4246–4247, 2016.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
Segment anything, 2023. URL https://arxiv.org/abs/2304.02643.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis
Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic
forgetting in neural networks. Proceedings of the National Academy of Sciences, 114(13):
3521–3526, March 2017. ISSN 1091-6490. doi: 10.1073/pnas.1611835114. URL http:
//dx.doi.org/10.1073/pnas.1611835114.

W Bradley Knox and Peter Stone. Interactively shaping agents via human reinforcement: The tamer
framework. In Proceedings of the fifth international conference on Knowledge capture, pp. 9–16,
2009.

Dawid J. Kopiczko, Tijmen Blankevoort, and Yuki M. Asano. Vera: Vector-based random matrix
adaptation, 2024. URL https://arxiv.org/abs/2310.11454.

Seungjae Lee, Yibin Wang, Haritheja Etukuru, H Jin Kim, Nur Muhammad Mahi Shafiullah, and
Lerrel Pinto. Behavior generation with latent actions. arXiv preprint arXiv:2403.03181, 2024.

Shalev Lifshitz, Keiran Paster, Harris Chan, Jimmy Ba, and Sheila McIlraith. Steve-1: A generative
model for text-to-behavior in minecraft. Advances in Neural Information Processing Systems, 36,
2024.

Haowei Lin, Zihao Wang, Jianzhu Ma, and Yitao Liang. Mcu: A task-centric framework for open-
ended agent evaluation in minecraft. arXiv preprint arXiv:2310.08367, 2023.

Haowei Lin, Baizhou Huang, Haotian Ye, Qinyu Chen, Zihao Wang, Sujian Li, Jianzhu Ma, Xiaojun
Wan, James Zou, and Yitao Liang. Selecting large language model to fine-tune via rectified
scaling law. arXiv preprint arXiv:2402.02314, 2024.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning,
2022. URL https://arxiv.org/abs/1706.08840.

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
reference-free reward. arXiv preprint arXiv:2405.14734, 2024.

Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning. In International
conference on machine learning, pp. 3878–3887. PMLR, 2018.

OpenAI. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

12

https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2202.02005
https://arxiv.org/abs/2304.02643
http://dx.doi.org/10.1073/pnas.1611835114
http://dx.doi.org/10.1073/pnas.1611835114
https://arxiv.org/abs/2310.11454
https://arxiv.org/abs/1706.08840
https://arxiv.org/abs/2303.08774

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
2024. URL https://arxiv.org/abs/2305.18290.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom
Eccles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Had-
sell, Oriol Vinyals, Mahyar Bordbar, and Nando de Freitas. A generalist agent, 2022. URL
https://arxiv.org/abs/2205.06175.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation us-
ing deep conditional generative models. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 28. Cur-
ran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper_files/
paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf.

Fahim Tajwar, Anikait Singh, Archit Sharma, Rafael Rafailov, Jeff Schneider, Tengyang Xie, Ste-
fano Ermon, Chelsea Finn, and Aviral Kumar. Preference fine-tuning of llms should leverage
suboptimal, on-policy data. arXiv preprint arXiv:2404.14367, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Amos Tversky and Daniel Kahneman. Advances in prospect theory: Cumulative representation of
uncertainty. Journal of Risk and uncertainty, 5:297–323, 1992.

Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, and Marius Hobbhahn.
Will we run out of data? limits of llm scaling based on human-generated data, 2024. URL
https://arxiv.org/abs/2211.04325.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, Yitao Liang, and Team Craft-
Jarvis. Describe, explain, plan and select: interactive planning with large language models enables
open-world multi-task agents. In Proceedings of the 37th International Conference on Neural In-
formation Processing Systems, pp. 34153–34189, 2023a.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jinbing Hou, Bowei Zhang, Haowei Lin,
Zhaofeng He, Zilong Zheng, Yaodong Yang, Xiaojian Ma, and Yitao Liang. Jarvis-1: Open-
world multi-task agents with memory-augmented multimodal language models. arXiv preprint
arXiv: 2311.05997, 2023b.

Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter Abbeel, and Dale Schuurmans. Foundation
models for decision making: Problems, methods, and opportunities, 2023. URL https://
arxiv.org/abs/2303.04129.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-
tuning for transformer-based masked language-models, 2022. URL https://arxiv.org/
abs/2106.10199.

Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang, Guanghe Li, Yihang Sun, Cheng Zhang, Zhaowei
Zhang, Anji Liu, Song-Chun Zhu, et al. Proagent: Building proactive cooperative ai with large
language models. CoRR, 2023.

13

https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2205.06175
https://proceedings.neurips.cc/paper_files/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://arxiv.org/abs/2211.04325
https://arxiv.org/abs/2303.04129
https://arxiv.org/abs/2303.04129
https://arxiv.org/abs/2106.10199
https://arxiv.org/abs/2106.10199

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Qihang Zhang, Zhenghao Peng, and Bolei Zhou. Learning to drive by watching youtube videos:
Action-conditioned contrastive policy pretraining, 2022. URL https://arxiv.org/abs/
2204.02393.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023a.

Yao Zhao, Misha Khalman, Rishabh Joshi, Shashi Narayan, Mohammad Saleh, and Peter J
Liu. Calibrating sequence likelihood improves conditional language generation. arXiv preprint
arXiv:2210.00045, 2022.

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-hf:
Sequence likelihood calibration with human feedback. arXiv preprint arXiv:2305.10425, 2023b.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences, 2020.
URL https://arxiv.org/abs/1909.08593.

A MATHEMATICAL DERIVATION

A.1 PGT LOSS

Our PGT method is based on preference learning with a sequential decision-making process. Our
policy is formulated as π(τ |g), meaning the probability of generating trajectory τ under latent goal
g. Assume τ = (st, at)

N−1
t=0 is a N step trajectory , π(τ |g) can be expanded as:

π(τ |g) =
N−1∏
i=0

π(ai|si, g)p(si+1|st, at) (3)

Generally, we want to utilize human preference to finetune our policy. Take DPO as an example,
“preference” is assumed to be generated by an oracle reward function r∗(τ), which is inaccessible.
r∗(τ) represents how well trajectory τ performs the task. The better y performs, the higher r∗(τ) is.
Even though we cannot obtain this oracle reward in practice, we can still set it as our objective:

max
g

Eτ∼π(τ |g)
[
r∗(τ)

]
− βDKL

[
π(τ |g) || π(τ |gref)

]
(4)

Here g is the latent goal, which is trainable, and gref is the initial goal latent. The first term is to
maximize the reward, and the second term is to constrain the trained g such that it does not deviate
too far from gref . By applying the same derivation method as DPO, we have:

max
g

Eτ∼π(τ |g)
[
r∗(τ)

]
− βDKL

[
π(τ |g) || π(τ |gref)

]
(5)

=max
g

Eτ∼π(τ |g)
[
r∗(τ)− β log

π(τ ; g)

π(τ ; gref)

]
(6)

=max
g

Eτ∼π(τ |g)
[r∗(τ)

β
− log

π(τ |g)
π(τ |gref)

]
(7)

=min
g

Eτ∼π(τ |g)
[
−r∗(τ)

β
+ log

π(τ |g)
π(τ |gref)

]
(8)

=min
g

Eτ∼π(τ |g)
[
log

π(τ |g)
exp(r

∗(τ)
β)π(τ |gref)

]
(9)

=min
g

Eτ∼π(τ |g)
[
log

π(τ |g)
1
Z exp(r

∗(τ)
β)π(τ |gref)

− logZ
]

(10)

(11)

14

https://arxiv.org/abs/2204.02393
https://arxiv.org/abs/2204.02393
https://arxiv.org/abs/1909.08593

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

where Z =
∑

τ π(τ |gref) exp
(

r∗(τ)
β

)
. We define g∗ that satisfied

π(τ |g∗) =
exp(r

∗(τ)
β)π(τ |gref)

Z
(12)

The training object becomes:

min
g

Eτ∼π(τ |g)
[
log

π(τ |g)
1
Z exp(r

∗(τ)
β)π(τ |gref)

− logZ
]

(13)

=min
g

Eτ∼π(τ |g)
[
log

π(τ |g)
π(τ |g∗)

− logZ
]

(14)

=min
g

DKL(π(τ |g)||π(τ |g∗))− logZ (15)

So we can obtain closed-form optimal solution:

π(τ |g) = π(τ |g∗) =
exp(r

∗(τ)
β)π(τ |gref)

Z
(16)

q (17)

Consider the Bradly-Terry(BT) model:

p(τ1 ≻ τ2) =
exp (r(τ1))

exp (r(τ1)) + exp (r(τ2))
. (18)

fill Eq. 17 into Eq. 18, we have:

p(τ1 ≻ τ2) = σ

(
β log

π(τ1|g∗)
π(τ1|gref)

− β log
π(τ2|g∗)
π(τ2|gref)

)
. (19)

Decompose τ into factors, filling in equation 3, we can get:

log p(τ (w) ≻ τ (l)) (20)

= log σ

(
β

T∑
t=1

log
π(a

(w)
t | s(w)

t , g∗)

π(a
(w)
t | s(w)

t , gref)
− log

π(a
(l)
t | s(l)t , g∗)

π(a
(l)
t | s(l)t , gref)

)
. (21)

Finally, our optimization objective becomes:

LPGT(g, gref) = −E(τ(w),τ(l))∼D

[
log σ

(
β

T∑
t=1

log
π(a

(w)
t | s(w)

t , g)

π(a
(w)
t | s(w)

t , gref)
− log

π(a
(l)
t | s(l)t , g)

π(a
(l)
t | s(l)t , gref)

)]
.

(22)

B EXPERIMENT DETAILS

B.1 MINECRAFT

Minecraft is a popular sandbox game that allows players to freely create and explore their world.
Since Minecraft is an open-world environment, many recent works have designed agents and con-
ducted explorations within Minecraft (Johnson et al., 2016). In this work, we conduct experiments
on 1.16.5 version MineRL (Guss et al., 2019) and MCP-Reborn.

B.2 MINECRAFT SKILLFORGE BENCHMARK

Minecraft SkillForge Benchmark is a comprehensive task suite that covers various types of tasks in
Minecraft. All tasks are categorized into six major groups:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

• Collect task: these tasks are designed to evaluate an AI agent’s capability in resource ac-
quisition proficiency and spatial awareness.

• Craft task: these tasks are designed to shed light on an AI agent’s prowess in item uti-
lization, the intricacies of Minecraft crafting mechanics, and the nuances of various game
mechanic interactions.

• Explore task: these tasks are designed to evaluate an AI agent’s navigation proficiency,
understanding of diverse environments, and intrinsic motivation for exploration.

• Survive task: these tasks are designed to analyze an AI agent’s ability to ensure its survival,
adeptness in combat scenarios, and capability to interact with the environment to meet basic
needs.

• Tool task: these tasks are designed to deeply investigate an AI agent’s capabilities in tool
utilization, precision in tool handling, and contextual application of various tools to carry
out specific tasks.

• Build task: these tasks are devised to evaluate an AI agent’s aptitude in structural reasoning,
spatial organization, and its capability to interact with and manipulate the environment to
create specific structures or outcomes.

B.3 TASK METRICS AND SELECTION

For most tasks, the environment logs the rewards when the corresponding objectives are achieved.
We define tasks with a reward function greater than 0 as successful, and the frequency of suc-
cessfully completing a task is referred to as the success rate. However, tasks like “collect wood”
“explore mine” and “survive plant” have a success rate of over 95% across different agents, and
the specific values of the reward function are meaningful, reflecting the agents’ capabilities in these
tasks, so we use the detailed reward value as the metric.

We removed the tasks that are too easy that agents can perform a success rate of 100% while the
specific value of the reward is either high enough (e.g. collect grass) or not meaningful (e.g. sur-
vive sleep). Also, to simplify the experiment, We removed the tasks for which the reward function
cannot be directly obtained from the game, including subjective tasks (e.g. building tasks) and objec-
tive tasks where the environment does not log explicit rewards (e.g. craft smelt). Moreover, mining
obsidian is a high requirement for the agent’s sensitivity to the objectives, and the agent needs to stay
focused on the same goal over extended time steps to perform useful actions; therefore, we consider
this task to be quite important and add it to the testing tasks apart from Minecraft SkillForge.

B.4 OUT-OF-DISTRIBUTION SETTINGS

We designed the out-of-distribution (OOD) setting with the goal of preventing the policy from over-
fitting to the environment and relying on it to dictate behavior. Thus, without altering the core
meaning of the tasks, we made the following modifications to create the OOD setting:

• Seed and agent location We change the seed and spawn location in the Minecraft world to
perform the same task, and then the initial observation will not be identical to the training
set.

• Biome We change the biome of the agent while keeping the task solvable. For example,
change biome from plains to forest of task tool pumpkin.

• Tool We modified the auxiliary tools while ensuring the tasks remained solvable. For ex-
ample, in the survive hunt, we replaced the iron sword with diamond axe.

• Object location We change the location of the object that the agent needs to interact with.
For example, we changed the position of the stonecutter from being held in the hand to
being placed in front of the agent.

For each task, we applied one or more of the aforementioned OOD modifications. It is important to
note that the absolute performance in the OOD setting is not directly comparable to the baseline, as
the tasks may become either easier or harder in the OOD environment.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 6: Different hyperparameter β in task Collect Wood.

B.5 HYPERPARAMETERS

Our training hyperparameters are listed in Table 6. We conducted a hyperparameter search on the
”collect wood” task and used the same set of hyperparameters for all the other tasks. We visualized
the performance of the ”collect wood” task under different values of β. The result can be seen in
Fig 6 The results showed similar performance when β ≥ 0.2.

Table 6: Hyperparameters for training.
Hyperparameter Value

Optimizer Adam
Learning Rate 1e-2
β (in DPO) 0.6
Batch Size Full Gradient Descent

Type of GPUs NVIDIA RTX 4090, A40
Training Precision float32

Data Collection Phase Samples 500
P-N Samples (each) 150

C EXPERIMENT RESULTS

C.1 BEHAVIOUR CLONING RESULTS

This baseline employs behavior cloning, trained exclusively on positive samples, without the inclu-
sion of negative data or preference learning. We present results for both tuning soft prompt and the
full parameters (Table 1).

C.2 FULL FINE-TUNING RESULTS

We compare the results of our method with full fine-tuning. The latter involves ∼100M parameters,
while the former only has 512 parameters, which is merely one in hundreds of thousands of the
other. We found that in in-distribution settings, the soft prompt method achieves results comparable
to those of full fine-tuning. However, in out-of-distribution (OOD) environments, soft prompt tuning
outperformed across all tasks. The result can be found in Table 7.

C.3 PARAMETER-EFFICIENT FINE-TUNING RESULTS

We conduct parameter-efficient fine-tuning on LoRA (Hu et al., 2021), BitFit (Zaken et al., 2022),
VeRA (Kopiczko et al., 2024), and the result is in Table 8. In fact, all of these parameter counts are
significantly larger than those of PGT. and the contrast is shown in Table 9.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 7: Comparisons between tuning soft prompt and full fine-tuning. The soft prompt method can
bring better improvements than the counterpart, especially on OOD settings.

Task In Distribution (ID) Out of Distribution (OOD)

Pretrained Full Soft prompt Pretrained Full Soft prompt

collect wood 3.14 3.46 3.62 3.88 4.04 4.22
craft stonecutter 31.0 62.2 44.6 20.0 21.2 23.4

explore mine 4.91 6.00 6.58 3.90 4.77 5.38
tool pumpkin 48.3 58.4 57.8 16.6 22.2 25.8
survive hunt 31.2 39.8 39.8 20.8 21.0 21.6

obsidian 42.0 62.2 57.2 4.2 6.0 8.2

Table 8: Parameter efficient fine-tuning result.

Task
In Distribution(ID) Out of Distribution(OOD)

LoRA BitFit VeRA PGT Lora BitFit VeRA PGT

collect wood 3.47 3.55 3.39 3.62 4.09 3.91 4.16 4.22
craft stonecutter 49.4 48.6 52.2 44.6 19.8 18.0 18.8 23.4

explore mine 6.52 5.37 5.76 6.58 5.17 4.42 4.67 5.38
survive hunt 39.8 40.8 42.0 39.8 24.6 25.2 27.4 21.6
tool pumpkin 50.4 56.2 52.8 57.8 19.6 20.8 22.4 25.8

collect obsidian 71.2 55.8 57.8 57.2 10.6 6.2 2.6 8.2

C.4 CONTINUAL LEARNING RESULTS

All of our continual learning baselines are based on fine-tuning the entire policy model, and the order
of tasks for continual learning is as follows: collect obsidian() → tool pumpkin()
→ craft crafting table() → explore climb(). We implemented multi-task learn-
ing (MTL) (Table 3), naive continual learning (NCL) (Table 10), knowledge distillation (KD)(Table
11), experience replay (ER)(Table 12), and elastic weight consolidation (EWC)(Table 13).

D OTHER PREFERENCE LEARNING ALGORITHMS

Our PGT method consists of data filtering and preference learning. The aforementioned experiments
are all based on DPO for convenience, but other preference learning algorithms like IPO (Azar et al.,
2024) and SLiC (Zhao et al., 2022; 2023b) are also possible. We experiment with IPO and SLiC 1

on the goal latent representation on several tasks and the results are listed in 14. It can be observed
that both DPO and IPO improve task performance across different environments. Different tasks
are suited to different algorithms (which may also be related to hyperparameters), but performance
almost consistently improves after PGT, and a goal latent representation with just 512-dimensional
parameters is sufficient.

1We choose rank calibration loss and cross entropy regularization loss, which is the same as SLiC-HF.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 9: The number of trainable parameters in full fine-tuning, PGT and other baselines.
Full LoRA BitFit VeRA PGT

Parameters 86M 393K 80K 15K 512

Table 10: CL: naive continual learning. The task names in the first row represent the model trained
up to the current task during sequential training (with both the pretrained model and PGT used as
references); the task names in the first column represent the test results on each task. For brevity,
craft crafting table is abbreviated as craft table. To reduce human annotation costs,
we do not test the results of explore climb, but use it solely as a step in the training process.
It is employed to examine the impact of later tasks on earlier ones during sequential training. The
same principle applies to the subsequent tables on continual learning.

Task collect obsidian tool pumpkin craft table explore climb Pretrained PGT
collect obsidian 6.0 4.6 7.0 6.8 4.2 8.2
tool pumpkin 23.6 24.2 20.4 16.6 25.8

craft table 5.2 7.0 6.0 18.4

Table 11: CL: knowledge distillation
Task collect obsidian tool pumpkin craft table explore climb Pretrained PGT

collect obsidian 6.0 5.2 6.6 5.4 4.2 8.2
tool pumpkin 24.6 23.4 20.6 16.6 25.8

craft table 7.6 5.8 6.0 18.4

Table 12: CL: experience replay
Task collect obsidian tool pumpkin craft table explore climb Pretrained PGT

collect obsidian 6.0 6.6 5.0 6.0 4.2 8.2
tool pumpkin 22.8 21.8 25.0 16.6 25.8

craft table 5.2 9.0 6.0 18.4

Table 13: CL: elastic weight consolidation
Task collect obsidian tool pumpkin craft table explore climb Pretrained PGT

collect obsidian 6.0 8.2 5.4 5.4 4.2 8.2
tool pumpkin 23.6 24.0 23.8 16.6 25.8

craft table 5.0 7.4 6.0 18.4

Table 14: PGT with another preference learning algorithm - IPO and SLiC, on GROOT.

Task In Distribution(ID) Out of Distribution(OOD)

Pretrained DPO IPO SLiC Pretrained DPO IPO SLiC

collect wood 3.14 3.62 3.37 3.24 3.88 4.22 3.99 4.00
craft stonecutter 31.0 44.6 42.0 37.0 20.0 23.4 23.0 25.6

explore mine 4.91 6.58 5.44 6.34 3.90 5.38 4.70 5.29
survive hunt 31.2 39.8 40.6 43.0 20.8 21.6 32.8 24.4
tool pumpkin 48.3 57.8 62.2 60.6 16.6 25.8 30.6 27.6

collect obsidian 42.0 57.2 50.4 34.4 4.2 8.2 4.8 3.4

19

	Introduction
	Preliminary
	Sequential Control
	Goal-Conditioned Policy
	Preference Learning

	Methodology
	Preference Goal Tuning
	Design Choices

	Experiments
	Boosting Performance over Prompt Tuning
	Efficient Continual Learning
	Solving Long-horizon Challenges with Planner
	Eliciting New Skills
	Ablation Study on PEFT Methods

	Related Work
	Foundation Models for Decision-making
	Preference Learning

	Limitations and Future Work
	Conclusion
	Mathematical Derivation
	PGT loss

	Experiment Details
	Minecraft
	Minecraft SkillForge Benchmark
	Task Metrics and Selection
	Out-of-distribution Settings
	Hyperparameters

	Experiment Results
	Behaviour Cloning Results
	Full Fine-tuning Results
	Parameter-efficient Fine-tuning Results
	Continual Learning Results

	Other Preference Learning Algorithms

