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Abstract

Speech classification is an essential yet challenging subtask of multitask classifica-
tion, which determines the gender and age groups of speakers. Existing methods
face challenges while extracting the correct features indicative of some age groups
that have several ambiguities of age perception in speech. Furthermore, the meth-
ods cannot fully understand the causal inferences between speech representation
and multilabel spaces. In this study, the causes of ambiguous age group boundaries
are attributed to the considerable variability in speech, even within the same age
group. Additionally, features that indicate speech from the 20’s can be shared by
some age groups in their 30’s. Therefore, a two-step approach to (1) mixup-based
knowledge distillation to remove biased knowledge with causal intervention and (2)
hierarchical multi-task learning with causal inference for the age group hierarchy
to utilize the shared information of label dependencies is proposed. Empirical
experiments on Korean open-set speech corpora demonstrate that the proposed
methods yield a significant performance boost in multitask speech classification.

1 Introduction

Figure 1: Example of observed label noise
in the Korean speech corpus (LTV). The
original voice, characterized as female/20-
30/20’s, is overlaid with an unidentified
voice (potentially male/40-50/50’s)

Human speech contains a wealth of information related
to the identity, emotion, gender, height, age, accent,
and origin of a speaker from various perspectives, ow-
ing to a combination of linguistic and paralinguistic
factors[1][2]. Speech classification plays a crucial role
in spoken language and audio signal analyses by auto-
matically categorizing or delineating speech into pre-
defined factors. However, general classification max-
imally discriminates between a number of predefined
factors [3], whereas speech classification concerns clas-
sifier analysis and design without discrimination based
on sensitive features, including age group; thus speech-
based classification is challenging [4]. Most of the exist-
ing approaches present some difficulties in predicting a
speaker’s age and classifying the ambiguous boundaries
of age groups because age is not a discrete factor and has
a subjective nature that poses encapsulation challenges
in models [2][5][6][7]. Another reason for such brittle-
ness is label noise, a characteristic of real-world audio
data, as depicted in Figure 1. In this study, age-group
ambiguity problems are solved by compelling the model to learn the unseen causalities between age
groups and mitigate the impact of label noise that otherwise compromises model generalization.
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Figure 2: Concept of hierarchical depen-
dency loss. The dependency punishment
for forcing the model to learn hierarchi-
cal information when conflicting the age-
group category from the hierarchy while
training independent tasks using the MTL
approach is illustrated.

Throughout the study, a multitask learning (MTL) ap-
proach is utilized to simultaneously train multiple related
tasks and classify target labels, such as gender or super-
class and subclass of age groups. Herein, superclass
and subclass of age groups are denoted as “agesup” and
“agesub,” respectively. However, equipping MTL with
speech classification is difficult owing to the numerous
aspects of information in speech and diverse training
techniques used to determine the relationships for each
task in the MTL. Therefore, the causalities between age-
sup (i.e., 20–30, 40–50, and 60) and agesub (i.e., 20’s,
30’s, 40’s, 50’s, and 60’s) are identified in this study. Fur-
thermore, additional dependency losses are introduced
to compel the classification model to learn hierarchically
structured relationships, as shown in Figure 2. Addition-
ally, a data-agnostic data augmentation method known
as mixup [8] is combined with feature-based knowledge
distillation (KD) for improved robustness against noisy
label datasets.

The proposed approach leverages the causal structure among speech features including ambiguous
boundaries and improves the model robustness against noise. Causal representation learning (CRL)
is an effective approach for extracting invariant and stable causal information. The robustness and
generalization performance of machine learning (ML) models are expected to improve by CRL [9].
Under the hypothesis that intrinsic latent factors follow casual models, the performance of speech
classification can be improved by learning a causal representation, which is the shared representation
used to classify each target task and provide superior performance for independent tasks [10]. The
main contributions of this study are summarized as follows:

• The concept of a causal approach to hierarchical MTL of highly variable speech features is
implemented while improving the ability of the speech classification model.

• A mixup-based KD method is proposed to acquire a robust representation of the student
model trained from a noisy label dataset by transferring knowledge from a pre-trained
teacher model, which is trained from a clean dataset.

2 Related work

2.1 Causal representation learning and causal interventions

CRL involves the identification of underlying causal variables and their relationships from high-
dimensional observations (such as speech) and investigation of a representation that partially exposes
the unknown causal structure [9][11]. Representations that capture the underlying causal factors of
data and generalize well to interventions, counterfactual scenarios, and unseen environments are learnt,
thereby addressing some of the central challenges faced in ML [9]. Traditionally, representation
learning focused on learning mapping from raw data to a lower-dimensional space, ideally preserving
the essential characteristics of data while discarding noise. This concept was further developed in
CRL with the aim of uncovering the underlying causal structure of data for providing a more robust
and transferable representation and describing the relationships between various factors.

Causal interventions are operations in which one or more variables are actively manipulated following
a causal mechanism to observe the effects of such manipulations on other variables, while allowing
other mechanisms and observations to continue functioning [12][13]. One of the main goals of CRL is
to understand the relationship between representations and causal interventions and find interventional
data from high-dimensional observations, such as speech, image, and video[14]. Therefore, the
integration of CRL with causal interventions offers a deeper understanding of the causal mechanisms
underlying the data, facilitates better generalization of ML models, and fosters advancements in
numerous domains [9]. Several researchers have proposed methods that utilize causal interventions.
Zhang et al.[13] introduced an approach employing causal intervention to eliminate confounding
bias in image-level classification, thereby providing enhanced pseudo-masks as a more accurate
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Figure 3: Overview of our proposed Multi-task Speech Classification Model.

ground truth for subsequent semantic segmentation models. Wang et al.[15] presented a video object-
grounding model that harnesses causal intervention, aiming to discern object-relevant associations
from the vantage of video data generation, and seek genuine causality through backdoor adjustment.

2.2 Knowledge distillation with causal intervention

In ML, KD is the process of training a smaller student model to imitate a larger and more complex
teacher model. Primarily, recent distillation techniques have focused on aligning sample repre-
sentations between teacher and student models but often neglect the adequate transfer of class
representations [16]. Fully imitating the representations of a teacher model is not optimal, as the
model is typically imperfect and its bias gets transferred to the student model. Therefore, incorporat-
ing KD with causal interventions promotes the enhancement of the conventional KD process with
causal reasoning derived from interventions and facilitates more robust and interpretable student
models. For instance, Deng et al. [17] altered the training process of a student model through inter-
ventions that were designed based on the causal understanding derived from a teacher model. Shao et
al. [18] developed a multi-teacher causal distillation framework designed to equitably assimilate both
classification and localization knowledge throughout the model training process.

3 Methodology

3.1 Architecture

Figure 3 illustrates the overall structure of the proposed model that is capable of being trained in
an end-to-end manner. Based on the proposed methods of mixup-based KD and hierarchical MTL,
the architecture of the proposed model was built in three stages. In the first stage, two different
inputs were generated from the same speech using the temporal frequency mixup operation [19]
to imitate the environment of a label noise dataset, while combining temporal information from
the same source [20]. For classification problems, the mixup technique demonstrated efficacy in
enhancing model robustness through the smoothing of loss landscapes [21]. Nonetheless, its direct
application to speech classification encountered challenges because the lengths of audio files differ,
making calculations difficult. Hence, unlike traditional mixup, a simple data augmentation method,
SpecAugment [22], was directly applied to the feature inputs, such as filter bank coefficients, and
the original input was mixed with the augmented feature using a fixed mixup ratio λ, controlling the
frequency cut. In this study, λ was set to 0.7. Given an original speech xnormal and augmented input
xspecaug , the mixup sample was generated at each time step i and mixup window length T , such that

xi
mixup = λxi

normal + (1− λ)
1

T

i+T
2∑

j=i−T
2

(xj
specaug) (1)
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In the second stage, KD was applied during the phase of knowledge transfer from a teacher model.
The teacher model was trained using clean label datasets, FCVG, which were recorded in a studio
environment to ensure high-quality speech data, setting a benchmark for excellence and reliability in
speech data. Experiments were conducted with two basic criteria for the feature-based KD model,
the mean squared error (mse) and cosine embedding loss (cos), to measure the discrepancy between
the embedding features of the teacher and student models. Utilization of these criteria enabled the
student model to inherit the representational power of the teacher model, fostering the learning of
rich discriminative features that enhanced its generalization ability for the task at hand. In this study,
the features were the results of an attentive statistics pooling operation; therefore, a non-trainable
layer (Conv1D) was included to convert the feature map of the teacher model to the shape of the
feature map of the student model. Finally, the feature vectors from the teacher and student models
were concatenated to train the student classifiers. The objective of KD was formulated as

Ldist(S, T ) =
1

N

N∑
i=1

(Si − Ti)
2 or 1−

∑N
i=1 Si · Ti

∥S∥ · ∥T∥
(2)

where T and S denote the feature vectors of the teacher and student models for a given input i,
respectively.

In the third stage, an MTL approach that combined hierarchical classification networks was designed.
The training objective for MTL was formulated as the sum of the per-task losses as

Ltotal = λLdist(S, T ) + LCE(Hgender, Ygender) + Lasl(Hagesup, Yagesup)+

Lasl(Hagesub, yagesub) + Ldep(Hagesup, yagesub)
(3)

where λ is set to 0.25. As the proposed approach built different classifiers for each class and sub-
hierarchy, the nodes in the proposed model could independently associate with multiple classes.
However, this study was focused on CRL, with the aim to find a low-dimensional representation of
observations that benefit from predicting multiple tasks. Consequently, the classifiers were forced to
learn the shared representation information or the concatenated features from the teacher and student
models. The main challenge was to compel each classifier to learn the shared information explicitly,
including the hierarchical information of each class. Details on the rationale behind hierarchical
multitask classification with CRL and its implementation are discussed in Section 3.2.

3.2 Causal approach to hierarchical multi-task learning

Figure 4: The proposed SCM for hi-
erarchical multi-task classification with
causal intervention

By minimizing the objectives expressed in Equation 3,
the network was made to learn classification from the
high-quality pre-trained model through KD. From this
perspective, the causalities among speech input samples X ,
prior knowledge of high-quality speech K for training the
student model, and target labels Y using a structural causal
model (SCM) were formulated. Additionally, the network
was developed for hierarchical MTL, and the full causal
graph when three different tasks were considered is shown
in Figure 4, where Z denotes the shared representation of
the teacher and student models extracted from the original
observation X and its prior knowledge K, and H denotes
task-specific representations based on Z for each target Y .
An intermediate process Yagesub → Hagesub → Yagesup

conveyed the subclass information to the superclass, whereas the mediation assumption considered
the logical dependency from Yagesub to Yagesup. In this study, SCM was applied to empower each
classification model to pursue the designed causalities between the three different targets Y .

X → Z ← K. The combined representation concatenating X and K for considering the un-
predictable label noise was denoted as Z. To pursue this causality, conditional causal intervention
P (Y (X)|do(X)) was used instead of P (Y (X)|(X)) [12]. Notably, this relationship existed due
to the independent nature of X and K. Although they originated from the same speech, they were
trained separately by different models, teachers, and students.
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Z → H → Y . This relationship denoted obvious causality; the hidden representation H for each
task was predicted based on the shared representation Z. In this study, X could not directly affect the
labels Y because the proposed method learned the causal representation Z from observational data,
ensuring invariant causal mechanisms between the causal representation and the task labels Y across
various tasks. Therefore, Z mediated X and Y via the path X → Z → H → Y . The classification
was affected by the task-specific representation H through the mediation Z.

Y → H → Y . The SCM had direct and indirect causal effects following the path Yagesub →
Hagesup and Yagesub → Yagesup, respectively. This relationship comprised (1) the weighted sum-
mation of the classification loss, LCE & Lasl, and (2) hierarchical dependency loss Ldep. The
cross-entropy loss LCE was used to predict the gender label providing stable performance. However,
moving beyond the age group classification for speech, additional constraints were enforced to tackle
high negative–positive imbalance for age group label and ground-truth mislabeling issues in classifi-
cation. Therefore, the single label version of asymmetric loss Lasl was used, defined in Equation
4, where p is the output probability of the network [23]. The adjusted probability pm instituted
a hard thresholding mechanism, effectively discarding samples characterized by exceedingly low
probabilities. The probability margin m ≥ 0 was a hyperparameter, and γ denoted the focusing
parameter when γ = 0 yielded binary cross-entropy. The dependency loss, being hierarchy-related,
acted as a penalty when predictions were misaligned with a higher hierarchy, specifically agesup.
The dependency loss for the super class is given by Equation 5. Here, D and I indicate hierarchy
conflicts. Specifically, Dagesup is set to 1 when ŷagesup ̸= ŷagesub, otherwise it is 0. Iagesup is 1 if
ŷagesup ̸= ŷagesup, otherwise it is 0. Similarly, Iagesub is 1 if ŷagesub ̸= ŷagesub, otherwise it is 0.

Lasl =

{
L+ = (1− p)γ+ log p
L− = (pm)γ− log (1− pm) when pm = max(p−m, 0)

}
(4)

Ldep = − (Lagesub)
DagesupIagesub · (Lagesup)

DagesupIagesup (5)

4 Experiments and results

Datasets In this study, three AI-Hub open datasets and one in-house call center dataset were used.
The wav samples were filtered to retain only those with durations ranging from 1 to 20 s, inclusive.
FCVG contained 1,673,214 utterances from 1,958 speakers. The dataset volume was the same in
FCVE and FCVG, but only the studio-recorded dataset was used, which contained 121,973 utterances
from 112 speakers. In these two datasets, data were originally recorded at a 16 kHz sampling rate and
stored in wav format with accompanying age metadata. To ensure consistency with the call-center
domain data, a meticulous downsampling process was followed to transform the data to an 8 kHz
sampling rate with a 16-bit depth. LTV contained a total of 1,235,302 utterances and speakers
were categorized into age groups, such as 10’s and 20’s, when exact age data were unavailable.
The in-house call-center dataset contained 260,344 utterances. All the datasets were executed in
an 80-10-10 split. The outcomes presented in Table 1 pertain to the analyses conducted on each
evaluation subset.

Experimental settings For data pre-processing, each utterance was converted into 80-dimensional
Fbank features. The hidden size of the embeddings from the encoders was 256 after the extraction.
For all models, the SpeechBrain framework was used to build the neural networks. The multitask
classifiers consisted of a linear dense block with BN, Leaky ReLU, and Dropout. All models were
trained with batch sizes of 12 and 10 epochs. The initial learning was 1e-4, and a step decay of rate
0.8 was employed for every 4 epochs from the 2nd to the 10th epoch. The Adam optimizer was
employed, and the CE loss was used with a smoothing parameter of 0.1. The evaluation metrics were
precision (P), recall (R), and F1 scores (F1).

Baselines For comparison, two different types of models using ECAPA-TDNN[24] and ResNet[25]
as encoders were considered to craft teacher–student pairs as: ECAPA-TDNN (residual block size:
8→4) and ResNet (layers: 34→18).

Effects of mixup-based KD (MKD) The baselines trained on FCVG were chosen as the teacher
model, and the size of the student model was approximately 50 % of the teacher model. The results
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Table 1: Experimental results on FCVG, FCVE, LTV, in-house dataset
Target label Gender Agegroup (super class)
Models Dataset Methods P R F1 P R F1

ECAPA FCVG†
(pre-training)

base 99.85 99.83 99.84 96.67 96.90 96.78
ResNet base 99.86 99.86 99.86 94.13 94.12 94.11

ECAPA LTV†
+FCVE†

base 97.13 97.14 97.13 79.80 68.07 70.01
+ MKD 97.03 96.76 96.89 81.35 66.14 67.43

(cos↑ mse↓) (-0.22) (-0.21) (-0.22) (+0.01) (-0.05) (-0.68)
+ CH 97.35 97.35 97.35 83.45 83.13 81.82
+ MKD + CH 98.42 98.42 98.42 86.63 86.13 85.09

ResNet
LTV†
+FCVE†

base 95.34 95.26 95.26 73.36 73.42 73.00
+ MKD (cos) 96.11 96.07 96.07 74.78 70.46 73.05
+ CH 97.55 97.56 97.55 82.38 81.15 77.66
+ MKD + CH 98.95 98.96 98.96 88.40 87.69 87.83

ECAPA in-house
call center
dataset ‡

base (F/T) 96.83 96.82 96.81 62.30 62.88 60.01
+ CH 98.32 98.29 98.29 75.13 70.68 70.15
+ MKD + CH 98.59 98.59 98.59 76.04 70.65 70.48

† This paper used datasets from ’The Open AI Dataset Project (AI-Hub, S. Korea)’. All data information
can be accessed through ’AI-Hub’. (www.aihub.or.kr)

– FCVG; Free Conversation Voice (General men and women);자유대화음성(일반남여)
– FCVE; Free Conversation Voice (Elderly men and women);자유대화음성(노인남여)
– LTV; Low-quality Telephone network Voice recognition data;저음질전화망음성인식데이터
‡ This is a operational data harvested from the company’s in-house call center services.

listed in Table 1 show that MKD retains a substantial part of the performance metrics of the teacher
model, although its student model is smaller in size. Thus, MKD successfully encouraged the
student model to mimic the teacher’s representation, even in the difficulties of the merged LTV and
FCVE datasets and the small-scale model. Furthermore, the experiments indicated the potential
of MKD in implementing a real-world audio environment with label noise when combined with
KD. High-quality speech information was helpful for creating shared information for training three
different speech-related tasks.

Effects of Causal approach to Hierarchical multi-task learning (CH) According to Table 1, the
proposed method (MKD+CH) significantly improves the performance on all datasets. Particularly,
the hierarchical multitask classifier exhibits a larger gain, indicating the strong ability of the method
to tackle ambiguous boundaries of age groups and assist classifiers to maximally discriminate the
target group in the hierarchical structure. The trained subclass classification model smoothened
the superclass classification; thus, dependency punishment forces were used to learn structural
information from the hierarchy.

5 Conclusion and limitations

In this study, an end-to-end speech classification model that learns robust representations by enforcing
unseen causalities between shared representations and target labels is proposed. Initially, MKD is
used with causal intervention, and then a causal approach to hierarchical MTL is proposed to learn
hierarchical information without spurious correlations between age groups. The proposed approaches
empirically achieve improvements in speech classification, particularly for agesup classification
with unseen ambiguous boundaries. Limited to age group information in open-set corpora, the
proposed method can only be tested by dividing the age group in increments of 10 years and finding a
unidirectional pattern Yagesub → Yagesup in the hierarchy. Moreover, the method requires discovery
of causalities with other tasks, such as gender, to truly understand speech features and create an
invariant representation for speech.
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