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ABSTRACT

We propose FAME (Formal Abstract Minimal Explanations), a new class of ab-
ductive explanations grounded in abstract interpretation. FAME is the first method
to scale to large neural networks while reducing explanation size. Our main contri-
bution is the design of dedicated perturbation domains that eliminate the need for
traversal order. FAME progressively shrinks these domains and leverages LiRPA-
based bounds to discard irrelevant features, ultimately converging to a formal
abstract minimal explanation. To assess explanation quality, we introduce a
procedure that measures the worst-case distance between an abstract minimal ex-
planation and a true minimal explanation. This procedure combines adversarial
attacks with an optional VERIX+ refinement step. We benchmark FAME against
VERIX+ and demonstrate consistent gains in both explanation size and runtime
on medium- to large-scale neural networks.

1 INTRODUCTION

Figure 1: FAME Framework. The pipeline operates in two main phases (1) Abstract Batch Free-
ing phase leverages abstract interpretation (LiRPA) to simultaneously free a large number of irrel-
evant features (Section 4.2) based on an iterative process operating within a refined, cardinality-
constrained perturbation domain, !m(x,A) (Eq. 5); To ensure that the final explanation is as small
as possible, the remaining features that could not be freed in batches are tested individually (Sec-
tion 5). (2) From Abstract to Minimal phase identifies the final necessary features using sin-
gleton addition attacks and, if needed, a final run of VERIX+ (Section 6). The difference in size,
|WAXpA→

|→ |AXp|, serves as a metric to evaluate the efficiency of phase 1.

Neural network-based systems are being applied across a wide range of domains. Given AI tools’
strong capabilities in complex analytical tasks, a significant portion of these applications now in-
volves tasks that require reasoning. These tools often achieve impressive results in problems re-
quiring intricate analysis to reach correct conclusions. Despite these successes, a critical challenge
remains: understanding the reasoning behind neural network decisions. The internal logic of a neural
network is often opaque, with its conclusions presented without accompanying justifications. This
lack of transparency undermines the trustworthiness and reliability of neural networks, especially in
high-stakes or regulated environments. Consequently, the need for interpretable and explainable AI
(XAI) has become a growing focus in recent research.

Two main approaches have emerged to address this challenge. The first employs statistical and
heuristic techniques to infer explanations based on network’s internal representations (12). The
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second leverages automated reasoners and formal verification methods to produce provably correct
explanations grounded in logical reasoning. While statistical methods are generally faster and more
scalable, formal verification techniques provide stronger guarantees about the correctness of their
explanations.

Here, we use the term “formal XAI” to refer to a family of concepts including minimal explanations,
also known as local-minimal, minimal unsatisfiable subsets (29), prime implicants (35) or abductive
explanations (AXp) (20). These explanations characterize feature sets where the removal of any sin-
gle feature invalidates the explanation. In a machine learning context, they represent subsets of input
features that preserve robustness. However, a major hurdle for formal XAI is its high computational
cost due to the complexity of reasoning, preventing it from scaling to large neural networks (NNs)
(31). This limitation, combined with the scarcity of open-source libraries, significantly hinders its
adoption. Initial hybrid approaches, such as the EVA method (11), have attempted to combine formal
and statistical methods, but these often fail to preserve the mathematical properties of the explana-
tion. However, robustness-based approaches address the scalability challenges of formal XAI for
NN by leveraging a fundamental connection between AXps and adversarial examples (15).

In this work, we present FAME, a scalable framework for formal XAI that addresses the core limi-
tations of existing methods. Our contributions are fourfold:

• Formal abstract explanations. We introduce the first class of abductive explanations
derived from abstract interpretation, enabling explanation algorithms to handle high-
dimensional neural networks.

• Eliminating traversal order. We design perturbation domains and a recursive refinement
procedure that leverage Linear Relaxation based Perturbation Analysis (LiRPA)-based cer-
tificates to simultaneously discard multiple irrelevant features. This removes the sequential
bottleneck inherent in prior work and yields an abstract minimal explanation.

• Provable quality guarantees. We provide the first procedure to measure the worst-case
gap between abstract minimal explanations and true minimal abductive explanations, com-
bining adversarial search with optional VERIX+ refinement.

• Scalable evaluation. We benchmark FAME on medium- and large-scale neural networks,
showing consistent improvements in both explanation size and runtime over VERIX+. We
release our framework as open source to facilitate further research.

2 ABDUCTIVE EXPLANATIONS & VERIFICATION

2.1 NOTATIONS

Scalars are denoted by lower-case letters (e.g., x), and the set of real numbers by R. Vectors are
denoted by bold lower-case letters (e.g., x), and matrices by upper-case letters (e.g., W ). The i-th
component of a vector x (resp. line of a matrix W ) is written as xi (resp. Wi). The matrix W↑0

(resp. W↓0) represents the same matrix with only nonnegative (resp. nonpositive) weights. Sets are
written in calligraphic font (e.g., S). We denote the perturbation domain by ! and the property to
be verified by P.

2.2 THE VERIFICATION CONTEXT

We consider a neural network as a function f : Rn
↑ Rk. The core task of verification is to

determine whether the network’s output f(x↔) satisfies a given property P for every possible input
x↔ within a specified domain !(x) ↓ Rn. When verification fails, it means there is at least one input
x↔ in the domain !(x) that violates the property P (a counterexample). The verification task can be
written as: ↔x↔

↗ !(x), does f(x↔) satisfy P? This requires defining two components:

1. The Perturbation Domain (!): This domain defines the set of perturbations. It is often
an lp-norm ball around a nominal input x, such as an l↗ ball for modeling imperceptible
noise: ! = {x↔

↗ Rn
| ↘x→ x↔

↘↗ ≃ ω}.
2. The Property (P): This is the specification the network must satisfy. For a classification

task where the network correctly classifies an input x into class c, the standard robustness
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property P asserts that the logit for class c remains the highest for any perturbed input x↔:

P(x↔) ⇐ min
i ↘=c

{fc(x
↔)→ fi(x

↔)} > 0 (1)

A large body of work has investigated formal verification of neural networks, with adversarial ro-
bustness being the most widely studied property (39). Numerous verification tools are now available
off-the-shelf, and for piecewise-linear models f with corresponding input domains and properties,
exact verification is possible (25; 28). In practice, however, exact methods quickly become in-
tractable for realistic networks, so most approaches rely on relaxations that trade precision for effi-
ciency. A common relaxation strategy is to bound approximation errors using abstract interpretation
or linear perturbation analysis (44; 36). These methods over-approximate the network’s output by
enclosing it between two affine functions, given knowledge of the architecture and weights. Such
abstractions enable sound but conservative verification: if the relaxed property holds, the original
one is guaranteed to hold as well.

2.3 ABDUCTIVE EXPLANATIONS: PINPOINTING THE “WHY”

Understanding Model Robustness with Formal Explanations: Neural networks often exhibit
sensitivity to minor input perturbations, a phenomenon that certified training can mitigate but not
eliminate (9). Even robustly trained models may only have provably safe regions spanning a few
pixels for complex tasks like ImageNet classification (34). To build more reliable systems, it is
crucial to understand why a model’s prediction is robust (or not) within a given context. Formal
explainability provides a rigorous framework for this analysis.

We focus on abductive explanations (AXps, also called distance-restricted explanations (ω-AXp))
(20; 15), which identify a subset of input features that are sufficient to guarantee that the property P
holds. Formally, a local formal abductive explanation is defined as a subset of input features that, if
collapsed to their nominal values (i.e., the sample x), ensure that the local perturbation domain !
surrounding the sample contains no counterexamples.

Definition 2.1 (Weak Abductive Explanation (WAXp) ). Formally, given a triple (x,!,P), an ex-
planation is a subset of feature indices X ↓ F = {1, . . . , n} such that

WAXp: ↔x↔
↗ !(x),

(
∧

i≃X
(x↔

i = xi)

)
=⇒ f(x↔) |= P. (2)

While many such explanations may exist (the set of all features F is a trivial one), the most useful
explanations are the most concise ones (4). We distinguish between three levels of conciseness:

Minimal Explanation:An explanation X is minimal if removing any single feature from it would
break the guarantee (i.e., X \ {j} is no longer an explanation for any j ↗ X ). These are also known
as minimal unsatisfiable subsets(19; 4).

Minimum Explanation: An explanation X is minimum if it has the smallest possible number of
features (cardinality) among all possible minimal explanations.

Figure 2 illustrates a 3D classification task. For the starred sample, we seek an explanation for
its classification within a local cube-shaped domain. As shown in Figure 3, fixing only feature x2

(i.e. freeing {x1,x3}, restricting perturbations to the orange plane) is not enough to guarantee the
property, since a counterexample exists. However, fixing both x2 and x3 (orange line on free x1)
defines a ’safe’ subdomain where the desired property holds true, since no counterexample exists in
that subdomain. Therefore, X = {x2,x3} is an abductive explanation. Since neither {x2} nor {x3}

are explanations on their own, {x2,x3} is minimal. But it is not minimum since X = {x1} is also
a minimal abductive explanation with a smaller cardinality. Two special cases are worth noting: an
empty explanation (all features are irrelevant) and a full explanation (the entire input is necessary).
In the rest of this paper, we will use the terms abductive explanation or formal explanation and the
notation WAXp to refer to Definition 2.1.
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Figure 2: A 3D classification task. Figure 3: AXps with different properties.

3 RELATED WORK

Substantial progress has been made in the practical efficiency of computing formal explanations.
While finding an abductive explanation (AXp) is tractable for some classifiers (30; 8; 13; 14; 22; 32;
33), it becomes computationally hard for complex models like random forests and neural networks
(18; 23). This is often because these methods encode the problem as a logical formula, leveraging
automated reasoners like SAT, SMT, and Mixed Integer Linear Programming (MILP) solvers (1;
16; 17; 18; 23). Early approaches, such as deletion-based (7) and insertion-based (37) algorithms,
are inherently sequential, thus requiring an ordering of the input features traditionally denoted as
traversal ordering. They require a number of costly verification calls linear with the number of
features, which prevents effective parallelization. As an alternative, surrogate models have been
used to compute formal explanations for complex models (5), but the guarantee does not necessary
hold on the original model.

Recent work aims to break the sequential bottleneck, by linking explainability to adversarial robust-
ness and formal verification. DistanceAXp (15; 27) is a key example, aligning with our definition of
AXp and enabling the use of verification tools.

The latest literature focuses on breaking the sequential bottleneck using several strategies that in-
clude parallelization. This is achieved either by looking for several counterexamples at once (21; 4)
or by identifying a set of irrelevant features simultaneously, as seen in VERIX (41), VERIX+ (40),
and prior work (4). For instance, VERIX+ introduced stronger traversal strategies to alleviate the
sequential bottleneck. Their binary search approach splits the remaining feature set and searches for
batches of consecutive irrelevant features, yielding the same result as sequential deletion but with
fewer solver calls. They also adapted QuickXplain (24), which can produce even smaller explana-
tions at the cost of additional runtime by verifying both halves. Concurrently, (4) proposed strategies
like the singleton heuristic to reuse verification results and derived provable size bounds, but their
approach remains significantly slower than VERIX and lacks publicly available code.

The identified limitations are twofold. First, existing methods rely heavily on exact solvers such
as Marabou (26), which do not scale to large NNs and are restricted to CPU execution. Recent
verification benchmarks (6; 10; 45) consistently demonstrate that GPU acceleration and distributed
verification are indispensable for achieving scalability. Second, these approaches critically depend
on traversal order. As shown in VERIX, the chosen order of feature traversal strongly impacts both
explanation size and runtime. Yet, determining an effective order requires prior knowledge of feature
importance, precisely the information that explanations are meant to uncover, thus introducing a cir-
cular dependency. Nevertheless, VERIX+ currently represents the SOTA for abductive explanations
in NNs, achieving the best trade-off between explanation size and computation time.

Our work builds on this foundation by directly addressing the sequential bottleneck of formal ex-
planation without requiring a traversal order, a first in formal XAI. We demonstrate that leveraging
incomplete verification methods and GPU hardware is essential for practical scalability. Our ap-
proach offers a new solution to the core scalability issues, complementing other methods that aim to
reduce explanation cost through different means (3; 2).
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4 FAME: FORMAL ABSTRACT MINIMAL EXPLANATION

In this section, we leverage abstract interpretation (LiRPA) to build an abstract abductive explana-
tion, as defined in Definition 4.1.
Definition 4.1 (Abstract Abductive Explanation (WAXpA)). Formally, given a triple (x,!,P), an
abstract abductive explanation is a subset of feature indices XA

↓ F = {1, . . . , n} such that, under
an abstract interpretation f of the model f , the following holds:

WAXpA : ↔x↔
↗ !(x),

(
∧

i≃XA

(x↔
i = xi)

)
=⇒ f(x↔) |= P. (3)

Here, f = LiRPA(f,!) denotes the sound over-approximated bounds of the model outputs on the
domain !, as computed by the LiRPA method. If Eq. (3) holds, any feature outside X

A can be
considered irrelevant with respect to the abstract domain. This ensures that the concrete implication
f(x↔) |= P also holds for all x↔

↗ !. In line with the concept of abductive explanations, we define
an abstract minimal explanation as an abstract abductive explanation (WAXpAω

) a set of features
X

A from which no feature can be removed without violating Eq. (3).

Due to the over-approximation, as detailed in Section 2.2, any abstract abductive explanation is a
weak abductive explanation for the model f . In the following we present the first steps described in
Figure 1 to build such a WAXpA.

4.1 THE ASYMMETRY OF PARALLEL FEATURE SELECTION

In the context of formal explanations, adding a feature means identifying it as essential to a model’s
decision (causes the model to violate the desired property P), so its value must be fixed. Conversely,
freeing a feature means identifying it as irrelevant, allowing it to vary without affecting the predic-
tion. A key insight is the asymmetry between these two actions: while adding necessary features
can be parallelized naively, freeing features cannot due to complex interactions.

The core problem of parallelizing the freeing of features is that it’s unsound to free multiple fea-
tures at once based only on individual verification queries, as two features may be individually
irrelevant yet jointly critical. This failure stems from treating the verifier as a simple binary oracle
(SAT/UNSAT), which hides the information about feature dependencies. The formal propositions
detailing the asymmetry of parallel feature selection are provided in the Appendix B.

To overcome this limitation, we propose a sound method in the next section that simultaneously
frees several features by leveraging abstract interpretation.

4.2 ABSTRACT INTERPRETATION FOR SIMULTANEOUS FREEING

Standard solvers act as a ”binary oracle,” and their outcomes (SAT/UNSAT) are insufficient to certify
batches of features for freeing without a traversal order. This is because of feature dependencies
and the nature of the verification process. We adress this by leveraging inexact verifiers based
on abstract interpretation (LiRPA) to extract proof objects—linear bounds that conservatively track
the contribution of any feature set. Specifically, we use CROWN(44) to define an abstract batch
certificate ” in Definition 4.1. If one succeeds in freeing a set of features A given ”, we denote
such an explanation as a formal abstract explanation that satisfies Proposition 4.1.
Definition 4.2 (Abstract Batch Certificate). Let A be a set of features and ! any perturbation do-
main. The abstract batch certificate is defined as:

”(A;!) = max
i ↘=c

(
b
i
(x) +

∑

j≃A
ci,j

)
,

where the baseline bias (worst-case margin of the model’s output) at x is b
i
(x) = W

i
· x+ wi,

and the contribution of each feature j ↗ A is ci,j = max
{
W

i,↑0
j (xj → xj), W

i,↓0
j (xj → xj)

}
,

with xj = max{x↔
j : x↔

↗ !(x)} and xj = min{x↔
j : x↔

↗ !(x)}. The weights W
i

and biases

5
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wi are obtained from LiRPA bounds, which guarantee for each target class i ⇑= c, with c being the
groundtruth class:

↔x↔
↗ !(x), fi(x

↔)→ fc(x
↔) ≃ f i,c(x

↔) = W
i
· x↔ + wi,

Proposition 4.1 (Batch-Certifiable Freeing). If ”(A;!) ≃ 0, then F \ A is a weak abductive
explanation (WAXp).
Lemma 4.1. If ”(A) ≃ 0, freeing all features in A is sound; that is, the property P holds for every
x↔

↗ !(x) with {x↔
k = xk}k≃F\A.

The proof of Proposition 4.1 is given in Appendix B. The trivial case A = ⇓ always satisfies the
certificate, but our goal is to efficiently certify large feature sets. The abstract batch certificate also
highlights two extreme scenarii. In the first, if ”(F) ≃ 0, all features are irrelevant, meaning the
property P holds across ! without fixing any inputs. In the second, if b

i
(x) ⇔ 0 for some i ⇑= c,

then ”(⇓) > 0 and no feature can be safely freed; this situation arises when the abstract relaxation
is too loose, producing vacuous bounds. Avoiding this degenerate case requires careful selection of
the perturbation domain, a consideration we highlight for the first time in the context of abductive
explanations. The choice of abstract domain is discussed in Section 5.

4.3 MINIMIZING THE SIZE OF AN ABSTRACT EXPLANATION VIA A KNAPSACK
FORMULATION

Between the trivial and degenerate cases lies the nontrivial setting: finding a maximal set of irrele-
vant features A to free given the abstract batch certificate ”. Let F denote the index set of features.
Maximizing |A| can be naturally formulated as a 0/1 Multidimensional Knapsack Problem (MKP).
For each feature j ↗ F , we introduce a binary decision variable yj indicating whether the feature is
selected. The optimization problem then reads:

max
y

∑

j≃F
yj s.t.

∑

j≃F
cijyj ≃ →b

i
(x), i ↗ I, i ⇑= c (4)

where ci,j represents the contribution of feature j to constraint i, and →b
i
(x) is the corresponding

knapsack capacity. The complexity of this MKP depends on the number of output classes. For
binary classification (k = 2), the problem is linear1. In the standard multiclass setting (k > 2),
however, the MKP is NP-hard. While moderately sized instances can be solved exactly using a
MILP solver, this approach does not scale to large feature spaces. To ensure scalability, we propose
a simple and efficient greedy heuristic, formalized in Algorithm 1. Rather than solving the full MKP,
the heuristic iteratively selects the feature jω that is least likely to violate any of the k→1 constraints,
by minimizing the maximum normalized cost across all classes. An example is provided in appendix
C. This procedure is highly parallelizable, since all costs can be computed simultaneously. While
suboptimal by design, it produces a set A such that ”(A;!) ≃ 0. In Section 7, we compare
the performance of this greedy approach against the optimal MILP solution, demonstrating that it
achieves competitive results with dramatically improved scalability.

Algorithm 1 Greedy Abstract Batch Freeing (One Step)
1: Input: model f , perturbation domain !m, candidate set F
2: Initialize: A ↖ ⇓, linear bounds {W

i
, wi

} = LiRPA(f,!m(x))
3: Do: compute ci,j in parallel
4: while ”(A) ≃ 0 and |F| > 0 do
5: pick jω = argminj≃F\A maxi ↘=c ci,j/(→bi) ε parallel reduction
6: if ”(A ↙ {jω}) ≃ 0 and |A| ≃ m then
7: A ↖ A ↙ {jω}
8: end if
9: F ↖ F \ {jω} ε Remove candidate

10: end while
11: Return: A

1it can be solved optimally in O(n) time by sorting features by ascending contribution c1,j and greedily
adding them until the capacity is exhausted.
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5 REFINING THE PERTURBATION DOMAIN FOR ABDUCTIVE EXPLANATION

Previous approaches for batch freeing reduce the perturbation domain using a traversal order ϑ,
defining !ε,i(x) = {x↔

↗ Rn : ↘x → x↔
↘↗ ≃ ω, x↔

εi: = xεi:}. These methods only consider
freeing dimensions up to a certain order. However, as discussed previously, determining an effective
order requires prior knowledge of feature importance—the very information that explanations aim to
uncover—introducing a circular dependency. This reliance stems from the combinatorial explosion:
the number of possible subsets of input features grows exponentially, making naive enumeration of
abstract domains intractable.

To address this, we introduce a new perturbation domain, denoted the cardinality-constrained per-
turbation domain. For instance, one can restrict to ϖ0-bounded perturbations:

!m(x) = {x↔
↗ Rn : ↘x→ x↔

↘↗ ≃ ω, ↘x→ x↔
↘0 ≃ m},

which ensures that at most m features may vary simultaneously. This concept is closely related to
the ϖ0 norm and has been studied in verification (42), but, to the best of our knowledge, it is applied
here for the first time in the context of abductive explanations. The greedy procedure in Algorithm 1
can then certify a batch of irrelevant features A under this domain. Once a set A is freed, the
feasible perturbation domain becomes strictly smaller, enabling tighter bounds and the identification
of additional irrelevant features. We formalize this as the refined abstract domain that ensures that
at most m features can vary in addition to the set of previously seclected ones A:

!m(x;A) = {x↔
↗ Rn : ↘x→ x↔

↘↗ ≃ ω, ↘xF\A → x↔
F\A↘0 ≃ m}. (5)

By construction, !m(x;A) ↓ !m+|A|(x), so any free set derived from !m(x;A) remains sound
for the original budget m + |A|. Recomputing linear bounds on this tighter domain often yields
strictly smaller abstract explanation. This refinement naturally suggests a recursive strategy: after
one round of greedy batch freeing, we restrict the domain to !m(x;A), recompute LiRPA bounds,
and reapply Algorithm 1 for m = 1 . . . |F \ A|. As detailed in Algorithm 5, this process can be
iterated, progressively shrinking the domain and expanding A. In practice, recursion terminates once
no new features can be freed. Finally, any remaining candidate features can be tested individually
using the binary search approach proposed by VeriX+ but replacing Marabou by CROWN (see
Algorithm 4). This final step ensures that we obtain a formal abstract minimal explanation, as
defined in Definition 4.1

6 DISTANCE FROM ABSTRACT EXPLANATION TO MINIMALITY

Algorithm 5 returns a minimal abstract explanation: with respect to the chosen LiRPA relaxation,
the certified free set A cannot be further enlarged. This guarantee is strictly weaker than minimality
in the exact sense. The remaining features may still include irrelevant coordinates that abstract
interpretation fails to certify, due to the coarseness of the relaxation. In other words, minimality is
relative to the verifier: stronger but more expensive verifiers (e.g., Verix+ with Marabou) are still
required to converge to a true minimal explanation.

The gap arises from the tradeoff between verifier accuracy and domain size. Abstract methods be-
come more conservative as the perturbation domain grows, while exact methods remain sound but
scale poorly. This motivates hybrid strategies that combine fast but incomplete relaxations with tar-
geted calls to exact solvers. As an additional acceleration step, adversarial attacks can be used. By
Lemma B.1, if attacks identify features that must belong to the explanation, they can be added simul-
taneously (see Algorithm 3). Unlike abstract interpretation, the effectiveness of adversarial search
typically increases with the domain size: larger regions make it easier to find counterexamples.

Towards minimal explanations. Our strategy is to use the minimal abstract explanation
((WAXpAω

) ) as a starting point, and then search for the closest minimal explanation. Concretely,
we aim to identify the largest candidate set of potentially irrelevant features that, if freed together,
would allow all remaining features to be safely added to the explanation at once. A good traversal
order of the candidate space is crucial here, as it determines how efficiently such irrelevant features
can be pinpointed. Formally, if XA denotes the minimal abstract explanation and X

Aω

the clos-
est minimal explanation, we define the absolute distance to minimality as the number of irrelevant
features not captured by the abstract method: d(XA,XAω

) =
∣∣XA

\ X
Aω ∣∣.

7
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Figure 4: FAME’s iterative refinement approach against the VERIX+ baseline. The left plot
compares the size of the final explanations. The right plot compares the runtime (in seconds). The
data points for each model are distinguished by color, and the use of circles (card=True) and squares
(card=False) indicates whether a cardinality constraint (||x→ x↔

||0 ≃ m) was applied.

7 EXPERIMENTS

To evaluate the benefits and reliability of our proposed explainability method, FAME, we performed
a series of experiments comparing its performance against the SoTA VERIX+ implementation.
We assessed the quality of the explanations generated by FAME by comparing them to those of
VERIX+ across four distinct models, including both fully connected and convolutional neural net-
works (CNNs). We considered two primary performance metrics: the runtime required to compute
a single explanation and the size (cardinality) of the resulting explanation.

Our experiments, as in VERIX+ (40), were conducted on two widely-used image classification
datasets: MNIST(43) and GTSRB(38). Each score was averaged over non-robust samples from the
100 samples of each dataset. For the comparison results, the explanations were generated using the
FAME framework only, and with a final run of VERIX+ to ensure minimality (See Figure 1).

VERIX+ (alone) FAME: Single-round FAME: Iterative refinement FAME-accelerated VERIX+
Traversal order bounds / / / + bounds

Search procedure binary MILP Greedy MILP Greedy Greedy + binary
Metrics ↓ |AXp| time |wAXPA

| time |wAXPA
| time |wAXPA

| time |wAXPA
| time ↘candidate-set↘ |AXp| time

MNIST-FC 280.16 13.87 441.05 4.4 448.37 0.35 229.73 14.30 225.14 8.78 44.21 224.41 13.72
MNIST-CNN 159.78 56.72 181.24 5.59 190.29 0.51 124.9 12.35 122.09 5.6 104.09 113.53 33.75
GTSRB-FC 313.42 56.18 236.85 9.68 243.18 0.97 331.84 12.28 332.74 5.26 11.93 332.66 9.26
GTSRB-CNN 338.28 185.03 372.66 12.45 379.34 1.35 321.92 17.74 321.98 7.42 219.57 322.42 138.12

Table 1: Average explanation size and generation time (in seconds) are compared for FAME (single-
round and iterative MILP/Greedy) with FAME-accelerated VERIX+ to achieve minimality.

Experimental Setup All experiments were carried out on a machine equipped with an Apple M2
Pro processor and 16 GB of memory. The analysis is conducted on fully connected (-FC) and
convolutional (-CNN) models from the MNIST and GTSRB datasets, with ω set to 0.05 and 0.01
respectively. The verified perturbation analysis was performed using the DECOMON library2, ap-
plying the LiRPA CROWN method with an l↗-norm. The NN verifier Marabou (26) is used within
VERIX+. The complete set of hyperparameters and the detailed architectures of the models used
for both the MNIST and GTSRB experiments are provided in Appendix D for full reproducibility.

7.1 GREEDY VS. MILP FOR ABSTRACT BATCH FREEING

Performance in a Single Round This experiment, in the ’FAME: Single Round’ column of Table
1, compares the runtime and size of the largest free set obtained in a single round using the greedy
method versus an exact MILP solver for the abstract batch freeing (Algorithm 1).

Across all models, the greedy heuristic consistently provided a significant speedup (ranging from
9∝ to 12∝) while achieving an abstract explanation size very close (fewer than 9 features in average)

2https://github.com/airbus/decomon
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to that of the optimal MILP solver. This demonstrates that, for single-round batch freeing, the greedy
method offers a more practical and scalable solution.

Performance with Iterative Refinement This experiment compares the two methods in an iterative
setting of the abstract batch freeing, where the perturbation domain is progressively refined (Sec-
tion 5). For the iterative refinement process, the greedy approach maintained a substantial runtime
advantage over the MILP solver, with a speedup up to 2.4∝ on the GTSRB-CNN model, while
producing abstract explanations that were consistently close in size to the optimal solution. The
distinction between the circle and square markers is significant in Figure 4. The square markers
(card=False) tend to lie closer to or even above the diagonal line. This suggests that the cardinality-
constrained domain, when successful, is highly effective at finding more compact explanations.

7.2 COMPARISON WITH STATE-OF-THE-ART (VERIX+)

We compare in this section the results of VERIX+ (alone) vs. FAME-accelerated VERIX+.

Explanation Size and Runtime: FAME consistently produces smaller explanations than VERIX+
while being significantly faster, mainly due to FAME’s iterative refinement approach, as visually
confirmed by the plots in Figure 4 that show a majority of data points falling below the diagonal line
for both size and time comparisons. The runtime gains are particularly substantial for the GTSRB
models (green and red markers), where FAME’s runtime is often only a small fraction of VERIX+’s
as shown in Table 1. In some cases, FAME delivers a non-minimal set that is smaller than VERIX+
’s minimal set, with up to a 25∝ speedup (321.98 features in 7.4s compared to 338.28 in 185.03s
for the GTSRB-CNN model) while producing WAXpA that were consistently close in size to the
optimal solution.

The Role of Abstract Freeing: The effectiveness of FAME’s approach is further supported by the
”distance to minimality” metric. The average distance to minimality was 44.21 for MNIST-FC and
104.09 for MNIST-CNN. An important observation from our experiments is that when the abstract
domains in FAME are effective, they yield abstract abductive explanations WAXpA that are smaller
than the abductive explanations (AXp) from VERIX+. This is not immediately obvious from the
summary table, as the final explanations may differ. Conversely, when FAME’s abstract domains
fail to find a valid free set, our method defaults to a binary search approach similar to VERIX+.
However, since we do not use the Marabou solver in this phase, the resulting WAXpA is larger than
the AXp provided by Marabou. This highlights the trade-off and the hybrid nature of our approach.

8 CONCLUSION AND DISCUSSION

In this work, we introduced FAME (Formal Abstract Minimal Explanations), a novel framework for
computing abductive explanations that effectively scales to large neural networks. By leveraging a
hybrid strategy grounded in abstract interpretation and dedicated perturbation domains, we success-
fully addressed the long-standing sequential bottleneck of traditional formal explanation methods.

Our main contribution is a new approach that eliminates the need for traversal order by progressively
shrinking dedicated perturbation domains and using LiRPA-based bounds to efficiently discard ir-
relevant features. The core of our method relies on a greedy heuristic for batch freeing that, as our
analysis shows, is significantly faster than an exact MILP solver while yielding comparable expla-
nation sizes.

Our experimental results demonstrate that the full hybrid FAME pipeline outperforms the current
state-of-the-art VERIX+ baseline, providing a superior trade-off between computation time and
explanation quality. We consistently observed significant reductions in runtime while producing
explanations that are close to true minimality. This success highlights the feasibility of computing
formal explanations for larger models and validates the effectiveness of our hybrid strategy.

Beyond its performance benefits, the FAME framework is highly generalizable. Although our eval-
uation focused on classification tasks, the framework can be extended to other machine learning
applications, such as regression, and can support a variety of properties beyond local robustness,
including local stability. Additionally, FAME can be configured to use exact solvers for the final
refinement step, ensuring its adaptability and robustness for various use cases.
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